JPS62108708A - Production of cubic boron nitride - Google Patents

Production of cubic boron nitride

Info

Publication number
JPS62108708A
JPS62108708A JP60247923A JP24792385A JPS62108708A JP S62108708 A JPS62108708 A JP S62108708A JP 60247923 A JP60247923 A JP 60247923A JP 24792385 A JP24792385 A JP 24792385A JP S62108708 A JPS62108708 A JP S62108708A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
pyrolytic
catalyst
boronitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60247923A
Other languages
Japanese (ja)
Inventor
Minoru Akaishi
實 赤石
Osamu Fukunaga
脩 福長
Taku Kawasaki
卓 川崎
Hiroaki Tanji
丹治 宏彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Denki Kagaku Kogyo KK filed Critical National Institute for Research in Inorganic Material
Priority to JP60247923A priority Critical patent/JPS62108708A/en
Publication of JPS62108708A publication Critical patent/JPS62108708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To prolong the life of an apparatus and to obtain cubic boron nitride in a high yield by adding the boronitride of an alkali metal to pyrolytic boron nitride and holding them under conditions of high temp. and pressure within ranges in which cubic boron nitride is thermodynamically stable. CONSTITUTION:The boronitride of an alkali metal is added as a catalyst to pyrolytic boron nitride and they are held under conditions of high temp. and pressure within ranges in which cubic boron nitride is thermodynamically stable to convert the pyrolytic boron nitride into polycrystalline cubic boron nitride. The pyrolytic boron nitride used is highly oriented boron nitride synthesized by a special production method called a chemical vapor deposition method (CVD method). Lithium boronitride is preferably used as the boronitride of the alkali metal. It is necessary to add the catalyst by >=0.1mol% of the amount of the pyrolytic boron nitride as starting material.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は立方晶窒化ほう素の製造方法に関するものであ
る。立方晶窒化ほう素は切削工具インサート、研削砥粒
等の工具材として好適な特性を有することにより注目さ
れている物質である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing cubic boron nitride. Cubic boron nitride is a substance that has attracted attention because it has properties suitable for use as a tool material such as cutting tool inserts and grinding abrasive grains.

(従来の技術) 立方晶窒化ほう素はダイヤモンドに近い硬度を有し、し
かも化学的安定性の点ではダイヤモンドより優れ、例え
ば酸化雰囲気中で高温に耐えるほか、特に鉄族元素との
反応性が著しく小さい等の特性を有し、高速度鋼、ニッ
ケル、コバルトを基質とする耐熱高強度材料を切削およ
び研削する際にダイヤモンドよりはるかに優れた機械的
特性を示す有用な物質として需要が増大しつつある。
(Prior art) Cubic boron nitride has a hardness close to that of diamond, and is superior to diamond in terms of chemical stability, for example, it can withstand high temperatures in an oxidizing atmosphere and is particularly reactive with iron group elements. It is in increasing demand as a useful material for cutting and grinding high-speed steel, nickel, and cobalt-based heat-resistant, high-strength materials with mechanical properties far superior to those of diamond. It's coming.

従来の立方晶窒化ほう素の製造方法としては、(イ) 
適当な触媒を加えて六方晶窒化ほう素を高温高圧下に処
理する方法(温度:約1400℃以上、圧カニ 45K
bar以上;化学工業(1982) 9月号。
The conventional manufacturing method of cubic boron nitride is (a)
A method of treating hexagonal boron nitride under high temperature and high pressure by adding an appropriate catalyst (temperature: approximately 1400°C or higher, pressure crab 45K)
More than bar; Kagaku Kogyo (1982) September issue.

55〜58頁)。55-58).

(ロ) 触媒を添加せずに立方晶窒化ほう素を直接高温
高圧下に処理する方法(温度:約1600℃以上、好ま
しくは2000〜3000℃、圧カニ55〜85Kba
r、好ましくは65〜75Kbar;特開昭55−16
7110号公報)。
(b) A method of directly treating cubic boron nitride under high temperature and high pressure without adding a catalyst (temperature: about 1600°C or higher, preferably 2000-3000°C, pressure crab 55-85Kba)
r, preferably 65 to 75 Kbar; JP-A-55-16
Publication No. 7110).

等が知られている。etc. are known.

(発明が解決しよ・)とする問題点) しかし、これらの方法には、以下に述べるような問題点
がある。
(Problems to be Solved by the Invention) However, these methods have the following problems.

(イ)の方法では(ロ)の方法と比較して、穏やかな高
温高圧条件に立方晶窒化ほう素が製造できるが、得られ
る立方晶窒化ほう素は通常単結晶の粒子である。かかる
屯結晶粒子の立方晶窒化ぼう素を難削材用研削砥粒とし
て用いる場合には単結晶粒子特有のへき間柱のために粒
の破壊が生じやすく、砥石の耐摩耗性の向上が認められ
ない。
In method (a), cubic boron nitride can be produced under milder high-temperature and high-pressure conditions than in method (b), but the cubic boron nitride obtained is usually single-crystal particles. When cubic boron nitride of such tunic crystal grains is used as grinding abrasive grains for difficult-to-cut materials, the grains tend to break due to the interstitial pillars peculiar to single crystal grains, and it has been observed that the wear resistance of the grinding wheel is improved. do not have.

添加触媒量を調節することにより、多結晶質立方晶窒化
ほう素が生成する場合があるが、この場合には触媒成分
が不純物として立方晶窒化ほう素中に残留して強度の低
下を招く。
Polycrystalline cubic boron nitride may be produced by adjusting the amount of catalyst added, but in this case, the catalyst components remain as impurities in the cubic boron nitride, resulting in a decrease in strength.

(ロ)の方法では、触媒を使用しない直接変換であるた
め、得られる立方晶窒化ほう素は多結晶質であり、へき
間柱がなく、破壊靭性が単結晶に比べて著しく向上し、
砥粒として用いた場合に(イ)の方法で得られる立方晶
窒化ほう素より高い耐摩耗性を示す。しかしながら、例
えば2000〜2300℃、65〜75Kbar等の非
常に厳しい高温高圧処理条件が必要になり、高価な高温
高圧装置の損傷が生じ易く、従って(ロ)の方法は工業
的生産に不適当である。
In the method (b), since it is a direct conversion without using a catalyst, the resulting cubic boron nitride is polycrystalline, has no interstitial pillars, and has significantly improved fracture toughness compared to single crystal.
When used as abrasive grains, it exhibits higher wear resistance than cubic boron nitride obtained by method (a). However, very severe high temperature and high pressure processing conditions such as 2000 to 2300°C and 65 to 75 Kbar are required, which tends to damage expensive high temperature and high pressure equipment, and therefore method (b) is unsuitable for industrial production. be.

また、(イ)またはく口)のいずれの方法においても原
料として立方晶窒化ほう素を用いている。
Furthermore, in both methods (a) and (b), cubic boron nitride is used as a raw material.

通常市販されている立方晶窒化ほう素は酸化硼素(B、
0.)を窒化することにより製造されている。このため
5,000〜10.000ppmの酸素を不純物として
含有するのが普通である。このような出発原料中に含ま
れる酸素は、立方晶窒化ほう素から立方晶窒化ほう素へ
の変換を著しく阻害するため、未反応立方晶窒化ほう素
が残留し、これが不均一な立方晶窒化ほう素の生成およ
び立方晶窒化ほう素の収率の低下の原因となる。こうし
た現象を防止するために、原料である立方晶窒化ほう素
を、例えば窒素気流中において2000℃で2時間以上
加熱する等の脱酸素前処理工程が必要になる欠点がある
Commercially available cubic boron nitride is boron oxide (B,
0. ) is manufactured by nitriding. For this reason, it is common to contain 5,000 to 10,000 ppm of oxygen as an impurity. Since the oxygen contained in such starting materials significantly inhibits the conversion of cubic boron nitride to cubic boron nitride, unreacted cubic boron nitride remains, which causes uneven cubic nitride. This causes the formation of boron and a decrease in the yield of cubic boron nitride. In order to prevent such a phenomenon, there is a drawback that a deoxidizing pretreatment step such as heating the raw material cubic boron nitride at 2000° C. for 2 hours or more in a nitrogen stream is required.

(問題点を解決するための手段) 本発明者等は、従来の立方晶窒化ほう素の製造方法が有
する上述の欠点を解決することを目的に研究を重ね、特
別の前処理を必要とせずに穏やかな高温高圧条件下にお
いて、破壊靭性が高く、耐摩耗性が優れ、かつ残留触媒
を含まない多結晶質立方晶窒化ほう素を高収率で製造す
る方法を見い出した。
(Means for Solving the Problems) The present inventors have conducted extensive research with the aim of solving the above-mentioned drawbacks of the conventional manufacturing method of cubic boron nitride, and have achieved We have discovered a method for producing polycrystalline cubic boron nitride in high yield, which has high fracture toughness, excellent wear resistance, and does not contain any residual catalyst under mild conditions of high temperature and high pressure.

本発明は、アルカリ金属のほう窒化物を触媒として熱分
解窒化ほう素に加え、これを立方晶窒化ほう素の熱力学
的安定域内の高温高圧条件下に保持することにより熱分
解窒化ほう素を多結晶質立方晶窒化ほう素に変換するこ
とを特徴とする立方晶窒化ほう素の製造方法である。
The present invention produces pyrolytic boron nitride by adding an alkali metal boron nitride as a catalyst to pyrolytic boron nitride and maintaining it under high temperature and high pressure conditions within the thermodynamic stability range of cubic boron nitride. This is a method for producing cubic boron nitride, which is characterized by converting it into polycrystalline cubic boron nitride.

本発明で用いる熱分解窒化ほう素は、化学気相蒸着力(
CVD法)と呼ばれる特別な製造方法で合成される高配
向性の窒化ほう素である。CVD法による熱分解窒化ほ
う素の合成は、例えば米国特許第3.152.006号
に開示されているように、三塩化ほう素のようなハロゲ
ン化ほう素とアンモニアとを気体状原料とし、温度14
50℃〜2300°C1圧力50Torr以下の条件下
において、適当な基材表面上に窒ほう素を気相から析出
させることにより達成され、熱分解窒化ほう素は厚さ数
ml程度の仮等として市販されている。
The pyrolytic boron nitride used in the present invention has a chemical vapor deposition strength (
It is highly oriented boron nitride synthesized by a special manufacturing method called CVD method. Synthesis of pyrolytic boron nitride by the CVD method uses a boron halide such as boron trichloride and ammonia as gaseous raw materials, as disclosed in U.S. Pat. No. 3,152,006, for example. temperature 14
This is achieved by precipitating nitrogen and boron from the gas phase on the surface of a suitable substrate under conditions of 50°C to 2300°C and a pressure of 50 Torr or less. It is commercially available.

このような熱分解窒化ほう素は、その製造工程において
酸素または酸化物を全(必要とせず、極めて高純度のも
のが製造可能であり、しかも熱分解窒化ほう素自体も空
気中で極めて安定で、市販の立方晶窒化ほう素粉末に見
られる表面酸化現象が無視できるので、特別な処理およ
び取扱いを行わな(でも常に酸素含有量の極めて少ない
窒化ほう素であると見なすことができる。
This type of pyrolytic boron nitride does not require any oxygen or oxides in the manufacturing process, and can be manufactured with extremely high purity. Moreover, pyrolytic boron nitride itself is extremely stable in air. Since the surface oxidation phenomenon observed in commercially available cubic boron nitride powders is negligible, no special treatment and handling is required (although it can always be considered as boron nitride with extremely low oxygen content).

市販の熱分解窒化ほう素は板状成型体であるが、柔軟性
に冨み容易に粉砕できる。次いで、熱分解窒化ほう素粉
末を触媒であるアルカリ金属のほう窒化物の粉末と混合
する。アルカリ金属のほう窒化物としてはほう窒化リチ
ウム(LiJ)が適切である。
Commercially available pyrolytic boron nitride is a plate-shaped molded product, but it is highly flexible and can be easily crushed. The pyrolytic boron nitride powder is then mixed with an alkali metal boron nitride powder as a catalyst. Lithium boronitride (LiJ) is suitable as the alkali metal boronitride.

触媒の混合割合は、原料である熱分解窒化ほう素に対し
て0.1モル%以」二であることが必要である。0.1
モル%未満では、立方晶窒化ほう素への変換が完全には
行なわれない。触媒はあまり多く添加しても効果の増大
は認められず、最大でもlOモル%程度で十分である。
The mixing ratio of the catalyst needs to be 0.1 mol % or more with respect to the pyrolytic boron nitride that is the raw material. 0.1
If the amount is less than mol %, the conversion to cubic boron nitride will not be complete. Even if too much catalyst is added, no increase in effect is observed, and at most about 10 mol % is sufficient.

このようにして得た触媒含有熱分解窒化ほう素粉末を出
発原料として熱分解窒化ほう素から立方晶窒化ほう素へ
の変換を行うと、従来の立方晶窒化ほう素合成法には見
られない種々の利点が得られる。まず、通常の立方晶窒
化ほう素を原料とした場合と異なり、触媒の存在下にお
いても多結晶質立方晶窒化ほう素が生成する。この場合
、触媒添加量を厳密に調節しなくても、生成する立方晶
窒化ほう素は多結晶質であり、粒子破壊の原因となる触
媒の残留も殆ど認められない。この理由は明らかではな
いが、通常の六方晶窒化ほう素と熱分解窒化ほう素とで
は生成機構が異なり、これに起因する微構造の差異が、
変換後の立方晶窒化ほう素の微構造に反映されたものと
考えられる。また、出発原料が立方晶窒化ほう素変換触
媒を含んでいるので立方晶窒化ほう素への変換に必要な
高温高圧条件も立方晶窒化ほう素の熱力学的安定域にお
ける穏やかな条件、例えば1450〜1500℃、45
〜50Kbarでよい。従って、本発明方法では、従来
から知られている立方晶窒化ほう素を触媒無添加で直接
高温高圧条件下に処理する場合に必要な条件、例えば2
000〜2300°C+ 65〜75Kbarよりはる
かに穏やかな条件下に多結晶質立方晶窒化ほう素が生成
する。従って高温高圧装置のt員傷が生じにくく、装置
の長寿命化が可能となり、工業的生産性を著しく改善す
ることができる。さらに、本発明における出発原料であ
る熱分解窒化ほう素は、その製造工程において酸素また
は酸化物が全く介在せず、熱分解窒化ほう素自体も空気
中における安定性および耐酸化性に優れているので、酸
素含有量が極めて低く、出発原料として通常の立方晶窒
化ほう素を使用する場合に必要な脱酸素前処理工程を必
要とせずに立方晶窒化ほう素が高収率で得られる利点が
ある。
Using the catalyst-containing pyrolytic boron nitride powder obtained in this way as a starting material, pyrolytic boron nitride is converted to cubic boron nitride, which is not found in conventional cubic boron nitride synthesis methods. Various advantages can be obtained. First, unlike when ordinary cubic boron nitride is used as a raw material, polycrystalline cubic boron nitride is produced even in the presence of a catalyst. In this case, even if the amount of catalyst added is not strictly controlled, the cubic boron nitride produced is polycrystalline, and there is hardly any residual catalyst that could cause particle destruction. The reason for this is not clear, but the formation mechanism is different between ordinary hexagonal boron nitride and pyrolytic boron nitride, and the difference in microstructure caused by this is due to
This is thought to be reflected in the microstructure of cubic boron nitride after conversion. In addition, since the starting material contains a catalyst for converting cubic boron nitride, the high temperature and high pressure conditions required for conversion to cubic boron nitride can be changed to mild conditions in the thermodynamic stability range of cubic boron nitride, such as 1450 ~1500℃, 45
~50Kbar is sufficient. Therefore, in the method of the present invention, the conditions required when conventionally known cubic boron nitride is directly treated under high temperature and high pressure conditions without adding a catalyst, such as 2
Polycrystalline cubic boron nitride is produced under much milder conditions than 000-2300°C + 65-75 Kbar. Therefore, damage to the high-temperature and high-pressure equipment is less likely to occur, the life of the equipment can be extended, and industrial productivity can be significantly improved. Furthermore, pyrolytic boron nitride, which is the starting material in the present invention, does not contain any oxygen or oxides during its manufacturing process, and pyrolytic boron nitride itself has excellent stability in air and oxidation resistance. Therefore, the oxygen content is extremely low, and the advantage is that cubic boron nitride can be obtained in high yield without the need for the deoxidizing pretreatment step that is required when using ordinary cubic boron nitride as a starting material. be.

本発明においては、出発原料の脱酸素前処理を行う必要
がなく、立方晶窒化ほう素の熱力学的安定域内の工業生
産上有利な穏やかな品温高圧条件下において、破壊靭性
が高く、耐摩耗性が優れ、かつ残留触媒を含まない多結
晶質立方晶窒化ほう素を高収率で得ることができ、しか
も得られる多結晶質立方晶窒化ほう素は難研祠研削用砥
粒として適切な特性を有するものである。
In the present invention, there is no need to perform deoxygenation pretreatment of the starting material, and the material has high fracture toughness and resistance under mild temperature and high pressure conditions that are advantageous for industrial production within the thermodynamic stability range of cubic boron nitride. Polycrystalline cubic boron nitride with excellent abrasive properties and containing no residual catalyst can be obtained at a high yield, and the obtained polycrystalline cubic boron nitride is suitable as abrasive grains for hard-to-grind grinding. It has certain characteristics.

(実施例) 以下に本発明を実施例および比較例について説明する。(Example) The present invention will be described below with reference to Examples and Comparative Examples.

実施例 市販されているIN厚の熱分解窒化ほう素を振動ミルで
粉砕して平均粒径約1μmの熱分解窒化ほう素粉末を得
た。この熱分解窒化ほう素粉末の純度は99.9重量%
以上で極めて高純度であった。
EXAMPLE Commercially available pyrolytic boron nitride having an IN thickness was pulverized using a vibration mill to obtain pyrolytic boron nitride powder having an average particle size of about 1 μm. The purity of this pyrolytic boron nitride powder is 99.9% by weight.
Thus, the purity was extremely high.

この粉末をほう窒化リチウム(Li:+N)粉末と混合
し、ベレット状に成型したものを、ベルト型高温高圧装
置内において温度1450℃、圧力50Kharの条件
下に90分間保持し、立方晶窒化ほう素を得た。得られ
た立方晶窒化ほう素について、X線回折による生成相の
同定、化学分析による残留触媒成分の定量、電子顕微鏡
による粒径の測定および微構造の観察を行った。これら
の結果を表1に示す。
This powder was mixed with lithium boronitride (Li:+N) powder, molded into a pellet, and held in a belt-type high-temperature, high-pressure device at a temperature of 1450°C and a pressure of 50 Khar for 90 minutes. I got the basics. Regarding the obtained cubic boron nitride, the produced phase was identified by X-ray diffraction, the residual catalyst component was quantified by chemical analysis, the particle size was measured by an electron microscope, and the microstructure was observed. These results are shown in Table 1.

さらに、この立方晶窒化ほう素粒子に約50重量%のニ
ッケルメッキを施し、さらに80/100メノンユにふ
るい分けたものを用いてレジンボンド砥石を製造し、湿
式平面研削を行い、研削比を求めた。
Furthermore, the cubic boron nitride particles were plated with approximately 50% nickel by weight, and then sieved to 80/100 maisone to manufacture a resin bonded grindstone, which was subjected to wet surface grinding to determine the grinding ratio. .

この結果を表1に示す。また、砥石の製造条件および研
削条件を表2に示す。
The results are shown in Table 1. In addition, Table 2 shows the manufacturing conditions and grinding conditions for the grindstone.

比較例 市販の高純度立方晶窒化ほう素粉末で平均粒径約1μm
のものを1気圧の窒素ガス雰囲気内で1950°Cの温
度に5時間曝して酸素含有量が2重■%以下の立方晶窒
化ほう素粉末を得た。この粉末にLi、BNz粉末を混
合し、ペレット状に成型したものを実施例と同一の装置
において同一の温度、圧力条件下に保持し、立方晶窒化
ほう素を得た。得られた立方晶窒化ほう素に関して、実
施例と同様にして生成相の同定、残留触媒成分の定量、
粒径の測定および微構造の観察を行った。さらに実施例
と同一の条件で研削試験を行った。これらの結果を表1
に示す。
Comparative example Commercially available high-purity cubic boron nitride powder with an average particle size of approximately 1 μm
The powder was exposed to a temperature of 1950° C. in a nitrogen gas atmosphere of 1 atm for 5 hours to obtain a cubic boron nitride powder having an oxygen content of 2% or less. This powder was mixed with Li and BNz powders, molded into pellets, and kept under the same temperature and pressure conditions in the same apparatus as in the example to obtain cubic boron nitride. Regarding the obtained cubic boron nitride, identification of the generated phase, determination of residual catalyst components,
The particle size was measured and the microstructure was observed. Furthermore, a grinding test was conducted under the same conditions as in the example. These results are shown in Table 1.
Shown below.

なお、表1において、微構造に晶癖のないことは破壊靭
性が高いことを意味し、研削比が大きいことは耐摩耗性
に優れ、研石砥粒用砥粒等の工具材への応用に適してい
ることを意味する。
In addition, in Table 1, the absence of crystal habit in the microstructure means high fracture toughness, and the high grinding ratio means excellent wear resistance, which makes it suitable for application to tool materials such as abrasive grains for grinding wheels. means it is suitable for

(発明の効果) 本発明によれば、破壊靭性が高く、耐摩耗性の優れた多
結晶質立方晶窒化ほう素が得られ、従って生成する立方
晶窒化ほう素は研削砥石用砥粒等の工具材への応用に適
している。特に本発明では従来の製造方法とは異なり、
出発原料として熱分解窒化ほう素を用いているので出発
原料の脱酸素前処理工程が不要であり、しかも立方晶窒
化ほう素変換触媒の添加により、従来の多結晶質立方晶
窒化ほう素の製造条件よりはるかに穏やかな高温高圧条
件下に多結晶質立方晶窒化ほう素を製造できるため、高
温高圧装置の損傷が生じにくり、装置の長寿命化が可能
となり、工業的生産性が著しく改善される利点がある。
(Effects of the Invention) According to the present invention, polycrystalline cubic boron nitride with high fracture toughness and excellent wear resistance can be obtained, and therefore the cubic boron nitride produced can be used as abrasive grains for grinding wheels, etc. Suitable for application to tool materials. In particular, in the present invention, unlike conventional manufacturing methods,
Since pyrolytic boron nitride is used as the starting material, there is no need for a pretreatment step for deoxidizing the starting material, and by adding a cubic boron nitride conversion catalyst, it is possible to produce polycrystalline cubic boron nitride using conventional methods. Polycrystalline cubic boron nitride can be produced under conditions of high temperature and high pressure, which are much milder than the conventional conditions, so damage to high temperature and high pressure equipment is less likely to occur, making it possible to extend the life of the equipment and significantly improve industrial productivity. There is an advantage that

Claims (1)

【特許請求の範囲】 1、アルカリ金属のほう窒化物を触媒として熱分解窒化
ほう素に加え、これを立方晶窒化ほう素の熱力学的安定
域内の高温高圧条件下に保持することにより熱分解窒化
ほう素を多結晶質立方晶窒化ほう素に変換することを特
徴とする立方晶窒化ほう素の製造方法。 2、上記熱分解窒化ほう素の純度が99.9重量%以上
である特許請求の範囲第1項記載の方法。
[Claims] 1. Pyrolytic decomposition is carried out by adding an alkali metal boronitride as a catalyst to pyrolytic boron nitride and maintaining it under high temperature and high pressure conditions within the thermodynamic stability range of cubic boron nitride. A method for producing cubic boron nitride, comprising converting boron nitride into polycrystalline cubic boron nitride. 2. The method according to claim 1, wherein the pyrolytic boron nitride has a purity of 99.9% by weight or more.
JP60247923A 1985-11-07 1985-11-07 Production of cubic boron nitride Pending JPS62108708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60247923A JPS62108708A (en) 1985-11-07 1985-11-07 Production of cubic boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60247923A JPS62108708A (en) 1985-11-07 1985-11-07 Production of cubic boron nitride

Publications (1)

Publication Number Publication Date
JPS62108708A true JPS62108708A (en) 1987-05-20

Family

ID=17170555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60247923A Pending JPS62108708A (en) 1985-11-07 1985-11-07 Production of cubic boron nitride

Country Status (1)

Country Link
JP (1) JPS62108708A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066381A1 (en) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204607A (en) * 1984-03-30 1985-10-16 Toshiba Tungaloy Co Ltd Synthesis of cubic boron nitride crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204607A (en) * 1984-03-30 1985-10-16 Toshiba Tungaloy Co Ltd Synthesis of cubic boron nitride crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005066381A1 (en) * 2004-01-08 2005-07-21 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered compact
US7524785B2 (en) 2004-01-08 2009-04-28 Sumitomo Electric Hardmetal Corp. Cubic boron nitride sintered body

Similar Documents

Publication Publication Date Title
TW574173B (en) Low oxygen cubic boron nitride and its production
JP5838289B2 (en) Ultra-hard nano-twinned boron nitride bulk material and synthesis method thereof
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
JPS62108716A (en) Production of cubic boron nitride
WO2006103930A1 (en) Method for producing material containing aluminum nitride
JPS62108708A (en) Production of cubic boron nitride
WO2004069399A1 (en) Cubic boron nitride, catalyst for synthesizing cubic boron nitride, and process for producing cubic boron nitride
JPS62108713A (en) Production of cubic boron nitride
JP4223518B2 (en) Cubic boron nitride abrasive and method for producing cubic boron nitride abrasive
JPS62108707A (en) Production of cubic boron nitride
JP4061374B2 (en) Method for producing ultrafine particle cBN sintered body
JPH0510282B2 (en)
JPS6351965B2 (en)
JPS62108706A (en) Production of cubic boron nitride
JPS62108717A (en) Production of cubic boron nitride
JPS62108715A (en) Production of cubic boron nitride
JPS62108712A (en) Production of cubic boron nitride
JPS62108709A (en) Production of cubic boron nitride
JPS58213617A (en) Production of titanium carbonitride powder
JPS62108710A (en) Production of cubic boron nitride
JPS62108711A (en) Production of cubic boron nitride
JPS62108714A (en) Production of cubic boron nitride
JPS62100403A (en) Production of fine powder of hexagonal boron nitride having high purity
JP4183317B2 (en) Method for producing cubic boron nitride
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles