JP2006185535A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2006185535A
JP2006185535A JP2004379608A JP2004379608A JP2006185535A JP 2006185535 A JP2006185535 A JP 2006185535A JP 2004379608 A JP2004379608 A JP 2004379608A JP 2004379608 A JP2004379608 A JP 2004379608A JP 2006185535 A JP2006185535 A JP 2006185535A
Authority
JP
Japan
Prior art keywords
data storage
address
replacement
memory
storage area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004379608A
Other languages
English (en)
Inventor
Kenichiro Tominaga
謙一郎 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004379608A priority Critical patent/JP2006185535A/ja
Priority to US11/304,564 priority patent/US20060140027A1/en
Publication of JP2006185535A publication Critical patent/JP2006185535A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/76Masking faults in memories by using spares or by reconfiguring using address translation or modifications
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/802Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout by encoding redundancy signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • G11C29/80Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout
    • G11C29/816Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout
    • G11C29/82Masking faults in memories by using spares or by reconfiguring using programmable devices with improved layout for an application-specific layout for EEPROMs

Abstract

【課題】第1不揮発性メモリをアクセスするときに、第2不揮発性メモリにおけるリードリテンション不良の影響を低減することができる半導体記憶装置を提供すること。
【解決手段】 第1不揮発性メモリは、複数のデータ格納領域と少なくとも1つの冗長データ格納領域とを備えている。第2不揮発性メモリは、第1不揮発性メモリの複数のデータ格納領域の複数のアドレスのうち、置換アドレスを格納する。シーケンサは、動作命令に応答して、第2不揮発性メモリに格納された全ての置換アドレスを読み出し、レジスタ群に格納する。全ての置換アドレスは、それぞれ、前記少なくとも1つの冗長データ格納領域のアドレスに対応する。第1不揮発性メモリがアクセスされるときの入力アドレスとレジスタ群に格納された全ての置換アドレスとの比較結果に基づいて第1不揮発性メモリがアクセスされる。
【選択図】図4

Description

本発明は、半導体記憶装置に関し、特に、不揮発性メモリが搭載された半導体記憶装置に関する。
従来、メモリのデータ格納領域(メモリセル又はセクタ)に不具合があった場合、不具合のあるデータ格納領域のアドレスをメモリの冗長データ格納領域(冗長メモリセル又は冗長セクタ)のアドレスに置き換える技術がある。そこで、不具合のあるデータ格納領域のアドレスを保持するために、電源を切っても記憶内容を保持することができる不揮発性メモリ(例示;フラッシュメモリ)が用いられていた。
このような不揮発性メモリを備えた半導体記憶装置の構成を図1に示す。この半導体記憶装置は、CPU(Central Processing Unit)102、第1フラッシュメモリ部110、第2フラッシュメモリ部120を具備している。
第1フラッシュメモリ部110は、第1フラッシュメモリ111と、デコーダ114とを含み、第1フラッシュメモリ111は、複数のデータ格納領域と、少なくとも1つの冗長データ格納領域とを備えている。
第2フラッシュメモリ部120は、第2フラッシュメモリ121を含んでいる。第2フラッシュメモリ121には、プログラムコード122−1〜122−Nが格納されている。プログラムコード122−1〜122−Nは、それぞれ、複数のアドレスと、複数の欠陥情報とを含んでいる。複数のアドレスは、それぞれ、第1フラッシュメモリ111の複数のデータ格納領域112−1〜112−Nに対応するアドレスである。複数の欠陥情報の各々は、“1”又は“0”を表している。例えば、プログラムコード122−J(Jは1≦J≦Nを満たす整数)に含まれる欠陥情報が“1”の場合、プログラムコード122−Jに含まれるアドレスは、冗長データ格納領域113−1のアドレスに対応する。
CPU102は、その動作の一つとして命令実行処理を行なう。命令実行処理において、CPU102は、入力アドレスを含む読出命令153をデコーダ114に出力する。この場合、デコーダ114は、読出命令153を受け取ったとき、その動作の一つとして置換制御処理を行なう。置換制御処理において、デコーダ114は、読出命令153に応じて、第2フラッシュメモリ121に格納された全てのプログラムコード122−1〜122−Nを読み出し、読出命令153に含まれる入力アドレスと、プログラムコード122−1〜122−Nに含まれるアドレスとの比較結果に基づいて第1フラッシュメモリ111をアクセスし、第1フラッシュメモリ111から読み出したデータ154をCPU102に出力する。
これに関連する技術として、特開2001−23391号公報には、データ格納領域の欠陥情報をフラッシュメモリに格納するフラッシュメモリ装置が記載されている。
特開2001−23391号公報
しかしながら、上述の半導体記憶装置では、命令実行処理、置換制御処理を実行する度に、第2フラッシュメモリ121からプログラムコード122−1〜122−Nを読み出すため、第2フラッシュメモリ121へのアクセス回数が多くなる。そのため、以下に示すリードリテンション(Read Retention)不良が発生する。
特定メモリセルからデータを読み出す場合、ワード線を立ち上げて(選択して)、所定のビット線のデータを読み出しているが、特定メモリセル以外のメモリセルでも、同じワード線に繋がっているメモリセルには、データを書き込むときと同じ方向に僅かな電界が発生する。このため、特定メモリセル以外のメモリセルでも浮遊ゲートと基板との間に形成された僅かな電界によって、浮遊ゲートに徐々に電子が注入され、消去状態“1”から書込状態“0”に反転する。すなわち、読み出しを行うことによって、弱い書き込みが実行されデータが壊れる、いわゆるリードリテンション不良が発生する。
したがって、本発明の課題は、不具合のあるデータ格納領域のアドレス(置換アドレス、又は、不良アドレスと称する)が格納された不揮発性メモリのリードリテンション不良の影響を低減することができる半導体記憶装置を提供することにある。
以下に、[発明を実施するための最良の形態]で使用する番号・符号を用いて、課題を解決するための手段を説明する。これらの番号・符号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]の記載との対応関係を明らかにするために付加されたものであるが、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
本発明の半導体記憶装置(1)は、第1不揮発性メモリ(11)と、第2不揮発性メモリ(21)と、レジスタ群(30)と、シーケンサ(5)とを具備している。
前記第1不揮発性メモリ(11)は、複数のデータ格納領域(12−1〜12−n)と少なくとも1つの冗長データ格納領域(13−1、13−2)とを備えている。
前記第2不揮発性メモリ(21)は、前記第1不揮発性メモリ(11)の前記複数のデータ格納領域(12−1〜12−n)の複数のアドレスのうち、置換アドレス(22−1、22−2)を格納する。
前記シーケンサ(5)は、動作命令(51)に応答して、前記第2不揮発性メモリ(21)に格納された全ての置換アドレス(22−1、22−2)を読み出し、前記レジスタ群(30)に格納する(S1、S2)。
前記全ての置換アドレス(22−1、22−2)は、それぞれ、前記少なくとも1つの冗長データ格納領域(13−1、13−2)のアドレスに対応する。
前記第1不揮発性メモリ(11)がアクセスされるときの入力アドレスと前記レジスタ群(30)に格納された前記全ての置換アドレス(22−1、22−2)との比較結果に基づいて前記第1不揮発性メモリ(11)がアクセスされる。
本発明の半導体記憶装置(1)は、データ格納領域(12−1〜12−n)と冗長データ格納領域(13−1、13−2)とを含む第1のメモリ(11)と、前記第1のメモリ(11)の不良アドレス(22−1、22−2)を格納する不揮発性の第2のメモリ(21)と、前記不良アドレス(22−1、22−2)を格納するためのレジスタ(30)と、前記第2のメモリ(21)に格納された不良アドレス(22−1、22−2)を読み出して前記レジスタ(30)に格納するシーケンサ(5)と、前記第1のメモリ(11)に対してアドレスが供給されたとき、前記レジスタ(30)に格納された前記不良アドレス(22−1、22−2)と前記供給されたアドレスとの比較結果に基づいて前記第1のメモリ(11)の前記データ格納領域(12−1〜12−n)と前記冗長データ格納領域(13−1、13−2)との一方を選択してアクセスするデコーダ(14)とを備えている。
以上の構成により、本発明の半導体記憶装置では、第2フラッシュメモリへのアクセス回数が減少する。したがって、本発明の半導体記憶装置は、置換アドレス(不良アドレス)が格納された第2不揮発性メモリのリードリテンション不良の影響を低減することができる。
以下に添付図面を参照して、本発明の半導体記憶装置について詳細に説明する。
図2は、本発明の半導体記憶装置1の構成を示すブロック図である。本発明の半導体記憶装置1は、CPU2、フラッシュマクロ4−1〜4−4、シーケンサ5、リセット制御部6、内部リセット制御部7を具備している。CPU2、フラッシュマクロ4−1〜4−4、シーケンサ5、内部リセット制御部7は、図示しないクロックに応じて動作する。
リセット制御部6は、電源が投入されたときに端子リセット信号51を動作命令としてシーケンサ5に出力する。リセット制御部6としては、ユーザが操作するためのスイッチが例示される。
内部リセット制御部7は、図3に示されるように、端子リセット信号51を受け取った時間から所定期間Tが経過したとき、内部リセット信号52をCPU2に出力する。所定期間Tは、図示しないクロックが内部リセット制御部7に供給される数によって決定される。
シーケンサ5は、端子リセット信号51に応じて、フラッシュマクロ4−1〜4−4をアクセスし、後述の初期設定処理を行なう。図3に示されるように、初期設定処理は、所定期間Tに行なわれる。シーケンサ5は、所定期間Tにおいて、フラッシュマクロ4−1〜4−4のアドレスを替えながら、順次にアクセスするか、一括してアクセスする。以下、シーケンサ5が例えばフラッシュマクロ4−1にアクセスした場合についてのみ説明する。
CPU2は、内部リセット信号52を受け取ったとき、後述の命令実行処理を行なう。図3に示されるように、命令実行処理は、所定期間Tが経過したときの初期設定処理の後に行なわれる。命令実行処理において、CPU2は、入力アドレスを含む読出命令を、バス3を介して例えばフラッシュマクロ4−1に出力する。この場合、フラッシュマクロ4−1は、読出命令に応じて、データを、バス3を介してCPU2に出力する。
図4は、本発明のの半導体記憶装置1のフラッシュマクロ4−i(iは1≦i≦4を満たす整数)の構成を示すブロック図である。フラッシュマクロ4−iは、第1フラッシュメモリ部10、第2フラッシュメモリ部20、レジスタ群30を具備している。
第1フラッシュメモリ部10は、第1フラッシュメモリ11と、デコーダ14とを含んでいる。第1フラッシュメモリ11は、複数のデータ格納領域(セクタ)と、少なくとも1つの冗長データ格納領域(冗長セクタ)とを備えている。ここで、複数のデータ格納領域をデータ格納領域12−1〜12−n(nは1以上の整数)と表すものとする。また、少なくとも1つの冗長データ格納領域は2つ存在し、その冗長データ格納領域を冗長データ格納領域13−1、13−2と表すものとする。
第2フラッシュメモリ部20は、第2フラッシュメモリ21を含んでいる。第2フラッシュメモリ21には、置換コード22−1、22−2が格納されている。置換コード22−1、22−2は、それぞれ、複数の置換アドレスと、複数の置換情報とを含んでいる。複数の置換アドレスは、それぞれ、第1フラッシュメモリ11の複数のデータ格納領域12−1、12−j(jは1≦j≦nを満たす整数)に対応するアドレスである。複数の置換情報の各々は、“0”又は“1”を表している。例えば、置換コード22−2に含まれる置換情報が“0”の場合、置換コード22−2に含まれるアドレスは、冗長データ格納領域13−2のアドレスに対応する。
レジスタ群30は、レジスタ31、32とを含んでいる。シーケンサ5は、端子リセット信号51に応じて、フラッシュマクロ4−1内の第2フラッシュメモリ21に格納された全ての置換コード22−1、22−2を読み出し、フラッシュマクロ4−1内のレジスタ群30に格納する。このとき、レジスタ31、32には、置換コード22−1、22−2がこの順で格納される。
本発明の半導体記憶装置1では、第1フラッシュメモリ11内のデータ格納領域の欠陥の数により、出荷するか否かが決定される。出荷するか否かを決定する条件には、(A)の場合と、(B)の場合と、(C)の場合とが挙げられる。
(A)の場合では、第1フラッシュメモリ11内のデータ格納領域の欠陥の数が3つ以上であり、例えば、データ格納領域12−1、12−2、12−jが欠陥である。この場合、欠陥であるデータ格納領域の数が多く、データ格納領域12−1、12−2、12−jを冗長データ格納領域13−1、13−2に割り当てられないので、半導体記憶装置1を出荷しない。
(B)の場合では、第1フラッシュメモリ11内のデータ格納領域の欠陥の数が1つであり、例えば、データ格納領域12−jのみが欠陥である。この場合、出荷前に、任意に置換アドレスとして“0000H”を選択し、置換アドレス“0000H”と置換情報“1”とを含む置換コード22−2を第2フラッシュメモリ21に書きこんでおく。また、出荷前に、欠陥であるデータ格納領域12−jに対応する置換アドレス“1000H”と、置換情報“0”とを含む置換コード22−2を第2フラッシュメモリ21に書きこんでおく。このように、データ格納領域12−jが冗長データ格納領域13−2に割り当てられるので、半導体記憶装置1を出荷することができる。冗長データ格納領域13−1に割り当てられたデータ格納領域12−1は、ダミーな情報として扱われる。
(C)の場合では、第1フラッシュメモリ11内のデータ格納領域の欠陥の数が2つであり、例えば、データ格納領域12−1、12−jが欠陥である。この場合、出荷前に、欠陥であるデータ格納領域12−1に対応する置換アドレス“0000H”と、置換情報“0”とを含む置換コード22−1を第2フラッシュメモリ21に書きこんでおく。また、出荷前に、欠陥であるデータ格納領域12−jに対応する置換アドレス“1000H”と、置換情報“0”とを含む置換コード22−2を第2フラッシュメモリ21に書きこんでおく。このように、データ格納領域12−1、12−jが冗長データ格納領域13−1、13−2に割り当てられるので、半導体記憶装置1を出荷することができる。
本発明の半導体記憶装置1の動作について説明する。
シーケンサ5は、その動作の一つとして初期設定処理を行なう。初期設定処理について図5を用いて説明する。
シーケンサ5は、端子リセット信号51に応じて、フラッシュマクロ4−1をアクセスする。このとき、シーケンサ5は、フラッシュマクロ4−1内の第2フラッシュメモリ21に格納された全ての置換コード22−1、22−2を読み出す(ステップS1)。
シーケンサ5は、読み出した全ての置換コード22−1、22−2を、それぞれ、フラッシュマクロ4−1内のレジスタ群30のレジスタ31、32に格納する(ステップS2)。
CPU2は、内部リセット信号52を受け取ったとき、その動作の一つとして命令実行処理を行なう。命令実行処理において、CPU2は、入力アドレスを含む読出命令53をフラッシュマクロ4−1に出力する。この場合、フラッシュマクロ4−1において、デコーダ14は、読出命令53を受け取ったとき、その動作の一つとして置換制御処理を行なう。置換制御処理において、フラッシュマクロ4−1内のデコーダ14は、読出命令53に応じて、フラッシュマクロ4−1内の第1フラッシュメモリ11をアクセスし、その第1フラッシュメモリ11から読み出したデータをCPU2に出力する。
命令実行処理、置換制御処理について、(B)の場合を例にして説明する。
(B−1)まず、CPU2が、入力アドレス“0000H”を含む読出命令53を行なったとき、そのアドレス“0000H”に対応する置換情報が“1”を表す場合について、図6、図7を用いて説明する。
CPU2は、入力アドレス“0000H”を含む読出命令53をフラッシュマクロ4−1内のデコーダ14に出力する(ステップS10)。
フラッシュマクロ4−1において、デコーダ14は、読出命令53に応じて、レジスタ群30に格納された全ての置換コード22−1、22−2を読み出す(ステップS11)。
デコーダ14は、読出命令53に含まれる入力アドレス“0000H”と、置換コード22−1、22−2に含まれるアドレスとを比較する(ステップS12)。
ここで、アドレスを比較した結果、読出命令53に含まれる入力アドレス“0000H”は、置換コード22−1に含まれるアドレス“0000H”と一致している(ステップS12−YES)。この場合、デコーダ14は、置換コード22−1に含まれる置換情報が“0”を表すか否かを調べる(ステップS13)。
置換情報を調べた結果、置換コード22−1に含まれる置換情報が“1”を表している(ステップS13−NO)。この場合、デコーダ14は、第1フラッシュメモリ11の複数のデータ格納領域12−1〜12−nのうち、入力アドレス“0000H”に対応するデータ格納領域12−1からデータを読み出す(ステップS14)。
デコーダ14は、読み出したデータをデータ54としてCPU2に出力する(ステップS16)。
一方、アドレスを比較した結果、読出命令53に含まれる入力アドレス“0000H”は、置換コード22−1に含まれるアドレス“0000H”と一致していない(ステップS12−NO)。この場合でも、デコーダ14は、ステップS14、S16を実行する。
(B−2)次に、CPU2が、入力アドレス“1000H”を含む読出命令53を行なったとき、そのアドレス“1000H”に対応する置換情報が“0”を表す場合について、図6、図8を用いて説明する。
CPU2は、入力アドレス“1000H”を含む読出命令53をフラッシュマクロ4−1内のデコーダ14に出力する(ステップS10)。
フラッシュマクロ4−1において、デコーダ14は、読出命令53に応じて、レジスタ群30に格納された全ての置換コード22−1、22−2を読み出す(ステップS11)。
デコーダ14は、読出命令53に含まれる入力アドレス“1000H”と、置換コード22−1、22−2に含まれるアドレスとを比較する(ステップS12)。
ここで、アドレスを比較した結果、読出命令53に含まれる入力アドレス“1000H”は、置換コード22−jに含まれるアドレス“1000H”と一致している(ステップS12−YES)。この場合、デコーダ14は、置換コード22−jに含まれる置換情報が“0”を表すか否かを調べる(ステップS13)。
置換情報を調べた結果、置換コード22−jに含まれる置換情報が“0”を表している(ステップS13−YES)。この場合、デコーダ14は、第1フラッシュメモリ11の冗長データ格納領域13−1、13−2のうち、置換コード22−jに含まれるアドレス“1000H”に対応する冗長データ格納領域13−2からデータを読み出す(ステップS15)。
デコーダ14は、読み出したデータをデータ54としてCPU2に出力する(ステップS16)。
このように、本発明の半導体記憶装置1では、(B)の場合において、電源が投入されたときに、シーケンサ5は、初期設定処理として、フラッシュマクロ4−1内の第2フラッシュメモリ21に格納された全ての置換コード22−1、22−2を読み出し、フラッシュマクロ4−1内のレジスタ群30に格納する。CPU2は、命令実行処理として、入力アドレスを含む読出命令53をフラッシュマクロ4−1内のデコーダ14に出力する。このとき、デコーダ14は、置換制御処理として、第1フラッシュメモリ11がアクセスされるときの入力アドレスとレジスタ群30に格納された全ての置換アドレスとの比較結果に基づいて、第1フラッシュメモリ11内のデータ格納領域又は冗長データ格納領域をアクセスする。即ち、本発明の半導体記憶装置1では、電源が投入されたときだけ、第2フラッシュメモリ21から置換コード22−1、22−2(置換アドレス、置換情報)を読み出し、命令実行処理、置換制御処理を実行するときに、レジスタ群30から置換コード22−1、22−2を読み出している。このため、本発明の半導体記憶装置1では、第2フラッシュメモリ21へのアクセス回数が減少する。したがって、本発明の半導体記憶装置1では、置換コード22−1、22−2(置換アドレス、置換情報)が格納された第2フラッシュメモリ21のリードリテンション不良の影響を低減することができる。
また、本発明では、リードリテンション不良の影響を受けにくいため、(B)の場合における半導体記憶装置1を出荷することができる。
次に、命令実行処理、置換制御処理について、(C)の場合を例にして説明する。
(C−1)まず、CPU2が、入力アドレス“0000H”を含む読出命令53を行なったとき、そのアドレス“0000H”に対応する置換情報が“0”を表す場合について、図6、図9を用いて説明する。
CPU2は、入力アドレス“0000H”を含む読出命令53をフラッシュマクロ4−1内のデコーダ14に出力する(ステップS10)。
フラッシュマクロ4−1において、デコーダ14は、読出命令53に応じて、レジスタ群30に格納された全ての置換コード22−1、22−2を読み出す(ステップS11)。
デコーダ14は、読出命令53に含まれる入力アドレス“0000H”と、置換コード22−1、22−2に含まれるアドレスとを比較する(ステップS12)。
ここで、アドレスを比較した結果、読出命令53に含まれる入力アドレス“0000H”は、置換コード22−1に含まれるアドレス“0000H”と一致している(ステップS12−YES)。この場合、デコーダ14は、置換コード22−1に含まれる置換情報が“0”を表すか否かを調べる(ステップS13)。
置換情報を調べた結果、置換コード22−1に含まれる置換情報が“0”を表している(ステップS13−YES)。この場合、デコーダ14は、第1フラッシュメモリ11の冗長データ格納領域13−1、13−2のうち、置換コード22−1に含まれるアドレス“0000H”に対応する冗長データ格納領域13−1からデータを読み出す(ステップS15)。
デコーダ14は、読み出したデータをデータ54としてCPU2に出力する(ステップS16)。
(C−2)次に、CPU2が、入力アドレス“1000H”を含む読出命令53を行なったとき、そのアドレス“1000H”に対応する置換情報が“0”を表す場合について、図6、図10を用いて説明する。ここで、(C−2)における命令実行処理の読出動作は、(B−2)における命令実行処理と同じである。
CPU2は、入力アドレス“1000H”を含む読出命令53をフラッシュマクロ4−1内のデコーダ14に出力する(ステップS10)。
フラッシュマクロ4−1において、デコーダ14は、読出命令53に応じて、レジスタ群30に格納された全ての置換コード22−1、22−2を読み出す(ステップS11)。
デコーダ14は、読出命令53に含まれる入力アドレス“1000H”と、置換コード22−1、22−2に含まれるアドレスとを比較する(ステップS12)。
ここで、アドレスを比較した結果、読出命令53に含まれる入力アドレス“1000H”は、置換コード22−jに含まれるアドレス“1000H”と一致している(ステップS12−YES)。この場合、デコーダ14は、置換コード22−jに含まれる置換情報が“0”を表すか否かを調べる(ステップS13)。
置換情報を調べた結果、置換コード22−jに含まれる置換情報が“0”を表している(ステップS13−YES)。この場合、デコーダ14は、第1フラッシュメモリ11の冗長データ格納領域13−1、13−2のうち、置換コード22−jに含まれるアドレス“1000H”に対応する冗長データ格納領域13−2からデータを読み出す(ステップS15)。
デコーダ14は、読み出したデータをデータ54としてCPU2に出力する(ステップS16)。
このように、本発明の半導体記憶装置1では、(C)の場合においても、電源が投入されたときだけ、第2フラッシュメモリ21から置換コード22−1、22−2(置換アドレス、置換情報)を読み出し、命令実行処理、置換制御処理を実行するときに、レジスタ群30から置換コード22−1、22−2を読み出している。このため、本発明の半導体記憶装置1では、第2フラッシュメモリ21へのアクセス回数が減少する。したがって、本発明の半導体記憶装置1では、置換コード22−1、22−2(置換アドレス、置換情報)が格納された第2フラッシュメモリ21におけるリードリテンション不良の影響を低減することができる。
また、本発明では、リードリテンション不良の影響を受けにくいため、(C)の場合における半導体記憶装置1を出荷することができる。
上述の実施形態では、第1フラッシュメモリ11が不揮発性のフラッシュメモリであるものについて説明したが、不揮発性のフラッシュメモリに限定されず、冗長メモリセルを備えるメモリであれば適用可能である。また、第2フラッシュメモリ21として不揮発性のフラッシュメモリであるもについて説明したが、リードリテンション不良を起こす不揮発性のメモリであれば適用可能である。
図1は、従来の半導体記憶装置の構成を示すブロック図である。 図2は、本発明の半導体記憶装置1の構成を示すブロック図である。 図3は、本発明の半導体記憶装置1における端子リセット信号51、内部リセット信号52を表すタイミングチャートである。 図4は、本発明のの半導体記憶装置1のフラッシュマクロ4−i(iは1≦i≦4を満たす整数)の構成を示すブロック図である。 図5は、本発明の半導体記憶装置1の動作として初期設定処理を示すフローチャートである。 図6は、本発明の半導体記憶装置1の動作として命令実行処理、置換制御処理を示すフローチャートである。 図7は、本発明の半導体記憶装置1の動作を説明するための図である。 図8は、本発明の半導体記憶装置1の動作を説明するための図である。 図9は、本発明の半導体記憶装置1の動作を説明するための図である。 図10は、本発明の半導体記憶装置1の動作を説明するための図である。
符号の説明
1 半導体記憶装置
2 CPU
3 バス
4−1〜4−4 フラッシュマクロ
5 シーケンサ
6 リセット制御部
7 内部リセット制御部
10 第1フラッシュメモリ部
11 第1フラッシュメモリ
12−1〜12−n データ格納領域(セクタ)
13−1、13−2 冗長データ格納領域(冗長セクタ)
14 デコーダ
20 第2フラッシュメモリ部
21 第2フラッシュメモリ
22−1、22−2 置換コード
30 レジスタ群
31、32 レジスタ
51 端子リセット信号(動作命令)
52 内部リセット信号
53 読出命令
54 データ
102 CPU
105 シーケンサ
110 第1フラッシュメモリ部
111 第1フラッシュメモリ
112−1〜112−N データ格納領域
113−1、113−2 冗長データ格納領域
114 デコーダ
120 第2フラッシュメモリ部
121 第2フラッシュメモリ
122−1〜122−N プログラムコード
153 読出命令
154 データ

Claims (7)

  1. 複数のデータ格納領域と少なくとも1つの冗長データ格納領域とを備える第1不揮発性メモリと、
    前記第1不揮発性メモリの前記複数のデータ格納領域の複数のアドレスのうち、置換アドレスを格納する第2不揮発性メモリと、
    レジスタ群と、
    動作命令に応答して、前記第2不揮発性メモリに格納された全ての置換アドレスを読み出し、前記レジスタ群に格納するシーケンサと
    を具備し、
    前記全ての置換アドレスは、それぞれ、前記少なくとも1つの冗長データ格納領域のアドレスに対応し、
    前記第1不揮発性メモリがアクセスされるときの入力アドレスと前記レジスタ群に格納された前記全ての置換アドレスとの比較結果に基づいて前記第1不揮発性メモリがアクセスされる
    半導体記憶装置。
  2. 前記入力アドレスを含む読出命令に応じて、前記レジスタ群に格納された前記全ての置換アドレスを読み出し、前記第1不揮発性メモリをアクセスするデコーダ
    を更に具備し、
    前記デコーダは、
    前記レジスタ群から読み出された前記全ての置換アドレスと前記入力アドレスとが一致しないとき、前記第1不揮発性メモリの前記複数のデータ格納領域のうち、前記入力アドレスに対応するデータ格納領域からデータを読み出して出力し、
    前記レジスタ群から読み出された前記全ての置換アドレスのうちの1つの置換アドレスと前記入力アドレスとが一致するとき、前記第1不揮発性メモリの前記少なくとも1つの冗長データ格納領域のうち、前記1つの置換アドレスに対応する冗長データ格納領域からデータを読み出して出力する請求項1に記載の半導体記憶装置。
  3. 前記読出命令を出力するCPU
    を更に具備し、
    前記デコーダは、前記読出命令に応じて、前記第1不揮発性メモリをアクセスし、前記第1不揮発性メモリから読み出したデータを前記CPUに出力する請求項2に記載の半導体記憶装置。
  4. 電源が投入されたときに前記動作命令を前記シーケンサに出力するリセット制御部
    を更に具備する請求項1〜3のいずれかに記載の半導体記憶装置。
  5. 複数のデータ格納領域と少なくとも1つの冗長データ格納領域とを備える第1不揮発性メモリと、前記第1不揮発性メモリの前記複数のデータ格納領域の複数のアドレスのうち、置換アドレスを格納する第2不揮発性メモリと、レジスタ群とを具備する半導体記憶装置において、前記第1不揮発性メモリをアクセスするメモリアクセス方法であって、
    動作命令に応答して、前記第2不揮発性メモリに格納された前記全ての置換アドレスを読み出し、前記レジスタ群に格納する格納ステップと、前記全ての置換アドレスは、それぞれ、前記少なくとも1つの冗長データ格納領域のアドレスに対応し、
    前記第1不揮発性メモリがアクセスされるときの入力アドレスと前記レジスタ群に格納された前記全ての置換アドレスとの比較結果に基づいて前記第1不揮発性メモリをアクセスするアクセスステップと
    を含むメモリアクセス方法。
  6. 前記アクセスステップは、
    前記入力アドレスを含む読出命令に応じて、前記レジスタ群に格納された前記全ての置換アドレスを読み出すステップと、
    前記レジスタ群から読み出された前記全ての置換アドレスと前記入力アドレスとが一致しないとき、前記第1不揮発性メモリの前記複数のデータ格納領域のうち、前記入力アドレスに対応するデータ格納領域からデータを読み出して出力するステップと、
    前記レジスタ群から読み出された前記全ての置換アドレスのうちの1つの置換アドレスと前記入力アドレスとが一致するとき、前記第1不揮発性メモリの前記少なくとも1つの冗長データ格納領域のうち、前記1つの置換アドレスに対応する冗長データ格納領域からデータを読み出して出力するステップと
    を含む請求項5に記載のメモリアクセス方法。
  7. データ格納領域と冗長データ格納領域とを含む第1のメモリと、
    前記第1のメモリの不良アドレスを格納する不揮発性の第2のメモリと、
    前記不良アドレスを格納するためのレジスタと、
    前記第2のメモリに格納された不良アドレスを読み出して前記レジスタに格納するシーケンサと、
    前記第1のメモリに対してアドレスが供給されたとき、前記レジスタに格納された前記不良アドレスと前記供給されたアドレスとの比較結果に基づいて前記第1のメモリの前記データ格納領域と前記冗長データ格納領域との一方を選択してアクセスするデコーダとを備えることを特徴とする半導体記憶装置。
JP2004379608A 2004-12-28 2004-12-28 半導体記憶装置 Pending JP2006185535A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004379608A JP2006185535A (ja) 2004-12-28 2004-12-28 半導体記憶装置
US11/304,564 US20060140027A1 (en) 2004-12-28 2005-12-16 Semiconductor memory device and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379608A JP2006185535A (ja) 2004-12-28 2004-12-28 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2006185535A true JP2006185535A (ja) 2006-07-13

Family

ID=36611320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379608A Pending JP2006185535A (ja) 2004-12-28 2004-12-28 半導体記憶装置

Country Status (2)

Country Link
US (1) US20060140027A1 (ja)
JP (1) JP2006185535A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043389A (ja) * 2007-08-08 2009-02-26 Hynix Semiconductor Inc フラッシュメモリ素子及びその動作方法
JP2013257927A (ja) * 2012-06-13 2013-12-26 Winbond Electronics Corp 半導体記憶装置
JP2017054548A (ja) * 2016-12-15 2017-03-16 株式会社東芝 メモリシステムおよび制御方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008033995A (ja) * 2006-07-26 2008-02-14 Matsushita Electric Ind Co Ltd メモリシステム
US7561482B2 (en) * 2006-09-07 2009-07-14 Sandisk Corporation Defective block isolation in a non-volatile memory system
TWI543177B (zh) * 2010-08-19 2016-07-21 半導體能源研究所股份有限公司 半導體裝置及其檢驗方法與其驅動方法
US9007843B2 (en) 2011-12-02 2015-04-14 Cypress Semiconductor Corporation Internal data compare for memory verification
US9063902B2 (en) * 2012-01-05 2015-06-23 International Business Machines Corporation Implementing enhanced hardware assisted DRAM repair using a data register for DRAM repair selectively provided in a DRAM module
KR102038036B1 (ko) * 2013-05-28 2019-10-30 에스케이하이닉스 주식회사 반도체 장치 및 반도체 장치를 포함하는 반도체 시스템
CN108735268B (zh) * 2017-04-19 2024-01-30 恩智浦美国有限公司 非易失性存储器修复电路
KR102650603B1 (ko) 2018-07-24 2024-03-27 삼성전자주식회사 불휘발성 메모리 장치, 불휘발성 메모리 장치의 동작 방법 및 불휘발성 메모리 장치를 제어하는 메모리 컨트롤러의 동작 방법
CN110046105B (zh) * 2019-04-26 2021-10-22 中国科学院微电子研究所 一种3D NAND Flash
CN113495671B (zh) 2020-04-01 2023-10-17 长鑫存储技术有限公司 读写方法及存储器装置
EP3985494B1 (en) 2020-04-01 2024-01-17 Changxin Memory Technologies, Inc. Read-write method and memory device
EP3964940A4 (en) 2020-04-01 2022-08-17 Changxin Memory Technologies, Inc. READ/WRITE METHOD AND STORAGE DEVICE
CN113495674B (zh) 2020-04-01 2023-10-10 长鑫存储技术有限公司 读写方法及存储器装置
EP3936996A4 (en) 2020-04-01 2022-07-06 Changxin Memory Technologies, Inc. READ-WRITE METHOD AND STORAGE DEVICE
CN113495672B (zh) 2020-04-01 2023-08-11 长鑫存储技术有限公司 读写方法及存储器装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254298A (ja) * 1994-03-15 1995-10-03 Fujitsu Ltd 半導体記憶装置
JP2001176290A (ja) * 1999-12-10 2001-06-29 Toshiba Corp 不揮発性半導体記憶装置
JP2002015595A (ja) * 2000-06-29 2002-01-18 Sanyo Electric Co Ltd 冗長メモリ回路
JP2004158051A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2004342187A (ja) * 2003-05-14 2004-12-02 Renesas Technology Corp 半導体集積回路及びマイクロコンピュータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6462985B2 (en) * 1999-12-10 2002-10-08 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory for storing initially-setting data
JP4080843B2 (ja) * 2002-10-30 2008-04-23 株式会社東芝 不揮発性半導体記憶装置
EP1498906B1 (en) * 2003-07-16 2008-12-31 STMicroelectronics S.r.l. A redundancy scheme for an integrated memory circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254298A (ja) * 1994-03-15 1995-10-03 Fujitsu Ltd 半導体記憶装置
JP2001176290A (ja) * 1999-12-10 2001-06-29 Toshiba Corp 不揮発性半導体記憶装置
JP2002015595A (ja) * 2000-06-29 2002-01-18 Sanyo Electric Co Ltd 冗長メモリ回路
JP2004158051A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 半導体記憶装置及びその製造方法
JP2004342187A (ja) * 2003-05-14 2004-12-02 Renesas Technology Corp 半導体集積回路及びマイクロコンピュータ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043389A (ja) * 2007-08-08 2009-02-26 Hynix Semiconductor Inc フラッシュメモリ素子及びその動作方法
US8335118B2 (en) 2007-08-08 2012-12-18 Hynix Semiconductor Inc. Method of operating a flash memory device
JP2013257927A (ja) * 2012-06-13 2013-12-26 Winbond Electronics Corp 半導体記憶装置
JP2017054548A (ja) * 2016-12-15 2017-03-16 株式会社東芝 メモリシステムおよび制御方法

Also Published As

Publication number Publication date
US20060140027A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
US20060140027A1 (en) Semiconductor memory device and method of operating the same
US7743303B2 (en) Defective memory block remapping method and system, and memory device and processor-based system using same
JP5115826B2 (ja) マルチnandフラッシュメモリーデバイスの共通動作中にピーク電力消費量を減少させるための装置および方法
JP4957800B2 (ja) 半導体記憶装置及びシステム
US8103920B2 (en) Memory system configured by using a nonvolatile semiconductor memory
US7336531B2 (en) Multiple level cell memory device with single bit per cell, re-mappable memory block
JP4955990B2 (ja) 不揮発性半導体記憶装置
JP2006079811A (ja) エラー検出用パリティー発生器を備えた半導体メモリ装置
JP2006048893A (ja) 不良ブロック管理機能を有するフラッシュメモリ装置及びフラッシュメモリ装置の不良ブロック管理方法
JP2007304781A (ja) 半導体装置、及び起動方法
JP2007517353A (ja) 不揮発性メモリに対する柔軟でエリア効率の高い列冗長性
KR20090021508A (ko) 멀티-비트 및 싱글-비트 방식으로 데이터를 저장하는플래시 메모리 장치 및 그것의 프로그램 방법
US20080282119A1 (en) Memory device and built in self-test method of the same
JP2008021390A (ja) 半導体記憶装置
JP2002358246A (ja) 不揮発性記憶システム
US9177672B2 (en) Methods of operating memory involving identifiers indicating repair of a memory cell
JP2006155710A (ja) 半導体記憶装置
US8046529B2 (en) Updating control information in non-volatile memory to control selection of content
JP2008293567A (ja) 不揮発性記憶装置、不揮発性記憶システムおよび不揮発性記憶装置の制御方法
JP2007066118A (ja) メモリコントローラ、フラッシュメモリシステム及びフラッシュメモリの制御方法
JP4652409B2 (ja) 記憶装置、および記憶装置の制御方法
WO2008076553A2 (en) Column redundancy for a flash memory with a high write parallelism
JP4582078B2 (ja) メモリコントローラ及びフラッシュメモリシステム、並びにフラッシュメモリの制御方法
JP2008146773A (ja) 不揮発性半導体記憶装置
JP2007122640A (ja) 記憶装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110422