JP2006177898A - 半導体装置および半導体装置のテスト方法 - Google Patents

半導体装置および半導体装置のテスト方法 Download PDF

Info

Publication number
JP2006177898A
JP2006177898A JP2004374063A JP2004374063A JP2006177898A JP 2006177898 A JP2006177898 A JP 2006177898A JP 2004374063 A JP2004374063 A JP 2004374063A JP 2004374063 A JP2004374063 A JP 2004374063A JP 2006177898 A JP2006177898 A JP 2006177898A
Authority
JP
Japan
Prior art keywords
output
data
test
signal
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004374063A
Other languages
English (en)
Other versions
JP4811902B2 (ja
Inventor
Katsuhide Matsumoto
勝秀 松本
Masaaki Hayata
征明 早田
Masashi Mitsuishi
昌史 三石
Shingo Sakai
真吾 酒井
Hiromu Kato
博武 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004374063A priority Critical patent/JP4811902B2/ja
Priority to EP05028224A priority patent/EP1674876A1/en
Priority to US11/315,595 priority patent/US7401276B2/en
Publication of JP2006177898A publication Critical patent/JP2006177898A/ja
Application granted granted Critical
Publication of JP4811902B2 publication Critical patent/JP4811902B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3187Built-in tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31712Input or output aspects
    • G01R31/31715Testing of input or output circuits; test of circuitry between the I/C pins and the functional core, e.g. testing of input or output driver, receiver, buffer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/31712Input or output aspects
    • G01R31/31716Testing of input or output with loop-back

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】
任意の波形劣化率でテスト信号の信号波形を劣化させる技術を提供する。また、製造時のプロセスばらつきの影響が少ないテスト回路を構成する技術を提供する。
【解決手段】
出力パスと、入力パスと、テスト信号生成回路とを具備する半導体装置を構成する。その半導体装置内において、テスト信号生成回路は、テストデータから生成され、前記出力パス上を転送される第1テスト信号の振幅と位相の少なくとも一方を変更して第2テスト信号を生成し、前記第2テスト信号を前記入力パスに供給する。そして、前記第1テスト信号と前記第2テスト信号を用いて前記出力パスと前記入力パスをテストする。また、その半導体装置は、前記テストデータと前記第2テスト信号から得られる受信テストデータとを比較し、比較結果に基づいて前記出力パスと前記入力パスが正しく動作することができるか否かを判定する。
【選択図】 図3

Description

本発明は、半導体装置に関し、特に半導体装置内部に搭載されるテスト回路およびその半導体装置のテスト方法に関する。
近年、半導体装置間のデータ転送速度が高速化しており、例えば数Gbps(ギガビット/秒)といった高いデータレートでの伝送が実現している。一般的に、パラレル伝送では、信号間のスキュー調整が困難となるため、高速伝送にはシリアル伝送が用いられる傾向にある。
また、受信したデータを半導体装置内部で処理する場合などは、パラレル処理によってデータ処理が行われている。そのため、信号送受信回路には、シリアル−パラレル変換を行う回路(以下、SerDes回路と呼ぶ。)を備えている。このようなSerDes回路は、パラレルデータをシリアルデータに変換するシリアライザとシリアルデータをパラレルデータに変換するデシリアライザとを備えている。
データの伝送速度が高速になるということは、より高い周波数でのデータの送受信が行われるということである。高い周波数でデータの送受信を行った場合、伝送途中でのデータの信号波形の劣化を無視することが困難な場合がある。したがって、信号波形が変化してしまったデータが供給される場合であっても、SerDes回路が正常に動作するかどうかを予めテストしておく必要がある。そのため、一般的にSerDes回路は、正常に回路が動作しているかテストするためのテスト信号を出力するテスト信号生成回路を備えている。テスト信号生成回路は、SerDes回路の送信回路側から出力されるテストデータを、そのまま折り返して受信回路側へ戻すことによってテストを実行している(例えば、特許文献1参照)。テスト時において、SerDes回路は、送信回路側から出力されたテストデータと折り返されたテストデータとの比較を行い、回路が正常に動作しているかどうか判断している。
図1は、従来のテスト信号生成回路100の構成を示す回路図である。図1に示されているように、従来のテスト信号生成回路100は、第1出力ノードN201と第2出力ノードN202を有する差動増幅回路101と、第1キャパシタ102と、第2キャパシタ103とを含んで構成されている。その第1キャパシタ102は、接地線VSSと第1出力ノードN201との間に接続されている。同様に第2キャパシタ103は、接地線VSSと第2出力ノードN202との間に接続されている。差動増幅回路101は、第1トランジスタM201と第2トランジスタM202を有する差動トランジスタ対と、その差動トランジスタ対と接地線VSSとの間に接続された定電流源M203と、第1抵抗素子R201と第2抵抗素子R202とを含んで構成されている。第1抵抗素子は、電源線VDDと第1ノードN201との間に接続されている。同様に第2抵抗素子R202は、電源線VDDと第2出力ノードN202との間に接続されている。
図1を参照すると、テスト信号生成回路100は、接地線VSSと第1出力ノードN201との間に第1キャパシタ102を備えることで、第1抵抗素子R201と第1キャパシタ102とによるローパスフィルタ(積分回路)を構成している。それによって、テスト信号生成回路100は、第1トランジスタM201に入力される第1差動入力Dmain+に応答して、その第1差動入力Dmain+の信号波形を劣化させた第1出力信号Dout−を出力している。同様に第2抵抗素子R202と第2キャパシタ103もローパスフィルタ(積分回路)を構成し、それによってテスト信号生成回路100は、第2差動入力Dmain−の信号波形を劣化させた第2出力信号Dout+を出力している。
特開2002−368827号公報
図1に示されている従来のテスト信号生成回路100は、抵抗素子とキャパシタとで構成されたローパスフィルタ(積分回路)によって、テスト信号の波形を劣化させている。これによって、チップ外部から供給される実際の信号波形が劣化している場合に対応したテストを実現している。
従来のテスト信号生成回路100は、ローパスフィルタ(積分回路)を構成する抵抗素子の抵抗値と、キャパシタの容量値とによって周波数に対する波形劣化率が決定してしまう。しかしながら、チップ外部から供給される実際の信号波形は、一定の比率では劣化しない場合がある。テスト信号の信号波形を任意に変化させて、テストを実行することができる技術が望まれている。
また、抵抗素子と容量素子とでは、それぞれ独立にプロセスばらつきの影響を受ける。そのため、ローパスフィルタ(積分回路)による波形劣化率も、当然にそのプロセスばらつきの影響を受ける。したがって、従来のテスト信号生成回路100は、所望の劣化信号とは異なる劣化信号を生成してしまうことがある。回路の製造時のプロセスばらつきの影響が少ないテスト信号生成回路を構成する技術が望まれている。
以下に、[発明を実施するための最良の形態]で使用される番号を用いて、課題を解決するための手段を説明する。これらの番号は、[特許請求の範囲]の記載と[発明を実施するための最良の形態]との対応関係を明らかにするために付加されたものである。ただし、それらの番号を、[特許請求の範囲]に記載されている発明の技術的範囲の解釈に用いてはならない。
上記の課題を解決するために、出力パスと、入力パスと、テスト信号生成回路(10)とを具備する半導体装置(1)を構成する。その半導体装置(1)内において、テスト信号生成回路(10)は、テストデータから生成され、前記出力パス上を転送される第1テスト信号の振幅または位相の少なくとも一方を変更して第2テスト信号を生成し、前記第2テスト信号を前記入力パスに供給する。そして、前記第1テスト信号と前記第2テスト信号を用いて前記出力パスと前記入力パスをテストする。また、その半導体装置(1)は、前記テストデータと前記第2テスト信号から得られる受信テストデータとを比較する比較回路(7)を含む構成にすることが望ましい。半導体装置(1)は、比較回路(7)が実行する比較結果に基づいて前記出力パスと前記入力パスが正しく動作することができるか否かを判定する。
これによって、テストデータを構成する信号列に対して、任意のタイミングで振幅の異なる信号を含ませることが可能になる。そのため、一定の振幅で出力パスから供給されるテストデータをそのまま入力パスに戻すテストに比較して、実際に高速データ通信を介して供給されるデータに近い信号波形を有するテスト信号を使用して半導体装置の動作テストを実現することができる。
本発明によると、任意の波形劣化率でテスト信号の信号波形を劣化させることができる。また、本発明によると、製造時のプロセスばらつきの影響が少ないテスト回路を構成することが可能である。そのため、より信頼性の高いテストを実行することが可能になる。
[第1の実施形態]
以下に図面を参照して、本発明を実施するための形態について説明を行う。図2は、本発明のテスト信号生成回路10を搭載する半導体装置の構成を例示する回路図である。本発明のテスト信号生成回路10は、出力パスからの信号を入力パスに戻してテストを行う半導体回路に適用可能である。そこで、以下の実施の形態においては、1チップで構成されるSerDes(Serializer−Deserializer:シリアライザ−デシリアライザ)回路を例に説明を行っていく。
図2を参照すると、本実施の形態のSerDes回路1は、パラレルで供給される出力信号を出力シリアルデータに変換するシリアライザ3と、シリアライザ3から供給される出力シリアルデータをSerDes回路1の外部に出力するドライバ4と、SerDes回路1の外部から供給される入力シリアルデータを受信するレシーバ9と、レシーバ9から出力される入力シリアルデータと、後述するテスト信号とを選択的に出力する選択回路5と、CDR61を有するデシリアライザ6と、シリアライザ3とデシリアライザ6との各々にクロックを供給するPLL回路8とを含んで構成されている。デシリアライザ6は、選択回路5を介して供給される入力シリアルデータまたはテスト信号をパラレルデータに変換している。
そして、SerDes回路1は、テストを実行するために使用される機能として、テスト信号生成回路10と、テストパターン発生回路2と、テストパターン比較回路7と、遅延テストデータ生成回路17と、制御回路16とをさらに含んで構成されている。テストパターン発生回路2は、本実施の形態におけるテストデータを出力するテストデータ供給回路である。テストパターン発生回路2は、テスト用のデータであるテストデータ(Dmain+、Dmain−)をシリアライザ3と遅延テストデータ生成回路17とに出力している。このテストパターン発生回路2は、複数のパターンのテストデータを生成する機能を有する構成であることが好ましい。その場合に、テストパターン発生回路2は、複数のパターンの中から任意のテストデータを選択的に出力する。そうすることで、SerDes回路1は多様なテストを実行することができる。
遅延テストデータ生成回路17は、シリアライザ3から出力されるテストデータに応答して、そのテストデータを1ビット遅延させた遅延テストデータ(Dpost+、Dpost−)を生成する遅延データ生成回路である。本発明において、上述の、遅延テストデータ生成回路17によって生成される遅延テストデータ(Dpost+、Dpost−)は、遅延テストデータ生成回路17によって生成されることに制限されていない。例えば、本実施の形態のSerDes回路が、プレエンファシス機能を有する出力バッファを備えている場合、そのプレエンファシス機能を実現するための反転信号の生成機能を利用して遅延テストデータ(Dpost+、Dpost−)を生成することも可能である。テスト信号生成回路10は、入力される信号の信号波形を変更する機能を有する回路である。テスト信号生成回路10は、ノードN1を介してSerDes回路の出力パスに接続されている。テスト信号生成回路10は、そのノードN1を介して受け取るテストデータと、遅延テストデータ生成回路17から出力される遅延テストデータとに基づいてテスト信号を生成している。なお、テスト信号生成回路10の詳細な回路構成については後述する。
制御回路16は、テスト信号生成回路10に供給する制御信号を生成する制御ブロックである。本実施の形態のテスト信号生成回路10は、出力データの信号波形を可変的に変形する機能を備えている。テスト信号生成回路10は、制御回路16から入力される制御信号に応答して、出力データの信号波形の波形劣化率を変更している。
テストパターン比較回路7は、テストパターン発生回路2から出力されるテストデータと、テスト信号生成回路10から出力されるテスト信号に基づいて入力パスが正常に機能しているかどうかを比較によって判定する比較回路である。テスト信号生成回路10によって生成されたテスト信号は、選択回路5を介してデシリアライザ6に供給される。テストパターン比較回路7は、デシリアライザ6によってテスト信号が適切にパラレルデータに変換されたかなどの判断に基づいて入力パスの機能を監視している。
図3は、第1の実施形態におけるテスト信号生成回路10の詳細な構成を示す回路図である。図3示されているように、第1の実施形態のテスト信号生成回路10は、出力端子OUT1、OUT2に同一極性で接続された2つの差動増幅回路である、第1バッファ回路11と第2バッファ回路12とによって構成されている。第1の実施形態における第1バッファ回路11は、ノードN1を介して供給されるテストデータを受ける差動増幅回路である。
図3に示されているように、第1バッファ回路11は、第1差動トランジスタM1と第2差動トランジスタM2とを有する第1差動対と、その第1差動対と接地線VSSとの間に接続される第1電流源13と、その第1差動トランジスタ側の出力ノードN2(以下、第1出力ノードと呼ぶ。)と電源線VDDとの間に接続される第1抵抗素子R1と、第2差動トランジスタ側の出力ノードN3(以下、第2出力ノードと呼ぶ。)と電源線VDDに接続される第2抵抗素子R2とを含んで構成されている。
第1の実施形態における第2バッファ回路12は、遅延テストデータを受ける差動増幅回路である。第2バッファ回路12は、第3差動トランジスタM3と第4差動トランジスタM4とを有する第2差動対と、その第2差動トランジスタ対と接地線VSSとの間に接続される第2電流源14とを備えて構成されている。第2バッファ回路12はさらに、第3差動トランジスタM3の出力ノードN5に接続される第1抵抗素子R1と、第4差動トランジスタM4の出力ノードN6に接続される第2抵抗素子R2を含むことで差動バッファアンプを構成している。第3差動トランジスタM3の出力ノードN5と、第1出力ノードN2とは互いに同極性で接続されている。同様に、第4差動トランジスタの出力ノードN6と第2出力ノードN3も互いに同極性で接続されている。
前述したように、テスト信号生成回路10には、テストデータ(Dmain+/Dmain−)と、そのテストデータを1ビット遅延させた遅延テストデータ(Dpost+/Dpost−)とが供給されている。テストデータは、第1テスト信号Dmain+とその第1テスト信号Dmain+を反転させた第2テスト信号Dmain−とで構成されている。同様に遅延テストデータは、第1遅延テスト信号Dpost+とその第1遅延テスト信号Dpost+を反転させた第2遅延テスト信号Dpost−とで構成されている。
図3に示されているように、第1差動トランジスタM1には、第1テスト信号Dmain+が供給され、第2差動トランジスタM2には第2テスト信号Dmain−が供給されている。また、第1電流源13は、第1電流Imainを生成して第1差動対に供給している。同様に、第2差動対を構成している第3差動トランジスタM3には第1遅延テスト信号Dpost+が供給され、第4差動トランジスタM4には第2遅延テスト信号Dpost−が供給されている。第2バッファ回路12に備えられた第2電流源14は、第2電流Ipostを生成して第2差動対に供給している。この第2電流Ipostは、前述の第1電流Imainに比較して電流値が小さい電流であり、下記(1)式を満たす電流である。
第1電流Imain>第2電流Ipost … (1)
図4は、テストデータ(Dmain+/Dmain−)、遅延テストデータ(Dpost+/Dpost−)および出力データ(Dout+/Dout−)の動作波形を示すタイミングチャートである。図4(a)は、テストデータ(Dmain+/Dmain−)の動作波形を示し、図4(b)は、遅延テストデータ(Dpost+/Dpost−)の動作波形を示している。さらに、図4(c)は、出力データ(Dout+/Dout−)の動作波形を示している。
図4(a)を参照すると、時刻t1から時刻t8までにテストデータ(Dmain+/Dmain−)としてデータD11〜データD15が供給されている。同様に、図4(b)を参照すると、データD11〜データD15を遅延させた遅延データD21〜D25が時刻t2から時刻t9の期間に供給されている。図4(a)および図4(b)に示されているよう、例えば、データD11に対応する遅延データがD21であり、同様にデータD12に対応する遅延データは遅延データD21である。
また、図4(c)を参照すると、時刻t1から時刻t8の期間に、出力データ(Dout+/Dout−)としてデータD31〜データD35が出力される。図4(c)に示されているように、データが遷移するビット(期間T1、T3、T4、T5、T7)の出力データ(Dout+/Dout−)の振幅は、データが遷移しないビット(期間T2、T6)出力データ(Dout+/Dout−)の振幅よりも小さくなる。これは、低周波成分であるデータが遷移しないビットに比べて、高周波成分であるデータが遷移するビットの信号が劣化していることを示している。すなわち、ローパスフィルタとして動作することを示している。また、期間T2から期間T3へ遷移したときの出力データは、このとき入力されるテストデータの波形S2と比較して、異なった波形S1を有している。また、期間T4から期間T5へ遷移する時の出力データは、このとき入力されるテストデータの波形S4と比較して、同様の波形S3を有している。このように、本実施の形態のテスト信号生成回路10は、テストデータ(Dmain+/Dmain−)の信号波形と同様の波形を有する出力データと、異なる波形(ジッタを有する波形)の出力データとを生成して入力パスに戻すことが可能である。
以下に、図5に示されている真理値表を使用して、本実施の形態のテスト信号生成回路10におけるデータの遷移動作について説明を行う。図5は、本実施の形態のテスト信号生成回路10の動作を示す真理値表である。前述したように、第1差動対の入力端子(IN1、IN2)には、第1テスト信号Dmain+と第2テスト信号Dmain−とが入力される。テストデータ(Dmain+、Dmain−)が差動入力であるので、第1テスト信号Dmain+がHighレベルの場合、第2テスト信号Dmain−は常にLowレベルである。同様に、第2差動対の入力端子(IN3、IN4)には、第1遅延信号Dpost+と第2遅延信号Dpost−とが入力される。以下の説明においては、入力される信号がHighレベルであるときに“1”を使用し、Lowレベルであるときに“0”を使用して説明を行う。また、本発明の理解を容易にするために、以下の説明では電源電圧をVdd[V]とし、接地線VSSの電圧を0[V]であるものとする。また、第1抵抗素子R1の抵抗と第2抵抗素子R2の抵抗値は各々R[Ω]であるものとする。
図5を参照すると、第1差動トランジスタM1の入力端子IN1が“0”であり、第3差動トランジスタM3の入力端子IN3が“0”のとき、出力端子OUT1の電圧Vout1は、
電圧Vout1=Vdd−R(Imain+Ipost)
で表される。このとき、第2差動トランジスタM2の入力端子IN2が“1”であり、第4差動トランジスタM4の入力端子IN4が“1”であるので、出力端子OUT2の電圧Vout2は、
電圧Vout2=Vdd
となる。
また、第1差動トランジスタM1の入力端子IN1が“0”であり、第3差動トランジスタM3の入力端子IN3が“1”のとき、出力端子OUT1の電圧Vout1は、
電圧Vout1=Vdd−R×Imain
で表される。このとき、第2差動トランジスタM2の入力端子IN2が“1”であり、第4差動トランジスタM4の入力端子IN4が“1”であるので、出力端子OUT2の電圧Vout2は、
電圧Vout2=Vdd−R×Ipost
となる。
同様に、各々の入力端子(IN1〜IN4)の信号に対応する出力電圧(Vout1、Vout2)を求めると、図5の領域53に示されている電圧値を得ることができる。領域54は、このときのテスト信号生成回路10から出力される出力電圧((Dout+)−(Dout−))を示している。図5を参照すると、各々の入力端子(IN1〜IN4)に入力される各信号((Dmain+/Dmain−)(Dpost+/Dpost−))に応答して出力されるテスト信号生成回路10の出力電圧((Dout+)−(Dout−))は、
((Dout+)−(Dout−))=−R(Imain+Ipost)
((Dout+)−(Dout−))=−R(Imain−Ipost)
((Dout+)−(Dout−))= R(Imain+Ipost)
((Dout+)−(Dout−))= R(Imain−Ipost)
を得る。この式から明らかなように、出力電圧((Dout+)−(Dout−))は、第1電流Imainと第2電流Ipostとの比によって定めることが可能である。
ここで、
V2=R(Imain+Ipost)
V1=R(Imain−Ipost)
−V1=−R(Imain−Ipost)
−V2=−R(Imain+Ipost)
として、テスト信号生成回路10から出力される出力データ(Dout+/Dout−)の動作を説明する。図6は、第1テスト信号Dmain+の変化の様子と、そのときの第1遅延信号Dpost+の変化の様子との対応を示すテーブルである。領域61は、期間Tn−1から期間Tを経て期間Tn+1へ期間が遷移するときの第1テスト信号Dmain+の変化を示している。領域62は、期間Tから期間Tn+1における第1遅延信号Dpost+の変化を示している。前述したように、第1遅延信号Dpost+は、第1テスト信号Dmain+を1ビット遅延させた信号である、従って、図6に示されているように、期間Tn−1から期間Tにおける第1テスト信号Dmain+が、期間Tから期間Tn+1における第1遅延信号Dpost+として第3差動トランジスタM3の入力端子IN3に入力される。
図7は、第1差動トランジスタM1と、第3作動トランジスタM3とに入力される信号(Dmain+、Dpost+)の変化の様子と、その変化に対応して出力データが遷移する様子を示したテーブルである。図7を参照すると、領域71は、期間Tにおける第1テスト信号Dmain+と第1遅延信号Dpost+との組合せ(Dmain+、Dpost+)を示している。また領域72は、期間Tn+1における第1テスト信号信号Dmain+と第1遅延信号Dpost+との組合せ(Dmain+、Dpost+)を示している。図7の領域73は期間Tから期間Tn+1における出力電圧の遷移する様子を示している。図7に示されているように、例えば、期間Tにおける組合せ(Dmain+、Dpost+)が(1、1)であり、期間Tn+1における組合せ(Dmain+、Dpost+)が(0、1)であるとき(図7の70cの場合)には、出力データはV2から−V1に遷移する。
図7に示されているように、期間Tn+1で+V1に遷移する場合、−V1から+V1に遷移する場合と、−V2から+V1に遷移する場合がある。同様に、期間Tn+1で−V1に遷移する場合、+V1から−V1に遷移する場合と、+V2から−V1に遷移する場合がある。以下に、この出力データの遷移をグラフを使用して詳細に説明する。
図8は、図7に示されている出力電圧の遷移の様子を表したグラフであり、一般的にEYEパターン(または、EYE開口)と呼ばれる図である。図7で説明したように、本実施の形態のテスト信号生成回路10における(Dout+)−(Dout−)が、期間Tn+1で+V1に遷移するパターンとしては、−V1から+V1に遷移する場合と、−V2から+V2に遷移する場合がある。
ここで、V=0と交差する直線は、以下の4種類が存在する。
−V1→+V1 … 直線1
+V1→−V1 … 直線2
−V2→+V1 … 直線3
+V2→−V1 … 直線4
本実施の形態の信号波形の劣化(以下、jitterと呼ぶ。)は、これらの直線(直線1〜4)とV=0との交点の時間の最小値と最大値との差として定義することができる。なお、以下の説明においては、本発明の理解を容易にするためにRise Time(立ち上がり時間)とFall Time(立ち下り時間)とが等しい場合を例に説明を行う。
Rise Time=Fall Timeのとき、直線1とV=0との交点における時刻は、直線2とV=0との交点における時刻と同じ時刻t01となる。同様に直線3とV=0との交点における時刻は、直線4とV=0との交点における時刻と同じ時刻t02となる。従って、求めるjitterは、−V1→+V1(直線1)とV=0との交点における時刻t01と、−V2→+V1(直線3)とV=0との交点における時刻t02によって表すことができ、下記(2)式に示される値となる。
t02−t01=jitter … (2)
図9は、図8のEYEパターンから直線1と直線3とを抽出して表したグラフである。図9を参照すると、−V1から+V1に遷移する場合、時刻T01において遷移を開始し、時刻T02において遷移が終了している。また、−V2から+V1に遷移する場合も時刻T01において遷移を開始し、時刻T02において遷移が終了している。従って時間T12(T02−T01)がRise Timeと同義となる。この時間T12において、直線1の任意の時刻tnでの電圧V(t)を、
01(t)=(2×V1)・t/T12−V1
とすると、V01(t)=0となるときのtを求めることで、t01の値を特定することができる。よって、
(2×V1)・t/T12−V1=0
ならば、
t=T12/2 … (3)
が求められ、
t01=T12/2
を得ることができる。同様に、時刻t02を求めると、
t02=T12×V2/(V1+V2) … (4)
を得ることができる。
前述の(2)式から、jitterはt01とt02とによって定まる。(2)式に(3)式と(4)式の値を代入すると、
jitter=t02−t01
=T12×V2/(V1+V2)−T12/2
=(1−V1/V2)/(2×(1+V1/V2))×T12 … (5)
が求められる。
この(5)式から明らかなように、jitterは振幅比V1/V2と、Rise Time(またはFall Time)とによって特定することができる。
前述のように、V1とV2とは、第1電流Imainと第2電流Ipostとの比を変更することで変更することが可能である。よって、本実施の形態のテスト信号生成回路10は、第1電流Imainと第2電流Ipostの電流値を可変にすることで、高周波成分が損出し、jitterが注入された出力データ(Dout+/Dout−)を出力することが可能である。また、第1電流Imainと第2電流Ipostを、負荷抵抗R1、R2と相対精度が確保された基準抵抗をを元に生成することにより、第1電流Imainと第2電流Ipostと負荷抵抗R1、R2の積はプロセスばらつきの影響をほとんど受けない。このため、高周波成分の損出もプロセスばらつきの影響をほとんど受けないように設定することが可能である。
[第2の実施形態]
以下に、図面を使用して本発明の第2の実施形態について説明を行う。図10は、第2の実施形態におけるテスト信号生成回路10の構成を示す回路図である。図10に示されているように、第2の実施形態におけるテスト信号生成回路10は、第1バッファ回路11と第2バッファ回路12とを含んで構成されている。第2の実施形態における第1バッファ回路11は、ノードN1を介して供給されるテストデータを受けるCMOSバッファ回路である。図10に示されているように、第2の実施形態の第1バッファ回路11は、入力端子21を介して第2テスト信号Dmain−を受ける第1インバータM1と、入力端子24を介して第1テスト信号Dmain+を受ける第2インバータM2とで構成されている。第1インバータM1の出力は、ノードN11を介して出力端子23から出力される。同様に、第2インバータM2の出力は、ノードN12を介して出力端子26から出力される。
図10に示されているように、第1インバータM1は、第1PチャネルトランジスタM1Pと、第1NチャネルトランジスタM1NとでCMOSインバータを構成している。その第1PチャネルトランジスタM1Pは、出力インピーダンスRpmainを有している。同様に、第1NチャネルトランジスタM1Nは、出力インピーダンスRnmainを有している。また、第2インバータM2もCMOSインバータを構成している。そのCMOSインバータの各々のトランジスタ(M2P,M2N)は、出力インピーダンスRpmainおよび出力インピーダンスRnmainを有している。
また、第2の実施形態における第2バッファ回路12は、入力端子22を介して第2遅延信号Dpost−を受ける第3インバータP1と、入力端子25を介して第1遅延信号Dpost+を受ける第4インバータP2とで構成されている。第3インバータP1の出力はノードN11を介して出力端子23に接続されている。同様に、第4インバータP2の出力は、ノードN12を介して出力端子26に接続されている。
第3インバータP1および第4インバータP2の各々は、同様の構成を有するCMOSインバータである。図10を参照すると、第3インバータP1のPチャネルトランジスタP1Pは、出力インピーダンスRppostを有している。同様に、第3インバータP1のNチャネルトランジスタP1Nは、出力インピーダンスRnpostを有している。同様に、第4インバータP2Nを構成する各々のトランジスタも、出力インピーダンスRppostおよび出力インピーダンスRnpostを有している。
本実施の形態における各トランジスタの出力インピーダンスは、センター値をRp=Rnとするように設計されたものであることが好ましい。それによって、
Rpmain=Rnmain=Rmain
Rppost=Rnpost=Rpost
を満たすことが可能になる。各トランジスタが上記式に示される条件を満たすことで、出力電圧V1、V2の制御をより適切に実行することが可能になる。
また、MOSトランジスタの出力インピーダンスは、温度、電源電圧の変動等の影響を受ける。後述するように、第2の実施形態のテスト信号生成回路10における出力電圧(V1、V2)は、第1バッファ回路11および第2バッファ回路12の出力インピーダンスによって特定することができる。したがって、第2の実施形態におけるテスト信号生成回路10は、さらに出力インピーダンス調整機能を備える構成であることが好ましい。
図11は、第2の実施形態にけるテスト信号生成回路10の動作を示す真理値表である。第2の実施形態において、第1バッファ回路11に入力されるテストデータ(Dmain+、Dmain−)は、第1の実施形態と同様である。また、第2バッファ回路12に入力される遅延テストデータ(Dpost+/Dpost−)も第1の実施形態と同様である。図11を参照すると、入力端子21に入力される第1テスト信号Dmain+と、入力端子22に入力される第1遅延信号Dpost+とのレベルが同相の場合、つまり、
第1テスト信号Dmain+=第1遅延信号Dpost+
第2テスト信号Dmain−=第2遅延信号Dpost−
であるときは、出力電圧(Dout+)−(Dout−)は明らかに、
電圧V2=|(Dout+)−(Dout−)|=VDD−VSS … (6)
となる。
ここで、入力端子21に入力される第1テスト信号Dmain+と、入力端子22に入力される第1遅延信号Dpost+とが逆相の場合、つまり、
第1テスト信号Dmain+=−(第1遅延信号Dpost+)
第2テスト信号Dmain−=−(第2遅延信号Dpost−)
(“−”符号は反転を示す)
であるときを出力電圧V1を求める。図11を参照して、
第1テスト信号Dmain+=0
第2テスト信号Dmain−=1
第1遅延信号Dpost+=1
第1遅延信号Dpost−=0
のときを例に出力電圧V1を求める。上記の条件における出力端子23の出力電圧Dout+は、
Dout+={Rnmain/(Rppost+Rnmain)}×(VDD−VSS
で与えられる。同様に、出力端子26の出力電圧Dout−は、
Dout−={Rnpost/(Rpmain+Rnpost)}×(VDD−VSS
で与えられる。ここで、各トランジスタの出力インピーダンスが
Rpmain=Rnmain=Rmain
Rppost=Rnpost=Rpost
とすると、
Dout+={Rmain/(Rpost+Rmain)}×(VDD−VSS
Dout−={Rpost/(Rmain+Rpost)}×(VDD−VSS
を得ることができる。したがってこのときの出力電圧V1として
出力電圧V1=|(Dout+)−(Dout−)|
={(Rpost−Rmain)/(Rmain+Rpost)}
×(VDD−VSS) … (7)
が求まる。この(7)式と、上述の(6)式より、振幅比V1/V2を求めると、
V1/V2=(Rpost−Rmain)/(Rmain+Rpost)…(8)
を得ることができる。
(8)式より明らかなように、第2の実施形態のテスト信号生成回路10は、第1バッファ回路11と第2バッファ回路12との出力インピーダンスを変更することで振幅比V1/V2を制御することができる。
図12は、第2の実施形態における、可変的に出力インピーダンスを制御する機能を有するテスト信号生成回路10の構成を示す回路図である。図12に示されている回路は、テスト信号生成回路10における、第2テスト信号Dmain−と第2遅延信号Dpost−とを受ける出力段(以下、第1出力段と記載する。)を示している。図12を参照すると、第1出力段は、第1インバータM1と第5インバータP11と第6インバータP12とを含んで構成されている。図12に示されているように、第5インバータP11は、PチャネルトランジスタP11PとNチャネルトランジスタP11NとでCMOSインバータを構成している。また第5インバータP11は、さらに、PチャネルトランジスタP11Pと電源線VDDとの間に接続されている第1スイッチトランジスタST1と、NチャネルトランジスタP11Nと接地線VSSとの間に接続される第2スイッチトランジスタST2とを含んで構成されている。
第1スイッチトランジスタST1のゲートは入力端子31に接続されている。同様に第2スイッチトランジスタST2のゲートは入力端子32に接続されている。入力端子31と入力端子32との各々は、前述した制御回路16(図示されず)に接続されている。第5インバータP11は、制御回路16から供給される制御信号(SW1、SW2)に応答してスイッチトランジスタ(ST1、ST2)のオン/オフを切り替えている。この第1スイッチトランジスタST1および第2スイッチトランジスタST2のインピーダンスは、V1、V2に影響を与えない程度に十分に小さい値であることが好ましい。
また、図12に示されているように、第6インバータP12は第5インバータP11と同様の構成を有する回路である。第5インバータP11と同様に、第6インバータP12は、第3スイッチトランジスタST3と第4スイッチトランジスタST4とを備えている。各々のスイッチトランジスタ(ST3、ST4)のゲートは入力端子(33、34)とを介して制御回路16に接続されている。第6インバータP12は、制御回路16から供給される制御信号(SW3、SW4)に応答してスイッチトランジスタ(ST3、ST4)のオン/オフを切り替えている。
ここで、図12の第5インバータP11を構成する各々のトランジスタ(P11P、P11N)の出力インピーダンスをRpost0とする。同様に、第6インバータP12を構成する各々のトランジスタ(P12P、P12N)の出力インピーダンスをRpost1とする。また、第1インバータM1の出力インピーダンスをRmainとする。このとき、
Rpost0≠Rpost1≠Rmain
とすることで、制御回路16から供給される制御信号(SW1〜SW4)に応答して出力インピーダンスの切り替えが可能なテスト信号生成回路10を構成することができる。以下、具体的な値を使用して第2の実施形態のテスト信号生成回路10の動作を説明する。
ここで、第1インバータM1の出力インピーダンスRmain=100[Ω]であり、第5インバータP11の出力インピーダンスRpost0=800[Ω]であり、第6インバータP12の出力インピーダンスRpost1=400[Ω]である場合を例に説明をする。図13は、各出力インピーダンスが上記の値をとる場合の、振幅比V1/V2を示すテーブルである。図13に示されているように、第5インバータP11と第6インバータP12との各々がオフ状態の場合、出力端子23からは、第1テスト信号Dmain+の信号波形と同様の波形を有する出力データが出力される。図13に示されているように、制御回路16から出力される制御信号に応答して第5インバータP11をオン状態とし、第6インバータP12をオフ状態としたときは、振幅比V1/V2は0.78となる。同様に第5インバータP11をオフ状態とし、第6インバータP12をオン状態としたときの振幅比V1/V2は0.60となり、第5インバータP11と第6インバータP12との各々をオン状態としたときの振幅比V1/V2は0.45となる。
このように、第2の実施形態のテスト信号生成回路10は、そのテスト信号生成回路10を構成するCMOSインバータの出力インピーダンスを変更することで振幅比V1/V2を制御することができる。よって、第2の実施形態のテスト信号生成回路10は、振幅比V1/V2を変更することで、高周波成分が劣化し、jitterが注入された出力データ(Dout+/Dout−)を出力することが可能である。
図1は、従来のテスト信号生成回路100の構成を示す回路図である。 図2は、第1の実施形態におけるテスト信号生成回路10を搭載する半導体装置の構成を例示する回路図である。 図3は、第1の実施形態におけるテスト信号生成回路10の詳細な構成を示す回路図である。 図4は、図4は、テストデータ、遅延テストデータおよび出力データの動作波形を示すタイミングチャートである。 図5は、第1の実施形態のテスト信号生成回路10の動作を示す真理値表である。 図6は、第1テスト信号Dmain+と、第1遅延信号Dpost+との対応を示すテーブルである。 図7は、出力データが遷移する様子を示したテーブルである。 図8は、出力電圧の遷移の様子を表した一般的にEYEパターンである。 図9は、EYEパターンから直線1と直線3とを抽出して表したグラフである。 図10は、第2の実施形態におけるテスト信号生成回路10の構成を示す回路図である。 図11は、第2の実施形態にけるテスト信号生成回路10の動作を示す真理値表である。 図12は、第2の実施形態における、テスト信号生成回路10の他の構成を示す回路図である。 図13は、第2の実施形態における、出力インピーダンスを変化させた場合の振幅比V1/V2を示すテーブルである。
符号の説明
1…SerDes回路
2…テストパターン発生回路
3…シリアライザ
4…ドライバ
5…選択回路
6…デシリアライザ
61…CDR
7…テストパターン比較回路
8…PLL回路
9…レシーバ
10…テスト信号生成回路
16…制御回路
17…遅延テストデータ生成回路
11…第1バッファ回路
12…第2バッファ回路
R1…第1抵抗素子、 R2…第2抵抗素子
M1…第1差動トランジスタ、 M2…第2差動トランジスタ
M3…第3差動トランジスタ、 M4…第4差動トランジスタ
13…第1電流源、 14…第2電流源
N1〜N7…ノード
OUT1、OUT2…出力端子
DD…電源線、 VSS…接地線
100…テスト信号生成回路
101…差動増幅回路
102…第1キャパシタ
103…第2キャパシタ
M201…第1トランジスタ
M202…第2トランジスタ
M203…定電流源
R201…第1トランジスタ
R202…第2トランジスタ
N201…第1出力ノード
N202…第2出力ノード

Claims (13)

  1. 出力パスと、
    入力パスと、
    半導体内において、テストデータから生成され、前記出力パス上を転送される第1テスト信号の振幅と位相の少なくとも一方を変更して第2テスト信号を生成し、前記第2テスト信号を前記入力パスに供給するテスト信号生成回路と
    を具備し、
    前記第1テスト信号と前記第2テスト信号を用いて前記出力パスと前記入力パスをテストする半導体装置。
  2. 請求項1に記載の半導体装置において、
    前記テストデータと前記第2テスト信号から得られる受信テストデータとを比較し、比較結果に基づいて前記出力パスと前記入力パスが正しく動作することができるか否かを判定する比較回路
    をさらに具備する半導体装置。
  3. 請求項1または2に記載の半導体装置において、
    前記テスト信号生成回路は、
    前記テストデータとして供給される差動入力信号を受け出力端に差動出力を出力する第1差動増幅器と、
    前記出力端に前記第1差動増幅器と同一極性で接続された第2差動増幅器と
    を具備し、
    前記第2差動増幅器は、
    前記差動入力信号を1ビット遅延させた遅延差動入力信号に応答して差動出力信号を生成し、前記差動出力を前記出力端に供給する
    半導体装置。
  4. 請求項3に記載の半導体装置において、
    前記差動入力信号は入力データ列と、前記入力データ列を反転させた反転入力データ列とを含み、
    前記第1差動増幅器は、前記入力データ列に応答して反転出力データ列を生成して第1出力端に供給し、前記反転入力データ列に応答して正転出力データ列を生成して第2出力端に供給し、
    前記差動トランジスタ対は、前記入力データ列を1ビット遅延させた遅延入力データ列に応答して特定反転出力データ列を生成して前記第1出力端に供給し、前記反転入力データ列を1ビット遅延させた遅延反転入力データ列に応答して特定正転出力データ列を生成して前記第2出力端に供給する
    半導体装置。
  5. 請求項4に記載の半導体装置において、
    前記第1差動増幅器は、
    前記特定差動トランジスタ対に特定電流を供給する特定電流源
    を含み、
    前記電流源は、前記特定電流源が供給する特定電流に比較して一定比の電流を前記差動トランジスタ対に供給する
    半導体装置。
  6. 請求項1または2に記載の半導体装置において、
    前記テスト信号生成回路は、
    前記テストデータに応答して一定振幅の出力データを出力する第1バッファ回路と、
    前記テストデータを1ビット遅延させた遅延テストデータを受ける第2バッファ回路と
    を具備し、
    前記第2バッファ回路は、
    前記遅延テストデータに応答して、前記出力データの出力振幅と異なる振幅の特定出力データを生成し、前記特定出力データを前記第1バッファの出力端に供給する
    半導体装置。
  7. 請求項6に記載の半導体装置において、
    前記テストデータは、データ列と前記データ列の位相を反転させた反転データ列とを含み、
    前記第1バッファ回路は、
    前記データ列に応答して第1反転信号を出力する第1インバータと、
    前記反転データ列に応答して第2反転信号を出力する第2インバータと、
    を含み、
    前記第2バッファ回路は、
    前記データ列を1ビット遅延させた遅延データ列に応答して特定第1反転信号を生成し、前記特定第1反転信号を前記第1インバータの出力端に供給する特定第1反転回路と、
    前記反転データ列を1ビット遅延させた遅延反転データ列に応答して特定第2反転信号を生成し、前記特定第2反転信号を前記第2インバータの出力端に供給する特定第2反転回路と
    を含み、
    前記特定第1反転回路と前記特定第2反転回路との各々は、前記第1インバータまたは前記第2インバータと異なる出力インピーダンスを有する
    半導体装置。
  8. 請求項7に記載の半導体装置において、
    前記特定第1反転回路と、前記特定第2反転回路との少なくとも一方は、
    各々異なる出力インピーダンスを有する複数のCMOSインバータと、
    前記複数のCMOSインバータの駆動を制御するスイッチと
    を有し、
    前記スイッチは、制御回路から供給される制御信号に応答して、前記特定第1反転回路、または前記特定第2反転回路の出力インピーダンスを特定する
    半導体装置。
  9. (a)半導体内において、テストデータから生成され、前記出力パス上を転送される第1テスト信号の振幅と位相の少なくとも一方を変更して第2テスト信号を生成するステップと、
    (b)前記第2テスト信号を前記入力パスに供給するステップと、
    (c)前記テストデータと前記第2テスト信号から得られる受信テストデータとを比較し、比較結果に基づいて前記出力パスと前記入力パスが正しく動作することができるか否かを判定するステップ
    を具備する
    半導体装置のテスト方法。
  10. 請求項9に記載の半導体装置のテスト方法において、
    前記(a)ステップは、さらに、
    前記テストデータとして供給される差動入力信号に応答して第1出力信号を生成するステップと、
    前記差動入力信号を1ビット遅延させた遅延差動入力信号に応答して第2出力信号を生成するステップと、
    前記第1出力信号と前記第2出力信号に基づいて前記テスト信号を生成するステップ
    を具備する
    半導体装置のテスト方法。
  11. 請求項10に記載の半導体装置のテスト方法において、
    前記(a)ステップは、さらに、
    第1電流に応答して前記第1出力信号を生成するステップと、
    前記第1電流と異なる電流値である特定電流に応答して前記第2出力信号を生成するステップ
    を具備する
    半導体装置のテスト方法。
  12. 請求項9に記載の半導体装置のテスト方法において、
    前記(a)ステップは、さらに、
    テストデータに応答して一定振幅の出力データを出力するステップと、
    前記テストデータを1ビット遅延させた遅延テストデータを生成するステップと、、
    前記遅延テストデータに応答して、前記出力データの出力振幅と異なる振幅の特定出力データを生成するステップと、
    前記テストデータと、前記特定出力データとに基づいて前記テスト信号を生成するステップ
    を具備する
    半導体装置のテスト方法。
  13. 請求項12に記載の半導体装置のテスト方法において、
    前記(a)ステップは、さらに、
    前記テストデータは、データ列と前記データ列の位相を反転させた反転データ列とを含み、
    前記データ列に応答して第1反転信号を出力するステップと、
    前記反転データ列に応答して第2反転信号を出力するステップと、
    前記データ列を1ビット遅延させた遅延データ列に応答して特定第1反転信号を生成するステップと、
    前記反転データ列を1ビット遅延させた遅延反転データ列に応答して、前記特定第1反転信号と異なる出力インピーダンスを有する特定第2反転信号を生成するステップ
    を具備する
    半導体装置のテスト方法。
JP2004374063A 2004-12-24 2004-12-24 半導体装置および半導体装置のテスト方法 Expired - Fee Related JP4811902B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004374063A JP4811902B2 (ja) 2004-12-24 2004-12-24 半導体装置および半導体装置のテスト方法
EP05028224A EP1674876A1 (en) 2004-12-24 2005-12-22 Self test of a semiconductor circuit
US11/315,595 US7401276B2 (en) 2004-12-24 2005-12-23 Semiconductor device with test circuit and test method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374063A JP4811902B2 (ja) 2004-12-24 2004-12-24 半導体装置および半導体装置のテスト方法

Publications (2)

Publication Number Publication Date
JP2006177898A true JP2006177898A (ja) 2006-07-06
JP4811902B2 JP4811902B2 (ja) 2011-11-09

Family

ID=35976702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374063A Expired - Fee Related JP4811902B2 (ja) 2004-12-24 2004-12-24 半導体装置および半導体装置のテスト方法

Country Status (3)

Country Link
US (1) US7401276B2 (ja)
EP (1) EP1674876A1 (ja)
JP (1) JP4811902B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219895A (ja) * 2007-03-02 2008-09-18 Kawasaki Microelectronics Kk 出力ドライバ回路および方法
JP2009294164A (ja) * 2008-06-09 2009-12-17 Renesas Technology Corp 半導体装置
JP2012073166A (ja) * 2010-09-29 2012-04-12 Advantest Corp 試験装置および試験方法
JP2012204948A (ja) * 2011-03-24 2012-10-22 Kawasaki Microelectronics Inc 差動出力バッファ
JP2014521955A (ja) * 2011-07-25 2014-08-28 クアルコム,インコーポレイテッド 高速ビットクロックなしの高速データ試験
US8896332B2 (en) 2011-12-09 2014-11-25 Advantest Corporation Test apparatus with voltage margin test

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4741991B2 (ja) * 2006-07-14 2011-08-10 株式会社日立製作所 シリアアライザ/デシリアライザ方式の転送装置
US7739567B2 (en) * 2008-02-26 2010-06-15 Avago Technologies Enterprise IP (Singapore) Pte. Ltd. Utilizing serializer-deserializer transmit and receive pads for parallel scan test data
US8327206B2 (en) * 2009-12-19 2012-12-04 Tektronix, Inc. Blanking primitives masking circuit
US10014899B2 (en) * 2016-07-15 2018-07-03 Texas Instruments Incorporated System and method for built-in self-test of electronic circuits
CN113138889B (zh) * 2021-03-26 2022-05-17 山东英信计算机技术有限公司 一种测试电路和服务器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170606A (ja) * 1996-12-10 1998-06-26 Sony Corp 半導体装置
JP2004340940A (ja) * 2003-04-04 2004-12-02 Agilent Technol Inc パラメータ化された信号調節
JP2004537054A (ja) * 2001-07-24 2004-12-09 ザイリンクス インコーポレイテッド Fpga内のシリアライザ/デシリアライザの統合型テスト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805089A (en) * 1996-09-05 1998-09-08 Lsi Logic Corporation Time-division data multiplexer with feedback for clock cross-over adjustment
US6397042B1 (en) * 1998-03-06 2002-05-28 Texas Instruments Incorporated Self test of an electronic device
EP1162739B1 (en) * 2001-04-03 2003-03-05 Agilent Technologies, Inc. (a Delaware corporation) Filter injecting data dependent jitter and level noise
US6977538B2 (en) * 2002-10-18 2005-12-20 Agilent Technologies, Inc. Delay unit for periodic signals
EP1464969A1 (en) * 2003-04-04 2004-10-06 Agilent Technologies Inc Loop-back testing with delay elements
JP3892847B2 (ja) * 2003-12-03 2007-03-14 株式会社東芝 半導体集積回路及び半導体集積回路のテスト方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170606A (ja) * 1996-12-10 1998-06-26 Sony Corp 半導体装置
JP2004537054A (ja) * 2001-07-24 2004-12-09 ザイリンクス インコーポレイテッド Fpga内のシリアライザ/デシリアライザの統合型テスト
JP2004340940A (ja) * 2003-04-04 2004-12-02 Agilent Technol Inc パラメータ化された信号調節

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008219895A (ja) * 2007-03-02 2008-09-18 Kawasaki Microelectronics Kk 出力ドライバ回路および方法
JP2009294164A (ja) * 2008-06-09 2009-12-17 Renesas Technology Corp 半導体装置
JP2012073166A (ja) * 2010-09-29 2012-04-12 Advantest Corp 試験装置および試験方法
JP2012204948A (ja) * 2011-03-24 2012-10-22 Kawasaki Microelectronics Inc 差動出力バッファ
JP2014521955A (ja) * 2011-07-25 2014-08-28 クアルコム,インコーポレイテッド 高速ビットクロックなしの高速データ試験
US9037437B2 (en) 2011-07-25 2015-05-19 Qualcomm Incorporated High speed data testing without high speed bit clock
US8896332B2 (en) 2011-12-09 2014-11-25 Advantest Corporation Test apparatus with voltage margin test

Also Published As

Publication number Publication date
US7401276B2 (en) 2008-07-15
EP1674876A1 (en) 2006-06-28
JP4811902B2 (ja) 2011-11-09
US20060253758A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
TWI593232B (zh) 單端可建置式多模式驅動器
US7528635B2 (en) Multitap fractional baud period pre-emphasis for data transmission
US8253445B2 (en) Output circuit having pre-emphasis function
EP1674876A1 (en) Self test of a semiconductor circuit
US8493103B2 (en) Output driver circuit
US7400168B2 (en) Semiconductor device with level conversion circuit
US6956407B2 (en) Pre-emphasis circuitry and methods
JP2007081608A (ja) 出力バッファ回路
US7112989B2 (en) Transmission signal correction circuit
US20110163791A1 (en) Output circuit and semiconductor device including pre-emphasis function
US7633329B2 (en) Single signal-to-differential signal converter and converting method
US7557602B2 (en) Pre-emphasis circuit including slew rate controllable buffer
KR100933677B1 (ko) 반도체 소자
WO2007032089A1 (ja) コモンモード電圧制御装置
WO2011018818A1 (ja) 差動型srフリップフロップおよびそれを用いた試験装置
KR100416378B1 (ko) 위상 분할 회로
WO2011128951A1 (ja) 差動出力回路
JP2006287163A (ja) 半導体集積回路
JP2007158652A (ja) 電気信号出力装置および半導体レーザ変調駆動装置および画像形成装置
US11552656B2 (en) Current mode logic driver and transmission driver including the same
JP2018085713A (ja) Lvdsドライバ
TW202415012A (zh) 用於高密度和低延遲晶片到晶片鏈路的接收器
KR100611315B1 (ko) 고속 아날로그 논리곱 회로 및 이를 적용한 위상 검출기
CN116340227A (zh) 序列信号感测器与差动信号感测方法
US20180302093A1 (en) Dynamic impedance control for voltage mode drivers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees