JP2010059859A - Injectible two-stage compression rotary compressor - Google Patents

Injectible two-stage compression rotary compressor Download PDF

Info

Publication number
JP2010059859A
JP2010059859A JP2008226269A JP2008226269A JP2010059859A JP 2010059859 A JP2010059859 A JP 2010059859A JP 2008226269 A JP2008226269 A JP 2008226269A JP 2008226269 A JP2008226269 A JP 2008226269A JP 2010059859 A JP2010059859 A JP 2010059859A
Authority
JP
Japan
Prior art keywords
stage
low
pipe
injection
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008226269A
Other languages
Japanese (ja)
Inventor
Takeshi Ueda
健史 上田
Naoya Morozumi
尚哉 両角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2008226269A priority Critical patent/JP2010059859A/en
Priority to US12/546,165 priority patent/US20100054978A1/en
Priority to CN200910171818A priority patent/CN101666314A/en
Priority to EP09169150A priority patent/EP2161454A2/en
Publication of JP2010059859A publication Critical patent/JP2010059859A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/804Accumulators for refrigerant circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injectible two-stage compression rotary compressor reducing pressure loss in an intermediate connecting pipe connecting a high-stage compressing section and an intermediate suction pipe and improving compression efficiency of the compressor. <P>SOLUTION: The injectible two-stage compression rotary compressor includes a compressor housing; the low-stage compressing section provided in the compressor house; the high-stage compressing section provided near the low-stage compressing section; a motor for driving the low-stage compressing section and the high-stage compressing section; an accumulator held at an outer side portion of the compressor housing; a low-pressure connecting pipe connecting the accumulator and the low-stage compressing section; the intermediate connecting pipe connecting the low-stage compressing section and the high-stage compressing section outside the compressor housing; and the intermediate suction pipe for introducing a medium pressure injection refrigerant into the intermediate connecting pipe. The intermediate suction pipe is connected to the intermediate connecting pipe so that an outlet of the intermediate suction pipe faces in a flowing direction of a medium pressure gas refrigerant in the intermediate connecting pipe. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、インジェクション冷凍サイクルを利用したヒートポンプシステムに用いられるインジェクション対応2段圧縮ロータリ圧縮機に関するものであり、詳しくは、中間圧ガス冷媒雰囲気の中間連絡管内に、冷凍サイクル側の高乾き度の湿り冷媒である中間圧インジェクション冷媒を導入するものである。   TECHNICAL FIELD The present invention relates to an injection-compatible two-stage compression rotary compressor used in a heat pump system using an injection refrigeration cycle, and more specifically, in a middle communication pipe of an intermediate pressure gas refrigerant atmosphere, An intermediate pressure injection refrigerant which is a wet refrigerant is introduced.

従来の2段圧縮ロータリ圧縮機は、密閉された円筒状の圧縮機筐体内部に設置された低段側圧縮部および高段側圧縮部と、低段側圧縮部および高段側圧縮部を駆動するモータと、圧縮機筐体の側方に設置されたアキュムレータと、を備えている。   A conventional two-stage compression rotary compressor includes a low-stage compression section and a high-stage compression section, and a low-stage compression section and a high-stage compression section installed inside a sealed cylindrical compressor casing. A motor to be driven, and an accumulator installed on a side of the compressor housing.

圧縮機筐体には、回転軸方向に列状に、第1連通孔、第2連通孔および第3連通孔が設けられ、第2連通孔には、低段側圧縮部の吸入側に接続して低圧冷媒を吸入する低段側吸入管が配置されている。   The compressor housing is provided with a first communication hole, a second communication hole, and a third communication hole in a row in the direction of the rotation axis, and the second communication hole is connected to the suction side of the low-stage compression unit. Thus, a low-stage suction pipe for sucking low-pressure refrigerant is arranged.

また、第1連通孔には、低段側圧縮部の吐出側に接続して低段側吐出冷媒を圧縮機筐体外に吐出する低段側吐出管が配置され、第3連通孔には、高段側圧縮部の吸入側に接続して低段側吐出冷媒を吸入する高段側吸入管が配置されている。   The first communication hole is connected to the discharge side of the low-stage compression unit, and a low-stage discharge pipe that discharges the low-stage discharge refrigerant to the outside of the compressor housing is disposed. The third communication hole includes A high-stage suction pipe that is connected to the suction side of the high-stage compression section and sucks the low-stage discharge refrigerant is disposed.

低段側吸入管とアキュムレータ下部とは低圧連絡管により接続され、低段側吐出管と高段側吸入管とは中間連絡管により接続されている。中間連絡管には、冷凍サイクルの気液分離器で分離されたインジェクション冷媒が中間吸入管を介して注入される。中間吸入管の吹出し口は、中間連絡管内の中間圧ガス冷媒流れに対して垂直方向に向けられている。   The low stage suction pipe and the lower part of the accumulator are connected by a low pressure communication pipe, and the low stage discharge pipe and the high stage suction pipe are connected by an intermediate connection pipe. Injection refrigerant separated by the gas-liquid separator of the refrigeration cycle is injected into the intermediate communication pipe through the intermediate suction pipe. The outlet of the intermediate suction pipe is directed in a direction perpendicular to the intermediate-pressure gas refrigerant flow in the intermediate communication pipe.

特開2006−152931号公報(第5、6頁、図6〜図8)Japanese Patent Laying-Open No. 2006-152931 (5th and 6th pages, FIGS. 6 to 8)

通常、2段圧縮ロータリ圧縮機の中間連絡管では、低段側圧縮部からの吐出冷媒により中間圧となった後、高段側圧縮部により吸入されるため徐々に圧力が低下し、圧縮機の回転数に応じた周期で圧力脈動が生じる。   Normally, in the intermediate connecting pipe of a two-stage compression rotary compressor, the pressure gradually decreases because the refrigerant is sucked in by the high-stage compression section after having become intermediate pressure by the refrigerant discharged from the low-stage compression section. Pressure pulsation occurs at a period corresponding to the number of rotations.

低段側圧縮部の吐出工程が終了した段階で、低段側圧縮部と中間連絡管は遮断され、高段側圧縮部は位相が180度ずれているため、この段階では吸込過程にある。この段階における中間連絡管に高段側圧縮部の体積を加えた体積は最小であるので、この段階の中間連絡管内の圧力は最も高くなる。さらに位相が進むと、高段側圧縮部の吸入工程が進み体積が増すため、中間連絡管内の圧力はローラが旋回運動するにつれて低下する。従って、中間連絡管内は、圧力脈動が大きくなる。   At the stage where the discharge process of the low-stage compression section is completed, the low-stage compression section and the intermediate connecting pipe are shut off, and the high-stage compression section is 180 degrees out of phase. Since the volume obtained by adding the volume of the high-stage compression portion to the intermediate connecting pipe at this stage is the smallest, the pressure in the intermediate connecting pipe at this stage is the highest. As the phase further advances, the suction step of the high-stage compression unit advances and the volume increases, so that the pressure in the intermediate connecting pipe decreases as the roller rotates. Accordingly, pressure pulsation increases in the intermediate communication pipe.

中間吸入管の吹出し口を中間連絡管に対して垂直に向けて接続した場合、中間連絡管内の中間圧ガス冷媒流れと中間吸入管から吹出されるインジェクション冷媒流れが直行するため、中間連絡管内の圧力脈動はさらに大きくなり、この圧力脈動がインジェクション配管内にも伝播し、インジェクション冷媒の圧力損失が大きくなり、その結果、圧縮機の圧縮効率が悪くなる、という問題があった。   When the outlet of the intermediate suction pipe is connected vertically to the intermediate connecting pipe, the intermediate pressure gas refrigerant flow in the intermediate connecting pipe and the injection refrigerant flow blown out from the intermediate suction pipe go straight, The pressure pulsation is further increased, and this pressure pulsation is propagated also in the injection pipe, resulting in a large pressure loss of the injection refrigerant, resulting in a problem that the compression efficiency of the compressor is deteriorated.

本発明は、上記に鑑みてなされたものであって、高段側圧縮部と中間吸入管とを接続する中間連絡管内の圧力損失を低減し、圧縮機の圧縮効率を向上することができるインジェクション対応2段圧縮ロータリ圧縮機を得ることを目的とする。   The present invention has been made in view of the above, and is an injection that can reduce the pressure loss in the intermediate connecting pipe that connects the high-stage compression section and the intermediate suction pipe, and can improve the compression efficiency of the compressor. The object is to obtain a corresponding two-stage rotary compressor.

上述した課題を解決し、目的を達成するために、本発明は、インジェクション冷凍サイクルを利用したヒートポンプシステムに用いられ、外周壁に軸方向に離隔して順に第1、第2、第3連通孔が設けられ、密閉された円筒状の圧縮機筐体と、前記圧縮機筐体内に設置され、低段側吸入孔に前記第2連通孔を通して低段側吸入管の一端が接続され、低段側マフラー吐出孔に前記第1連通孔を通して低段側吐出管の一端が接続された低段側圧縮部と、前記圧縮機筐体内の前記低段側圧縮部の近傍に設置され、高段側吸入孔に前記第3連通孔を通して高段側吸入管の一端が接続され、高段側マフラー吐出孔が前記圧縮機筐体内に連通する高段側圧縮部と、前記低段側圧縮部及び高段側圧縮部を駆動するモータと、前記圧縮機筐体の外側部に保持された密閉された円筒状のアキュムレータと、前記アキュムレータの底部連通孔と前記低段側吸入管の他端とを接続する低圧連絡管と、前記低段側吐出管の他端と前記高段側吸入管の他端とを接続する中間連絡管と、前記インジェクション冷凍サイクル側の湿り冷媒である中間圧インジェクション冷媒を前記中間連絡管に導く中間吸入管と、を備えるインジェクション対応2段圧縮ロータリ圧縮機において、前記中間吸入管の吹出し口を前記中間連絡管の中間圧ガス冷媒流れ方向に向けるようにして、前記中間吸入管を前記中間連絡管に接続したこと、を特徴とする。   In order to solve the above-described problems and achieve the object, the present invention is used in a heat pump system using an injection refrigeration cycle, and is first, second, and third communication holes that are axially separated from the outer peripheral wall in order. A sealed cylindrical compressor housing, and one end of the low-stage side suction pipe connected to the low-stage side suction hole through the second communication hole. A low-stage compression section in which one end of a low-stage discharge pipe is connected to the side muffler discharge hole through the first communication hole; and a high-stage side installed in the vicinity of the low-stage compression section in the compressor housing One end of a high-stage side suction pipe is connected to the suction hole through the third communication hole, and a high-stage side muffler discharge hole communicates with the inside of the compressor housing, the low-stage side compression part, A motor that drives the stage side compression unit and an outer side of the compressor housing A sealed cylindrical accumulator, a low-pressure connecting pipe connecting the bottom communication hole of the accumulator and the other end of the low-stage suction pipe, the other end of the low-stage discharge pipe and the high-stage suction In an injection-compatible two-stage compression rotary compressor, comprising: an intermediate connecting pipe that connects the other end of the pipe; and an intermediate suction pipe that guides the intermediate pressure injection refrigerant that is a wet refrigerant on the injection refrigeration cycle side to the intermediate connecting pipe The intermediate suction pipe is connected to the intermediate communication pipe so that the outlet of the intermediate suction pipe faces the intermediate pressure gas refrigerant flow direction of the intermediate communication pipe.

本発明にかかるインジェクション対応2段圧縮ロータリ圧縮機は、中間連絡管内の中間圧ガス冷媒流れと中間吸入管の吹出し口から吹出されるインジェクション冷媒流れが平行するため、中間連絡管内の圧力脈動が小さくなり、高段側圧縮部における吸入損失を低減して、圧縮機の効率が向上する、という効果を奏する。   In the injection-compatible two-stage compression rotary compressor according to the present invention, since the intermediate pressure gas refrigerant flow in the intermediate communication pipe and the injection refrigerant flow blown from the outlet of the intermediate suction pipe are parallel, the pressure pulsation in the intermediate communication pipe is small. Thus, there is an effect that the suction loss in the high stage side compression portion is reduced and the efficiency of the compressor is improved.

以下に、本発明にかかるインジェクション対応2段圧縮ロータリ圧縮機の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of the injection-compatible two-stage compression rotary compressor according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1−1は、空調機の冷凍サイクルの基本構成を示す図であり、図1−2は、本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例1を示す縦断面図であり、図1−3は、2段圧縮ロータリ圧縮機の低段側圧縮部および高段側圧縮部の横断面図であり、図1−4は、図1−2のA−A線に沿う横断面図であり、図1−5は、低段側端板の横断面図であり、図1−6は、図1−5のB−B線に沿う断面図であり、図1−7は、圧縮機筐体の正面図であり、図1−8は、実施例1のインジェクション対応2段圧縮ロータリ圧縮機の側面図であり、図1−9は、実施例1のインジェクション対応2段圧縮ロータリ圧縮機の変形例を示す縦断面図であり、図1−10は、実施例1のインジェクション対応2段圧縮ロータリ圧縮機の他の変形例を示す縦断面図である。
る。
1-1 is a figure which shows the basic composition of the refrigerating cycle of an air conditioner, FIG. 1-2 is a longitudinal cross-sectional view which shows Example 1 of the injection | emission 2 step | paragraph compression rotary compressor of the air conditioner concerning this invention. 1-3 is a cross-sectional view of the low-stage compression section and the high-stage compression section of the two-stage compression rotary compressor, and FIG. 1-4 is taken along line AA in FIG. 1-5 is a cross-sectional view of the low-stage end plate, FIG. 1-6 is a cross-sectional view taken along line BB of FIG. 1-5, and FIG. 7 is a front view of the compressor housing, FIG. 1-8 is a side view of the injection-compatible two-stage compression rotary compressor of the first embodiment, and FIG. 1-9 is an injection compatible 2 of the first embodiment. It is a longitudinal cross-sectional view which shows the modification of a stage compression rotary compressor, and FIGS. 1-10 is the injection | emission 2 stage | paragraph compression rotary pressure of Example 1. FIG. It is a longitudinal sectional view showing another modification of the machine.
The

図1−1に示すように、実施例1の空調機の冷凍サイクル(ヒートポンプシステム)は、インジェクション対応2段圧縮ロータリ圧縮機(以下、単に「圧縮機」と言う)1と、凝縮器(放熱器)4と、第一膨張機構部7Aと、第二膨張機構部7Bと、蒸発器(吸熱器)9と、これらを環状に接続する基本サイクル配管2と、を備えている。   As shown in FIG. 1-1, the refrigeration cycle (heat pump system) of the air conditioner of Example 1 includes an injection-compatible two-stage compression rotary compressor (hereinafter simply referred to as “compressor”) 1 and a condenser (heat radiation). 4), a first expansion mechanism portion 7A, a second expansion mechanism portion 7B, an evaporator (heat absorber) 9, and a basic cycle pipe 2 that connects these in an annular shape.

圧縮機1は、低段側圧縮部12Lと高段側圧縮部12Hとを備えたインジェクション対応2段圧縮ロータリ圧縮機であり、凝縮器圧力と蒸発器圧力との中間の圧力となるインジェクション冷媒を吸入する中間吸入管108(図1−2参照)を、低段側圧縮部12Lと高段側圧縮部12Hとを連絡する中間連絡管23に接続している。また、圧縮機1は、供給電源周波数によりモータの回転数が可変な、いわゆるインバータ圧縮機である。   The compressor 1 is an injection-compatible two-stage compression rotary compressor that includes a low-stage compression section 12L and a high-stage compression section 12H, and uses an injection refrigerant that is an intermediate pressure between the condenser pressure and the evaporator pressure. An intermediate suction pipe 108 (see FIG. 1-2) for suction is connected to an intermediate communication pipe 23 that connects the low-stage compression section 12L and the high-stage compression section 12H. The compressor 1 is a so-called inverter compressor in which the rotation speed of the motor is variable depending on the supply power frequency.

第一膨張機構部7Aは、外気温度および室内設定温度によって凝縮器(放熱器)4の圧力と蒸発器(吸熱器)9の圧力とを最適に制御する可変絞り機構である。また、第二膨張機構部7Bは、インジェクション冷媒量を最適に制御するための可変絞り機構である。基本サイクル配管2は、上記の機器を順に接続して冷媒を循環させる。   The first expansion mechanism unit 7A is a variable throttle mechanism that optimally controls the pressure of the condenser (heat radiator) 4 and the pressure of the evaporator (heat absorber) 9 according to the outside air temperature and the indoor set temperature. The second expansion mechanism portion 7B is a variable throttle mechanism for optimally controlling the injection refrigerant amount. The basic cycle piping 2 connects the above devices in order to circulate the refrigerant.

また、この空調機のヒートポンプシステムは、分岐管5と、インジェクション配管6と、内部熱交換器8と、を備えている。分岐管5は、基本サイクル配管2の凝縮器(放熱器)4と第一膨張機構部7Aとの間に配置されて冷媒を基本サイクルとインジェクションサイクルとに分岐させる。   The heat pump system for the air conditioner includes a branch pipe 5, an injection pipe 6, and an internal heat exchanger 8. The branch pipe 5 is disposed between the condenser (heat radiator) 4 of the basic cycle pipe 2 and the first expansion mechanism portion 7A, and branches the refrigerant into the basic cycle and the injection cycle.

インジェクション配管6は、第二膨張機構部7Bを介して分岐管5と中間吸入管108とを接続する。内部熱交換器8は、分岐管5と第一膨張機構部7Aとの間の基本サイクル配管2aと、第二膨張機構部7Bと中間吸入管108との間のインジェクション配管6aと、の間で熱交換を行う。   The injection pipe 6 connects the branch pipe 5 and the intermediate suction pipe 108 via the second expansion mechanism portion 7B. The internal heat exchanger 8 is between the basic cycle pipe 2a between the branch pipe 5 and the first expansion mechanism part 7A, and the injection pipe 6a between the second expansion mechanism part 7B and the intermediate suction pipe 108. Perform heat exchange.

また、この空調機のヒートポンプシステムにおいては、冷房と暖房とに対応するために基本サイクルの冷媒の流れの方向を反転させるための四方弁3が圧縮機1に接続されている。四方弁3を反転すると、凝縮器(放熱器)4と蒸発器(吸熱器)9との機能が逆となる。図1−1において、四方弁3の状態は、四方弁3と分岐管5の間に接続される熱交換器を凝縮器としているので、これを室内機に配置していれば暖房運転が行なわれる。   In this heat pump system of the air conditioner, a four-way valve 3 for reversing the direction of the refrigerant flow in the basic cycle is connected to the compressor 1 in order to cope with cooling and heating. When the four-way valve 3 is reversed, the functions of the condenser (heat radiator) 4 and the evaporator (heat absorber) 9 are reversed. In FIG. 1-1, since the state of the four-way valve 3 uses the heat exchanger connected between the four-way valve 3 and the branch pipe 5 as a condenser, heating operation is performed if this is arranged in the indoor unit. It is.

なお、実施例1の空調機のヒートポンプシステムは、四方弁3と分岐管5の間に接続される熱交換器を室内機に配置するものとして暖房運転時のみインジェクション可能な例であるが、この構成に、基本サイクル上の第一膨張機構部7Aと内部熱交換器8及び分岐管5に対して、凝縮器(放熱器)4と蒸発器(吸熱器)9とを逆に接続する切り替え配管を追加すれば、冷房時にもインジェクション可能となる。また、実施例1の空調機のヒートポンプシステムでは、内部熱交換器8における基本サイクル冷媒とインジェクション冷媒の流れを並行流としているが対向流となるように配管してもよい。   In addition, although the heat pump system of the air conditioner of Example 1 is an example which can be injected only at the time of heating operation as what arrange | positions the heat exchanger connected between the four-way valve 3 and the branch pipe 5 in an indoor unit, The switching pipe for connecting the condenser (heat radiator) 4 and the evaporator (heat absorber) 9 to the first expansion mechanism 7A, the internal heat exchanger 8 and the branch pipe 5 on the basic cycle. Can be added even during cooling. Moreover, in the heat pump system of the air conditioner of Example 1, although the flow of the basic cycle refrigerant | coolant and the injection refrigerant | coolant in the internal heat exchanger 8 is made into parallel flow, you may pipe so that it may become counterflow.

次に、図1−1を参照して、実施例1の空調機のヒートポンプシステムにおける暖房運転時の冷媒の流れについて説明する。圧縮機1から吐出された高温高圧のガス冷媒は、凝縮器(放熱器)4で空気と熱交換して放熱し、液化する。ここで、液化した冷媒のうち一部の冷媒は分岐管5において分岐してインジェクション配管6を流れるインジェクション冷媒となり、その他の冷媒は基本サイクル配管2を流れる基本サイクル冷媒となる。   Next, with reference to FIG. 1-1, the flow of the refrigerant | coolant at the time of the heating operation in the heat pump system of the air conditioner of Example 1 is demonstrated. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 radiates heat by exchanging heat with air in the condenser (heat radiator) 4 and liquefies. Here, a part of the liquefied refrigerant is branched into the branch pipe 5 and becomes an injection refrigerant flowing through the injection pipe 6, and the other refrigerant is a basic cycle refrigerant flowing through the basic cycle pipe 2.

インジェクション配管6に流れたインジェクション冷媒は、第二膨張機構部7Bで中間圧力Pmまで減圧されて中間温度の二相状態となり、内部熱交換器8内のインジェクション配管6aを流れる際に、内部熱交換器8内の基本サイクル配管2aを流れる冷媒と熱交換することで吸熱して乾き度を大きくする。その後、インジェクション冷媒は、低段側圧縮部12Lからの吐出ガスと合流して、全体としてガス化した状態で高段側圧縮部12Hに吸入される。   The injection refrigerant that has flowed into the injection pipe 6 is depressurized to the intermediate pressure Pm by the second expansion mechanism section 7B to become a two-phase state at an intermediate temperature, and when it flows through the injection pipe 6a in the internal heat exchanger 8, internal heat exchange is performed. The heat is absorbed by exchanging heat with the refrigerant flowing through the basic cycle pipe 2a in the vessel 8 to increase the dryness. Thereafter, the injection refrigerant merges with the discharge gas from the low-stage compression section 12L, and is sucked into the high-stage compression section 12H in a gasified state as a whole.

一方、基本サイクル配管2を流れる冷媒は、内部熱交換器8内の基本サイクル配管2aを流れる際に、同内部熱交換器8内のインジェクション配管6aを流れる中間温度のインジェクション冷媒と熱交換することで放熱し、過冷却度を大きくする。その後、基本サイクル配管2を流れる冷媒は第一膨張機構部7Aにおいて減圧されて低温低圧二相状態となり、蒸発器(吸熱器)9で空気と熱交換することで吸熱し、過熱状態となる。   On the other hand, when the refrigerant flowing through the basic cycle pipe 2 flows through the basic cycle pipe 2a in the internal heat exchanger 8, it exchanges heat with the intermediate temperature injection refrigerant flowing through the injection pipe 6a in the internal heat exchanger 8. Dissipate heat to increase the degree of supercooling. Thereafter, the refrigerant flowing through the basic cycle pipe 2 is depressurized in the first expansion mechanism portion 7A to be in a low-temperature and low-pressure two-phase state, absorbs heat by exchanging heat with air in the evaporator (heat absorber) 9, and becomes superheated.

そして、過熱状態となった冷媒は、四方弁3および圧縮機1の低圧連絡管31を通って低段側圧縮部12Lに吸入される。低段側圧縮部12Lに吸入された冷媒は、低段側圧縮部12Lで圧縮され、低段側圧縮部12Lから吐出された状態でインジェクション冷媒と合流して高段側圧縮部12Hに吸入される。   Then, the refrigerant that has become overheated is sucked into the low-stage compression unit 12 </ b> L through the four-way valve 3 and the low-pressure communication pipe 31 of the compressor 1. The refrigerant sucked into the low-stage compression unit 12L is compressed by the low-stage compression unit 12L, merged with the injection refrigerant while being discharged from the low-stage compression unit 12L, and sucked into the high-stage compression unit 12H. The

高段側圧縮部12Hに吸入された冷媒は、高段側圧縮部12Hで最終吐出圧の高圧まで圧縮されて圧縮機1の圧縮機筐体10内に吐出される。圧縮機1の圧縮機筐体10内に吐出された冷媒は、吐出管107を通って圧縮機筐体10外へ吐出される。   The refrigerant sucked into the high stage side compression unit 12H is compressed to a high final discharge pressure by the high stage side compression unit 12H and discharged into the compressor housing 10 of the compressor 1. The refrigerant discharged into the compressor housing 10 of the compressor 1 is discharged out of the compressor housing 10 through the discharge pipe 107.

次に、実施例1の空調機のインジェクション対応2段圧縮ロータリ圧縮機1について説明する。図1−2に示すように、実施例1の圧縮機1は、密閉された円筒状の圧縮機筐体10の内部に、圧縮部12と、圧縮部12を駆動するモータ11と、を備えている。   Next, an injection-compatible two-stage compression rotary compressor 1 according to the first embodiment will be described. As illustrated in FIG. 1B, the compressor 1 according to the first embodiment includes a compression unit 12 and a motor 11 that drives the compression unit 12 inside a sealed cylindrical compressor housing 10. ing.

モータ11のステータ111は、圧縮機筐体10の内周面に焼きばめされて固定されている。モータ11のロータ112は、ステータ111の中央部に配置され、モータ11と圧縮部12とを機械的に接続するシャフト15に焼きばめされて固定されている。   The stator 111 of the motor 11 is fixed by being shrink-fitted on the inner peripheral surface of the compressor housing 10. The rotor 112 of the motor 11 is disposed at the center of the stator 111 and is fixed by being shrink-fitted to a shaft 15 that mechanically connects the motor 11 and the compression unit 12.

圧縮部12は、低段側圧縮部12Lと、低段側圧縮部12Lに直列に接続され、低段側圧縮部12Lの上側に設置された高段側圧縮部12Hと、を備えて成る。図1−2および図1−3に示すように、低段側圧縮部12Lは、低段側シリンダ121Lを備え、高段側圧縮部12Hは、高段側シリンダ121Hを備えている。   The compression unit 12 includes a low-stage compression unit 12L and a high-stage compression unit 12H connected in series to the low-stage compression unit 12L and installed on the upper side of the low-stage compression unit 12L. As illustrated in FIGS. 1-2 and 1-3, the low-stage compression unit 12L includes a low-stage cylinder 121L, and the high-stage compression unit 12H includes a high-stage cylinder 121H.

低段側シリンダ121Lおよび高段側シリンダ121Hには、夫々モータ11と同心に、低段側、高段側シリンダボア123L、123Hが形成されている。夫々のシリンダボア123L、123H内には、ボア径よりも小さい外径の円筒状の低段側、高段側ピストン125L,125Hが夫々配置され、夫々のシリンダボア123L、123Hと、低段側、高段側ピストン125L、125Hの間に、冷媒を圧縮する圧縮空間が形成される。   The low-stage cylinder 121L and the high-stage cylinder 121H are respectively formed with low-stage and high-stage cylinder bores 123L and 123H concentrically with the motor 11. In each of the cylinder bores 123L and 123H, cylindrical low-stage and high-stage pistons 125L and 125H having an outer diameter smaller than the bore diameter are respectively disposed. The cylinder bores 123L and 123H and the low-stage and high-stage pistons are respectively disposed. A compression space for compressing the refrigerant is formed between the stage side pistons 125L and 125H.

シリンダ121L、121Hには、シリンダボア123L、123Hから径方向に、シリンダ高さ全域に亘る溝が形成され、この溝内に、板状の低段側、高段側ベーン127L、127Hが嵌合されている。ベーン127L、127Hの圧縮機筐体10側には、低段側、高段側スプリング129L、129Hが装着されている。   The cylinders 121L and 121H are formed with grooves extending from the cylinder bores 123L and 123H in the radial direction over the entire cylinder height, and plate-like low-stage and high-stage vanes 127L and 127H are fitted in the grooves. ing. Low-stage and high-stage springs 129L and 129H are attached to the vanes 127L and 127H on the compressor housing 10 side.

このスプリング129L、129Hの反撥力により、ベーン127L、127Hの先端が、ピストン125L、125Hの外周面に押し付けられ、ベーン127L、127Hにより、圧縮空間が、低段側、高段側吸入室131L、131Hと、低段側、高段側圧縮室133L、133Hとに区画される。   Due to the repulsive force of the springs 129L and 129H, the tips of the vanes 127L and 127H are pressed against the outer peripheral surfaces of the pistons 125L and 125H, and the vanes 127L and 127H make the compression space low and high suction chambers 131L and 131L, respectively. It is partitioned into 131H and low-stage and high-stage compression chambers 133L and 133H.

シリンダ121L、シリンダ121Hには、吸入室131L、131Hに冷媒を吸入するために、吸入室131L、131Hに連通する低段側、高段側吸入孔135L、135Hが設けられている。   The cylinder 121L and the cylinder 121H are provided with low-stage and high-stage suction holes 135L and 135H communicating with the suction chambers 131L and 131H in order to suck the refrigerant into the suction chambers 131L and 131H.

また、低段側シリンダ121Lと高段側シリンダ121Hとの間には、中間仕切板140が設置され、低段側シリンダ121Lの圧縮空間と高段側シリンダ121Hの圧縮空間とを区画している。低段側シリンダ121Lの下側には、低段側端板160Lが設置され、低段側シリンダ121Lの圧縮空間の下方を閉塞している。また、高段側シリンダ121Hの上側には、高段側端板160Hが設置され、高段側シリンダ121Hの圧縮空間の上部を閉塞している。   Further, an intermediate partition plate 140 is installed between the low-stage cylinder 121L and the high-stage cylinder 121H to partition the compression space of the low-stage cylinder 121L and the compression space of the high-stage cylinder 121H. . A low-stage end plate 160L is installed below the low-stage cylinder 121L, and closes the compression space of the low-stage cylinder 121L. A high-stage end plate 160H is installed on the upper side of the high-stage cylinder 121H, and closes the upper part of the compression space of the high-stage cylinder 121H.

低段側端板160Lには、下軸受け部161Lが形成され、下軸受け部161Lに、シャフト15の下部151が回転自在に支持されている。また、高段側端板160Hには、上軸受け部161Hが形成され、上軸受け部161Hに、シャフト15の中間部153を嵌合している。   A lower bearing portion 161L is formed on the lower stage end plate 160L, and a lower portion 151 of the shaft 15 is rotatably supported by the lower bearing portion 161L. Further, the upper stage end plate 160H is formed with an upper bearing portion 161H, and the intermediate portion 153 of the shaft 15 is fitted to the upper bearing portion 161H.

シャフト15は、互いに180°位相をずらして偏芯させた低段側クランク部152Lと高段側クランク部152Hとを備え、低段側クランク部152Lは、低段側圧縮部12Lの低段側ピストン125Lを回転自在に保持し、高段側クランク部152Hは、高段側圧縮部12Hの高段側ピストン125Hを回転自在に保持している。   The shaft 15 includes a low-stage crank portion 152L and a high-stage crank portion 152H that are offset by 180 ° from each other. The low-stage crank portion 152L is a low-stage side of the low-stage compression portion 12L. The piston 125L is rotatably held, and the high-stage crank portion 152H rotatably holds the high-stage piston 125H of the high-stage compression section 12H.

シャフト15が回転すると、低段側、高段側ピストン125L、125Hが、低段側、高段側シリンダボア123L、123Hの内周壁を転動しながら旋回運動し、これに追随して低段側、高段側ベーン127L、127Hが往復運動する。この低段側、高段側ピストン125L、125Hおよび低段側、高段側ベーン127L、127Hの運動により、低段側、高段側吸入室131L、131Hおよび低段側、高段側圧縮室133L、133Hの容積が連続的に変化し、圧縮部12は、連続的に冷媒を吸入し、圧縮して吐出する。   When the shaft 15 rotates, the low-stage side and high-stage side pistons 125L and 125H rotate while rolling on the inner peripheral walls of the low-stage side and high-stage side cylinder bores 123L and 123H. The high stage vanes 127L and 127H reciprocate. Due to the movement of the low-stage and high-stage pistons 125L and 125H and the low-stage and high-stage vanes 127L and 127H, the low-stage and high-stage suction chambers 131L and 131H and the low-stage and high-stage compression chambers are moved. The volumes of 133L and 133H change continuously, and the compression unit 12 continuously sucks the refrigerant, compresses it, and discharges it.

低段側端板160Lの下側には、低段側マフラーカバー170Lが設置され、低段側端板160Lとの間に低段側マフラー室180Lを形成している。そして、低段側圧縮部12Lの吐出部は、低段側マフラー室180Lに開口している。すなわち、低段側端板160Lには、低段側シリンダ121Lの圧縮空間と低段側マフラー室180Lとを連通する低段側吐出孔190Lが設けられ、低段側吐出孔190Lには、圧縮された冷媒の逆流を防止する低段側吐出弁200Lが設置されている。   Below the low stage side end plate 160L, a low stage side muffler cover 170L is installed, and a low stage side muffler chamber 180L is formed between the low stage side end plate 160L. And the discharge part of the low stage side compression part 12L is opened to the low stage side muffler chamber 180L. That is, the low-stage end plate 160L is provided with a low-stage discharge hole 190L that connects the compression space of the low-stage cylinder 121L and the low-stage muffler chamber 180L. A low-stage discharge valve 200L is installed to prevent the reverse flow of the refrigerant.

図1−4および図1−5に示すように、低段側マフラー室180Lは、環状に連通された1つの室であり、低段側圧縮部12Lの吐出側と高段側圧縮部12Hの吸入側とを連通する中間連通路の一部である。   As shown in FIGS. 1-4 and 1-5, the low-stage muffler chamber 180L is one chamber communicated in an annular shape, and includes a discharge side of the low-stage compression section 12L and a high-stage compression section 12H. This is a part of an intermediate communication path that communicates with the suction side.

また、図1−5および図1−6に示すように、低段側吐出弁200Lの上には、低段側吐出弁200Lの撓み開弁量を制限するための低段側吐出弁押さえ201Lが、低段側吐出弁200Lとともにリベット203により固定されている。また、低段側端板160Lの外周壁部には、低段側マフラー室180L内の冷媒を吐出する低段側マフラー吐出孔210Lが設けられている。低段側マフラー吐出孔210Lと高段側吸入孔135Hとは、同一の周方向に向けて設けられている。   Also, as shown in FIGS. 1-5 and 1-6, a low-stage discharge valve presser 201L for limiting the amount of flexure opening of the low-stage discharge valve 200L is placed on the low-stage discharge valve 200L. Is fixed by a rivet 203 together with the low-stage discharge valve 200L. In addition, a low-stage muffler discharge hole 210L that discharges the refrigerant in the low-stage muffler chamber 180L is provided on the outer peripheral wall portion of the low-stage end plate 160L. The low stage side muffler discharge hole 210L and the high stage side suction hole 135H are provided in the same circumferential direction.

高段側端板160Hの上側には、高段側マフラーカバー170Hが設置され、高段側端板160Hとの間に高段側マフラー室180Hを形成している。高段側端板160Hには、高段側シリンダ121Hの圧縮空間と高段側マフラー室180Hとを連通する高段側吐出孔190Hが設けられ、高段側吐出孔190Hには、圧縮された冷媒の逆流を防止する高段側吐出弁200Hが設置されている。また、高段側吐出弁200Hの上には、高段側吐出弁200Hの撓み開弁量を制限するために、高段側吐出弁押さえ201Hが、高段側吐出弁200Hとともにリベットにより固定されている。   A high stage side muffler cover 170H is installed above the high stage side end plate 160H, and a high stage side muffler chamber 180H is formed between the high stage side end plate 160H. The high stage side end plate 160H is provided with a high stage side discharge hole 190H that communicates the compression space of the high stage side cylinder 121H and the high stage side muffler chamber 180H, and the high stage side discharge hole 190H is compressed. A high-stage discharge valve 200H that prevents the backflow of the refrigerant is installed. Further, on the high-stage discharge valve 200H, a high-stage discharge valve presser 201H is fixed with a rivet together with the high-stage discharge valve 200H in order to limit the deflection opening amount of the high-stage discharge valve 200H. ing.

低段側シリンダ121L、低段側端板160L、低段側マフラーカバー170L、高段側シリンダ121H、高段側端板160H、高段側マフラーカバー170Hおよび中間仕切板140は、図示しないボルトにより一体に締結されている。ボルトにより一体に締結された圧縮部12のうち、高段側端板160Hの外周部が、圧縮機筐体10にスポット溶接により固着され、圧縮部12を圧縮機筐体10に固定している。   The low-stage cylinder 121L, the low-stage end plate 160L, the low-stage side muffler cover 170L, the high-stage cylinder 121H, the high-stage side end plate 160H, the high-stage side muffler cover 170H, and the intermediate partition plate 140 are formed by bolts not shown. It is fastened together. Of the compression part 12 integrally fastened by bolts, the outer peripheral part of the high-stage end plate 160H is fixed to the compressor casing 10 by spot welding, and the compression part 12 is fixed to the compressor casing 10. .

図1−7に示すように、円筒状の圧縮機筐体10の外周壁には、軸方向に離間して下部から順に、第1連通孔101、第2連通孔102、第3連通孔103が設けられている。第1連通孔101、第2連通孔102、第3連通孔103は、圧縮機筐体10の同一周方向位置に設けられている。   As shown in FIG. 1-7, the first communication hole 101, the second communication hole 102, and the third communication hole 103 are formed in the outer peripheral wall of the cylindrical compressor housing 10 in order from the lower part in the axial direction. Is provided. The first communication hole 101, the second communication hole 102, and the third communication hole 103 are provided at the same circumferential position of the compressor housing 10.

図1−2および図1−8に示すように、後述する配管との干渉を避けるために、圧縮機筐体10の外側部の正面(第1連通孔101、第2連通孔102および第3連通孔103が設けられた周方向位置)から右側へ位相をずらした周方向位置に、独立した円筒状の密閉容器からなるアキュムレータ25が、アキュムホルダー251およびアキュムバンド253により保持されている。   As shown in FIGS. 1-2 and 1-8, in order to avoid interference with the piping described later, the front surface of the outer portion of the compressor housing 10 (the first communication hole 101, the second communication hole 102, and the third An accumulator 25 made up of an independent cylindrical sealed container is held by an accumulator holder 251 and an accumulator band 253 at a circumferential position shifted in phase to the right from the circumferential position where the communication hole 103 is provided.

アキュムレータ25の天部中心には、冷凍サイクル側と接続するシステム接続管255が接続され、アキュムレータ25の底部中心に設けられた底部連通孔257には、一端がアキュムレータ25の内部上方まで延設され、他端が低段側吸入管104の他端に接続される低圧連絡管31が接続されている。   A system connection pipe 255 connected to the refrigeration cycle side is connected to the center of the top of the accumulator 25, and one end of the bottom communication hole 257 provided at the center of the bottom of the accumulator 25 extends to the upper part inside the accumulator 25. The low-pressure connecting pipe 31 is connected to the other end of the low-stage suction pipe 104.

低段側マフラー室180Lの低段側マフラー吐出孔210Lには、第1連通孔101を通して低段側吐出管105の一端が接続され、高段側シリンダ121Hの高段側吸入孔135Hには、第3連通孔103を通して高段側吸入管106の一端が接続され、低段側吐出管105の他端と高段側吸入管106の他端とは、U字形に2次元的に曲げ形成した中間連絡管23により接続されている。低圧連絡管31は、U字形の中間接続管23との干渉を避けるために、低圧連絡管31は、2箇所で直角に3次元的に曲げ形成されている。   One end of the low-stage side discharge pipe 105 is connected to the low-stage side muffler discharge hole 210L of the low-stage side muffler chamber 180L through the first communication hole 101, and the high-stage side suction hole 135H of the high-stage side cylinder 121H includes One end of the high-stage suction pipe 106 is connected through the third communication hole 103, and the other end of the low-stage discharge pipe 105 and the other end of the high-stage suction pipe 106 are two-dimensionally bent into a U shape. They are connected by an intermediate connecting pipe 23. In order to avoid interference with the U-shaped intermediate connecting pipe 23, the low-pressure connecting pipe 31 is bent three-dimensionally at right angles at two locations.

低段側圧縮部12Lの吐出側と高段側圧縮部12Hの吸入側とを連絡する中間連絡通路は、低段側マフラー室180L、低段側マフラー吐出孔210L、中間連絡管23、高段側圧縮部12Hの吸入孔135Hで構成される。また、中間連絡管23のU字形の上部(下流側)には、後述する中間吸入管108が接続されている。   The intermediate communication passage that connects the discharge side of the low-stage compression unit 12L and the suction side of the high-stage compression unit 12H includes a low-stage muffler chamber 180L, a low-stage muffler discharge hole 210L, an intermediate communication pipe 23, and a high-stage It is comprised by the suction hole 135H of the side compression part 12H. Further, an intermediate suction pipe 108 described later is connected to the U-shaped upper part (downstream side) of the intermediate communication pipe 23.

また、中間連絡管23の中間吸入管108が接続された部分よりも上流側、すなわち、低段側圧縮部12Lに近い側の外面には、低段側マフラー室180Lから吐出された冷媒の温度を測定するための温度センサー240が取り付けられている。   Further, the temperature of the refrigerant discharged from the low-stage muffler chamber 180L on the upstream side of the portion where the intermediate suction pipe 108 of the intermediate connecting pipe 23 is connected, that is, on the outer surface near the low-stage compression section 12L. A temperature sensor 240 for measuring the temperature is attached.

高段側圧縮部12Hの吐出部は、高段側マフラー室180Hを介して圧縮機筐体10内に連通している。すなわち、高段側端板160Hには、高段側シリンダ121Hの圧縮空間と高段側マフラー室180Hとを連通する高段側吐出孔190Hが設けられ、高段側吐出孔190Hには、圧縮された冷媒の逆流を防止する高段側吐出弁200Hが設置されている。高段側マフラー室180Hの吐出部は、圧縮機筐体10内に連通している。圧縮機筐体10の天部には、高圧冷媒を冷凍サイクル側に吐出する吐出管107が接続されている。   The discharge part of the high stage side compression part 12H communicates with the inside of the compressor housing 10 via the high stage side muffler chamber 180H. That is, the high-stage end plate 160H is provided with a high-stage discharge hole 190H that communicates the compression space of the high-stage cylinder 121H with the high-stage muffler chamber 180H. A high-stage discharge valve 200H is installed to prevent the reverse flow of the refrigerant. The discharge part of the high-stage muffler chamber 180H communicates with the compressor housing 10. A discharge pipe 107 that discharges high-pressure refrigerant to the refrigeration cycle side is connected to the top of the compressor housing 10.

圧縮機筐体10内には、およそ、高段側シリンダ121Hの高さまで潤滑油が封入されており、潤滑油は、シャフト15の下部に挿入された図示しない羽根ポンプによって圧縮部12を循環し、摺動部品の潤滑および微小隙間によって圧縮冷媒の圧縮空間を区画している箇所のシールをしている。   Lubricating oil is sealed in the compressor casing 10 up to the height of the high-stage cylinder 121H, and the lubricating oil circulates through the compression section 12 by a blade pump (not shown) inserted in the lower portion of the shaft 15. In addition, a portion that divides the compression space of the compressed refrigerant is sealed by lubrication of sliding parts and minute gaps.

図1−2および図1−8に示すように、実施例1の圧縮機1の特徴的な構造として、L字形に形成した中間吸入管108の先端部を、中間吸入管108より径の太い中間連絡管23の上部に挿入して接続(溶接)する。中間吸入管108の先端部の吹出し口を、中間連絡管23内の中間圧ガス冷媒の流れ方向と略同じ方向に向ける。これにより、条件によるが、中間圧ガス冷媒よりも流速の速いインジェクション冷媒を噴出させ、エゼクタ効果を発揮させることができる。   As shown in FIGS. 1-2 and 1-8, as a characteristic structure of the compressor 1 of the first embodiment, the distal end portion of the intermediate suction pipe 108 formed in an L shape is thicker than the intermediate suction pipe 108. It is inserted into the upper part of the intermediate connecting pipe 23 and connected (welded). The outlet at the tip of the intermediate suction pipe 108 is directed in the substantially same direction as the flow direction of the intermediate-pressure gas refrigerant in the intermediate communication pipe 23. Thereby, although it depends on conditions, the injection refrigerant having a flow velocity higher than that of the intermediate-pressure gas refrigerant can be ejected, and the ejector effect can be exhibited.

すなわち、中間吸入管108から噴出されたインジェクション冷媒が、低段側圧縮部12Lからの中間圧ガス冷媒を吸引し、高段側圧縮部12Hに吸入しやすくする。その結果、中間圧ガス冷媒の圧力損失を低減することができ、高段側圧縮部12Hの吸入圧力を上昇させ、圧縮機1の効率を向上させることができる。   That is, the injection refrigerant ejected from the intermediate suction pipe 108 sucks the intermediate-pressure gas refrigerant from the low-stage compression section 12L, and makes it easy to suck it into the high-stage compression section 12H. As a result, the pressure loss of the intermediate-pressure gas refrigerant can be reduced, the suction pressure of the high-stage compression unit 12H can be increased, and the efficiency of the compressor 1 can be improved.

図1−9に、実施例1の圧縮機1の変形例を示す。この変形例においては、中間連絡管23の上部に挿入した中間吸入管108の先端部の吹出し口を、中間連絡管23の内壁に平行に斜めに切除している。中間連絡管23に挿入された中間吸入管108の先端部を切除したので、中間圧ガス冷媒の流路抵抗が減少し、圧力損失をさらに低減することができ、圧縮機1の効率をさらに向上させることができる。   FIG. 1-9 illustrates a modification of the compressor 1 according to the first embodiment. In this modified example, the outlet at the tip of the intermediate suction pipe 108 inserted in the upper part of the intermediate connecting pipe 23 is cut obliquely parallel to the inner wall of the intermediate connecting pipe 23. Since the distal end portion of the intermediate suction pipe 108 inserted into the intermediate communication pipe 23 is cut off, the flow resistance of the intermediate pressure gas refrigerant is reduced, the pressure loss can be further reduced, and the efficiency of the compressor 1 is further improved. Can be made.

図1−10に、実施例1の圧縮機1の他の変形例を示す。この変形例においては、L字形に形成した中間吸入管108の先端部の吹出し口を、中間連絡管23の下部に上向きに挿入して中間吸入管108と中間連絡管23とを接続(溶接)する。中間吸入管108の先端部の吹出し口を、中間連絡管23内の中間圧ガス冷媒の流れ方向と略同じ方向に向け、エゼクタ効果を発揮させる。このようにしても、上記と同様な効果が得られる。   FIG. 1-10 illustrates another modification of the compressor 1 according to the first embodiment. In this modification, the outlet of the tip of the intermediate suction pipe 108 formed in an L shape is inserted upward into the lower part of the intermediate communication pipe 23 to connect the intermediate suction pipe 108 and the intermediate communication pipe 23 (welding). To do. The outlet at the tip of the intermediate suction pipe 108 is directed in substantially the same direction as the flow direction of the intermediate-pressure gas refrigerant in the intermediate communication pipe 23 to exert the ejector effect. Even if it does in this way, the same effect as the above is acquired.

図2は、本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例2を示す側面図である。実施例2の圧縮機1Bの特徴的な構造として、低段側マフラー吐出孔210L(図1−5参照)は、圧縮部12の低段側吸入孔135L(図1−3参照)および高段側吸入孔135Hとは、圧縮機筐体10の周方向の位相を左側へずらした位置に、径方向に設けられている。   FIG. 2 is a side view showing a second embodiment of the injection-compatible two-stage compression rotary compressor of the air conditioner according to the present invention. As a characteristic structure of the compressor 1B according to the second embodiment, a low-stage muffler discharge hole 210L (see FIG. 1-5) includes a low-stage suction hole 135L (see FIG. 1-3) of the compression unit 12 and a high stage. The side suction hole 135H is provided in the radial direction at a position where the circumferential phase of the compressor housing 10 is shifted to the left.

図2に示すように、円筒状の圧縮機筐体10の外周壁には、軸方向に離間して下部から順に、第1連通孔101、第2連通孔102、第3連通孔103が設けられている。第2連通孔102および第3連通孔103は、圧縮機筐体10の同一周方向位置(正面)に設けられ、第1連通孔101は、第2連通孔102および第3連通孔103とは、異なる周方向位置(左側へずらした位置)に設けられている。   As shown in FIG. 2, a first communication hole 101, a second communication hole 102, and a third communication hole 103 are provided on the outer peripheral wall of the cylindrical compressor housing 10 in order from the lower part in the axial direction. It has been. The second communication hole 102 and the third communication hole 103 are provided at the same circumferential position (front) of the compressor housing 10, and the first communication hole 101 is different from the second communication hole 102 and the third communication hole 103. Are provided at different circumferential positions (positions shifted to the left).

冷凍サイクルの低圧冷媒をアキュムレータ25を介して低段側圧縮部12Lに導く低圧連絡管31は、第2連通孔102および低段側吸入管104を介して低段側シリンダ121Lの低段側吸入孔135Lに接続されている。低圧連絡管31は、低段側吸入管104とアキュムレータ25の底部連通孔257との間の部分が、1/4円弧状に2次元的に曲げ形成されている。   The low-pressure communication pipe 31 that guides the low-pressure refrigerant of the refrigeration cycle to the low-stage compression unit 12L via the accumulator 25 is connected to the low-stage suction of the low-stage cylinder 121L via the second communication hole 102 and the low-stage intake pipe 104. It is connected to the hole 135L. In the low-pressure communication pipe 31, a portion between the low-stage side suction pipe 104 and the bottom communication hole 257 of the accumulator 25 is two-dimensionally bent into a 1/4 arc shape.

低段側マフラー室180Lの低段側マフラー吐出孔210Lには、第1連通孔101を通して低段側吐出管105の一端が接続され、高段側シリンダ121Hの高段側吸入孔135Hには、第3連通孔103を通して高段側吸入管106の一端が接続され、低段側吐出管105の他端と高段側吸入管106の他端とは、U字形に2次元的に曲げ形成した中間連絡管23により接続されている。   One end of the low-stage side discharge pipe 105 is connected to the low-stage side muffler discharge hole 210L of the low-stage side muffler chamber 180L through the first communication hole 101, and the high-stage side suction hole 135H of the high-stage side cylinder 121H includes One end of the high-stage suction pipe 106 is connected through the third communication hole 103, and the other end of the low-stage discharge pipe 105 and the other end of the high-stage suction pipe 106 are two-dimensionally bent into a U shape. They are connected by an intermediate connecting pipe 23.

低圧連絡管31と中間連絡管23とが互いに干渉しないように、第1連通孔101を第2、第3連通孔102、103とは異なる周方向位置(左側へずらした位置)に設けている。中間吸入管108と中間連絡管23との接続方法は、実施例1(変形例、他の変形例を含む)と同様である。   The first communication hole 101 is provided at a different circumferential position (position shifted to the left side) from the second and third communication holes 102 and 103 so that the low-pressure communication pipe 31 and the intermediate communication pipe 23 do not interfere with each other. . The connection method between the intermediate suction pipe 108 and the intermediate communication pipe 23 is the same as that in the first embodiment (including modifications and other modifications).

実施例2の圧縮機1Bは、低圧連絡管31の屈曲箇所を1箇所にして円弧状に2次元的に曲げ形成することができ、低圧連絡管31の加工が容易になりコストを低減することができる。また、低圧連絡管31の管路抵抗を低減させ、吸入圧力損失を低減させ、圧縮機1Bの圧縮効率を向上することができる。   In the compressor 1B of the second embodiment, the low-pressure connecting pipe 31 can be bent two-dimensionally in an arc shape with one bent portion, and the low-pressure connecting pipe 31 can be easily processed to reduce the cost. Can do. Further, the pipe line resistance of the low-pressure communication pipe 31 can be reduced, the suction pressure loss can be reduced, and the compression efficiency of the compressor 1B can be improved.

図3は、本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例3を示す側面図である。実施例3の圧縮機1Cの特徴的な構造として、圧縮部12の低段側吸入孔135L(図1−3参照)は、低段側マフラー吐出孔210L(図1−5参照)および高段側吸入孔135Hとは、圧縮機筐体10の周方向の位相を右側へずらした位置に、径方向に設けられている。   FIG. 3 is a side view showing a third embodiment of the injection-compatible two-stage compression rotary compressor according to the present invention. As a characteristic structure of the compressor 1C of the third embodiment, a low-stage side suction hole 135L (see FIG. 1-3) of the compression unit 12 includes a low-stage side muffler discharge hole 210L (see FIG. 1-5) and a high stage. The side suction hole 135H is provided in the radial direction at a position where the circumferential phase of the compressor housing 10 is shifted to the right.

図3に示すように、円筒状の圧縮機筐体10の外周壁には、軸方向に離間して下部から順に、第1連通孔101、第2連通孔102、第3連通孔103が設けられている。第1連通孔101及び第3連通孔103は、圧縮機筐体10の略同一周方向位置(正面)に設けられ、第2連通孔102は、後述の低圧連絡管31と中間連絡管23とが干渉しないように、第1連通孔101及び第3連通孔103とは、異なる周方向位置(右側へずらした位置)に設けられている。   As shown in FIG. 3, a first communication hole 101, a second communication hole 102, and a third communication hole 103 are provided on the outer peripheral wall of the cylindrical compressor housing 10 in order from the lower part in the axial direction. It has been. The first communication hole 101 and the third communication hole 103 are provided at substantially the same circumferential position (front surface) of the compressor housing 10, and the second communication hole 102 includes a low-pressure communication pipe 31 and an intermediate communication pipe 23 described later. The first communication hole 101 and the third communication hole 103 are provided at different circumferential positions (positions shifted to the right side) so as not to interfere with each other.

図3に示すように、圧縮機筐体10の外側部の正面から右側へずれた位置(第2連通孔102と略同一周方向位置)には、独立した円筒状の密閉容器からなるアキュムレータ25が、アキュムホルダー251及びアキュムバンド253により保持されている。アキュムレータ25の天部中心には、冷凍サイクル側と接続するシステム接続管255が接続され、アキュムレータ25の底部中心に設けられた底部連通孔257には、一端がアキュムレータ25の内部上方まで延設され、他端が低段側吸入管104の他端に接続される低圧連絡管31が接続されている。   As shown in FIG. 3, the accumulator 25 formed of an independent cylindrical sealed container is located at a position shifted from the front side of the outer side of the compressor housing 10 to the right side (substantially the same circumferential position as the second communication hole 102). Are held by the accumulator holder 251 and the accumulator band 253. A system connection pipe 255 connected to the refrigeration cycle side is connected to the center of the top of the accumulator 25, and one end of the bottom communication hole 257 provided at the center of the bottom of the accumulator 25 extends to the upper part inside the accumulator 25. The low-pressure connecting pipe 31 is connected to the other end of the low-stage suction pipe 104.

冷凍サイクルの低圧冷媒をアキュムレータ25を介して低段側圧縮部12Lに導く低圧連絡管31は、第2連通孔102及び低段側吸入管104を介して低段側シリンダ121Lの低段側吸入孔135Lに接続されている。低圧連絡管31は、低段側吸入管104とアキュムレータ25の底部連通孔257との間の部分が、1/4円弧状に2次元的に曲げ形成されている。   The low-pressure communication pipe 31 that guides the low-pressure refrigerant of the refrigeration cycle to the low-stage compression unit 12L via the accumulator 25 is connected to the low-stage suction of the low-stage cylinder 121L via the second communication hole 102 and the low-stage suction pipe 104. It is connected to the hole 135L. In the low-pressure communication pipe 31, a portion between the low-stage side suction pipe 104 and the bottom communication hole 257 of the accumulator 25 is two-dimensionally bent into a 1/4 arc shape.

低段側マフラー室180Lの低段側マフラー吐出孔210Lには、第1連通孔101を通して低段側吐出管105の一端が接続され、高段側シリンダ121Hの高段側吸入孔135Hには、第3連通孔103を通して高段側吸入管106の一端が接続され、低段側吐出管105の他端と高段側吸入管106の他端とは、U字形に2次元的に曲げ形成した中間連絡管23により接続されている。低圧連絡管31と中間連絡管23とが互いに干渉しないように、第2連通孔102を第1、第3連通孔101、103とは異なる周方向位置(右側へずらした位置)に設けている。   One end of the low-stage side discharge pipe 105 is connected to the low-stage side muffler discharge hole 210L of the low-stage side muffler chamber 180L through the first communication hole 101, and the high-stage side suction hole 135H of the high-stage side cylinder 121H includes One end of the high-stage suction pipe 106 is connected through the third communication hole 103, and the other end of the low-stage discharge pipe 105 and the other end of the high-stage suction pipe 106 are two-dimensionally bent into a U shape. They are connected by an intermediate connecting pipe 23. The second communication hole 102 is provided at a different circumferential position (position shifted to the right side) from the first and third communication holes 101 and 103 so that the low-pressure communication pipe 31 and the intermediate communication pipe 23 do not interfere with each other. .

以上説明したように、実施例3のロータリ圧縮機1Cは、圧縮機筐体10の第1連通孔101及び第3連通孔103を、圧縮機筐体10の略同一周方向位置(正面)に配置し、低圧連絡管31と中間連絡管23とが干渉しないように、第2連通孔102を、第1、第3連通孔101、103とは異なる周方向位置(右側へずらした位置)に配置している。   As described above, the rotary compressor 1 </ b> C according to the third embodiment has the first communication hole 101 and the third communication hole 103 of the compressor housing 10 at substantially the same circumferential position (front) of the compressor housing 10. The second communication hole 102 is arranged at a circumferential position (position shifted to the right side) different from the first and third communication holes 101 and 103 so that the low-pressure communication pipe 31 and the intermediate communication pipe 23 do not interfere with each other. It is arranged.

それ故、実施例2と同様に、低圧連絡管31の屈曲箇所を1箇所にしてU字形に2次元的に曲げ形成することができ、低圧連絡管31の加工が容易になりコストを低減することができる。また、低圧連絡管31の管路抵抗を低減させ、吸入圧力損失を低減させ、圧縮機1Cの圧縮効率を向上することができる。   Therefore, similarly to the second embodiment, the low-pressure connecting pipe 31 can be bent and formed into a U-shape two-dimensionally, and the low-pressure connecting pipe 31 can be easily processed to reduce the cost. be able to. Further, the pipe line resistance of the low-pressure communication pipe 31 can be reduced, the suction pressure loss can be reduced, and the compression efficiency of the compressor 1C can be improved.

回転数可変タイプのモータ11による高回転運転時、すなわち、循環冷媒流量が大きいときには、低圧連絡管31における圧力損失がより大きくなるため、実施例2、3のように、低圧連絡管31の屈曲箇所を1箇所にして圧力損失を低減すれば、圧縮機1B、1Cの効率を向上させることができる。   During high rotation operation by the motor 11 of variable speed type, that is, when the circulating refrigerant flow rate is large, the pressure loss in the low pressure communication pipe 31 becomes larger, so that the low pressure communication pipe 31 is bent as in the second and third embodiments. If the location is reduced to one location and pressure loss is reduced, the efficiency of the compressors 1B and 1C can be improved.

以上のように、本発明にかかるインジェクション対応2段圧縮ロータリ圧縮機は、空調機の冷凍サイクルに有用である。   As described above, the injection-compatible two-stage compression rotary compressor according to the present invention is useful for the refrigeration cycle of an air conditioner.

空調機の冷凍サイクルの基本構成を示す図である。It is a figure which shows the basic composition of the refrigerating cycle of an air conditioner. 本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例1を示す縦断面図である。It is a longitudinal cross-sectional view which shows Example 1 of the two-stage compression rotary compressor corresponding to the injection of the air conditioner concerning this invention. 2段圧縮ロータリ圧縮機の低段側圧縮部および高段側圧縮部の横断面図である。It is a cross-sectional view of the low stage side compression part and high stage side compression part of a two-stage compression rotary compressor. 図1−2のA−A線に沿う横断面図である。It is a cross-sectional view which follows the AA line of FIGS. 1-2. 低段側端板の横断面図である。It is a cross-sectional view of a low stage side end plate. 図1−5のB−B線に沿う断面図である。It is sectional drawing which follows the BB line of FIGS. 1-5. 圧縮機筐体の正面図である。It is a front view of a compressor housing | casing. 実施例1のインジェクション対応2段圧縮ロータリ圧縮機の側面図である。1 is a side view of an injection-compatible two-stage compression rotary compressor of Example 1. FIG. 実施例1のインジェクション対応2段圧縮ロータリ圧縮機の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of the injection | emission 2 step | paragraph compression rotary compressor of Example 1. FIG. 実施例1のインジェクション対応2段圧縮ロータリ圧縮機の他の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other modification of the injection | emission 2 step | paragraph compression rotary compressor of Example 1. FIG. 本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例2を示す側面図である。It is a side view which shows Example 2 of the two-stage compression rotary compressor corresponding to the injection of the air conditioner concerning this invention. 本発明にかかる空調機のインジェクション対応2段圧縮ロータリ圧縮機の実施例3を示す側面図である。It is a side view which shows Example 3 of the two-stage compression rotary compressor corresponding to the injection of the air conditioner concerning this invention.

符号の説明Explanation of symbols

1、1B、1C インジェクション対応2段圧縮ロータリ圧縮機(圧縮機)
2 基本サイクル配管
3 四方弁
4 凝縮器(放熱器)
5 分岐管
6 インジェクション配管
7A 第一膨張機構部
7B 第二膨張機構部
8 内部熱交換器
9 蒸発器(吸熱器)
10 圧縮機筐体
11 モータ
12 圧縮部
15 シャフト
23 中間連絡管
25 アキュムレータ
31 低圧連絡管
101 第1連通孔
102 第2連通孔
103 第3連通孔
104 低段側吸入管
105 低段側吐出管
106 高段側吸入管
107 吐出管
108 中間吸入管
111 ステータ
112 ロータ
12L 低段側圧縮部
12H 高段側圧縮部
121L 低段側シリンダ
121H 高段側シリンダ
123L 低段側シリンダボア
123H 高段側シリンダボア
125L 低段側ピストン
125H 高段側ピストン
127L 低段側ベーン
127H 高段側ベーン
129L 低段側スプリング
129H 高段側スプリング
131L 低段側吸入室
131H 高段側吸入室
133L 低段側圧縮室
133H 高段側圧縮室
135L 低段側吸入孔
135H 高段側吸入孔
140 中間仕切板
151 下部
152L 低段側クランク部
152H 高段側クランク部
153 中間部
160L 低段側端板
160H 高段側端板
161L 下軸受け部
161H 上軸受け部
170L 低段側マフラーカバー
170H 高段側マフラーカバー
180L 低段側マフラー室
180H 高段側マフラー室
190L 低段側吐出孔
190H 高段側吐出孔
200L 低段側吐出弁
200H 高段側吐出弁
201L 低段側吐出弁押さえ
201H 高段側吐出弁押さえ
203 リベット
210L 低段側マフラー吐出孔
240 温度センサー
251 アキュムホルダー
253 アキュムバンド
255 システム接続管
257 底部連通孔
1, 1B, 1C Injection compatible two-stage compression rotary compressor (compressor)
2 Basic cycle piping 3 Four-way valve 4 Condenser (heat radiator)
5 Branch pipe 6 Injection pipe 7A 1st expansion mechanism part 7B 2nd expansion mechanism part 8 Internal heat exchanger 9 Evaporator (heat absorber)
DESCRIPTION OF SYMBOLS 10 Compressor housing | casing 11 Motor 12 Compression part 15 Shaft 23 Intermediate connection pipe 25 Accumulator 31 Low pressure connection pipe 101 1st communication hole 102 2nd communication hole 103 3rd communication hole 104 Low stage side suction pipe 105 Low stage side discharge pipe 106 High-stage suction pipe 107 Discharge pipe 108 Intermediate suction pipe 111 Stator 112 Rotor 12L Low-stage compression section 12H High-stage compression section 121L Low-stage cylinder 121H High-stage cylinder 123L Low-stage cylinder bore 123H High-stage cylinder bore 125L Low Stage piston 125H High stage piston 127L Low stage vane 127H High stage vane 129L Low stage spring 129H High stage spring 131L Low stage suction chamber 131H High stage suction chamber 133L Low stage compression chamber 133H High stage side Compression chamber 135L Low stage suction hole 135H Stage side suction hole 140 Middle partition plate 151 Lower 152L Low stage side crank part 152H High stage side crank part 153 Middle part 160L Low stage side end plate 160H High stage side end plate 161L Lower bearing part 161H Upper bearing part 170L Low stage side muffler Cover 170H High-stage muffler cover 180L Low-stage muffler chamber 180H High-stage muffler chamber 190L Low-stage discharge hole 190H High-stage discharge hole 200L Low-stage discharge valve 200H High-stage discharge valve 201L Low-stage discharge valve holder 201H High stage discharge valve holder 203 Rivet 210L Low stage muffler discharge hole 240 Temperature sensor 251 Accum holder 253 Accum band 255 System connection pipe 257 Bottom communication hole

Claims (4)

インジェクション冷凍サイクルを利用したヒートポンプシステムに用いられ、
外周壁に軸方向に離隔して順に第1、第2、第3連通孔が設けられ、密閉された円筒状の圧縮機筐体と、
前記圧縮機筐体内に設置され、低段側吸入孔に前記第2連通孔を通して低段側吸入管の一端が接続され、低段側マフラー吐出孔に前記第1連通孔を通して低段側吐出管の一端が接続された低段側圧縮部と、
前記圧縮機筐体内の前記低段側圧縮部の近傍に設置され、高段側吸入孔に前記第3連通孔を通して高段側吸入管の一端が接続され、高段側マフラー吐出孔が前記圧縮機筐体内に連通する高段側圧縮部と、
前記低段側圧縮部及び高段側圧縮部を駆動するモータと、
前記圧縮機筐体の外側部に保持された密閉された円筒状のアキュムレータと、
前記アキュムレータの底部連通孔と前記低段側吸入管の他端とを接続する低圧連絡管と、
前記低段側吐出管の他端と前記高段側吸入管の他端とを接続する中間連絡管と、
前記インジェクション冷凍サイクル側の湿り冷媒である中間圧インジェクション冷媒を前記中間連絡管に導く中間吸入管と、
を備えるインジェクション対応2段圧縮ロータリ圧縮機において、
前記中間吸入管の吹出し口を前記中間連絡管の中間圧ガス冷媒流れ方向に向けるようにして、前記中間吸入管を前記中間連絡管に接続したこと、
を特徴とするインジェクション対応2段圧縮ロータリ圧縮機。
Used in heat pump systems using injection refrigeration cycles,
A cylindrical compressor housing that is provided with first, second, and third communication holes in order in an axially spaced manner on the outer peripheral wall, and is sealed;
One end of the low-stage suction pipe is installed in the compressor housing, connected to the low-stage suction hole through the second communication hole, and the low-stage discharge pipe is connected to the low-stage muffler discharge hole through the first communication hole. A lower stage compression section to which one end of the
Installed in the compressor housing near the lower stage compression section, one end of the higher stage suction pipe is connected to the higher stage suction hole through the third communication hole, and the higher stage muffler discharge hole is the compression section. A high-stage compression section communicating with the inside of the machine casing;
A motor for driving the low-stage compression section and the high-stage compression section;
A sealed cylindrical accumulator held on the outer side of the compressor housing;
A low-pressure communication pipe connecting the bottom communication hole of the accumulator and the other end of the low-stage suction pipe;
An intermediate connecting pipe connecting the other end of the lower stage discharge pipe and the other end of the higher stage suction pipe;
An intermediate suction pipe for guiding an intermediate pressure injection refrigerant that is a wet refrigerant on the injection refrigeration cycle side to the intermediate connecting pipe;
An injection-compatible two-stage compression rotary compressor comprising:
The intermediate suction pipe is connected to the intermediate communication pipe such that the outlet of the intermediate suction pipe faces the intermediate pressure gas refrigerant flow direction of the intermediate communication pipe;
Injection-compatible two-stage compression rotary compressor.
前記第2、第3連通孔を前記円筒状の圧縮機筐体の略同一周方向位置に設け、
前記第1貫通孔を前記第2、第3連通孔とは異なる周方向位置に設け、
前記アキュムレータを前記第2、第3連通孔と略同一周方向位置に保持し、
夫々2次元的に曲げ形成した前記低圧連絡管と中間連絡管とが互いに干渉しないようにしたことを特徴とする請求項1に記載のインジェクション対応2段圧縮ロータリ圧縮機。
Providing the second and third communication holes at substantially the same circumferential position of the cylindrical compressor housing;
The first through hole is provided at a circumferential position different from the second and third communication holes,
Holding the accumulator at approximately the same circumferential position as the second and third communication holes;
2. The injection-compatible two-stage compression rotary compressor according to claim 1, wherein the low-pressure connecting pipe and the intermediate connecting pipe, which are two-dimensionally bent, do not interfere with each other.
前記第1、第3連通孔を前記円筒状の圧縮機筐体の略同一周方向位置に設け、
前記第2連通孔を前記第1、第3連通孔とは異なる周方向位置に設け
前記アキュムレータを前記第2連通孔と略同一周方向位置に保持し、
夫々2次元的に曲げ形成した前記低圧連絡管と中間連絡管とが互いに干渉しないようにしたことを特徴とする請求項1に記載のインジェクション対応2段圧縮ロータリ圧縮機。
Providing the first and third communication holes at substantially the same circumferential position of the cylindrical compressor housing;
The second communication hole is provided at a circumferential position different from the first and third communication holes, and the accumulator is held at substantially the same circumferential position as the second communication hole,
2. The injection-compatible two-stage compression rotary compressor according to claim 1, wherein the low-pressure connecting pipe and the intermediate connecting pipe, which are two-dimensionally bent, do not interfere with each other.
回転数可変仕様となっていることを特徴とする請求項1〜3のいずれか一つに記載のインジェクション対応2段圧縮ロータリ圧縮機。   The injection-compatible two-stage compression rotary compressor according to any one of claims 1 to 3, wherein the rotation speed is variable.
JP2008226269A 2008-09-03 2008-09-03 Injectible two-stage compression rotary compressor Pending JP2010059859A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008226269A JP2010059859A (en) 2008-09-03 2008-09-03 Injectible two-stage compression rotary compressor
US12/546,165 US20100054978A1 (en) 2008-09-03 2009-08-24 Injectible two-stage compression rotary compressor
CN200910171818A CN101666314A (en) 2008-09-03 2009-08-31 Injectible two-stage rotary compressor
EP09169150A EP2161454A2 (en) 2008-09-03 2009-09-01 Injectible two-stage rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226269A JP2010059859A (en) 2008-09-03 2008-09-03 Injectible two-stage compression rotary compressor

Publications (1)

Publication Number Publication Date
JP2010059859A true JP2010059859A (en) 2010-03-18

Family

ID=41466787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226269A Pending JP2010059859A (en) 2008-09-03 2008-09-03 Injectible two-stage compression rotary compressor

Country Status (4)

Country Link
US (1) US20100054978A1 (en)
EP (1) EP2161454A2 (en)
JP (1) JP2010059859A (en)
CN (1) CN101666314A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070595A (en) * 2012-09-28 2014-04-21 Fujitsu General Ltd Rotary compressor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208616A (en) 2010-03-30 2011-10-20 Fujitsu General Ltd Rotary compressor
JP5524109B2 (en) * 2011-02-25 2014-06-18 三菱重工コンプレッサ株式会社 Compressor
JP2012251485A (en) * 2011-06-03 2012-12-20 Fujitsu General Ltd Rotary compressor
JP6275372B2 (en) * 2011-09-05 2018-02-07 株式会社デンソー Refrigeration cycle equipment
CN102588254A (en) * 2012-02-22 2012-07-18 北京工业大学 Single dual-stage hermetically sealed refrigerating compressor with external mixing chamber
CN104736947B (en) * 2012-09-28 2019-01-18 伊莱克斯家用产品公司 Refrigerator and the method for controlling refrigerator
CN113302400B (en) * 2019-01-28 2023-08-25 东芝开利株式会社 Compressor and refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256783A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Heat transfer device
JP2006029085A (en) * 2004-07-12 2006-02-02 Hitachi Home & Life Solutions Inc Air conditioner and rotary compressor used therefor
JP2006152931A (en) * 2004-11-30 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor
JP2008038697A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Multiple stage rotary compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177228A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary two-stage compressor and air conditioner using the same
JP2006177226A (en) * 2004-12-22 2006-07-06 Hitachi Home & Life Solutions Inc Rotary compressor and air conditioner using the same
JP2008128069A (en) * 2006-11-20 2008-06-05 Hitachi Appliances Inc Hermetic two stage rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256783A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Heat transfer device
JP2006029085A (en) * 2004-07-12 2006-02-02 Hitachi Home & Life Solutions Inc Air conditioner and rotary compressor used therefor
JP2006152931A (en) * 2004-11-30 2006-06-15 Hitachi Home & Life Solutions Inc Rotary two-stage compressor
JP2008038697A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Multiple stage rotary compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070595A (en) * 2012-09-28 2014-04-21 Fujitsu General Ltd Rotary compressor

Also Published As

Publication number Publication date
CN101666314A (en) 2010-03-10
US20100054978A1 (en) 2010-03-04
EP2161454A2 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP4462352B2 (en) 2-stage compression rotary compressor
EP1975414B1 (en) Injectible two-staged rotary compressor and heat pump system
JP2010059859A (en) Injectible two-stage compression rotary compressor
EP1726778B1 (en) Fluid machine
KR100861646B1 (en) Displacement type expander
EP2357427A1 (en) Refrigeration device
JP2008163894A (en) Multiple stage compressor
JP2008106738A (en) Rotary compressor and heat pump system
JP2008286037A (en) Rotary compressor and heat pump system
JP2010107178A (en) Refrigeration apparatus
WO2020067194A1 (en) Multistage compression system
JP4306240B2 (en) Rotary expander and fluid machine
JP2009079492A (en) Two-stage rotary compressor
JP5321697B2 (en) Injection-compatible two-stage compression rotary compressor
JP2003139420A (en) Refrigeration unit
JP2009085027A (en) Two-stage compression rotary compressor
JP4696530B2 (en) Fluid machinery
CN112752934B (en) Multi-stage compression system
JP6791234B2 (en) Multi-stage compression system
JP6791233B2 (en) Multi-stage compression system
JP5599514B2 (en) Two-stage compressor and heat pump device
US8245528B2 (en) Fluid machine
JP6702400B1 (en) Multi-stage compression system
JP6702401B1 (en) Multi-stage compression system
KR101587165B1 (en) Scoroll compressor and refrigerator having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110531