JP2006177223A - Rotary two stage compressor - Google Patents

Rotary two stage compressor Download PDF

Info

Publication number
JP2006177223A
JP2006177223A JP2004370375A JP2004370375A JP2006177223A JP 2006177223 A JP2006177223 A JP 2006177223A JP 2004370375 A JP2004370375 A JP 2004370375A JP 2004370375 A JP2004370375 A JP 2004370375A JP 2006177223 A JP2006177223 A JP 2006177223A
Authority
JP
Japan
Prior art keywords
rotary
bearing
space
compression element
stage compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004370375A
Other languages
Japanese (ja)
Inventor
Atsushi Onuma
敦 大沼
Atsushi Kubota
淳 久保田
Tetsuya Tadokoro
哲也 田所
Masato Kaneko
正人 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2004370375A priority Critical patent/JP2006177223A/en
Priority to CN200510138111A priority patent/CN100585187C/en
Publication of JP2006177223A publication Critical patent/JP2006177223A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress deformation of an intermediate vessel accompanying pressure load and fastening load in a rotary two stage compressor and to reduce slide loss and leak loss of refrigerant or refrigerator oil. <P>SOLUTION: The rotary two stage compressor is provided with a rotary compression element provided with a low pressure compression element 20a and a high pressure compression element 20b provided with a rotary shaft including two eccentric parts and a roller revolved by eccentric rotation of the eccentric parts in each compression chamber with having a partition plate therebetween, and s delivery space of the low pressure compression chamber 20a separated from an inner space of a hermetic vessel. The delivery space 33 includes at least a bearing provided adjoining the low pressure compression element 20a and supporting a rotary shaft and a space between walls surrounding the bearing, opposes to the low pressure compression element 20a, includes a delivery space cover provided with a through hole keeping communication of the rotary shaft separating the delivery space 33 and an inner space of the hermetic vessel and supported by the bearing, and the inner space of the hermetic vessel. An elastic body is put between the delivery space cover and the bearing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルを備えた空気調和機に使用されるロータリ圧縮機に関する。   The present invention relates to a rotary compressor used in an air conditioner equipped with a refrigeration cycle.

従来、冷凍サイクルに使用されるロータリ式2段圧縮機として、例えば特開昭60−128990号公報(以下、特許文献1)に開示された構造が知られている。この従来技術における圧縮機は、密閉容器の内部において上部にステータとロータからなる電動機を備えている。電動機に連結された回転軸は2つの偏心部を備えている。それらの偏心部に対応した圧縮機構として、電動機側から順に、高圧用圧縮要素と低圧用圧縮要素とが密閉容器の内部に設けられている。   Conventionally, as a rotary two-stage compressor used in a refrigeration cycle, for example, a structure disclosed in Japanese Patent Application Laid-Open No. 60-128990 (hereinafter referred to as Patent Document 1) is known. The compressor in this prior art is provided with an electric motor composed of a stator and a rotor at the upper part inside a sealed container. The rotating shaft connected to the electric motor has two eccentric portions. As a compression mechanism corresponding to these eccentric portions, a high-pressure compression element and a low-pressure compression element are provided inside the sealed container in order from the electric motor side.

各圧縮要素は、回転軸の偏心部の偏心回転によりローラを公転運動させる。それらの偏心部は位相が180°異なり、各圧縮要素の圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相である。   Each compression element revolves the roller by the eccentric rotation of the eccentric portion of the rotation shaft. The eccentric portions have a phase difference of 180 °, and the phase difference of the compression process of each compression element is 180 °. That is, the compression process of the two compression elements is in antiphase.

作動流体であるガス冷媒は低圧Psで低圧用圧縮要素内に吸入されて、圧縮されて中間圧Pmに上昇する。中間圧Pmで吐出されたガス冷媒は吐出空間を通過し中間流路へ吐出する。次に中間圧Pmのガス冷媒は中間流路を経て高圧用圧縮要素内に吸入され、高圧Pdに圧縮される。高圧Pdで密閉容器内に吐出されたガス冷媒は、密閉容器内を流下した後、圧縮機外に吐出される。   The gas refrigerant, which is a working fluid, is sucked into the low pressure compression element at a low pressure Ps, is compressed, and rises to an intermediate pressure Pm. The gas refrigerant discharged at the intermediate pressure Pm passes through the discharge space and is discharged to the intermediate flow path. Next, the gas refrigerant having the intermediate pressure Pm is sucked into the high pressure compression element through the intermediate flow path and compressed to the high pressure Pd. The gas refrigerant discharged into the sealed container with the high pressure Pd flows down through the sealed container and is then discharged out of the compressor.

このような密閉容器の内圧が高圧となるロータリ式2段圧縮機の吐出空間の構造として、例えば特許文献1に開示された構造が知られている。図10に、従来技術のロータリ式2段圧縮機の断面図を示す。   As a structure of the discharge space of the rotary type two-stage compressor in which the internal pressure of such a sealed container is high, for example, a structure disclosed in Patent Document 1 is known. FIG. 10 is a cross-sectional view of a conventional rotary two-stage compressor.

圧縮機100は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19に軸支されている。その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、高圧用圧縮要素20b、中間仕切板15、低圧用圧縮要素20a及び端板部19bを備えた副軸受19が積層され、ボルト等の締結要素36で一体化されている。   The compressor 100 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19. In order from the motor 14 side with respect to the rotary shaft 2, a main bearing 9 having an end plate portion 9 a, a high pressure compression element 20 b, an intermediate partition plate 15, a low pressure compression element 20 a, and a sub bearing having an end plate portion 19 b. 19 are laminated and integrated by fastening elements 36 such as bolts.

端板部9bは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19に支持されている。   The end plate portion 9 b is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19 b is supported by the sub bearing 19.

各圧縮要素20aと20bは、次のように構成されている。低圧圧縮要素20aは、副軸受19の端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11と、中間仕切板15とで圧縮室23aは構成される。また、高圧圧縮要素20bは、主軸受9の端板部9aと、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11と、中間仕切板15とで圧縮室23bは構成される。   Each compression element 20a and 20b is comprised as follows. The low pressure compression element 20a is composed of an end plate portion 19b of the auxiliary bearing 19, a cylindrical cylinder 10a, a cylindrical roller 11 fitted to the outer periphery of the eccentric portion 5a, and an intermediate partition plate 15 to form a compression chamber 23a. Is done. Further, the high pressure compression element 20b includes an end plate portion 9a of the main bearing 9, a cylindrical cylinder 10b, a cylindrical roller 11 fitted to the outer periphery of the eccentric portion 5b, and an intermediate partition plate 15, and a compression chamber 23b. Is composed.

それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段に連結された平板状のベーン18(図10には図示せず)が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   In these compression chambers 23a and 23b, flat vanes 18 (not shown in FIG. 10) connected to biasing force applying means such as coil springs rotate in accordance with the eccentric motion of the eccentric portions 5a and 5b. The compression chambers 23a and 23b are divided into a compression space and a suction space by moving forward and backward while contacting the outer periphery of the rollers 11a and 11b.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図10に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIG. 10, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.

作動流体であるガス冷媒の流れを、図10の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、配管31と接続する吸入口25aより低圧用圧縮要素20a内に吸入され、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の圧力が予め設定された圧力になると開口する吐出弁28aが中間圧Pmで開口すると、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。この吐出空間33は、副軸受19とカバー35とにより密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。   The flow of the gas refrigerant that is the working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 is sucked into the low-pressure compression element 20a from the suction port 25a connected to the pipe 31, and is compressed to the intermediate pressure Pm by the eccentric rotation of the roller 11a. When the discharge valve 28a that opens when the pressure in the compression chamber 23a reaches a preset pressure opens at the intermediate pressure Pm, the gas refrigerant that has reached the intermediate pressure Pm is discharged into the discharge space 33 that communicates with the discharge port 26a. . The discharge space 33 is a space that is isolated from the sealed space 29 in the sealed container 13 by the auxiliary bearing 19 and the cover 35, and the internal pressure thereof is basically the intermediate pressure Pm.

中間流路30は吐出空間33と吸入口25bを連通する流路である。吐出空間33と中間流路30、及び吸入口25bからなる一つの連通した空間は、密閉容器13と隔てられ内部圧力が中間圧Pmの中間空間である。したがって、吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、中間流路30を通って、高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The intermediate flow path 30 is a flow path that connects the discharge space 33 and the suction port 25b. One communicating space composed of the discharge space 33, the intermediate flow path 30, and the suction port 25b is an intermediate space that is separated from the hermetic container 13 and has an internal pressure Pm. Therefore, the gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged to the discharge space 33, and then communicates with the pressure chamber 23b of the high-pressure element 20b through the intermediate flow path 30. It reaches the suction port 25b.

次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると開口する吐出弁28bが高圧Pdで開口すると、ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出されたガス冷媒は、電動機14の隙間を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the discharge valve 28b that opens when the pressure in the compression chamber 23b reaches a preset pressure opens at high pressure Pd, the gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The gas refrigerant discharged into the sealed space 29 passes through the gap of the electric motor 14 and is discharged from the discharge pipe 27.

吐出空間33は、端板部19bに対して低圧用圧縮要素20aとは逆側に開口した略凹状の中間容器19と、中央に貫通穴40を有し中間容器19の開口部分を閉塞する円板状のカバー35を備えている。   The discharge space 33 is a circle that has a substantially concave intermediate container 19 that opens to the opposite side of the low-pressure compression element 20a with respect to the end plate portion 19b, and a through hole 40 in the center that closes the opening of the intermediate container 19. A plate-like cover 35 is provided.

中間容器19は、低圧側圧縮要素20aの一壁面となる端板部19bと、端板部19bの中央に位置し回転軸2を軸支する副軸受19aと、端板部19b上で副軸受19aの外周側で副軸受19aを囲むようにに位置する外壁部19cを一体成型したものである。副軸受19aと外壁部19cはそれぞれカバー35と接触する接触面を備え、両者の接触面は同じ高さすなわち同一平面上に位置する。   The intermediate container 19 includes an end plate portion 19b serving as one wall surface of the low-pressure side compression element 20a, a sub-bearing 19a that is located in the center of the end plate portion 19b and supports the rotary shaft 2, and a sub-bearing on the end plate portion 19b. An outer wall portion 19c located so as to surround the auxiliary bearing 19a on the outer peripheral side of 19a is integrally molded. The auxiliary bearing 19a and the outer wall portion 19c each have a contact surface that contacts the cover 35, and both contact surfaces are located at the same height, that is, on the same plane.

このような構造により、中間圧力である吐出空間33を高圧の内部空間29と隔壁し、低圧側圧縮要素20aで圧縮したガスを容器13の内部の高圧側圧縮要素20bからの吐出(高圧)ガスとは隔てた状態で高圧側圧縮要素20bに導入する経路を確立し、段階的にガスを圧縮する2段圧縮機構を可能としている。   With such a structure, the discharge space 33, which is an intermediate pressure, is partitioned from the high pressure internal space 29, and the gas compressed by the low pressure side compression element 20 a is discharged from the high pressure side compression element 20 b inside the container 13. A two-stage compression mechanism that establishes a path for introduction into the high-pressure side compression element 20b in a state separated from the gas and compresses the gas stepwise is possible.

特開昭60−128990号公報(第4頁、第1図)JP-A-60-128990 (page 4, FIG. 1)

従来技術の吐出空間33の構造では、図11に示すようにカバー35の外面から高圧Pdと中間圧力Pmの差圧(Pd-Pm)が作用し、副軸受19aに圧力荷重を伝達する。この副軸受19aへの圧力荷重により、端板部19bの中央が凸状に変形する。変形により図10に示した端板部19bとローラ11aとの摺動損失と、同部分から冷媒もしくは冷凍機油の漏れ損失が増大するという課題があった。   In the structure of the discharge space 33 of the prior art, as shown in FIG. 11, a differential pressure (Pd−Pm) between the high pressure Pd and the intermediate pressure Pm acts from the outer surface of the cover 35, and transmits the pressure load to the sub bearing 19a. Due to the pressure load applied to the auxiliary bearing 19a, the center of the end plate portion 19b is deformed into a convex shape. Due to the deformation, there is a problem that the sliding loss between the end plate portion 19b and the roller 11a shown in FIG. 10 and the leakage loss of refrigerant or refrigerating machine oil from the same portion increase.

特に図11で示すようにボルト等の締結要素36で中間容器19とカバー35を締結する場合、組み立て時の初期荷重も加わる。副軸受19aと外壁部19cの接触面の寸法精度、面精度の差異が生じると、締付荷重が副軸受部19aに生じて端板部19bの変形が増大するという課題があった。   In particular, as shown in FIG. 11, when the intermediate container 19 and the cover 35 are fastened by a fastening element 36 such as a bolt, an initial load at the time of assembly is also applied. When there is a difference in dimensional accuracy and surface accuracy between the contact surfaces of the sub-bearing 19a and the outer wall portion 19c, there is a problem that a tightening load is generated in the sub-bearing portion 19a and deformation of the end plate portion 19b increases.

さらに締結要素36の締付荷重が強い場合は外壁部19cの変形も伴うため、上記の副軸受部19aへの荷重に加えて、外壁部19cとカバー35と間から冷媒もしくは冷凍機油の漏れ込み損失が増大するという課題があった。   Further, when the tightening load of the fastening element 36 is strong, the outer wall portion 19c is also deformed. Therefore, in addition to the load on the auxiliary bearing portion 19a, the refrigerant or the refrigerator oil leaks between the outer wall portion 19c and the cover 35. There was a problem that loss increased.

本発明の目的は、低圧側圧縮要素の吐出空間を形成する中間容器において、圧力荷重と締付荷重による変形を抑制し、摺動損失の低減を図ることにある。さらに締付荷重が強い場合の外壁部の変形を抑制し、冷媒もしくは冷凍機油の漏れ込み損失を低減することにある。   An object of the present invention is to suppress deformation due to a pressure load and a tightening load in an intermediate container forming a discharge space of a low-pressure side compression element, and to reduce a sliding loss. Furthermore, the deformation of the outer wall portion when the tightening load is strong is suppressed, and the leakage loss of refrigerant or refrigerating machine oil is reduced.

上記目的を達成するために、本発明のロータリ圧縮機は、密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが仕切板を介して設けられた回転圧縮要素と、前記密閉容器の内部空間と隔てた前記低圧用圧縮要素の吐出空間とを備えている。そして前記吐出空間は、前記低圧用圧縮要素に隣接して設けられて前記回転軸を軸支する軸受とこの軸受の周囲を囲む壁との間の空間を少なくとも有し、前記低圧用圧縮要素に対向して前記吐出空間と前記密閉容器の内部空間とを隔て前記軸受に軸支された前記回転軸と前記密閉容器の内部空間とが通ずる貫通穴が設けられた吐出空間カバーを有し、この吐出空間カバーと前記軸受とは弾性体を介している。   In order to achieve the above object, a rotary compressor of the present invention includes an electric motor in a sealed container, a rotating shaft driven by the electric motor and having two eccentric parts, and a roller that revolves due to the eccentric rotation of the eccentric part. A low-pressure compression element and a high-pressure compression element provided in the compression chamber, respectively, and a rotary compression element provided via a partition plate; and a discharge space of the low-pressure compression element separated from the internal space of the sealed container. ing. The discharge space has at least a space between a bearing provided adjacent to the low pressure compression element and supporting the rotating shaft and a wall surrounding the bearing, and the discharge space is provided in the low pressure compression element. A discharge space cover provided with a through hole through which the rotary shaft pivotally supported by the bearing and the inner space of the sealed container communicates with the discharge space and the inner space of the sealed container facing each other. The discharge space cover and the bearing are via an elastic body.

さらに締付荷重が強い場合には、前記副軸受と前記外壁部とを連結するように例えば略矩形の断面形状を有する補強用の支持部を少なくとも1つ以上備え、支持部の高さを軸受の周囲を囲む壁の頂部よりも低くした。   Further, when the tightening load is strong, at least one reinforcing support portion having, for example, a substantially rectangular cross-sectional shape is connected so as to connect the auxiliary bearing and the outer wall portion, and the height of the support portion is set to the bearing. It was lower than the top of the wall that surrounds.

また弾性体として、吐出空間カバー側が底面となる略円錐台状の皿バネ、または円板状のガスケットを用いてもよい。   Further, as the elastic body, a substantially frustoconical disc spring having a bottom surface on the discharge space cover side or a disc-shaped gasket may be used.

さらに締付荷重の影響を緩和するために、吐出空間カバーを中間空間へ締結する締結要素は、回転軸の軸中心に対して直径φDpの円周上に配置され、その直径φDpを軸受の最大外径φdと軸受の周囲を囲む壁の最大内径φDに対して (φd+φD)/2≦φDp≦φDの範囲としてもよい。   Further, in order to reduce the influence of the tightening load, the fastening element for fastening the discharge space cover to the intermediate space is arranged on the circumference of the diameter φDp with respect to the axis center of the rotating shaft, and the diameter φDp is set to the maximum of the bearing. The range may be (φd + φD) / 2 ≦ φDp ≦ φD with respect to the outer diameter φd and the maximum inner diameter φD of the wall surrounding the periphery of the bearing.

本発明によれば、低圧側圧縮要素における摺動損失を低減でき、若しくは冷媒もしくは冷凍機油の漏れ込み損失を低減でき、ロータリ圧縮機の性能向上に寄与するものである。   According to the present invention, the sliding loss in the low-pressure side compression element can be reduced, or the leakage loss of refrigerant or refrigerating machine oil can be reduced, which contributes to the improvement of the performance of the rotary compressor.

本発明の一実施形態を、図1から図7を用いて説明する。図1は、本実施形態のロータリ式2段圧縮機の縦断面図である。図1において、図10と同等の部品、部材については同じ番号を付与した。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a rotary two-stage compressor according to this embodiment. In FIG. 1, parts and members equivalent to those in FIG.

圧縮機1は、底部21と蓋部12と胴部22からなる密閉容器13を備える。密閉容器13内部の上方には、ステータ7とロータ8を有する電動機14が設けられている。電動機14に連結された回転軸2は、2つの偏心部5を備えて、主軸受9と副軸受19aに軸支されている。その回転軸2に対して電動機14側から順に、端板部9aを備えた主軸受9、高圧用圧縮要素20b、中間仕切板15、低圧用圧縮要素20a及び低圧用圧縮要素20aと共有する端板部19bと外壁部19cと副軸受19aとからなる凹状の中間容器19が積層され、ボルト等の締結要素36で一体化されている。   The compressor 1 includes a sealed container 13 including a bottom portion 21, a lid portion 12, and a body portion 22. An electric motor 14 having a stator 7 and a rotor 8 is provided above the inside of the sealed container 13. The rotating shaft 2 connected to the electric motor 14 includes two eccentric portions 5 and is pivotally supported by the main bearing 9 and the auxiliary bearing 19a. Ends shared with the main bearing 9, the high pressure compression element 20b, the intermediate partition plate 15, the low pressure compression element 20a, and the low pressure compression element 20a provided with an end plate portion 9a in order from the motor 14 side with respect to the rotating shaft 2. A concave intermediate container 19 composed of a plate portion 19b, an outer wall portion 19c, and a sub-bearing 19a is laminated and integrated with a fastening element 36 such as a bolt.

端板部9aは、胴部22の内壁に溶接によって固定されて、主軸受9を支持している。端板部19bは、副軸受19aに支持されている。なお、本実施形態では端板部19bは締結要素36で固定されているが、胴部22に溶接で固定されても構わない。   The end plate portion 9 a is fixed to the inner wall of the body portion 22 by welding and supports the main bearing 9. The end plate portion 19b is supported by the auxiliary bearing 19a. In the present embodiment, the end plate portion 19b is fixed by the fastening element 36, but may be fixed to the body portion 22 by welding.

各圧縮要素20aと20bは、図1、図2のように構成されている。低圧圧縮要素20aは、端板部19bと、円筒状のシリンダ10aと、偏心部5aの外周に嵌め合わされた円筒状のローラ11aと、中間仕切板15とで圧縮室23aは構成される。また、高圧圧縮要素20bは、端板部9aと、円筒状のシリンダ10bと、偏心部5bの外周に嵌め合わされた円筒状のローラ11bと、中間仕切板15とで圧縮室23bは構成される。   Each compression element 20a and 20b is comprised like FIG. 1, FIG. In the low-pressure compression element 20a, a compression chamber 23a is constituted by an end plate portion 19b, a cylindrical cylinder 10a, a cylindrical roller 11a fitted to the outer periphery of the eccentric portion 5a, and the intermediate partition plate 15. In the high-pressure compression element 20b, a compression chamber 23b is composed of an end plate portion 9a, a cylindrical cylinder 10b, a cylindrical roller 11b fitted to the outer periphery of the eccentric portion 5b, and an intermediate partition plate 15. .

それらの圧縮室23a、23bは、コイルバネのような付勢力付与手段(図示せず)に連結された平板状のベーン18が、偏心部5a、5bの偏心運動に合わせて回転するローラ11a、11bの外周上を接触しながら進退運動することにより、圧縮室23a、23bを圧縮空間と吸込み空間に分割する。   These compression chambers 23a, 23b are rollers 11a, 11b in which a flat vane 18 connected to an urging force applying means (not shown) such as a coil spring rotates in accordance with the eccentric motion of the eccentric portions 5a, 5b. The compression chambers 23a and 23b are divided into a compression space and a suction space by moving back and forth while contacting the outer periphery of the compression chamber 23a.

圧縮要素20は、偏心部5が偏心回転することでローラ11を駆動する。図1、図2に示すように偏心部5aと偏心部5bは位相が180°異なり、圧縮要素20a、20bの圧縮工程の位相差は180°である。すなわち2つの圧縮要素の圧縮工程は逆位相となっている。   The compression element 20 drives the roller 11 when the eccentric part 5 rotates eccentrically. As shown in FIGS. 1 and 2, the eccentric portion 5a and the eccentric portion 5b have a phase difference of 180 °, and the phase difference in the compression process of the compression elements 20a and 20b is 180 °. That is, the compression process of the two compression elements is in opposite phase.

作動流体であるガス冷媒の流れを、図1の矢印で表す。配管31を通って供給される低圧Psのガス冷媒は、配管31と接続する吸入口25aより低圧用圧縮要素20a内に吸入され、ローラ11aが偏心回転することにより中間圧Pmまで圧縮される。圧縮室23a内の圧力が予め設定された圧力になると開口する吐出弁28aが中間圧Pmで開口すると、中間圧Pmとなったガス冷媒が、吐出口26aと連通する吐出空間33に吐出される。この吐出空間33は、低圧用圧縮要素20aに隣接して設けられ、中間容器19と吐出空間33を覆うカバー35と弾性体37により密閉容器13内の密閉空間29と隔離された空間であり、その内部圧力は基本的には中間圧Pmとなる。中間流路30は吐出空間33からの排出口26cと吸入口25bを連通する流路である。吐出弁28aが開口した吐出口26aから吐出された圧力Pmのガス冷媒は、吐出空間33に吐出された後、排出口26cと中間流路30を通って、高圧圧力要素20bの圧力室23bと連通する吸入口25bに至る。   The flow of the gas refrigerant which is a working fluid is represented by an arrow in FIG. The low-pressure Ps gas refrigerant supplied through the pipe 31 is sucked into the low-pressure compression element 20a from the suction port 25a connected to the pipe 31, and is compressed to the intermediate pressure Pm by the eccentric rotation of the roller 11a. When the discharge valve 28a that opens when the pressure in the compression chamber 23a reaches a preset pressure opens at the intermediate pressure Pm, the gas refrigerant that has reached the intermediate pressure Pm is discharged into the discharge space 33 that communicates with the discharge port 26a. . The discharge space 33 is a space that is provided adjacent to the compression element 20a for low pressure, and is isolated from the sealed space 29 in the sealed container 13 by the cover 35 and the elastic body 37 that cover the intermediate container 19, the discharge space 33, The internal pressure is basically the intermediate pressure Pm. The intermediate flow path 30 is a flow path that connects the discharge port 26c from the discharge space 33 and the suction port 25b. After the gas refrigerant having the pressure Pm discharged from the discharge port 26a opened by the discharge valve 28a is discharged to the discharge space 33, the gas refrigerant passes through the discharge port 26c and the intermediate flow path 30, and the pressure chamber 23b of the high-pressure element 20b. The suction port 25b communicates.

次に、中間流路30を通過して吸入口25bより高圧用圧縮要素20b内に吸入された中間圧Pmのガス冷媒は、ローラ11bが公転することにより高圧Pdまで圧縮される。圧縮室23b内の圧力が予め設定された圧力になると、開口する吐出弁28bが高圧Pdで開口する。ガス冷媒は吐出口26bから密閉容器13の内部空間である密閉空間29に吐出される。この密閉空間29に吐出されたガス冷媒は、電動機14の隙間を通過して吐出管27より吐出される。   Next, the gas refrigerant having the intermediate pressure Pm passing through the intermediate flow path 30 and sucked into the high pressure compression element 20b from the suction port 25b is compressed to the high pressure Pd by the revolution of the roller 11b. When the pressure in the compression chamber 23b reaches a preset pressure, the opening discharge valve 28b opens at a high pressure Pd. The gas refrigerant is discharged from the discharge port 26b to the sealed space 29 that is the internal space of the sealed container 13. The gas refrigerant discharged into the sealed space 29 passes through the gap of the electric motor 14 and is discharged from the discharge pipe 27.

図3に吐出空間33の縦断面図を、図4に中間容器19の下面図を示す。中間空間33は、中間容器19とカバー35と弾性体37とが締結要素36で締結され構成される。弾性体37は、平坦面19dとカバー35との隙間に挟み込まれる。   FIG. 3 is a longitudinal sectional view of the discharge space 33, and FIG. 4 is a bottom view of the intermediate container 19. The intermediate space 33 is configured by fastening the intermediate container 19, the cover 35, and the elastic body 37 with a fastening element 36. The elastic body 37 is sandwiched between the flat surface 19 d and the cover 35.

中間容器19は鋳物もしくは鉄系の焼結部材であり、副軸受19aと端板部19bと外壁部19cとが一体で成型されている。端板部19aは平板状であり、低圧用圧縮要素20aからの吐出穴26aと、図1で示した吐出弁28aを設置するための台座38を備えている。   The intermediate container 19 is a cast or iron-based sintered member, and the auxiliary bearing 19a, the end plate portion 19b, and the outer wall portion 19c are integrally molded. The end plate portion 19a has a flat plate shape and includes a discharge hole 26a from the compression element 20a for low pressure and a base 38 for installing the discharge valve 28a shown in FIG.

中間容器19は、低圧用圧縮要素20aに対して反対側のカバー35方向に開口した略凹状であり、外壁部19cは型成型もしくは切削や研磨により端板部19bと平行でカバー35に接触する接触面を備えている。   The intermediate container 19 has a substantially concave shape opened in the direction of the cover 35 on the opposite side to the compression element 20a for low pressure, and the outer wall portion 19c contacts the cover 35 in parallel with the end plate portion 19b by molding, cutting or polishing. It has a contact surface.

外壁部19cは最大内径がφDの略円筒形状であり、締結要素36用の貫通穴39と、中間流路30に接続する排出口30に連通する排出口25cがある。外壁部19cの内側は貫通穴39を設けたため、花弁状である。すなわち、貫通穴39にかかる締結要素36からの応力を外壁部19cと連続する構造により応力伝達を可能とするものである。   The outer wall portion 19 c has a substantially cylindrical shape with a maximum inner diameter of φD, and includes a through hole 39 for the fastening element 36 and a discharge port 25 c communicating with the discharge port 30 connected to the intermediate flow path 30. Since the through-hole 39 is provided inside the outer wall portion 19c, it has a petal shape. In other words, the stress from the fastening element 36 applied to the through hole 39 can be transmitted by the structure continuous with the outer wall portion 19c.

貫通穴39は直径φDpの円周上に4個以上、ほぼ周方向に均等に設けた。直径φDpは、直径φDと後述する副軸受19aの最大外径φdに対して、(φD+φd)/2≦φDp≦φDの範囲とした。   Four or more through holes 39 are provided on the circumference of the diameter φDp substantially uniformly in the circumferential direction. The diameter φDp was in the range of (φD + φd) / 2 ≦ φDp ≦ φD with respect to the diameter φD and the maximum outer diameter φd of the sub-bearing 19a described later.

副軸受19aは、最大外径φdの略円筒形状である。外径側は段付き形状であり、カバー35と対面する平坦面19dを備えている。平坦面19dは、外壁部19cよりも高さが低く副軸受19aの全周に渡って削られて設けられた平坦面である。平坦面19dとカバー35との間には所定の隙間が得られる位置に、平坦面19dを設けた。   The auxiliary bearing 19a has a substantially cylindrical shape with a maximum outer diameter φd. The outer diameter side has a stepped shape and is provided with a flat surface 19 d facing the cover 35. The flat surface 19d is a flat surface that is lower in height than the outer wall portion 19c and is cut and provided over the entire circumference of the auxiliary bearing 19a. The flat surface 19d is provided at a position where a predetermined gap is obtained between the flat surface 19d and the cover 35.

副軸受19aの内径側も段付きであり、図1に示した回転軸2を軸支する接触部19eと、接触部19eよりも径が大きく回転軸2を軸支しない非接触部19fからなる。ここで平坦面19dは、接触部19eではなく非接触部19fの外周部分に設けた。平坦面19dは中間容器19と一体で型成したが、切削等の機械加工を用いても構わない。   The auxiliary bearing 19a has a stepped inner diameter side, and includes a contact portion 19e that supports the rotating shaft 2 shown in FIG. 1 and a non-contact portion 19f that has a larger diameter than the contact portion 19e and does not support the rotating shaft 2. . Here, the flat surface 19d is provided not on the contact portion 19e but on the outer peripheral portion of the non-contact portion 19f. The flat surface 19d is formed integrally with the intermediate container 19, but machining such as cutting may be used.

カバー35は図5に示すように、プレス加工で打ち抜き成型した円板状部材である。カバー35の外径は、中間容器19の最大内径φDよりも大きくした。ただし外壁部19cに接触する平面については、切削、研磨加工を施しても構わない。カバー35には、締結要素36用の貫通穴39を中間容器19の貫通穴39と同じ位置、同じ個数を設けた。カバー35の中央には図1の回転軸2もしくは副軸受19aの先端部分を通すように、中央穴40を設けた。中央穴40の径は、副軸受19aの最大径φdよりも小さい。   As shown in FIG. 5, the cover 35 is a disk-shaped member that is stamped and formed by pressing. The outer diameter of the cover 35 was made larger than the maximum inner diameter φD of the intermediate container 19. However, the flat surface contacting the outer wall portion 19c may be cut or polished. The cover 35 was provided with the same number and the same number of through holes 39 for the fastening elements 36 as the through holes 39 of the intermediate container 19. A central hole 40 is provided in the center of the cover 35 so as to pass the rotary shaft 2 of FIG. 1 or the tip of the auxiliary bearing 19a. The diameter of the central hole 40 is smaller than the maximum diameter φd of the auxiliary bearing 19a.

また図6に示すように弾性体37は、本実施の一形態では略円錐台形状の皿バネである。皿バネは銅部材をプレスにて、成型した。弾性体37は、副軸受19aの先端を通して平坦面19dに設置される。   Moreover, as shown in FIG. 6, the elastic body 37 is a disc spring having a substantially truncated cone shape in the present embodiment. The disc spring was formed by pressing a copper member. The elastic body 37 is installed on the flat surface 19d through the tip of the auxiliary bearing 19a.

その際に図3に示すように、弾性体37の底面をカバー35の側とする。半径が大きい略円錐台の底面側をカバー35に接触するように設けるのは、反対に設けるのに対して部品間の密封領域(シール領域)を広く取ることが可能となる。   At that time, as shown in FIG. 3, the bottom surface of the elastic body 37 is set to the cover 35 side. Providing the bottom surface side of the substantially truncated cone having a large radius so as to contact the cover 35 makes it possible to provide a wide sealing area (seal area) between the parts as opposed to providing the cover 35 in the opposite direction.

また、弾性体37は、図7の断面図に示すような円板状のガスケットでもよい。ガスケットとする場合、より変形しやすいようにゴム材もしくは樹脂材とした。   The elastic body 37 may be a disc-shaped gasket as shown in the cross-sectional view of FIG. In the case of a gasket, a rubber material or a resin material is used so that it can be more easily deformed.

以上の構成により、外壁部19cとカバー35とは面接触してシール性を確保する。一方平坦面19とカバー35の隙間は、弾性体37が変形し密着することでシール性を確保する。本形状は、カバー35が外圧により図11のように圧力荷重を受けても弾性体37が変形するため、端板部19bの変形を抑制する。さらに外壁部19cと平坦面19dとで加工誤差が生じても、シール性を確保しつつ端板部19bの変形を抑制できる。   With the above configuration, the outer wall portion 19c and the cover 35 are in surface contact to ensure sealing performance. On the other hand, the gap between the flat surface 19 and the cover 35 ensures sealing performance by the elastic body 37 being deformed and closely adhered. This shape suppresses deformation of the end plate portion 19b because the elastic body 37 is deformed even when the cover 35 receives a pressure load as shown in FIG. 11 due to external pressure. Furthermore, even if a processing error occurs between the outer wall portion 19c and the flat surface 19d, the deformation of the end plate portion 19b can be suppressed while ensuring the sealing performance.

さらに貫通穴39の配置を(φD+φd)/2≦φDp≦φDとしたため、締結要素36からの締結荷重を剛性の高い外壁部19cへの垂直応力として伝達し、副軸受19aへの荷重の伝達を緩和する。そのため締付荷重が強い場合でも、副軸受19aからの荷重による端板部19bの変形を抑制できる。   Further, since the arrangement of the through holes 39 is (φD + φd) / 2 ≦ φDp ≦ φD, the fastening load from the fastening element 36 is transmitted as a vertical stress to the rigid outer wall portion 19c, and the load is transmitted to the auxiliary bearing 19a. ease. Therefore, even when the tightening load is strong, the deformation of the end plate portion 19b due to the load from the auxiliary bearing 19a can be suppressed.

さらに平坦面19dを非接触部19f側に設けたため、たとえ平坦面19dに荷重を受けた場合でも副軸受19aの径方向への変形で緩和でき、端板部19bや接触部19eの変形を抑制する。   Further, since the flat surface 19d is provided on the non-contact portion 19f side, even if a load is applied to the flat surface 19d, the auxiliary bearing 19a can be relaxed by deformation in the radial direction, and deformation of the end plate portion 19b and the contact portion 19e is suppressed. To do.

さらに副軸受19aを段付き形状としているため、弾性体37の組み立て時の位置決めを容易にし、弾性体37の位置ずれを防止できる。   Further, since the auxiliary bearing 19a has a stepped shape, positioning of the elastic body 37 during assembly can be facilitated, and displacement of the elastic body 37 can be prevented.

次に本実施形態の応用例を、図8から図9を用いて説明する。図8は、本実施形態の中間容器19の下面図、図9は図8のA−A断面図である。外壁部19cと副軸受19aとの間に、略矩形の断面形状を備えた支持部である梁41を3箇所設けた。   Next, application examples of the present embodiment will be described with reference to FIGS. 8 is a bottom view of the intermediate container 19 of the present embodiment, and FIG. 9 is a cross-sectional view taken along the line AA of FIG. Between the outer wall portion 19c and the auxiliary bearing 19a, three beams 41 which are support portions having a substantially rectangular cross-sectional shape are provided.

梁41は、貫通穴39の中心と副軸受19aの中心を結ぶ直線に沿って設けた。これは締結要素36の荷重をより緩和するように、貫通穴39の周辺の剛性を高めるためである。この支持部である梁41を、少なくとも1箇所設けるようにしてもよいが、図に示すように各貫通穴39に対して設けることでより効果が高まる。   The beam 41 was provided along a straight line connecting the center of the through hole 39 and the center of the auxiliary bearing 19a. This is to increase the rigidity around the through hole 39 so as to further reduce the load on the fastening element 36. Although at least one beam 41 as the support portion may be provided, the effect is further enhanced by providing the beam 41 for each through hole 39 as shown in the figure.

梁41は、図9に示すように外壁部19cよりも高さが低く、平坦面19dとほぼ同一の高さとした。ただし梁41の高さは、平坦面19dより低くてもよい。排出口25cは、梁41で仕切られた3つの空間の内、吐出口26aと同一の空間に連通するよう設けた。   As shown in FIG. 9, the beam 41 has a height lower than that of the outer wall portion 19c and substantially the same height as the flat surface 19d. However, the height of the beam 41 may be lower than the flat surface 19d. The discharge port 25c is provided so as to communicate with the same space as the discharge port 26a among the three spaces partitioned by the beam 41.

本構造により締付荷重による外壁部19cの変形を抑制し、外壁部19cとカバー35とのシール性をより向上する。梁41の一端である長辺部分の高さを外壁部19bの頂部より低くしているので、梁41によるカバー35から端板部19bへの荷重の伝達は増加しない。すなわち端板部19bの変形増加を抑制しつつ、外壁部19cの変形を抑制できる。   With this structure, the deformation of the outer wall portion 19c due to the tightening load is suppressed, and the sealing performance between the outer wall portion 19c and the cover 35 is further improved. Since the height of the long side portion which is one end of the beam 41 is made lower than the top portion of the outer wall portion 19b, the transmission of the load from the cover 35 to the end plate portion 19b by the beam 41 does not increase. That is, it is possible to suppress deformation of the outer wall portion 19c while suppressing an increase in deformation of the end plate portion 19b.

さらに排出口25cの位置により、梁41は流体的な障害とならない。すなわち、梁41による流体損失の増加を抑制している。   Furthermore, the beam 41 does not become a fluid obstacle due to the position of the discharge port 25c. That is, an increase in fluid loss due to the beam 41 is suppressed.

以上より本実施形態は、低圧側圧縮要素の吐出空間を形成する中間容器における圧力荷重と締付荷重による変形を抑制し、摺動損失を低減する。さらに締付荷重が強い場合の外壁部の変形を抑制し、冷媒もしくは冷凍機油の漏れ込み損失を低減する。   As mentioned above, this embodiment suppresses the deformation | transformation by the pressure load and clamping | tightening load in the intermediate | middle container which forms the discharge space of a low voltage | pressure side compression element, and reduces a sliding loss. Furthermore, the deformation of the outer wall portion when the tightening load is strong is suppressed, and the leakage loss of refrigerant or refrigerating machine oil is reduced.

本発明の一実施形態を示すロータリ式2段圧縮機の断面図。1 is a cross-sectional view of a rotary two-stage compressor showing an embodiment of the present invention. 本発明の一実施形態を示すロータリ式2段圧縮機の構成図。1 is a configuration diagram of a rotary two-stage compressor showing an embodiment of the present invention. 本実施形態の中間空間の縦断面図。The longitudinal cross-sectional view of the intermediate space of this embodiment. 本実施形態の中間容器の下面図。The bottom view of the intermediate container of this embodiment. 本実施形態のカバーの下面図。The bottom view of the cover of this embodiment. 本実施形態の弾性体の断面図。Sectional drawing of the elastic body of this embodiment. 本実施形態のガスケットの断面図。Sectional drawing of the gasket of this embodiment. 本実施形態の応用例である中間空間の縦断面図。The longitudinal cross-sectional view of the intermediate space which is an application example of this embodiment. 図8のA−A断面図。AA sectional drawing of FIG. 従来技術のロータリ式2段圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary type two stage compressor of a prior art. 従来技術の中間空間における荷重と変形を表す図。The figure showing the load and deformation | transformation in the intermediate space of a prior art.

符号の説明Explanation of symbols

1…圧縮機、2…回転軸、5…偏心部、9…主軸受、10…シリンダ、11…ローラ、19…中間容器、20…圧縮要素、30…中間流路、33…吐出空間、35…カバー、37…弾性体。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Rotating shaft, 5 ... Eccentric part, 9 ... Main bearing, 10 ... Cylinder, 11 ... Roller, 19 ... Intermediate container, 20 ... Compression element, 30 ... Intermediate flow path, 33 ... Discharge space, 35 ... cover, 37 ... elastic body.

Claims (8)

密閉容器内に電動機と、その電動機で駆動され2つの偏心部を有する回転軸と、前記偏心部の偏心回転により公転運動するローラをそれぞれ圧縮室に備えた低圧用圧縮要素と高圧用圧縮要素とが中間仕切板を介して設けられた回転圧縮要素と、前記低圧用圧縮要素の圧縮室と前記高圧用圧縮要素の圧縮室とに接続する前記密閉容器の内部空間と隔てた前記低圧用圧縮要素からの吐出空間とを備えたロータリ式2段圧縮機において、
前記吐出空間は、前記低圧用圧縮要素に隣接して設けられて前記回転軸を軸支する軸受とこの軸受の周囲を囲む壁との間の空間を少なくとも有し、前記低圧用圧縮要素に対向して前記吐出空間と前記密閉容器の内部空間とを隔て前記軸受に軸支された前記回転軸と前記密閉容器の内部空間とが通ずる貫通穴が設けられた吐出空間カバーを有し、この吐出空間カバーと前記軸受とは弾性体を介しているロータリ式2段圧縮機。
A low-pressure compression element and a high-pressure compression element each having an electric motor in a sealed container, a rotating shaft driven by the electric motor and having two eccentric portions, and a roller that revolves by the eccentric rotation of the eccentric portion. The low-pressure compression element separated from the rotary compression element provided via an intermediate partition plate, the compression chamber of the low-pressure compression element and the internal space of the hermetic container connected to the compression chamber of the high-pressure compression element A rotary two-stage compressor having a discharge space from
The discharge space has at least a space between a bearing provided adjacent to the low pressure compression element and supporting the rotary shaft and a wall surrounding the bearing, and faces the low pressure compression element. And a discharge space cover provided with a through-hole through which the rotary shaft pivotally supported by the bearing and the inner space of the sealed container communicates with the discharge space and the inner space of the sealed container. The space type cover and the bearing are a rotary type two-stage compressor through an elastic body.
請求項1記載のロータリ式2段圧縮機において、前記軸受と前記壁部との間に架けられた支持部が少なくとも1つ以上設けられているロータリ式2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein at least one support portion is provided between the bearing and the wall portion. 請求項2記載のロータリ式2段圧縮機において、前記支持部はその一端部が前記壁の頂部より前記低圧圧縮要素に近い位置にあるロータリ式2段圧縮機。   3. The rotary two-stage compressor according to claim 2, wherein one end portion of the support portion is located closer to the low-pressure compression element than a top portion of the wall. 4. 請求項2記載のロータリ式2段圧縮機において、前記吐出空間カバーを前記中間空間へ締結する締結要素が貫通する穴は前記壁と前記軸受との間に設けられ、前記支持部は前記穴と前記軸受との間に設けられているロータリ式2段圧縮機。   3. The rotary two-stage compressor according to claim 2, wherein a hole through which a fastening element that fastens the discharge space cover to the intermediate space passes is provided between the wall and the bearing, and the support portion includes the hole and the hole. A rotary two-stage compressor provided between the bearings. 請求項1記載のロータリ式2段圧縮機において、前記低圧用圧縮要素の一部であって前記壁が設けられた端板部を有する前記吐出空間は、前記軸受を内部に有して前記端板部と前記壁とにより前記低圧用圧縮空間に対向する方向に開口部を有する中間容器と前記吐出空間カバーとを有し、前記軸受には前記吐出空間カバーと対向する平坦面が設けられ、この平坦面と前記カバーとの間に前記弾性体が設けられたロータリ式2段圧縮機。   2. The rotary type two-stage compressor according to claim 1, wherein the discharge space having an end plate portion which is a part of the low pressure compression element and has the wall is provided with the bearing inside and the end. An intermediate container having an opening in the direction facing the low-pressure compression space by the plate portion and the wall and the discharge space cover, and the bearing is provided with a flat surface facing the discharge space cover, A rotary two-stage compressor in which the elastic body is provided between the flat surface and the cover. 請求項1記載のロータリ式2段圧縮機において、前記弾性体は、前記吐出空間カバー側が底面となる略円錐台状の皿バネ、または円板状のガスケットであるロータリ式2段圧縮機。   2. The rotary two-stage compressor according to claim 1, wherein the elastic body is a substantially frustoconical disc spring having a bottom surface on the discharge space cover side or a disc-shaped gasket. 請求項1記載のロータリ式2段圧縮機において、前記吐出空間カバーを前記中間空間へ締結する締結要素は、前記回転軸の軸中心に対して直径φDpの円周上に配置され、前記直径φDpが前記軸受の最大外径φdと前記壁の最大内径φDに対して(φd+φD)/2≦φDp≦φDであるロータリ式2段圧縮機。   2. The rotary type two-stage compressor according to claim 1, wherein a fastening element that fastens the discharge space cover to the intermediate space is disposed on a circumference of a diameter φDp with respect to an axis center of the rotating shaft, and the diameter φDp A rotary two-stage compressor in which (φd + φD) / 2 ≦ φDp ≦ φD with respect to the maximum outer diameter φd of the bearing and the maximum inner diameter φD of the wall. 請求項1記載のロータリ式2段圧縮機において、前記弾性体は、前記吐出空間カバーと前記軸受との間の空間内に配されているロータリ式2段圧縮機。
2. The rotary two-stage compressor according to claim 1, wherein the elastic body is arranged in a space between the discharge space cover and the bearing.
JP2004370375A 2004-12-22 2004-12-22 Rotary two stage compressor Withdrawn JP2006177223A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004370375A JP2006177223A (en) 2004-12-22 2004-12-22 Rotary two stage compressor
CN200510138111A CN100585187C (en) 2004-12-22 2005-12-22 Rotary two-stage compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004370375A JP2006177223A (en) 2004-12-22 2004-12-22 Rotary two stage compressor

Publications (1)

Publication Number Publication Date
JP2006177223A true JP2006177223A (en) 2006-07-06

Family

ID=36731559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004370375A Withdrawn JP2006177223A (en) 2004-12-22 2004-12-22 Rotary two stage compressor

Country Status (2)

Country Link
JP (1) JP2006177223A (en)
CN (1) CN100585187C (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069446A1 (en) * 2007-11-28 2009-06-04 Daikin Industries, Ltd. Seal structure and compressor
JP2010190076A (en) * 2009-02-17 2010-09-02 Daikin Ind Ltd Rotary fluid machine
JP2010218524A (en) * 2009-03-17 2010-09-30 Yahoo Japan Corp Community information distribution device, community information distribution method, and community information distribution program
US20100284847A1 (en) * 2007-11-13 2010-11-11 Jeong-Min Han 2 stage rotary compressor
KR101268624B1 (en) 2007-07-31 2013-05-29 엘지전자 주식회사 Two stage rotary compressor
KR101275956B1 (en) 2011-06-27 2013-06-17 미쓰비시덴키 가부시키가이샤 Rotary compressor
JP2013209950A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Rotary compressor
KR101328858B1 (en) 2007-07-31 2013-11-13 엘지전자 주식회사 Two stage rotary compressor
KR101328824B1 (en) 2007-07-31 2013-11-13 엘지전자 주식회사 Two stage rotary compressor
WO2016052325A1 (en) * 2014-09-30 2016-04-07 ダイキン工業株式会社 Compressor
CN113250959A (en) * 2020-02-13 2021-08-13 安徽美芝精密制造有限公司 Compressor and refrigeration equipment
WO2022091653A1 (en) * 2020-10-30 2022-05-05 ダイキン工業株式会社 Compressor, method for manufacturing compressor, and air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644595A (en) * 2011-02-16 2012-08-22 广东美芝制冷设备有限公司 Rotary type compressor
CN103671117A (en) * 2013-11-20 2014-03-26 广东美芝制冷设备有限公司 Rotary compressor and compression unit thereof
CN103850938B (en) * 2013-12-20 2016-07-06 珠海凌达压缩机有限公司 suction and exhaust structure of two-stage compressor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268624B1 (en) 2007-07-31 2013-05-29 엘지전자 주식회사 Two stage rotary compressor
KR101328824B1 (en) 2007-07-31 2013-11-13 엘지전자 주식회사 Two stage rotary compressor
KR101328858B1 (en) 2007-07-31 2013-11-13 엘지전자 주식회사 Two stage rotary compressor
US20100284847A1 (en) * 2007-11-13 2010-11-11 Jeong-Min Han 2 stage rotary compressor
US8596995B2 (en) 2007-11-28 2013-12-03 Daikin Industries, Ltd. Sealing structure and compressor
AU2008330845B2 (en) * 2007-11-28 2011-05-26 Daikin Industries, Ltd. Sealing structure and compressor
CN101878368B (en) * 2007-11-28 2013-06-05 大金工业株式会社 Seal structure and compressor
KR101191483B1 (en) 2007-11-28 2012-10-15 다이킨 고교 가부시키가이샤 Seal structure and compressor
WO2009069446A1 (en) * 2007-11-28 2009-06-04 Daikin Industries, Ltd. Seal structure and compressor
JP2010190076A (en) * 2009-02-17 2010-09-02 Daikin Ind Ltd Rotary fluid machine
JP2010218524A (en) * 2009-03-17 2010-09-30 Yahoo Japan Corp Community information distribution device, community information distribution method, and community information distribution program
KR101275956B1 (en) 2011-06-27 2013-06-17 미쓰비시덴키 가부시키가이샤 Rotary compressor
JP2013209950A (en) * 2012-03-30 2013-10-10 Mitsubishi Electric Corp Rotary compressor
WO2016052325A1 (en) * 2014-09-30 2016-04-07 ダイキン工業株式会社 Compressor
JP2016070229A (en) * 2014-09-30 2016-05-09 ダイキン工業株式会社 Compressor
CN113250959A (en) * 2020-02-13 2021-08-13 安徽美芝精密制造有限公司 Compressor and refrigeration equipment
WO2022091653A1 (en) * 2020-10-30 2022-05-05 ダイキン工業株式会社 Compressor, method for manufacturing compressor, and air conditioner
JP2022072807A (en) * 2020-10-30 2022-05-17 ダイキン工業株式会社 Compressor, method of manufacturing compressor, and air conditioner

Also Published As

Publication number Publication date
CN1793656A (en) 2006-06-28
CN100585187C (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US9719511B2 (en) Scroll compressor in which a fixed scroll and an orbiting scroll are placed between a partition plate and a main bearing
JP2006177223A (en) Rotary two stage compressor
KR101368396B1 (en) Scroll compressor
US9145890B2 (en) Rotary compressor with dual eccentric portion
US9523361B2 (en) Scroll compressor having back pressure chamber that operatively contains a discharge pressure and an intermediate pressure during different periods of time within a single compression cycle
KR101335427B1 (en) Scroll compressor
WO2017158665A1 (en) Scroll compressor
JP2006177227A (en) Rotary two-stage compressor
WO2003054391A1 (en) Suction mechanism of rotary compressor
JP2006177228A (en) Rotary two-stage compressor and air conditioner using the same
WO2009090888A1 (en) Rotary fluid machine
JP6767640B2 (en) Scroll compressor
JP6582244B2 (en) Scroll compressor
JP5040111B2 (en) Compressor
KR101882713B1 (en) Scroll compressor
US20240102469A1 (en) Scroll compressor
KR101821708B1 (en) Scroll compressor with split type orbitting scroll
KR101328858B1 (en) Two stage rotary compressor
KR20120081490A (en) Scroll compressor with split type orbitting scroll
JP2011214497A (en) Rotary compressor
JPH08226396A (en) Scroll comprssor
KR20090012868A (en) Two stage rotary compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100423