JP2006169080A - Method of manufacturing cubic boron nitride polycrystal - Google Patents

Method of manufacturing cubic boron nitride polycrystal Download PDF

Info

Publication number
JP2006169080A
JP2006169080A JP2004367791A JP2004367791A JP2006169080A JP 2006169080 A JP2006169080 A JP 2006169080A JP 2004367791 A JP2004367791 A JP 2004367791A JP 2004367791 A JP2004367791 A JP 2004367791A JP 2006169080 A JP2006169080 A JP 2006169080A
Authority
JP
Japan
Prior art keywords
cbn
boron nitride
polycrystal
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004367791A
Other languages
Japanese (ja)
Inventor
Hitoshi Sumiya
均 角谷
Takashi Hirao
隆 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004367791A priority Critical patent/JP2006169080A/en
Publication of JP2006169080A publication Critical patent/JP2006169080A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cubic boron nitride (cBN) sintered compact (polycrystal) in which sintering of cBN particles is accelerated even under mild high-pressure and high-temperature conditions and which has high purity and is sufficiently securely sintered. <P>SOLUTION: In the method for manufacturing the cBN polycrystal, the surface of the cBN powder of the raw material is made into the higher purity and is stabilized by a plasma treatment in hydrogen. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は緻密微細な多結晶構造を有する立方晶窒化硼素焼結体の製造方法に関するもので、特に鉄系材料の切削加工に用いることのできる、高硬度高強度で熱的特性に優れたバインダーを含まない立方晶窒化硼素多結晶体及びその製造方法に関する。   The present invention relates to a method for producing a cubic boron nitride sintered body having a dense and fine polycrystalline structure, and in particular, a binder having high hardness, high strength and excellent thermal characteristics, which can be used for cutting of iron-based materials. The present invention relates to a cubic boron nitride polycrystal which does not contain bismuth and a method for producing the same.

立方晶窒化硼素(以下cBNと略す)は、ダイヤモンドに次ぐ硬度を有し、熱的化学的安定性の高い物質であり、従来からよく知られているように鉄系材料の切削工具として幅広く用いられている。   Cubic boron nitride (hereinafter abbreviated as cBN) has a hardness second to diamond and has high thermal and chemical stability, and is widely used as a cutting tool for iron-based materials as is well known in the past. It has been.

cBNは、hBNなどの常圧型BNを超高圧高温下で、無触媒で合成(直接変換)することが可能である。このhBN→cBN変換と同時に焼結させることで、バインダーを含まないcBN焼結体を作製できることが知られている。
例えば、特許文献1や特許文献2には、hBNを超高圧高温でcBNに変換させ、cBN焼結体を得る方法が示されている。しかし、十分強固な焼結体を得るためには、7GPa、2100℃以上の厳しい圧力温度条件が必要とされ、工業生産するには、コストや生産性に問題がある。また、特許文献3や特許文献4には熱分解窒化硼素(pBN)原料にして、cBN焼結体を作製する方法が示されている。この場合も強固なcBN焼結体を得るためには、2000℃以上の温度を要し、上記と同様の問題があるほかに、原料pBNは極めて高価あること、圧縮hBNが残留しやすいこと、配向(異方)性が強くて層状亀裂や剥離の問題が生じやすいことなどの問題がある。
cBN can synthesize | combine (direct conversion) non-catalyst normal pressure type | mold BN, such as hBN, under ultra-high pressure and high temperature. It is known that a cBN sintered body containing no binder can be produced by sintering simultaneously with this hBN → cBN conversion.
For example, Patent Literature 1 and Patent Literature 2 disclose a method of obtaining a cBN sintered body by converting hBN to cBN at an ultrahigh pressure and high temperature. However, in order to obtain a sufficiently strong sintered body, severe pressure temperature conditions of 7 GPa and 2100 ° C. or more are required, and there are problems in cost and productivity for industrial production. Patent Document 3 and Patent Document 4 show a method for producing a cBN sintered body using a pyrolytic boron nitride (pBN) raw material. In this case as well, in order to obtain a strong cBN sintered body, a temperature of 2000 ° C. or higher is required, and in addition to the same problems as described above, the raw material pBN is extremely expensive, and compressed hBN tends to remain. There are problems such as a strong orientation (anisotropic) property and a tendency to cause lamellar cracks and peeling.

よりマイルドな条件で直接変換によりcBNを得る方法としては、例えば、特許文献5に、一次粒子の平均粒径が3μm以下の六方晶系窒化硼素を原料とする方法が示されている。これにより6GPa、1100℃の条件でcBNが得られるが、六方晶窒化硼素が微粉であるため、数%の酸化硼素不純物や吸着ガスを含み、そのため焼結が十分に進行せず、また、酸化物を焼結体内に多く含むため、高硬度、高強度で耐熱性に優れた焼結体が得られず、切削工具に用いることができない。
特開昭47−34099号公報 特開平3−159964号公報 特公昭63−394号公報 特開平3−159964号公報 特公昭49−27518号公報 T. Taniguchi, M. Akaishi, S. Yamaoka, "The 3rd NIRIM International Symposium on Advanced Materials "(ISAM'96), pp.275-280
As a method for obtaining cBN by direct conversion under milder conditions, for example, Patent Document 5 discloses a method using hexagonal boron nitride having an average primary particle size of 3 μm or less as a raw material. As a result, cBN can be obtained under conditions of 6 GPa and 1100 ° C. However, since hexagonal boron nitride is a fine powder, it contains several percent of boron oxide impurities and adsorbed gas, so that sintering does not proceed sufficiently, and oxidation Since many objects are contained in the sintered body, a sintered body having high hardness, high strength and excellent heat resistance cannot be obtained, and cannot be used for a cutting tool.
JP 47-34099 A JP-A-3-159964 Japanese Patent Publication No. 63-394 JP-A-3-159964 Japanese Patent Publication No. 49-27518 T. Taniguchi, M. Akaishi, S. Yamaoka, "The 3rd NIRIM International Symposium on Advanced Materials"(ISAM'96), pp.275-280

cBN粒子(粉末)はこれを単独で直接焼結することは非常に困難であるため、一般に切削工具として用いられているcBN焼結体は、Al、Coなどの金属、TiCやTiNなどのセラミックスを結合材として用いてcBNの粉末を超高圧下で焼結して製造されている。このため一般に市販されているcBN焼結体には10〜40体積%程度の上記結合材が含まれる。この結合材が、焼結体の強度、耐熱性、熱放散性に大きく影響を与え、特に鉄系材料を高速で切削加工する場合に、刃先の欠損や亀裂が生じやすく、工具としての寿命が非常に短くなる。焼結体に結合材が含まれている限り、このような問題は避けられない。   Since it is very difficult to directly sinter cBN particles (powder) alone, cBN sintered bodies generally used as cutting tools include metals such as Al and Co, and ceramics such as TiC and TiN. Is used as a binder by sintering cBN powder under ultra high pressure. For this reason, generally the commercially available cBN sintered compact contains about 10-40 volume% of the said binder. This binder greatly affects the strength, heat resistance, and heat dissipation of the sintered body.Especially when cutting iron-based materials at high speeds, the cutting edge is prone to chipping and cracking, resulting in a long tool life. It becomes very short. Such a problem is inevitable as long as the sintered body contains a binder.

一方、バインダーを含まないcBN焼結体として、硼窒化マグネシウムなどの触媒を用いて六方晶窒化硼素(hBN)を原料として、反応焼結させた焼結体が知られている。この焼結体はバインダーがなくcBN粒子が強く結合しているため熱伝導率が6〜7W/cm℃と高く、ヒートシンク材やTABボンディングツールなどに用いられている。しかし、この焼結体の中には触媒がいくらか残留しているため、熱を加えるとこの触媒とcBNとの熱膨張差による微細クラックが入りやすい。このため、その耐熱温度は700℃程度と低く、切削工具としては大きな問題となる。また、粒径が10μm前後と大きいため、熱伝導率が高いものの、強度が十分でなく、負荷の大きい断続的な切削には対応できない。   On the other hand, as a cBN sintered body containing no binder, a sintered body obtained by reactive sintering using hexagonal boron nitride (hBN) as a raw material using a catalyst such as magnesium boronitride is known. Since this sintered body has no binder and cBN particles are strongly bonded, the thermal conductivity is as high as 6 to 7 W / cm ° C., and is used for heat sink materials, TAB bonding tools, and the like. However, since some catalyst remains in the sintered body, when heat is applied, fine cracks due to a difference in thermal expansion between the catalyst and cBN are likely to occur. For this reason, the heat-resistant temperature is as low as about 700 ° C., which is a serious problem as a cutting tool. Further, since the particle size is as large as about 10 μm, the thermal conductivity is high, but the strength is not sufficient and it is not possible to cope with intermittent cutting with a large load.

従って、本発明の目的は、例えば、6〜6.5GPa,1800〜2000℃といったかなりマイルドな高圧高温条件においてもcBN粒子の焼結が促進され、高純度でかつ十分強固に焼結したcBN焼結体(多結晶体)を提供することにある。   Therefore, the object of the present invention is to promote cBN particle sintering even under fairly mild high pressure and high temperature conditions such as 6 to 6.5 GPa and 1800 to 2000 ° C. The object is to provide a knot (polycrystal).

非特許文献1に示されているように、cBNの粉末を高温高圧で直接焼結するには7.7GPa以上、2300℃以上の非常に高い圧力温度条件が必要なため、コストや生産性に問題があり、そして、このような高い圧力温度が必要である主な原因は、1)cBNが非常に高硬度で、かつ融点が高いため、これより緩い圧力温度では、原子拡散が不十分となり、十分強固な粒子間結合が得られなくなること、2)原料のcBN粒子の表面には酸化硼素の膜や酸素を含むガスが吸着されており、この酸化物や吸着ガスは焼結の進行を少なからず妨げること、にあると考えられるので本発明はかかる原因を取り除くことを第2の目的とする。なおここで、cBN粉末の表面に形成されている酸化硼素や吸着ガスを除去するため、たとえば前記非特許文献においては真空中で1000℃の高温熱処理が行われている。このような処理によってcBN粉末表面は清浄化されるものの、非常に活性の高い表面状態となり、熱処理後空気中に取り出した際に急速に酸化、吸着が起こり、これが焼結を阻害する要因となる。   As shown in Non-Patent Document 1, in order to directly sinter cBN powder at high temperature and high pressure, a very high pressure temperature condition of 7.7 GPa or more and 2300 ° C. or more is required. There are problems and the main reasons why such a high pressure temperature is necessary are as follows: 1) Since cBN is very hard and has a high melting point, at a pressure temperature lower than this, atomic diffusion becomes insufficient. A sufficiently strong bond between particles cannot be obtained, and 2) a boron oxide film and a gas containing oxygen are adsorbed on the surface of the raw material cBN particles. The second object of the present invention is to eliminate such a cause because it is considered that there is a considerable obstruction. Here, in order to remove boron oxide and adsorbed gas formed on the surface of the cBN powder, for example, in the non-patent document, high-temperature heat treatment at 1000 ° C. is performed in vacuum. Although the cBN powder surface is cleaned by such treatment, it becomes a very active surface state, and when it is taken out into the air after the heat treatment, it rapidly oxidizes and adsorbs, which becomes a factor inhibiting sintering. .

本発明者等は、上記の目的を達成するため鋭意努力した結果、原料としてのcBN粉末を水素気流中でプラズマ状態で高温処理することで酸素が有効に除去され、同時に表面が水素原子で終端されて、安定した表面状態とすることができるという知見を得、これを原料として用いることで、6〜6.5GPa、1800〜2000℃というかなりマイルドな高圧高温条件においてもcBN粒子の焼結が促進され、高純度でかつ十分強固に焼結したcBN焼結体(多結晶体)が得られることを見出した。水素中、好ましくは水素気流中におけるプラズマ処理により、焼結を阻害する酸化物や吸着ガスがcBN粉末表面より完全に除去され、かつ表面に形成された水素が触媒となって上記のようなマイルドな高圧高温条件下でもcBN粒子間の原子移動→焼結のプロセスが促進されたものと思われる。ここで、水素中プラズマ処理後のcBN粉末表面は水素原子が終端されているため安定な状態にあり、炉から取り出す際に酸化やガスの吸着の問題は起こらない。   As a result of diligent efforts to achieve the above object, the present inventors have effectively removed oxygen by treating the cBN powder as a raw material at a high temperature in a hydrogen stream in a plasma state, and at the same time, the surface is terminated with hydrogen atoms. Thus, by obtaining the knowledge that a stable surface state can be obtained and using this as a raw material, cBN particles can be sintered even under fairly mild high pressure and high temperature conditions of 6 to 6.5 GPa and 1800 to 2000 ° C. It was found that a cBN sintered body (polycrystalline body) that was promoted and sintered with high purity and sufficiently strong was obtained. Oxidation and adsorbed gas that inhibits sintering are completely removed from the surface of the cBN powder by plasma treatment in hydrogen, preferably in a hydrogen stream, and the hydrogen formed on the surface serves as a catalyst for the mild reaction as described above. It seems that the process of atom transfer → sintering between cBN particles was promoted even under high pressure and high temperature conditions. Here, the surface of the cBN powder after the plasma treatment in hydrogen is in a stable state because hydrogen atoms are terminated, and there is no problem of oxidation or gas adsorption when taking out from the furnace.

こうして得られたcBN多結晶体は、高硬度で、かつ従来のような金属やセラミックスなどの結合材を含まないため、熱的安定性や耐熱亀裂性にも優れている。このため、切削工具として非常に優れた性能を有すると考えられ、切削試験を行った。その結果、従来の結合材を含むcBN焼結体に比べて、耐摩耗性が2倍以上優れていることを確認し、本発明に至った。   The cBN polycrystal obtained in this way has high hardness and does not contain conventional binders such as metals and ceramics, and therefore has excellent thermal stability and thermal crack resistance. For this reason, it is thought that it has the very outstanding performance as a cutting tool, and the cutting test was done. As a result, it was confirmed that the wear resistance was more than twice as good as that of a cBN sintered body containing a conventional binder, and the present invention was achieved.

すなわち、本発明は、立方晶窒化硼素多結晶体の製造方法において、原料の立方晶窒化硼素粉末の表面を、水素中におけるプラズマ処理により高純度化、安定化させることを特徴とする立方晶窒化硼素多結晶体の製造方法である。本発明におけるプラズマ処理は、常法に従い、マイクロ波放電(例えば、2.45GHz)又は高周波放電(ラジオ波放電、例えば13.56MHz)等によりプラズマを発生させることにより行う。   That is, the present invention relates to a method for producing a cubic boron nitride polycrystal, wherein the surface of a raw material cubic boron nitride powder is purified and stabilized by plasma treatment in hydrogen. This is a method for producing a boron polycrystal. The plasma treatment in the present invention is performed by generating plasma by microwave discharge (for example, 2.45 GHz) or high-frequency discharge (for example, radio wave discharge, for example, 13.56 MHz) according to a conventional method.

本発明の方法は、バインダーを含まないcBN焼結体に好適に適用されることはいうまでもないが、バインダーを含むcBN焼結体にも適用することができる。水素プラズマ処理によりcBN粉末表面が清浄化されているため、バインダーを含む系での焼結においても有効に作用して焼結性を向上させることができる。   Needless to say, the method of the present invention is suitably applied to a cBN sintered body containing no binder, but can also be applied to a cBN sintered body containing a binder. Since the surface of the cBN powder is cleaned by the hydrogen plasma treatment, it can effectively act even in sintering in a system containing a binder to improve the sinterability.

本発明によれば、cBN粒子を水素気流中でプラズマ状態で高温処理することで酸素が効果的に除去され、同時に表面が水素原子で終端されて安定した表面状態が得られる。こうして得られたcBN多結晶体は高硬度で熱的安定性、耐熱亀裂性にも優れており、切削工具とした場合に優れた性能を発揮することができる。   According to the present invention, oxygen is effectively removed by treating the cBN particles at a high temperature in a hydrogen stream in a plasma state, and at the same time, the surface is terminated with hydrogen atoms to obtain a stable surface state. The cBN polycrystal obtained in this way has high hardness, excellent thermal stability and thermal crack resistance, and can exhibit excellent performance when used as a cutting tool.

0.1〜10μm、好ましくは1〜3μmの粒径を有するcBN粉末をマイクロ波反応装置で1〜200torr減圧、好ましくは50〜150torr減圧の水素気流中で500〜1500℃、好ましくは900〜1300℃の温度でマイクロ波プラズマ(例えば2.45GHz)による水素プラズマ処理を1〜60分間行う。処理後の粉末を攪拌して同一条件で処理することを複数回、好ましくは2〜10回繰り返す。これをMoカプセルに入れてベルト型超高圧発生装置を用いて、6〜6.5GPa、1800〜2000℃の温度で5〜60分間処理する。こうすることによりcBN粒子が強固に結合した多結晶体が得られる。この多結晶体を用いて行った切削テストでは市販のバインダーを含むcBN焼結体に比べ2倍以上の工具寿命を発揮する。
以下、実施例を挙げて本発明のcBN焼結体を具体的に説明するが本発明はこれに限定されるものではない。
A cBN powder having a particle size of 0.1 to 10 μm, preferably 1 to 3 μm, is subjected to 500 to 1500 ° C., preferably 900 to 1300 in a hydrogen stream at 1 to 200 torr reduced pressure, preferably 50 to 150 torr reduced pressure in a microwave reactor. Hydrogen plasma treatment with microwave plasma (for example, 2.45 GHz) is performed at a temperature of 1 ° C. for 1 to 60 minutes. The stirring of the powder after the treatment and the treatment under the same conditions is repeated a plurality of times, preferably 2 to 10 times. This is put in a Mo capsule and treated at a temperature of 6 to 6.5 GPa and 1800 to 2000 ° C. for 5 to 60 minutes using a belt type ultra high pressure generator. By doing so, a polycrystalline body in which cBN particles are firmly bonded is obtained. In the cutting test conducted using this polycrystal, the tool life is more than twice as long as a cBN sintered body containing a commercially available binder.
EXAMPLES Hereinafter, although an Example is given and the cBN sintered compact of this invention is demonstrated concretely, this invention is not limited to this.

(実施例1)
1−3μmのcBN粉末を、マイクロ波反応装置で、100torrの減圧水素気流中、1000℃でマイクロ波プラズマによる水素プラズマ処理を30分行った。処理後の粉末を撹拌して同じ条件で処理することを3回繰り返した。これをMoカプセルに入れてベルト型超高圧発生装置を用いて、6.5GPa、2000℃の温度で15分間処理した。cBN粒子が強固に焼結した多結晶体が得られた。この多結晶体を用いて切削テストを行ったところ、市販のバインダーを含むcBN焼結体に比べ、2倍以上の工具寿命を有することがわかった。
Example 1
The 1-3 μm cBN powder was subjected to hydrogen plasma treatment with microwave plasma at 1000 ° C. for 30 minutes in a 100 torr reduced-pressure hydrogen stream using a microwave reactor. Stirring the treated powder and treating it under the same conditions was repeated three times. This was placed in a Mo capsule and treated for 15 minutes at a temperature of 6.5 GPa and 2000 ° C. using a belt-type ultrahigh pressure generator. A polycrystalline body in which cBN particles were strongly sintered was obtained. When a cutting test was performed using this polycrystal, it was found that the tool life was twice or more that of a cBN sintered body containing a commercially available binder.

(比較例1)
1−3μmのcBN粉末を、10-3torrの真空中1000℃で1時間処理した。これを実施例1と同じ条件で高圧高温処理した。得られた多結晶体は焼結が不十分で、切削テストに耐えるものでなかった。
(Comparative Example 1)
The 1-3 μm cBN powder was treated for 1 hour at 1000 ° C. in a vacuum of 10 −3 torr. This was subjected to a high-pressure and high-temperature treatment under the same conditions as in Example 1. The obtained polycrystal was insufficiently sintered and could not withstand the cutting test.

(実施例2)
1〜3μmのcBN粉末を、マイクロ波反応装置で、100torrの減圧水素気流中、1000℃でマイクロ波プラズマによる水素プラズマ処理を30分行った。処理後の粉末を攪拌して同じ条件で処理することを6回繰り返した。これをMoカプセルに入れてベルト型超高圧発生装置を用いて、6.5GPa、1900℃の温度で15分間処理した。cBN粒子が強固に焼結した多結晶体が得られた。この多結晶体を用いて切削テストを行ったところ、市販のバインダーを含むcBN焼結体に比べ、2倍以上の工具寿命を有することがわかった。
(Example 2)
1 to 3 μm of cBN powder was subjected to hydrogen plasma treatment with microwave plasma at 1000 ° C. for 30 minutes in a 100 torr reduced-pressure hydrogen stream using a microwave reactor. Stirring the treated powder and treating under the same conditions was repeated 6 times. This was put in a Mo capsule and treated for 15 minutes at a temperature of 6.5 GPa and 1900 ° C. using a belt-type ultrahigh pressure generator. A polycrystalline body in which cBN particles were strongly sintered was obtained. When a cutting test was performed using this polycrystal, it was found that the tool life was twice or more that of a cBN sintered body containing a commercially available binder.

(実施例3)
1〜3μmのcBN粉末を、マイクロ波反応装置で、100torrの減圧水素気流中、1300℃でマイクロ波プラズマによる水素プラズマ処理を30分行った。処理後の粉末を攪拌して同じ条件で処理することを3回繰り返した。これをMoカプセルに入れてベルト型超高圧発生装置を用いて、6.5GPa、1800℃の温度で15分間処理した。cBN粒子が強固に焼結した多結晶体が得られた。この多結晶体を用いて切削テストを行ったところ、市販のバインダーを含むcBN焼結体に比べ、2倍以上の工具寿命を有することがわかった。
(Example 3)
1 to 3 μm of cBN powder was subjected to hydrogen plasma treatment with microwave plasma at 1300 ° C. for 30 minutes in a 100 torr vacuum hydrogen stream using a microwave reactor. Stirring the treated powder and treating it under the same conditions was repeated three times. This was put in a Mo capsule and treated for 15 minutes at a temperature of 6.5 GPa and 1800 ° C. using a belt-type ultrahigh pressure generator. A polycrystalline body in which cBN particles were strongly sintered was obtained. When a cutting test was performed using this polycrystal, it was found that the tool life was twice or more that of a cBN sintered body containing a commercially available binder.

Claims (1)

立方晶窒化硼素多結晶体の製造方法において、原料の立方晶窒化硼素粉末の表面を、水素中におけるプラズマ処理により高純度化、安定化させることを特徴とする立方晶窒化硼素多結晶体の製造方法。
In the method for producing cubic boron nitride polycrystal, the surface of the raw material cubic boron nitride powder is made highly purified and stabilized by plasma treatment in hydrogen. Method.
JP2004367791A 2004-12-20 2004-12-20 Method of manufacturing cubic boron nitride polycrystal Pending JP2006169080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004367791A JP2006169080A (en) 2004-12-20 2004-12-20 Method of manufacturing cubic boron nitride polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004367791A JP2006169080A (en) 2004-12-20 2004-12-20 Method of manufacturing cubic boron nitride polycrystal

Publications (1)

Publication Number Publication Date
JP2006169080A true JP2006169080A (en) 2006-06-29

Family

ID=36670221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004367791A Pending JP2006169080A (en) 2004-12-20 2004-12-20 Method of manufacturing cubic boron nitride polycrystal

Country Status (1)

Country Link
JP (1) JP2006169080A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833796A (en) * 2015-12-27 2016-08-10 河南工业大学 Transparent cubic boron nitride-diamond polycrystal preparation method
WO2020059755A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Cubic boron nitride sintered body, cutting tool containing this, and production method of cubic boron nitride sintered body
WO2020059756A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool containing this
WO2020059754A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Production method of cubic boron nitride sintered body, cubic boron nitride sintered body, and cutting tool containing this
WO2021010474A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact
WO2021010471A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact, and cutting tool
WO2021010472A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact, and cutting tool
WO2021010473A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166374A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS57166373A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS62278170A (en) * 1986-05-23 1987-12-03 株式会社豊田中央研究所 Cubic boron nitride sintered body and manufacture
JPH1029814A (en) * 1996-07-17 1998-02-03 Agency Of Ind Science & Technol Production of bcn based material having crystal structure at high pressure phase
JP2002293649A (en) * 2001-03-28 2002-10-09 Kyocera Corp Method of manufacturing ceramic sintered compact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166374A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS57166373A (en) * 1981-04-02 1982-10-13 Sumitomo Electric Industries Manufacture of non-oxide ceramics
JPS62278170A (en) * 1986-05-23 1987-12-03 株式会社豊田中央研究所 Cubic boron nitride sintered body and manufacture
JPH1029814A (en) * 1996-07-17 1998-02-03 Agency Of Ind Science & Technol Production of bcn based material having crystal structure at high pressure phase
JP2002293649A (en) * 2001-03-28 2002-10-09 Kyocera Corp Method of manufacturing ceramic sintered compact

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105833796A (en) * 2015-12-27 2016-08-10 河南工业大学 Transparent cubic boron nitride-diamond polycrystal preparation method
US11155901B2 (en) 2018-09-19 2021-10-26 Sumitomo Electric Industries, Ltd Method of producing cubic boron nitride sintered material, cubic boron nitride sintered material, and cutting tool including cubic boron nitride sintered material
WO2020059754A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Production method of cubic boron nitride sintered body, cubic boron nitride sintered body, and cutting tool containing this
US11396482B2 (en) 2018-09-19 2022-07-26 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material, cutting tool including cubic boron nitride sintered material, and method of producing cubic boron nitride sintered material
US11208358B2 (en) 2018-09-19 2021-12-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered body and cutting tool including the same
WO2020059755A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Cubic boron nitride sintered body, cutting tool containing this, and production method of cubic boron nitride sintered body
JP6744520B1 (en) * 2018-09-19 2020-08-19 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool including the same
WO2020059756A1 (en) * 2018-09-19 2020-03-26 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool containing this
JP6703214B1 (en) * 2018-09-19 2020-06-03 住友電気工業株式会社 Cubic boron nitride sintered body, and cutting tool including the same
JP6744519B1 (en) * 2018-09-19 2020-08-19 住友電気工業株式会社 Cubic boron nitride sintered body, cutting tool including the same, and method for manufacturing cubic boron nitride sintered body
WO2021010474A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact
WO2021010473A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact and method for manufacturing same
WO2021010472A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact, and cutting tool
WO2021010471A1 (en) * 2019-07-18 2021-01-21 住友電気工業株式会社 Cubic boron nitride sintered compact, and cutting tool
JPWO2021010474A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body
JPWO2021010471A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool
JPWO2021010473A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body and its manufacturing method
JP7019093B2 (en) 2019-07-18 2022-02-14 住友電気工業株式会社 Cubic boron nitride sintered body and its manufacturing method
CN114144391A (en) * 2019-07-18 2022-03-04 住友电气工业株式会社 Cubic boron nitride sintered body
JPWO2021010472A1 (en) * 2019-07-18 2021-09-13 住友電気工業株式会社 Cubic boron nitride sintered body and cutting tool
US11591266B2 (en) 2019-07-18 2023-02-28 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material
US11629101B2 (en) 2019-07-18 2023-04-18 Sumitomo Electric Industries, Ltd. Cubic boron nitride sintered material and method of producing same

Similar Documents

Publication Publication Date Title
JP5435043B2 (en) High hardness conductive diamond polycrystal and method for producing the same
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
JP2009067609A (en) High purity diamond polycrystalline body and method of manufacturing the same
JPH02212362A (en) Preparation of polycrystalline cubic system boron nitride/ceramic composite massive material and product therefrom
JP2006347850A (en) Cubic system boron nitride sintered compact and method of manufacturing the same
JP2006169080A (en) Method of manufacturing cubic boron nitride polycrystal
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
JP4106590B2 (en) Cubic boron nitride sintered body and manufacturing method thereof
JP2009067610A (en) High-hardness diamond polycrystalline body and method for producing the same
JP5002886B2 (en) Method for producing cubic boron nitride polycrystal
JPH0510282B2 (en)
JPS6213311B2 (en)
JP6015325B2 (en) Polycrystalline diamond, method for producing the same, and tool
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JPH09142933A (en) Diamond sintered compact and its production
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPH11335175A (en) Cubic boron nitride sintered compact
JPS62108716A (en) Production of cubic boron nitride
JPH09142932A (en) Diamond sintered compact and its production
JPH11335174A (en) Cubic boron nitride sintered compact
JP3731223B2 (en) Diamond sintered body and manufacturing method thereof
JPH0967164A (en) Diamond sintered compact and its production
JPS6395103A (en) Readily sinterable aluminum nitride powder and production thereof
JPS62108717A (en) Production of cubic boron nitride
JPS62108708A (en) Production of cubic boron nitride

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208