JP2006177228A - Rotary two-stage compressor and air conditioner using the same - Google Patents

Rotary two-stage compressor and air conditioner using the same Download PDF

Info

Publication number
JP2006177228A
JP2006177228A JP2004370385A JP2004370385A JP2006177228A JP 2006177228 A JP2006177228 A JP 2006177228A JP 2004370385 A JP2004370385 A JP 2004370385A JP 2004370385 A JP2004370385 A JP 2004370385A JP 2006177228 A JP2006177228 A JP 2006177228A
Authority
JP
Japan
Prior art keywords
compression element
eccentric
pressure
roller
pressure compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004370385A
Other languages
Japanese (ja)
Inventor
Atsushi Kubota
淳 久保田
Kazutaka Watabe
一孝 渡部
Masato Kaneko
正人 金子
Atsushi Onuma
敦 大沼
Hiroshi Izaki
宏 井崎
Tetsuya Tadokoro
哲也 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004370385A priority Critical patent/JP2006177228A/en
Priority to CNB2005100228555A priority patent/CN100455803C/en
Publication of JP2006177228A publication Critical patent/JP2006177228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce refrigerant leakage loss by suppressing the swing of a roller in a high pressure compression element. <P>SOLUTION: This rotary two-stage compressor is provided, in a sealed container, with a rotary shaft having two eccentric parts; a rotary compression element wherein a low pressure compression element and a high pressure compression element with rollers provided in compression chambers respectively and put in revolving motion by the eccentric rotation of the eccentric parts are provided through an intermediate partition plate; and intermediate passages connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element and separated from the internal space of the sealed container. When the heights of the eccentric part and roller of the low pressure compression element are set to h1, H1 respectively and the heights of the eccentric part and roller of the high pressure compression element are set to h2, H2 respectively, H1>H2 and (h1/H1)≤(h2/H2) are to be satisfied. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルを備えた空気調和機に使用されるロータリ2段圧縮機とそれを用いた空気調和機に関する。   The present invention relates to a rotary two-stage compressor used in an air conditioner having a refrigeration cycle and an air conditioner using the same.

従来、空気調和機に適用される冷凍サイクルで使用されるロータリ式2段圧縮機として、例えば特開昭60−128990号公報(以下、特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器の内部において上部にステータとロータからなる電動機を備えている。電動機に連結された回転軸は2つの偏心部を備えている。それらの偏心部に対応した圧縮機構として、電動機側から順に、高圧用圧縮要素と低圧用圧縮要素とが密閉容器の内部に設けられている。   Conventionally, as a rotary two-stage compressor used in a refrigeration cycle applied to an air conditioner, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 60-128990 (hereinafter referred to as Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part inside a sealed container. The rotating shaft connected to the electric motor has two eccentric portions. As a compression mechanism corresponding to these eccentric portions, a high-pressure compression element and a low-pressure compression element are provided inside the sealed container in order from the electric motor side.

各圧縮要素は、回転軸の偏心部の偏心回転によりローラを公転運動させる。それらの偏心部は位相が180°異なり、各圧縮要素の圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相である。これらの偏心部間は、断面形状が略円形の中間軸で接続されている。   Each compression element revolves the roller by the eccentric rotation of the eccentric portion of the rotation shaft. The eccentric portions have a phase difference of 180 °, and the phase difference of the compression process of each compression element is 180 °. That is, the compression process of the two compression elements is in antiphase. These eccentric portions are connected by an intermediate shaft having a substantially circular cross-sectional shape.

作動流体であるガス冷媒は低圧Psで低圧用圧縮要素内に吸入されて、圧縮されて中間圧Pmに上昇する。中間圧Pmで吐出されたガス冷媒は中間流路に吐出される。次に中間圧Pmのガス冷媒は中間流路を経て高圧用圧縮要素内に吸入され、高圧Pdに圧縮される。   The gas refrigerant, which is a working fluid, is sucked into the low pressure compression element at a low pressure Ps, is compressed, and rises to an intermediate pressure Pm. The gas refrigerant discharged at the intermediate pressure Pm is discharged into the intermediate flow path. Next, the gas refrigerant having the intermediate pressure Pm is sucked into the high pressure compression element through the intermediate flow path and compressed to the high pressure Pd.

圧縮機から吐出された高圧Pdのガス冷媒は凝縮器で凝縮された後、膨張機構で低圧Psまで減圧される。その後、蒸発器で蒸発してガス冷媒となり低圧用圧縮要素内に吸入される。   The high-pressure Pd gas refrigerant discharged from the compressor is condensed by the condenser and then decompressed to the low pressure Ps by the expansion mechanism. After that, it evaporates in an evaporator to become a gas refrigerant and is sucked into the low pressure compression element.

このような密閉容器の内圧が高圧Pdとなるロータリ式2段圧縮機の構造として、例えば特許文献1に開示された構造が知られている。従来技術のロータリ式2段圧縮機は、低圧用圧縮要素で低圧Psから中間圧Pmへ、高圧用圧縮要素で中間圧Pmから高圧Pdへ段階的にガス冷媒を圧縮する。   As a structure of such a rotary two-stage compressor in which the internal pressure of the hermetic container is high pressure Pd, for example, a structure disclosed in Patent Document 1 is known. The conventional rotary two-stage compressor compresses the gas refrigerant stepwise from the low pressure Ps to the intermediate pressure Pm by the low pressure compression element and from the intermediate pressure Pm to the high pressure Pd by the high pressure compression element.

回転軸の偏心部とローラの幾何形状の関係は特に記載されておらず、一般的な単段のロータリ圧縮機と同様である。特許文献1の図面では、低圧用圧縮要素のローラと偏心部の高さはそれぞれ、低圧用圧縮要素のローラと偏心部の高さと等しい。参考までにシリンダの高さと、ローラの高さはほぼ同じである。   The relationship between the eccentric part of the rotating shaft and the geometrical shape of the roller is not particularly described, and is the same as that of a general single-stage rotary compressor. In the drawing of Patent Document 1, the height of the roller and the eccentric portion of the low-pressure compression element is equal to the height of the roller and the eccentric portion of the low-pressure compression element, respectively. For reference, the height of the cylinder and the height of the roller are almost the same.

特開昭60−128990号公報(第5頁、第1図)JP-A-60-128990 (page 5, FIG. 1)

一方、一般的な単段のロータリ圧縮機において、偏心部とローラの高さの比と消費電力との関係は、例えば特許文献2に示されている。偏心部の高さhとローラの高さHの比(h/H)により、冷凍能力および消費電力が変化する。これはローラの円筒内面と偏心部の円柱外面との間の摺動損失と、ローラが高さ方向へ揺動することに伴いローラとシリンダの間、及びローラの上下端面と端板部もしくは中間仕切板との間からの冷媒漏れ量が変化するからである。   On the other hand, in a general single-stage rotary compressor, the relationship between the ratio between the eccentric part and the height of the roller and the power consumption is disclosed in Patent Document 2, for example. Depending on the ratio (h / H) between the height h of the eccentric part and the height H of the roller, the refrigerating capacity and the power consumption change. This is due to the sliding loss between the cylindrical inner surface of the roller and the cylindrical outer surface of the eccentric portion, and between the roller and the cylinder as the roller swings in the height direction, and between the upper and lower end surfaces of the roller and the end plate or middle. This is because the amount of refrigerant leakage from between the partition plates changes.

従来技術で述べたロータリ式2段圧縮機を空気調和機に用いる場合、(高圧Pd−中間圧Pm)>(中間圧Pm−低圧Ps)の圧力条件で作動することが多い。したがってローラや偏心部が受けるガス荷重も低圧用圧縮要素と高圧用圧縮要素では異なり、特に高圧用圧縮要素でのガス荷重が高くなる。そのため高圧用圧縮要素のローラの揺動が大きく、ここでの冷媒漏れ量が増大するという課題があった。   When the rotary type two-stage compressor described in the prior art is used for an air conditioner, it often operates under a pressure condition of (high pressure Pd−intermediate pressure Pm)> (intermediate pressure Pm−low pressure Ps). Therefore, the gas load received by the roller and the eccentric portion is different between the low pressure compression element and the high pressure compression element, and particularly, the gas load at the high pressure compression element becomes high. For this reason, there is a problem that the roller of the high pressure compression element swings greatly, and the amount of refrigerant leakage increases here.

さらに高圧用圧縮要素と低圧用圧縮要素ではガス荷重が異なるため、回転軸における二つの偏心部間にある中間軸が変形しやすく、ローラの揺動が大きくなり冷媒漏れ量が増大するという課題があった。   Further, since the gas load is different between the high pressure compression element and the low pressure compression element, the intermediate shaft between the two eccentric portions of the rotating shaft is likely to be deformed, and the roller swing is increased, resulting in an increase in the amount of refrigerant leakage. there were.

また、このような課題を有する圧縮機を適用した空気調和機では、入力に対して所望の性能を発揮することが難しい場合があり、成績係数COPが低下する課題があった。   Moreover, in an air conditioner to which a compressor having such a problem is applied, it may be difficult to exhibit desired performance with respect to input, and there is a problem that the coefficient of performance COP decreases.

本発明の目的は、上述の課題を解決して、ロータリ2段圧縮機のローラの揺動を抑制して冷媒漏れ量を低減することにある。また空気調和機として性能の低下を防ぐことにある。   An object of the present invention is to solve the above-described problems and to suppress the swing of a roller of a rotary two-stage compressor to reduce the amount of refrigerant leakage. Moreover, it exists in preventing a performance fall as an air conditioner.

上記目的を達成するために、本発明のロータリ圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備えている。前記密閉容器内の圧力は前記高圧用圧縮要素で圧縮された吐出ガスの圧力であり、前記低圧用圧縮要素における偏心部とローラの高さをそれぞれh1、H1とし、前記高圧用圧縮要素における偏心部とローラの高さをそれぞれh2、H2とし、H1>H2かつ(h1/H1)≦(h2/H2)であるとして各圧縮要素のローラ形状と偏心部の幾何形状を関係づけた。   In order to achieve the above object, a rotary compressor according to the present invention includes an electric motor in a sealed container, a rotating shaft driven by the electric motor and having two eccentric parts, and a roller that revolves due to the eccentric rotation of the eccentric part. A rotary compression element in which a compression element for low pressure and a compression element for high pressure respectively provided in a compression chamber are provided via an intermediate partition plate; a compression chamber for the compression element for low pressure; and a compression chamber for the compression element for high pressure An intermediate flow path separated from the internal space of the sealed container to be connected. The pressure in the sealed container is the pressure of the discharge gas compressed by the high pressure compression element, and the height of the eccentric part and the roller in the low pressure compression element are h1 and H1, respectively, and the eccentricity in the high pressure compression element. The height of the part and the roller was set to h2 and H2, respectively, and the roller shape of each compression element and the geometric shape of the eccentric part were related as H1> H2 and (h1 / H1) ≦ (h2 / H2).

またさらに高圧用圧縮要素の変動を抑制するために、前記低圧用圧縮要素における前記偏心部の前記回転軸からの偏心距離をE1とし、前記高圧用圧縮要素における前記偏心部の前記回転軸からの偏心距離をE2とすると、E1>E2として各偏心距離を関係づけた。   In order to further suppress the fluctuation of the high pressure compression element, the eccentric distance of the eccentric part of the low pressure compression element from the rotary shaft is E1, and the eccentric part of the high pressure compression element from the rotary shaft is E1. When the eccentric distance is E2, each eccentric distance is related as E1> E2.

さらに中間軸の変形に伴うローラ周りの冷媒漏れ量を低減するために、前記低圧用圧縮要素と前記高圧用圧縮要素との圧縮工程の位相差を略180°とし、前記低圧用圧縮要素の偏心部と前記高圧要素の偏心部との間を接続する中間軸が軸方向に段差を有し、低圧用圧縮要素側と高圧用圧縮要素側の前記中間軸の重心を、それぞれの偏心部の偏心方向に偏心させてもよく、そうすることで曲げ剛性を向上できる。   Further, in order to reduce the amount of refrigerant leakage around the roller due to the deformation of the intermediate shaft, the phase difference in the compression process between the low pressure compression element and the high pressure compression element is approximately 180 °, and the low pressure compression element is eccentric. The intermediate shaft that connects between the center portion and the eccentric portion of the high-pressure element has a step in the axial direction, and the center of gravity of the intermediate shaft on the low-pressure compression element side and the high-pressure compression element side is the eccentricity of each eccentric portion. The bending rigidity may be improved by decentering in the direction.

特に高圧側の中間軸の曲げ剛性を高めるために、前記低圧用圧縮要素と前記高圧用圧縮要素の前記偏心距離をE1>E2として、高圧用圧縮要素側の中間軸の断面積および曲げ剛性を低圧用圧縮要素側のものよりも増大させた。   In particular, in order to increase the bending rigidity of the intermediate shaft on the high pressure side, the eccentric distance between the compression element for low pressure and the compression element for high pressure is E1> E2, and the cross-sectional area and bending rigidity of the intermediate shaft on the high pressure compression element side are Increased over the low pressure compression element side.

さらに高圧用圧縮要素のガス荷重がより高くなるガスインジェクションサイクルにおいて、上述の本発明のロータリ式圧縮機を用いることで、冷媒漏れ量を低減したことにより信頼性と性能の向上を図ることが可能となる。   Furthermore, in the gas injection cycle in which the gas load of the compression element for high pressure becomes higher, it is possible to improve the reliability and performance by reducing the refrigerant leakage amount by using the rotary compressor of the present invention described above. It becomes.

本発明によれば、圧縮機においては、ローラの揺動に伴う冷媒漏れ損失を低減し、消費電力を低減することができる。特に高圧用圧縮要素のローラの揺動に伴う冷媒漏れ損失を低減できる。   According to the present invention, in the compressor, it is possible to reduce the refrigerant leakage loss due to the rocking of the roller and to reduce the power consumption. In particular, it is possible to reduce refrigerant leakage loss due to the swing of the roller of the high pressure compression element.

また、空気調和機においては、消費電力を低減でき、性能の向上を得ることができる。   Moreover, in an air conditioner, power consumption can be reduced and performance improvement can be obtained.

本発明の実施形態を図を用いて説明する。図1に本実施形態のロータリ式2段圧縮機1の縦断面図を、図2にその構成図を示す。圧縮機1は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19aに軸支されている。2つの偏心部5の間は、軸方向に段差44を有した中間軸41で接続されている。その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、高圧用圧縮要素20b、中間仕切板15、低圧用圧縮要素20a及び端板部19bと副軸受19aを備えた中間容器19が積層され、ボルト等の締結要素36で一体化されている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a rotary two-stage compressor 1 of the present embodiment, and FIG. The compressor 1 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19a. The two eccentric portions 5 are connected by an intermediate shaft 41 having a step 44 in the axial direction. The main bearing 9, the high-pressure compression element 20b, the intermediate partition plate 15, the low-pressure compression element 20a, the end plate portion 19b, and the auxiliary bearing 19a provided with the end plate portion 9a are sequentially arranged with respect to the rotating shaft 2 from the electric motor 14 side. The provided intermediate container 19 is laminated and integrated with a fastening element 36 such as a bolt.

端板部9aは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19aに支持されている。なお、本実施形態は端板部19bを締結要素36で固定されているが、胴部22に溶接で固定されても構わない。   The end plate portion 9 a is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19b is supported by the auxiliary bearing 19a. In this embodiment, the end plate portion 19b is fixed by the fastening element 36, but may be fixed to the body portion 22 by welding.

各圧縮要素20aと20bは、図1、図2のように構成されている。低圧圧縮要素20aは、端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、中間仕切板15とで圧縮室23aは構成される。また、高圧圧縮要素20bは、主軸受9と、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、中間仕切板15とで圧縮室23bは構成される。それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段に連結された平板状のベーン18が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   Each compression element 20a and 20b is comprised like FIG. 1, FIG. In the low-pressure compression element 20a, a compression chamber 23a is composed of an end plate portion 19b, a cylindrical cylinder 10a, a cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and an intermediate partition plate 15. In the high-pressure compression element 20b, a compression chamber 23b is constituted by the main bearing 9, the cylindrical cylinder 10b, the cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and the intermediate partition plate 15. The compression chambers 23a and 23b are in contact with the outer periphery of the rollers 11a and 11b in which a flat vane 18 connected to an urging force applying means such as a coil spring rotates in accordance with the eccentric motion of the eccentric portions 5a and 5b. While moving forward and backward, the compression chambers 23a and 23b are divided into a compression space and a suction space.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図1、図2に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIGS. 1 and 2, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.

作動流体であるガス冷媒の流れを、図1の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、配管31と接続する吸入口25aより低圧用圧縮要素20a内に吸入され、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の圧力が予め設定された圧力になると開口する吐出弁28aが中間圧Pmで開口すると、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。この吐出空間33は、中間容器19と平板状のカバー35とにより密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。中間流路30は、吐出空間33からの排出口26cと吸入口25bを連通する流路である。吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、中間流路30を通って高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The flow of the gas refrigerant which is a working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 is sucked into the low-pressure compression element 20a from the suction port 25a connected to the pipe 31, and is compressed to the intermediate pressure Pm by the eccentric rotation of the roller 11a. When the discharge valve 28a that opens when the pressure in the compression chamber 23a reaches a preset pressure opens at the intermediate pressure Pm, the gas refrigerant that has reached the intermediate pressure Pm is discharged into the discharge space 33 that communicates with the discharge port 26a. . The discharge space 33 is a space separated from the sealed space 29 in the sealed container 13 by the intermediate container 19 and the flat cover 35, and the internal pressure thereof is basically the intermediate pressure Pm. The intermediate flow path 30 is a flow path that connects the discharge port 26c from the discharge space 33 and the suction port 25b. The gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged into the discharge space 33, and then passes through the intermediate flow path 30 and communicates with the pressure chamber 23b of the high-pressure element 20b. To.

次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると開口する吐出弁28bが高圧Pdで開口すると、ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出された高圧Pdのガス冷媒は、電動機14の隙間を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the discharge valve 28b that opens when the pressure in the compression chamber 23b reaches a preset pressure opens at high pressure Pd, the gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The high-pressure Pd gas refrigerant discharged into the sealed space 29 passes through the gap of the electric motor 14 and is discharged from the discharge pipe 27.

図3に、本実施形態のロータリ圧縮機1の圧縮要素20部分の拡大図を示す。段階的に冷媒を圧縮する2段圧縮方式では、高圧用圧縮要素20bの押除量(行程容積)は低圧用圧縮要素20aの押除量よりも小さい。   In FIG. 3, the enlarged view of the compression element 20 part of the rotary compressor 1 of this embodiment is shown. In the two-stage compression method in which the refrigerant is compressed stepwise, the amount of pressing (stroke volume) of the high pressure compression element 20b is smaller than the amount of pressing of the low pressure compression element 20a.

本圧縮機1は一般の空気調和機用であり、高圧用圧縮要素20bと低圧用圧縮要素20aと押除量の比を所定の値0.65〜0.85の範囲とした。この上記押除量の比では、(高圧Pd−中間圧Pm)>(中間圧Pm−低圧Ps)の圧力条件で作動することが多い。すなわち高圧用圧縮要素20bでのガス荷重が、低圧用圧縮要素20aのガス荷重よりも大きい。   The compressor 1 is for a general air conditioner, and the ratio of the high pressure compression element 20b, the low pressure compression element 20a, and the amount of pressing is set to a predetermined value range of 0.65 to 0.85. In many cases, the ratio of the pressing amount is operated under a pressure condition of (high pressure Pd−intermediate pressure Pm)> (intermediate pressure Pm−low pressure Ps). That is, the gas load in the high pressure compression element 20b is larger than the gas load in the low pressure compression element 20a.

各圧縮要素20の押除量は、シリンダ10の内径φDと、シリンダ10もしくはローラ11の高さHと、偏心部5の回転軸2の中心からの偏心距離Eにより設定される。各シリンダ10の内径φDは、低圧用圧縮要素20aと高圧用圧縮要素20bとで同じとした。各シリンダ10の内径φDを同じ値としたのは、各シリンダの部品加工治具や部品加工装置および測定装置や組み立て装置の統一化を図るためである。シリンダ10bもしくはローラ11bの高さH2は、シリンダ10aもしくはローラ11aの高さH1よりも低くした。また、所望の押除量の設定のために偏心距離E2は、偏心距離E1よりも小さくしてもよい。   The pressing amount of each compression element 20 is set by the inner diameter φD of the cylinder 10, the height H of the cylinder 10 or the roller 11, and the eccentric distance E from the center of the rotating shaft 2 of the eccentric portion 5. The inner diameter φD of each cylinder 10 is the same in the low pressure compression element 20a and the high pressure compression element 20b. The reason why the inner diameter φD of each cylinder 10 is set to the same value is to unify the part processing jig, the part processing apparatus, the measuring apparatus, and the assembly apparatus of each cylinder. The height H2 of the cylinder 10b or the roller 11b was made lower than the height H1 of the cylinder 10a or the roller 11a. Further, the eccentric distance E2 may be smaller than the eccentric distance E1 in order to set a desired pressing amount.

ローラ11は、鋳物部材を切削や研磨で加工して略円筒形状とした。ローラ11の上下端面と内面との角部には、テーパ42を施し軽量化を図った。ただしテーパ42は、偏心部5との摺動面を減じない範囲に設けた。ローラ11の高さは数μm〜数十μmの違いはあるものの、ほぼシリンダ10の高さと同じHである。   The roller 11 was formed into a substantially cylindrical shape by processing a cast member by cutting or polishing. The corners between the upper and lower end surfaces and the inner surface of the roller 11 are tapered to reduce the weight. However, the taper 42 is provided in a range where the sliding surface with the eccentric portion 5 is not reduced. The height of the roller 11 is almost the same as the height of the cylinder 10 although there is a difference of several μm to several tens of μm.

ローラ11bの高さH2は、ローラ11aの高さH1の0.8倍と低くした。各圧縮要素20の押除量の比と、各ローラ11の高さHや偏心部5の偏心距離Eの関係からローラ11の外径が定まる。   The height H2 of the roller 11b was as low as 0.8 times the height H1 of the roller 11a. The outer diameter of the roller 11 is determined from the relationship between the ratio of the pressing amount of each compression element 20 and the height H of each roller 11 and the eccentric distance E of the eccentric portion 5.

本実施形態では高圧用圧縮要素20bのローラ11bの外径は、低圧用圧縮要素20aのローラ11aの外径よりも大きい。   In this embodiment, the outer diameter of the roller 11b of the high pressure compression element 20b is larger than the outer diameter of the roller 11a of the low pressure compression element 20a.

回転軸2は、切削や研磨で加工した鋳物部材である。偏心部5は、回転軸2の回転中心から偏心距離Eに位置する略円柱形状である。先に述べたように偏心距離E2は、偏心距離E1はよりも小さくした。偏心部5の高さ方向の中心と、ローラ11の高さ方向の中心はほぼ一致させた。   The rotating shaft 2 is a cast member processed by cutting or polishing. The eccentric portion 5 has a substantially cylindrical shape located at an eccentric distance E from the rotation center of the rotating shaft 2. As described above, the eccentric distance E2 is smaller than the eccentric distance E1. The center of the eccentric part 5 in the height direction and the center of the roller 11 in the height direction were substantially matched.

次に本実施形態では偏心部5bの高さh2を、偏心部5aの高さh1よりも低くした。各圧縮要素20の高さを比較すると、(h1/H1)≦(h2/H2)とした。具体的には(h1/H1)を0.48、(h2/H2)を0.58、(h2/H2)を(h1/H1)の1.2倍とした。(h1/H1)は、摺動損失とローラ11周りの冷媒漏れ損失との兼ね合いから0.4〜0.8の範囲とした。   Next, in the present embodiment, the height h2 of the eccentric portion 5b is set lower than the height h1 of the eccentric portion 5a. When the height of each compression element 20 was compared, it was set as (h1 / H1) ≦ (h2 / H2). Specifically, (h1 / H1) was 0.48, (h2 / H2) was 0.58, and (h2 / H2) was 1.2 times (h1 / H1). (H1 / H1) was set in the range of 0.4 to 0.8 in consideration of the sliding loss and the refrigerant leakage loss around the roller 11.

図3のA−A断面を図4に、B−B断面を図5に示す。中間軸41は、回転軸2の軸方向に段差44を有している。中間軸41は回転軸2の回転中心Oから半径rの円弧と、偏心部5の中心Cから半径Rの円弧で囲まれた領域の断面を有する。すなわち中間軸41の断面の重心を、中心Oよりも中心Cの側に偏心させた。   FIG. 4 shows the AA cross section of FIG. 3, and FIG. 5 shows the BB cross section. The intermediate shaft 41 has a step 44 in the axial direction of the rotating shaft 2. The intermediate shaft 41 has a cross section of a region surrounded by an arc having a radius r from the rotation center O of the rotating shaft 2 and an arc having a radius R from the center C of the eccentric portion 5. That is, the center of gravity of the cross section of the intermediate shaft 41 is decentered toward the center C rather than the center O.

半径rは回転軸2を加工する際に、半径Rは偏心部5を加工する際にそれぞれ加工したため、加工工程の大幅な増加はない。ただし半径rは、図3に示したように中間仕切板15に設けた中央穴40の半径よりも小さくして中間仕切板15と中間軸41とが接触しないようにした。   Since the radius r is processed when the rotary shaft 2 is processed, and the radius R is processed when the eccentric portion 5 is processed, there is no significant increase in processing steps. However, the radius r is smaller than the radius of the central hole 40 provided in the intermediate partition plate 15 as shown in FIG. 3 so that the intermediate partition plate 15 and the intermediate shaft 41 do not contact each other.

また組み立て時に偏心部5と中間仕切板15が接触して変形しないように、図3で示したようにS1>t>S2とした。ここでS1は中間軸41の段差44から低圧用圧縮要素20a側の高さ、S2は中間軸41の段差44から高圧用圧縮要素20b側の高さ、tは中間仕切板15の板厚である。ここではS1>tとしたが、S2>tのように少なくとも一方のSがtよりも大きければよい。   Further, S1> t> S2 as shown in FIG. 3 so that the eccentric portion 5 and the intermediate partition plate 15 do not come into contact with each other during assembly. Here, S1 is the height on the low pressure compression element 20a side from the step 44 of the intermediate shaft 41, S2 is the height on the high pressure compression element 20b side from the step 44 of the intermediate shaft 41, and t is the thickness of the intermediate partition plate 15. is there. Here, S1> t, but it is sufficient that at least one S is larger than t as in S2> t.

上記シリンダ10bの高さH2をシリンダ10aの高さH1よりも低く、すなわちシリンダ10bをより扁平にしたため、高圧用圧縮要素20bの差圧(Pd−Pm)が低圧側の差圧(Pm−Ps)よりも高いにもかかわらずローラ11bの揺動を抑制する。   Since the height H2 of the cylinder 10b is lower than the height H1 of the cylinder 10a, that is, the cylinder 10b is flattened, the differential pressure (Pd−Pm) of the high pressure compression element 20b is reduced to the low pressure side differential pressure (Pm−Ps). ), The swinging of the roller 11b is suppressed.

さらに(h1/H1)を適正な範囲とした上で(h2/H2)を(h1/H1)よりも大きくしたため、ローラ11bの揺動をより抑制する。さらに偏心距離についてE2<E1であるため、ローラ11bはローラ11aに比べて公転距離が少なくなり揺動が抑制される。さらにローラ11にはテーパ42加工を施して軽量化しているため、より揺動が抑制される。   Furthermore, since (h2 / H2) is made larger than (h1 / H1) after setting (h1 / H1) to an appropriate range, the swing of the roller 11b is further suppressed. Further, since E2 <E1 with respect to the eccentric distance, the roller 11b has a smaller revolution distance than the roller 11a, and the swing is suppressed. Furthermore, the roller 11 is tapered to reduce the weight, so that the swinging is further suppressed.

また中間軸41の断面積を回転軸2の断面積よりも大きくして、曲げ剛性を高めたため、偏心部5aと偏心部5bとにかかるガス荷重がアンバランスであっても中間軸41が変形しづらいためローラ11の揺動が抑制される。   Further, since the cross-sectional area of the intermediate shaft 41 is made larger than the cross-sectional area of the rotary shaft 2 and the bending rigidity is increased, the intermediate shaft 41 is deformed even if the gas load applied to the eccentric portion 5a and the eccentric portion 5b is unbalanced. Since it is difficult to swing, the swing of the roller 11 is suppressed.

さらに図4と図5を比較して分かるようにE2<E1とした。高圧側の中間軸41の断面積と曲げ剛性を低圧側のものより高めることができたため、相対的にガス荷重に対する影響に強く、ローラ11bの揺動を抑制することができる。   Further, as can be seen by comparing FIG. 4 and FIG. Since the cross-sectional area and bending rigidity of the intermediate shaft 41 on the high pressure side can be increased as compared with those on the low pressure side, the influence on the gas load is relatively strong, and the swing of the roller 11b can be suppressed.

ここで偏心部5の高さを拡大し、図6に示すように逃げ溝47を設けるとさらにローラ11の揺動を抑制する。ただし図6においても、(h1/H1)は0.4〜0.8の範囲であり、(h1/H1)≦(h2/H2)とした。図6において偏心部5の高さhに相当する値は、ローラ11と偏心部5の摺動面の高さh‘とh“の和である。   Here, if the height of the eccentric portion 5 is enlarged and a clearance groove 47 is provided as shown in FIG. 6, the swing of the roller 11 is further suppressed. However, also in FIG. 6, (h1 / H1) is in the range of 0.4 to 0.8, and (h1 / H1) ≦ (h2 / H2). In FIG. 6, the value corresponding to the height h of the eccentric portion 5 is the sum of the heights h ′ and h ″ of the sliding surfaces of the roller 11 and the eccentric portion 5.

以上の構成により、本実施形態の圧縮機は、ローラの揺動を抑制し、冷媒漏れ量を低減する。   With the above configuration, the compressor of the present embodiment suppresses the swing of the roller and reduces the refrigerant leakage amount.

次に本実施形態の圧縮機をガスインジェクションサイクルに用いた場合のサイクル構成を、図7に示す。本発明の一実施形態であるロータリ式2段圧縮機1から吐出された高圧Pdの冷媒ガスは、凝縮器3で凝縮した後、第一の膨張機構4で膨張し、中間圧Pmまで圧力が減圧される。この減圧された冷媒ガスは、気液分離器6でガス冷媒と液冷媒に分離される。分離された液冷媒は、気液分離器6の下流にある第2の膨張機構4でさらに低圧Psまで減圧された後、蒸発器16で蒸発してガス冷媒となる。低圧Psのガス冷媒は配管31、吸入口25aより低圧用圧縮要素20a内に吸入され、偏心部5aに嵌め合わされたローラ11aが公転することにより中間圧Pmまで圧縮され、中間流路30へ吐出される。   Next, FIG. 7 shows a cycle configuration when the compressor of the present embodiment is used in a gas injection cycle. The high-pressure Pd refrigerant gas discharged from the rotary two-stage compressor 1 according to the embodiment of the present invention is condensed by the condenser 3 and then expanded by the first expansion mechanism 4 so that the pressure reaches the intermediate pressure Pm. Depressurized. The decompressed refrigerant gas is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 6. The separated liquid refrigerant is further depressurized to a low pressure Ps by the second expansion mechanism 4 downstream of the gas-liquid separator 6 and then evaporated by the evaporator 16 to become a gas refrigerant. The low-pressure Ps gas refrigerant is sucked into the low-pressure compression element 20a from the pipe 31 and the suction port 25a, and is compressed to the intermediate pressure Pm by the revolution of the roller 11a fitted to the eccentric portion 5a. Is done.

この中間流路30のガス冷媒は、気液分離器6と中間流路30とが連通したインジェクション流路17から導かれる中間圧Pmのガス冷媒と混合する。その後吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、偏心部5bに嵌め合わされたローラ11bが公転することにより高圧力Pdまで圧縮されて、吐出管27より吐出される。   The gas refrigerant in the intermediate flow path 30 is mixed with the gas refrigerant having an intermediate pressure Pm guided from the injection flow path 17 in which the gas-liquid separator 6 and the intermediate flow path 30 communicate with each other. Thereafter, the gas refrigerant having the intermediate pressure Pm sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b fitted to the eccentric portion 5b, and discharged from the discharge pipe 27. Is done.

このようなインジェクションサイクルは、蒸発器16において伝熱性能の低いガス冷媒を中間流路30へバイパスするため、低圧用圧縮要素20aへの余分な循環流量を減少して圧縮仕事を低減し、冷凍サイクルの成績係数COPを向上する。またインジェクション流路17の途中に、流路17を開閉する二方弁34を設け、二方弁34を開くとインジェクションサイクルとなり、二方弁34を閉じると図2に示した通常の冷凍サイクルとなる切り替え可能な構成としても良い。また二方弁34の代わりに、流量を調整できる膨張弁としてもよい。   In such an injection cycle, the gas refrigerant having low heat transfer performance is bypassed to the intermediate flow path 30 in the evaporator 16, so that the excessive circulation flow to the low pressure compression element 20 a is reduced to reduce the compression work, and the refrigeration Improve cycle performance coefficient COP. In addition, a two-way valve 34 for opening and closing the flow path 17 is provided in the middle of the injection flow path 17. When the two-way valve 34 is opened, an injection cycle is established, and when the two-way valve 34 is closed, the normal refrigeration cycle shown in FIG. A switchable configuration may be used. Further, instead of the two-way valve 34, an expansion valve capable of adjusting the flow rate may be used.

本実施形態を適用していない一般的な空気調和機の冷凍サイクルにおいては、ロータリ圧縮機の実施形態で説明したとおり高圧用圧縮要素20bにかかる差圧(高圧Pd−中間圧Pm)が低圧用圧縮要素20aにかかる差圧(中間圧Pm−低圧Ps)よりも高くなり、ローラ11bがより揺動しやすい。   In a refrigeration cycle of a general air conditioner to which this embodiment is not applied, as described in the embodiment of the rotary compressor, the differential pressure (high pressure Pd−intermediate pressure Pm) applied to the high pressure compression element 20b is low pressure. It becomes higher than the differential pressure (intermediate pressure Pm−low pressure Ps) applied to the compression element 20a, and the roller 11b is more likely to swing.

図7に示したガスインジェクションサイクルでは、中間流路30にインジェクション流路17から冷媒が流入することにより高圧用圧縮要素において冷媒が増加される状態となる。そのため高圧用圧縮要素20bのローラ11bの負荷が増大してより揺動しやすい。すなわちガスインジェクションサイクルは、理想的には成績係数COPを向上するものの、ローラ11bの揺動による冷媒漏れ損失の影響を受けやすいという課題があった。   In the gas injection cycle shown in FIG. 7, the refrigerant flows into the intermediate flow path 30 from the injection flow path 17 so that the refrigerant is increased in the high pressure compression element. For this reason, the load on the roller 11b of the high pressure compression element 20b is increased and is more likely to swing. That is, although the gas injection cycle ideally improves the coefficient of performance COP, there is a problem that it is easily affected by refrigerant leakage loss due to the swing of the roller 11b.

かかるガスインジェクションサイクルにおいて、本実施形態のロータリ式2段圧縮機1を用いると、ローラ11bの揺動に伴う冷媒漏れ損失を低減できる。その効果は通常の冷凍サイクルよりも、ガスインジェクションサイクルの方が顕著である。したがって本実施形態の冷凍サイクルはより理想に近いガスインジェクションサイクルを実現し、冷凍サイクルの成績係数COPを向上することができる。   In such a gas injection cycle, when the rotary type two-stage compressor 1 of the present embodiment is used, it is possible to reduce the refrigerant leakage loss accompanying the swing of the roller 11b. The effect is more remarkable in the gas injection cycle than in the normal refrigeration cycle. Therefore, the refrigeration cycle of this embodiment can realize a gas injection cycle that is closer to the ideal, and can improve the coefficient of performance COP of the refrigeration cycle.

本発明の一実施形態を示すロータリ式2段圧縮機の縦断面図。1 is a longitudinal sectional view of a rotary two-stage compressor showing an embodiment of the present invention. 本発明の一実施形態を示すロータリ式2段圧縮機の構成図。1 is a configuration diagram of a rotary two-stage compressor showing an embodiment of the present invention. 本発明の一実施形態を示すロータリ式2段圧縮機の部分断面図。The fragmentary sectional view of the rotary type two-stage compressor which shows one Embodiment of this invention. 図3のA−A断面図。AA sectional drawing of FIG. 図3のB−B断面図。BB sectional drawing of FIG. 本発明の一実施形態の応用例示す中間軸とローラの縦断面図。The longitudinal cross-sectional view of the intermediate shaft and roller which show the application example of one Embodiment of this invention. 本発明の一実施形態を示す冷凍サイクルの構成図。The block diagram of the refrigerating cycle which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1…圧縮機、2…回転軸、5…偏心部、9…主軸受、10…シリンダ、11…ローラ、15…中間仕切板、17…インジェクション流路、20…圧縮要素、30…中間流路、41…中間軸。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Rotary shaft, 5 ... Eccentric part, 9 ... Main bearing, 10 ... Cylinder, 11 ... Roller, 15 ... Intermediate partition plate, 17 ... Injection flow path, 20 ... Compression element, 30 ... Intermediate flow path 41 ... Intermediate shaft.

Claims (4)

密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路と、を備えたロータリ式2段圧縮機において、前記密閉容器内の圧力は前記高圧用圧縮要素で圧縮された吐出ガスの圧力であり、前記低圧用圧縮要素における偏心部とローラの高さをそれぞれh1、H1とし、前記高圧用圧縮要素における偏心部とローラの高さをそれぞれh2、H2とし、H1>H2かつ(h1/H1)≦(h2/H2)であるロータリ式2段圧縮機。   A low-pressure compression element and a high-pressure compression element each having an electric motor in a hermetic container, a rotating shaft driven by the electric motor and having two eccentric parts, and a roller that revolves by the eccentric rotation of the eccentric part, respectively. A rotary compression element provided via an intermediate partition plate, an intermediate flow path separated from the internal space of the sealed container connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element, The pressure in the hermetic container is the pressure of the discharge gas compressed by the high pressure compression element, and the height of the eccentric part and the roller in the low pressure compression element is h1. , H1 and the height of the eccentric part and the roller in the compression element for high pressure are h2 and H2, respectively, and H1> H2 and (h1 / H1) ≦ (h2 / H2). 請求項1のロータリ式2段圧縮機において、前記低圧用圧縮要素における前記偏心部の前記回転軸からの偏心距離をE1とし、前記高圧用圧縮要素における前記偏心部の前記回転軸からの偏心距離をE2とし、前記偏心距離の関係が、E1>E2であるロータリ式2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein an eccentric distance of the eccentric portion of the low pressure compression element from the rotation shaft is E1, and an eccentric distance of the eccentric portion of the high pressure compression element from the rotation shaft is E1. A rotary two-stage compressor in which E2 is E2 and the relationship of the eccentric distance is E1> E2. 請求項2記載のロータリ式2段圧縮機において、前記低圧用圧縮要素と前記高圧用圧縮要素との圧縮工程の位相差が略180°であり、前記低圧用圧縮要素の偏心部と前記高圧要素の偏心部との間に中間軸を有し、この中間軸が軸方向に段差を有し、その段差のうち低圧用圧縮要素側段差部と高圧用圧縮要素側段差部の重心を、それぞれ近い偏心部の偏心方向に偏心させ、前記高圧用圧縮要素側の断面積を前記低圧用圧縮要素の断面積よりも大きくしたロータリ式2段圧縮機。   3. The rotary type two-stage compressor according to claim 2, wherein a phase difference in a compression process between the low pressure compression element and the high pressure compression element is approximately 180 °, and the eccentric portion of the low pressure compression element and the high pressure element The intermediate shaft has a step in the axial direction, and the center of gravity of the low-pressure compression element side step portion and the high-pressure compression element side step portion is close to each other. A rotary type two-stage compressor in which an eccentric portion is eccentric in an eccentric direction, and a cross-sectional area on the high-pressure compression element side is larger than a cross-sectional area of the low-pressure compression element. ロータリ式圧縮機と、このロータリ式圧縮機から吐出された高圧のガス冷媒を凝縮する凝縮器と、凝縮された液冷媒を中間圧まで膨張する第一の膨張機構と、膨張された中間圧の冷媒を低圧まで膨張する第二の膨張機構と、冷媒を蒸発させる蒸発器とを順次接続する空気調和機において、
前記ロータリ式圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた中間流路とを備え、前記密閉容器内の圧力は前記高圧用圧縮要素で圧縮された吐出ガスの圧力であり、前記低圧用圧縮要素における偏心部とローラの高さをそれぞれh1、H1とし、前記高圧用圧縮要素における偏心部とローラの高さをそれぞれh2、H2とし、H1>H2かつ(h1/H1)≦(h2/H2)であり、前記第一の膨張機構の下流に冷媒をガス冷媒と液冷媒とに分離する気液分離器と、前記気液分離器と前記中間流路とを連通するインジェクション流路とを備えた空気調和機。
A rotary compressor, a condenser for condensing the high-pressure gas refrigerant discharged from the rotary compressor, a first expansion mechanism for expanding the condensed liquid refrigerant to an intermediate pressure, and an expanded intermediate pressure In an air conditioner that sequentially connects a second expansion mechanism that expands the refrigerant to a low pressure and an evaporator that evaporates the refrigerant.
The rotary compressor includes a motor in a hermetic container, a rotary shaft driven by the motor and having two eccentric parts, and a roller that revolves by the eccentric rotation of the eccentric part in a compression chamber. A rotary compression element in which an element and a high pressure compression element are provided via an intermediate partition plate, and an internal space of the sealed container connected to the compression chamber of the low pressure compression element and the compression chamber of the high pressure compression element The pressure in the sealed container is the pressure of the discharge gas compressed by the high pressure compression element, and the height of the eccentric part and the roller in the low pressure compression element are h1 and H1, respectively. And the heights of the eccentric part and the roller in the compression element for high pressure are h2 and H2, respectively, and H1> H2 and (h1 / H1) ≦ (h2 / H2), and a refrigerant is provided downstream of the first expansion mechanism. The gas refrigerant Gas-liquid separator and an air conditioner having an injection passage communicating with said intermediate passage and the gas-liquid separator for separating the liquid refrigerant.
JP2004370385A 2004-12-22 2004-12-22 Rotary two-stage compressor and air conditioner using the same Pending JP2006177228A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004370385A JP2006177228A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor and air conditioner using the same
CNB2005100228555A CN100455803C (en) 2004-12-22 2005-12-12 Rotary two-stage compressor and air conditioner using the compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370385A JP2006177228A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2006177228A true JP2006177228A (en) 2006-07-06

Family

ID=36731564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370385A Pending JP2006177228A (en) 2004-12-22 2004-12-22 Rotary two-stage compressor and air conditioner using the same

Country Status (2)

Country Link
JP (1) JP2006177228A (en)
CN (1) CN100455803C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103147986A (en) * 2011-12-07 2013-06-12 珠海格力节能环保制冷技术研究中心有限公司 Twin-stage enthalpy-increasing compressor, and air-conditioner and heat-pump water heater with the twin-stage enthalpy-increasing compressor
JP2013245628A (en) * 2012-05-28 2013-12-09 Fujitsu General Ltd Rotary compressor
JPWO2013057946A1 (en) * 2011-10-18 2015-04-02 パナソニックIpマネジメント株式会社 Rotary compressor with two cylinders
CN106030113A (en) * 2014-06-24 2016-10-12 松下知识产权经营株式会社 Rotary compressor having two cylinders
CN111226039A (en) * 2017-10-18 2020-06-02 三菱重工制冷空调系统株式会社 Rotary shaft of rotary compressor and rotary compressor
JP7358674B1 (en) 2023-06-07 2023-10-10 日立ジョンソンコントロールズ空調株式会社 Compressors and air conditioners

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059859A (en) * 2008-09-03 2010-03-18 Fujitsu General Ltd Injectible two-stage compression rotary compressor
JP4962585B2 (en) * 2010-03-19 2012-06-27 ダイキン工業株式会社 Rotary compressor
CZ306576B6 (en) * 2012-10-16 2017-03-15 Mitsubishi Electric Corporation A rotary compressor
CN103850938B (en) * 2013-12-20 2016-07-06 珠海凌达压缩机有限公司 The suction and exhaust structure of double-stage compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof
JP2003343467A (en) * 2002-05-31 2003-12-03 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126395A (en) * 1984-11-22 1986-06-13 Mitsubishi Electric Corp 2-cylinder type rotary compressor
JP3336632B2 (en) * 1992-07-03 2002-10-21 三菱電機株式会社 Two-cylinder hermetic electric compressor, assembling jig and assembling method
US5586876A (en) * 1995-11-03 1996-12-24 Carrier Corporation Rotary compressor having oil pumped through a vertical drive shaft
CN1318760C (en) * 2002-03-13 2007-05-30 三洋电机株式会社 Multi-stage compressive rotary compressor and refrigerant return device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003328972A (en) * 2002-05-09 2003-11-19 Hitachi Home & Life Solutions Inc Sealed two-cylinder rotary compressor and manufacturing method thereof
JP2003343467A (en) * 2002-05-31 2003-12-03 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2004100608A (en) * 2002-09-11 2004-04-02 Hitachi Home & Life Solutions Inc Compressor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013057946A1 (en) * 2011-10-18 2015-04-02 パナソニックIpマネジメント株式会社 Rotary compressor with two cylinders
CN103147986A (en) * 2011-12-07 2013-06-12 珠海格力节能环保制冷技术研究中心有限公司 Twin-stage enthalpy-increasing compressor, and air-conditioner and heat-pump water heater with the twin-stage enthalpy-increasing compressor
CN103147986B (en) * 2011-12-07 2015-09-16 珠海格力节能环保制冷技术研究中心有限公司 Dual-level enthalpy adding compressor and there is its air conditioner and heat pump water heater
JP2013245628A (en) * 2012-05-28 2013-12-09 Fujitsu General Ltd Rotary compressor
CN106030113A (en) * 2014-06-24 2016-10-12 松下知识产权经营株式会社 Rotary compressor having two cylinders
CN106030113B (en) * 2014-06-24 2018-11-13 松下知识产权经营株式会社 There are two the rotary compressors of cylinder for tool
CN111226039A (en) * 2017-10-18 2020-06-02 三菱重工制冷空调系统株式会社 Rotary shaft of rotary compressor and rotary compressor
CN111226039B (en) * 2017-10-18 2022-03-08 三菱重工制冷空调系统株式会社 Rotary shaft of rotary compressor and rotary compressor
JP7358674B1 (en) 2023-06-07 2023-10-10 日立ジョンソンコントロールズ空調株式会社 Compressors and air conditioners

Also Published As

Publication number Publication date
CN100455803C (en) 2009-01-28
CN1793661A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
US20070041852A1 (en) Rotary compressor
KR20060059153A (en) Two-stage rotary compressor and air conditioning equipment using the same
JP2007113542A (en) Hermetic two-stage rotary compressor
KR20070009958A (en) Rotary type two stage compressor
JP2003328972A (en) Sealed two-cylinder rotary compressor and manufacturing method thereof
CN100455803C (en) Rotary two-stage compressor and air conditioner using the compressor
JP2006177225A (en) Rotary compressor
JP4719432B2 (en) Air conditioner and rotary two-stage compressor used therefor
JP2006177223A (en) Rotary two stage compressor
JP4146781B2 (en) Compressor
JP4790664B2 (en) Rotary type two-stage compressor and air conditioner
JP2006177227A (en) Rotary two-stage compressor
KR100879177B1 (en) Two-stage rotary compressor
JP2002070769A (en) Scroll compressor
US11585343B2 (en) Muffler for a compression mechanism of a rotary compressor
WO2016076064A1 (en) Rotating compressor and refrigeration cycle device
JPH07229481A (en) Double rotary type scroll compressor
KR100646288B1 (en) Air conditioner
JP5423538B2 (en) Rotary compressor
JP5494136B2 (en) Rotary compressor
JPH07217569A (en) Rotary compressor
JP5343501B2 (en) Rotary compressor
JP2006177224A (en) Rotary compressor
JP4807209B2 (en) Compressor
KR101340164B1 (en) Two stage rotary compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102