JPS60204607A - Synthesis of cubic boron nitride crystal - Google Patents

Synthesis of cubic boron nitride crystal

Info

Publication number
JPS60204607A
JPS60204607A JP6347284A JP6347284A JPS60204607A JP S60204607 A JPS60204607 A JP S60204607A JP 6347284 A JP6347284 A JP 6347284A JP 6347284 A JP6347284 A JP 6347284A JP S60204607 A JPS60204607 A JP S60204607A
Authority
JP
Japan
Prior art keywords
boron nitride
cubic boron
borazine
catalyst
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6347284A
Other languages
Japanese (ja)
Other versions
JPS6255896B2 (en
Inventor
Shigeharu Naka
中 重治
Shinichi Hirano
真一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tungaloy Corp
Original Assignee
NGK Insulators Ltd
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Toshiba Tungaloy Co Ltd filed Critical NGK Insulators Ltd
Priority to JP6347284A priority Critical patent/JPS60204607A/en
Priority to US06/667,802 priority patent/US4545968A/en
Publication of JPS60204607A publication Critical patent/JPS60204607A/en
Publication of JPS6255896B2 publication Critical patent/JPS6255896B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To synthesize a cubic boron nitride crystal, in an extremely high conversion, by reacting a mixture of boron nitride and a catalyst composed of a metal or metallic compound under specific condition, and removing the catayst from the reaction product. CONSTITUTION:50-95mol% boron nitride obtained by the thermal decomposition of borazine and/or a borazine derivtive is mixed with 5-50mol% catalyst composed of a metal and/or a metallic compound, e.g. aluminum nitride. The mixture is made to react under >=3GPa pressure at >=70 deg.C, and the catalyst is removed from the reaction product to obtain the objective cubic boron nitride crystal.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、立方晶♀比ホウ素の合成法に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a method for synthesizing cubic boron.

〔背景技術〕[Background technology]

高圧安定相の窒化ホウ素には、立方晶密化ホウ素とウル
シ鉱型窒化ホウ素が知られており、これらは共に天然に
は存在せず、一般には低圧安定相の六方晶窒化ホウ素を
高圧高温下で合成している。
Boron nitride in a high-pressure stable phase is known as cubic densified boron nitride and urucite-type boron nitride, both of which do not exist in nature. It is synthesized with

この内、立方晶窒化ホウ素の合成法としては、静水圧下
で触媒を用いない直接法と特定の触媒物質を用いる触媒
法とがある。直接法によって得られる高圧安定相の窒化
ホウ素は、立方晶窒化ホウ素とウルツ鉱型窒化ホウ素の
混合物であシ、純粋な立方晶窒化ホウ素を直接法で合成
することができず、又立方晶窒化ホウ素とウルツ鉱型窒
化ホウ素とを分離するとともできないという欠点がある
Among these, methods for synthesizing cubic boron nitride include a direct method under hydrostatic pressure without using a catalyst and a catalytic method using a specific catalyst substance. The high-pressure stable boron nitride obtained by the direct method is a mixture of cubic boron nitride and wurtzite boron nitride, and pure cubic boron nitride cannot be synthesized by the direct method. The drawback is that boron and wurtzite boron nitride cannot be separated.

更に直接法による合成条件は、例えば100Pa以上の
高圧力と2000℃前稜の高温度を必要とするため、特
殊な加圧方法を工夫したυ、ヒーターを含む加熱装置治
具並びにシリンダ及びピストンなどの加圧部品の消耗が
激しくなゐという問題がある。
Furthermore, the synthesis conditions for the direct method require high pressure of 100 Pa or more and high temperature of 2000℃ at the front edge. Therefore, special pressurizing methods are used, heating device jigs including heaters, cylinders, pistons, etc. There is a problem in that the pressurizing parts of the press are subject to rapid wear and tear.

一方、触媒法は、中特公昭38−14に記載されている
アルカリ金属、アルカリ土類金属、鉛、アンチモン、錫
、これらの合金及びこれらの窒化物からなる群より選択
した1種又はそれ以上を触媒とする方法及び(11)特
公昭52−17838に記載されている窒化アルミニウ
ムにlb、IIJ■a*Vaw■”p■a、■属元素及
びケイ素からなる群より選ばれた少なくとも1種以」二
を添加した系を触媒とする方法が主として知られている
。これら(1)及び(11)のような触媒法によって得
られる高圧安定相の窒化ホウ素は、直接法によって得ら
れる高圧安定相の窒化ホウ素と異なシ、ウルシ鉱型窒化
ホウ素を含まず、しかもその合成争件においても直接法
の合成条件よりも低い圧力、温度条件で立方晶窒化ホウ
素の合成が可能になっている。しかしこれらの触媒法に
卦ける合成法は、出発原料として大方晶窒化ホウ素を使
用しており、との六方晶窒化ホウ素に六方晶窒化ホウ素
の製造工程中に混入する、主として酸素などの不純物が
混在しているために窒化ホウ素への転換率が低くて大方
晶窒化ホウ素が残留したシ、又は転換率を上げるために
よシ高圧高温条件を要するという問題がある。
On the other hand, the catalytic method uses one or more metals selected from the group consisting of alkali metals, alkaline earth metals, lead, antimony, tin, alloys thereof, and nitrides thereof, as described in the Central Patent Publication Publication No. 38-14. and (11) Aluminum nitride described in Japanese Patent Publication No. 52-17838, in which at least one member selected from the group consisting of lb, IIJ■a*Vaw■"p■a, ■ group elements, and silicon is added. The main known method is to use a system containing the following as a catalyst. Boron nitride in a high-pressure stable phase obtained by catalytic methods such as these (1) and (11) does not contain boron nitride of the same type as boron nitride, which is different from boron nitride in a high-pressure stable phase obtained by a direct method. In the case of synthesis disputes, it has become possible to synthesize cubic boron nitride under lower pressure and temperature conditions than the synthesis conditions of the direct method. However, the synthesis methods associated with these catalytic methods use macrogonal boron nitride as a starting material, and impurities, mainly oxygen, that are mixed into the hexagonal boron nitride during the manufacturing process of hexagonal boron nitride are There is a problem that the conversion rate to boron nitride is low due to the presence of a mixture of boron nitrides, leaving largely cubic boron nitride, or that higher pressure and high temperature conditions are required to increase the conversion rate.

〔発明の目的〕[Purpose of the invention]

本発明は、上記のような従来の立方晶窒化ホウ素の合成
法における欠点及び問題点を解決したもので、具体的に
は、ボラジン及び/又はボラジン誘導体を熱分解して得
る窒化ホウ素(以下、ボラジンによる窒化ホウ素と略記
)を金属及び/又は金属化合物からなる触#′(以下、
触媒と略記)の作用によって立方晶窒化ホウ素に転換し
、この立方晶窒化ホウ素への転換率が極めて高く、しか
も酸素などの不純物の少ない立方晶窒化ホウ素の合成法
の提供を目的とする。
The present invention solves the drawbacks and problems of the conventional cubic boron nitride synthesis method as described above. Specifically, boron nitride (hereinafter referred to as Boron nitride (abbreviated as boron nitride) with borazine is treated with a catalyst made of metal and/or metal compound (hereinafter referred to as
The purpose of the present invention is to provide a method for synthesizing cubic boron nitride, which is converted into cubic boron nitride by the action of a catalyst (abbreviated as "catalyst"), has an extremely high conversion rate to cubic boron nitride, and has little impurities such as oxygen.

〔発明の開示〕[Disclosure of the invention]

本発明の発明者らは、原料窒化ホウ素から立方晶窒化ホ
ウ素への転換率に最も大きな影響をもたらす因子が、原
料窒化ホウ素の結晶面と原料窒化ホウ素の酸素の含有量
であることをつきとめた。
The inventors of the present invention have found that the factors that have the greatest influence on the conversion rate from raw material boron nitride to cubic boron nitride are the crystal plane of raw material boron nitride and the oxygen content of raw material boron nitride. .

しかして原料費化ホウ素中の酸素含有量を必要な限度以
下に押え込む立方晶窒化ホウ素の製造方法を特公昭56
−37200にて提案している。すなわち、原料窒化ホ
ウ素としての六方晶窒化ホウ素とこの六方晶窒化ホウ素
の立方晶窒化ホウ素への転換反応に触媒作用として働く
窒化アルミニウムを混合し、この混合物を容器に充填し
、更に、トルエン、キシレン、エチルアルコールナトの
有機溶媒を容器に注入して混合物を覆う程度以上に添加
するか、もしくは容器内雰囲気を窒素、アルゴンなどの
不活性ガスで置換することによって容器内の酸系号が2
容量φ以下になるように調整し、その後、容器を高圧高
温下で処理して立方晶窒化7Jクウ素を得る方法でおる
Therefore, in 1983, a method for producing cubic boron nitride was developed that suppressed the oxygen content in the raw material boron to the required limit.
-37200. That is, hexagonal boron nitride as raw material boron nitride and aluminum nitride which acts as a catalyst for the conversion reaction of hexagonal boron nitride to cubic boron nitride are mixed, this mixture is filled into a container, and then toluene and xylene are added. , by injecting an organic solvent such as ethyl alcohol into the container and adding more than enough to cover the mixture, or by replacing the atmosphere in the container with an inert gas such as nitrogen or argon, the acid system in the container can be removed.
The volume is adjusted to be equal to or less than φ, and then the container is treated under high pressure and high temperature to obtain cubic 7J boron nitride.

本発明では、立方晶窒化ホウ素への転換率を高めるため
のもう1つの課題である原料窒化ホウ素の結晶面に関し
、新規な発明を提供しようとするものである。すなわち
、本発明の発明者らによると立方晶窒化ホウ素への転換
率は、原料窒化ホウ素の結晶面が低い程高く、ボラジン
の加圧子熱分解によって得られる窒化ホウ素は、上記酸
素含有、殿について望ましい状態にあシ、特に結晶面が
低い点において正に理想的であることが知られたもので
ある。この点に関し、以下更に詳しく述べる。
The present invention aims to provide a new invention regarding the crystal plane of raw material boron nitride, which is another issue for increasing the conversion rate to cubic boron nitride. That is, according to the inventors of the present invention, the conversion rate to cubic boron nitride is higher as the crystal plane of the raw material boron nitride is lower. It is known that the desired state is ideal, especially in the point where the crystal plane is low. This point will be described in more detail below.

先づボラジンをβ−トリクロロボラジンの還元によって
得た後、これを金のカプセル中に密封し、水熱合成装置
を用いて、100MPa、70’O℃までの加圧加熱下
で熱分解し、高純度窒化ホウ素を調製した。得られた上
記高純度窒化ホウ素を粉末X線回折法、赤外線吸収スペ
クトル分光法、透過電子顕微鏡によって結晶性と結合を
調査した。その結果、100MPa 、 700℃まで
の加熱によって生成した窒化ホウ素は第1図に示すよう
に非晶質であり、一方走査電子顕微鏡によって上記高純
度窒化ホウ素の形態を調べた所、球状又は繊維状を有す
る窒化ホウ素であった。これらの結果は、ボラジンの加
圧子熱分解が気相と液相の共存下でボラジン環の開裂反
応と縮合反応が併行していることを示している。
First, borazine was obtained by reduction of β-trichloroborazine, which was then sealed in a gold capsule and thermally decomposed using a hydrothermal synthesizer under pressure and heating up to 100 MPa and 70'O<0>C. High purity boron nitride was prepared. The crystallinity and bonding of the obtained high-purity boron nitride was investigated by powder X-ray diffraction, infrared absorption spectroscopy, and transmission electron microscopy. As a result, boron nitride produced by heating up to 100 MPa and 700°C was found to be amorphous as shown in Figure 1, while the morphology of the high purity boron nitride was examined using a scanning electron microscope and found to be spherical or fibrous. It was boron nitride with These results indicate that in the pressurized thermal decomposition of borazine, the cleavage reaction and condensation reaction of the borazine ring occur in parallel in the coexistence of gas and liquid phases.

又、ボラジンの加圧子熱分解によって合成した非晶質窒
化ホウ素と20モルチ窒化アルミニウムの混合物の6.
5GPa下における転換率を第2図に示す。更に非晶質
窒化ホウ素は、結晶性窒化ホウ素に比べて容易に立方晶
窒化ホウ素に転換し、転換の活性化エネルギーは、結晶
性窒化ホウ素の60Kcal/motに対して20 K
cIIt/m o tと低い値である。以上の研究結果
が本発明の根幹をなしているものである。
Also, 6. of a mixture of amorphous boron nitride and 20 mol aluminum nitride synthesized by pressurized pyrolysis of borazine.
Figure 2 shows the conversion rate under 5 GPa. Furthermore, amorphous boron nitride converts to cubic boron nitride more easily than crystalline boron nitride, and the activation energy for conversion is 20 K compared to 60 Kcal/mot for crystalline boron nitride.
This is a low value of cIIt/m ot. The above research results form the basis of the present invention.

すなわち、本発明の立方晶窒化ホウ素の合成法は、ボラ
ジンによる窒化ホウ素と該窒化ホウ素を立方晶窒化ホウ
素へ転換促進させる作用をする触媒との混合物を圧力3
GPa以上、温度700℃以上で反応させ、しかる後得
られる生成物より触媒を除去するととによって立方晶窒
化ホウ素を得る方法である。
That is, in the method for synthesizing cubic boron nitride of the present invention, a mixture of boron nitride using borazine and a catalyst that promotes the conversion of the boron nitride to cubic boron nitride is heated at a pressure of 3
In this method, cubic boron nitride is obtained by reacting at a temperature of 700° C. or higher at a temperature of 700° C. or higher, and then removing the catalyst from the resulting product.

本発明による立方晶窒化ホウ素の合成法を更に詳細に説
明すると、ボラジンによる窒化ホウ素に触媒を適量添加
したものを所定量秤量し、V型ミキサーなどの混合機で
混合し、得られた混合物をZr g rtなどの金属、
或は六方晶窒化ホウ素、酸化アルミニウムなどの無機質
化合物で作られた容器内に充填し、この容器内の雰囲気
を窒素、アルゴンなどの不活性ガスで置換した後、ガー
ドル型、ベルト型などの高圧高温装置中に設置し、圧力
を30Pa以上好ましくは5.0〜8.0GPaに加圧
するとともに、温度を700℃以上好オしくけ1200
℃〜2000℃才で昇温し、1分曲以上好1しくけ5〜
30分間保持後、降温、降圧し、容器中より生成物を取
り出し、次いで生成物から触媒を除去することによって
立方晶窒化ホウ素を得る方法である。
To explain in more detail the method for synthesizing cubic boron nitride according to the present invention, a predetermined amount of boron nitride prepared by borazine and an appropriate amount of catalyst added thereto is weighed, mixed in a mixer such as a V-type mixer, and the resulting mixture is mixed. Metals such as Zr gr rt,
Alternatively, it is filled into a container made of an inorganic compound such as hexagonal boron nitride or aluminum oxide, and the atmosphere inside the container is replaced with an inert gas such as nitrogen or argon. Installed in a high temperature device, pressurized to 30 Pa or more, preferably 5.0 to 8.0 GPa, and set the temperature to 700°C or more, preferably 1200°C.
℃ ~ 2000 ℃, increase the temperature, preferably 1 minute or more, 1 time 5 ~
After holding for 30 minutes, the temperature and pressure are lowered, the product is taken out from the container, and then the catalyst is removed from the product, thereby obtaining cubic boron nitride.

この本発明に用いるボラジンは、化学式がBN3 H6で、ボラジン誘導体としては、化学式がBxNyH
z(x*’/+1は、それぞれ整数を表わす)で表示さ
れるホウ素と窒素と水素からなるホウ素化合物である。
Borazine used in the present invention has a chemical formula of BN3H6, and borazine derivatives have a chemical formula of BxNyH.
It is a boron compound consisting of boron, nitrogen, and hydrogen represented by z (x*'/+1 each represents an integer).

ボラジン誘導体としてのホウ素化合物は、気体状、液体
状又は固体状のものがあるけれども取扱上から液体状又
は固体状のものが好ましく、例えばボラゾナフタレン(
B、N、H8) 、ボラゾビフェニル(B6N6H,。
The boron compound as a borazine derivative may be in a gaseous, liquid or solid form, but it is preferably in a liquid or solid form from the viewpoint of handling.
B, N, H8), borazobiphenyl (B6N6H,.

)、2,4−ジアミノボラジン(88NI5H,)など
がある。このボラジン及び/又はボラジン誘導体は、無
機環状化合物からなるポウ素化合物、例えばボラジンの
ような六員環状化合物、ポ2シナ7タレンのような抜穴
員環状化合物が好ましい。
), 2,4-diaminoborazine (88NI5H, ), and the like. The borazine and/or borazine derivative is preferably a boron compound consisting of an inorganic cyclic compound, such as a six-membered cyclic compound such as borazine, or a hole-membered cyclic compound such as po-2-sina-7-talene.

ボラジンによる窒化ホウ素に添加する触媒は、従来、立
方晶窒化ホウ素への転換に使用されている触媒、例えげ
Li 、 Na 、 K 、几b 、 Os 、 Fr
のアルカリ金属、Oa 、 Sr 、 Ra、 Ra 
、 Be 、 Mgのアルカリ土類金蔵、At、旧、 
Tl 、 Zr * Hf 、 V rNb 、 Ta
 、 Or 、 Mo 、W 、 Sb 、 an 、
 Ph ’lどの金属、これらの合金並びにLi3N 
、 Li5FIN2. Na8N 、 Na、BN、。
The catalyst added to boron nitride by borazine is a catalyst conventionally used for conversion to cubic boron nitride, such as Li, Na, K, Li, Os, Fr.
alkali metals, Oa, Sr, Ra, Ra
, Be, Mg alkaline earth Kinzo, At, old,
Tl, Zr*Hf, VrNb, Ta
, Or, Mo, W, Sb, an,
Ph'l any metals, their alloys as well as Li3N
, Li5FIN2. Na8N, Na, BN,.

、 0a8N、 、 Mr13N2. ktNなどの金
属化Fr物から選んで使用することができ、特に窒化ア
ルミニウムを触媒とすると、立方晶密化ホウ素への転換
を促進する作用が高いことから好ましい。この触媒とし
ての窒化アルミニウムの混合添加割合は、5モルチ未満
では介p媒作用が低く、50モル係を起えて多くたると
触媒作用が飽和に達してしすうために窒化アルミニウム
の添加祇は、5モル係〜50モル係好すしくけ10〜4
0モルチである。この出発原料と1.、て使用する触媒
は、立方晶窒化ホウ素の合成が完了した後、例えげ彎化
アルミニヮムの場合は、200℃〜400℃のNa O
H、KOHなどの苛性アルカリ溶液、又は煮沸したNr
+ONなどの強苛性アルカリ水溶液中に浸漬してアルカ
リ処理し、窒化アルミニウムを除去することができる。
, 0a8N, , Mr13N2. The catalyst can be selected from metallized Fr such as ktN, and it is particularly preferable to use aluminum nitride as a catalyst because it has a high effect of promoting the conversion to cubic densified boron. If the mixing ratio of aluminum nitride as a catalyst is less than 5 mol, the catalytic effect will be low, and if it exceeds 50 mol, the catalytic action will reach saturation. Mole ratio ~ 50 mole ratio Sushikake 10-4
It is 0 morti. This starting material and 1. After the synthesis of cubic boron nitride is completed, for example, in the case of aluminum dielectric, the catalyst used is
Caustic alkaline solution such as H, KOH, or boiled Nr
Aluminum nitride can be removed by immersing it in a strong caustic alkaline aqueous solution such as +ON for alkali treatment.

このようにして作製する本発明の立方晶窒化ホウ素の合
成法は、出発原料が高純度で、しかも結晶度の低い微細
な窒化ホウ素と触媒とからなるために低い圧力、温度条
件でもって立方晶窒化ホウ素に100q6転換したもの
が得られる。
In the method for synthesizing cubic boron nitride of the present invention, which is produced in this way, the starting materials are of high purity and consist of fine boron nitride with low crystallinity and a catalyst, so cubic boron nitride can be produced under low pressure and temperature conditions. 100q6 converted to boron nitride is obtained.

本発明′の合成法によって得る立方晶窒化ホウ素は、高
純度でしかも微細であるために焼結性にすぐれており、
例えば他の添加物との混合物にして高圧高温条件下で立
方晶窒化ホウ素焼結体を作製する場合、低い圧力温度条
件でもって緻密で高硬度な焼結体を得ることができる。
The cubic boron nitride obtained by the synthesis method of the present invention has high purity and fine particles, so it has excellent sinterability.
For example, when a cubic boron nitride sintered body is produced under high pressure and high temperature conditions using a mixture with other additives, a dense and highly hard sintered body can be obtained under low pressure and temperature conditions.

〔発明の代表的な実施形態〕[Representative embodiment of the invention]

実施例1゜ ボラジンを100MPaのアルゴン雰囲気中、7oo℃
で分解して得た窒化ホウ素80モル係と窒化アルミニウ
ム2ロ 秤量し、アルゴンを満したグローブボックス内のメノウ
乳鉢で混合し、ジルコニウム製容器に充填した。次いで
この容器をデシケータ−中に移し、真空ボンダで脱気後
、デシケータ−内をアルゴンで満した。デシケータ−中
で容器に蓋をして口を刺止した後、容器をデシケータ−
より取シ出し、ガードル型高圧高温装置内に設置し、こ
の高圧高温装置の圧力を6.50Pa、温度1400℃
で10分間保持して本発明の合成法による試料1を作製
【7た。
Example 1 Borazine was heated at 70°C in an argon atmosphere of 100 MPa.
80 mol of boron nitride obtained by decomposition and 2 mol of aluminum nitride were weighed, mixed in an agate mortar in a glove box filled with argon, and filled into a zirconium container. Next, this container was transferred into a desiccator, and after degassing with a vacuum bonder, the inside of the desiccator was filled with argon. Place the lid on the container in a desiccator, puncture the mouth, and then place the container in a desiccator.
It was taken out and placed in a girdle-type high-pressure and high-temperature device, and the pressure of this high-pressure and high-temperature device was set at 6.50 Pa and the temperature at 1400°C.
Sample 1 was prepared by the synthesis method of the present invention by holding the sample for 10 minutes at [7].

こうして得た試料1は、X線回折の結果、六方晶窒化ホ
ウ素の存在が萌められず、10014の立方晶窒化ホウ
素の回折線であった。又、この試料1は、緻密な焼結体
になっていたのでマイクロビッカースによって硬さを測
定した結果、6000Kf/諦12HVであった。
As a result of X-ray diffraction of Sample 1 thus obtained, the presence of hexagonal boron nitride was not detected, and the diffraction line was 10014 cubic boron nitride. Further, since this sample 1 was a dense sintered body, the hardness was measured using a micro Vickers, and the hardness was 6000 Kf/12 HV.

比較の目的で市販の六方晶窒化ホウ170モルチと窒化
アルミニウム20千ルチを同様の高圧高温条件下で作製
した所、Xd回折の結果、立方晶窒化ホウ素と六万晶穿
化ホウ素の両方が認められ、その硬さは3000 Ky
/urn MYであった。
For comparison purposes, commercially available hexagonal boron nitride (170 ml) and aluminum nitride (20,000 ml) were prepared under similar high-pressure, high-temperature conditions. As a result of Xd diffraction, both cubic boron nitride and 60,000-crystal perforated boron were observed. and its hardness is 3000 Ky
/urn MY.

実施例2゜ 実施例1.と同様にしてボラジンの熱分解により得た窒
化ホウ素60モルチと窒化アルミニウム40モル係を全
fi550mlFとなるように秤量し、実施例1と同様
にしてガードル型高圧高温装置内に設置t!し、この高
圧高温条件下の圧力を6.50Pa、温度1300℃で
15分間保持して本発明の合成法による試料2を作製し
た。こうして得た試イ)2は、xA9回折の結果、六方
晶窒化ホウ素の存在が11がめられす、100部の立方
晶窒化ホウ素の回4Jr Fi!であっft、又、試料
2の硬さを測定した結果、5500 Kf/rmF I
IVであった。
Example 2゜Example 1. 60 mol of boron nitride and 40 mol of aluminum nitride obtained by thermal decomposition of borazine in the same manner as in Example 1 were weighed to give a total fi of 550 mlF, and placed in a girdle-type high-pressure and high-temperature apparatus in the same manner as in Example 1. Then, under these high pressure and high temperature conditions, a pressure of 6.50 Pa and a temperature of 1300° C. were maintained for 15 minutes to prepare Sample 2 according to the synthesis method of the present invention. As a result of xA9 diffraction, the presence of hexagonal boron nitride is detected in sample A) 2 obtained in this way. ft, and as a result of measuring the hardness of sample 2, it was 5500 Kf/rmF I
It was IV.

比較の目的で市販の六万品窒化ホウ素60モルチと窒化
アルミニウム40モルφを同様の高圧高温条件下で作製
した所、XIP1回折の結果、立方晶窒化ホウ素と六方
晶窒化ホウ素の両方が聞められ、その硬さは2500 
Ky/mm’ HVであった。
For comparison purposes, 60 moles of commercially available boron nitride and 40 moles of aluminum nitride were prepared under similar high pressure and high temperature conditions, and as a result of XIP1 diffraction, both cubic boron nitride and hexagonal boron nitride were detected. and its hardness is 2500
Ky/mm' HV.

実施例3゜ 実施例1.と同様にしてボラジンの凸分解により得た窒
化ホウ素90モル俤と錯化アルミニウム1゜モルチを全
量550mfとなるように秤量し、実施例1、と同機に
してガードル型高圧高温装置内に設置し、この高圧高温
装置の圧力を8.0 GPa s温度1800℃で5分
間保持し、て本発明の合成法による試料3を作製した。
Example 3゜Example 1. 90 moles of boron nitride obtained by convex decomposition of borazine in the same manner as above and 1 ° mole of complexed aluminum were weighed so that the total amount was 550 mf, and placed in the same machine as in Example 1 in a girdle-type high-pressure and high-temperature device. The pressure of this high-pressure, high-temperature apparatus was maintained at 8.0 GPa s at a temperature of 1800° C. for 5 minutes to prepare Sample 3 according to the synthesis method of the present invention.

こうして得た試料3#ま、X線回折の結果、六方晶密化
ホウ素の存在が認められず、100チの立方晶窒化ホウ
累の回折線であった。
As a result of X-ray diffraction of Sample 3# thus obtained, the presence of hexagonal densified boron was not recognized, and the diffraction line was that of 100-inch cubic boron nitride.

この試料3の硬さは、63o oKf/r+/ )IV
であった。
The hardness of this sample 3 is 63oKf/r+/)IV
Met.

比較の目的で市販の六方晶窒化ホウ素90千ルチと窒化
アルミニ9轟10 温条件下で作製した所、X線回折の結果、立方晶窒化ホ
ウ素と六方晶窒化ホウ素の両方が認められ、その硬さは
、3 2 0 0Ky/lam HVであった。
For comparison purposes, commercially available hexagonal boron nitride (90,000 ruci) and aluminum nitride (90,000 ruci) were prepared under temperature conditions, and as a result of X-ray diffraction, both cubic boron nitride and hexagonal boron nitride were observed. The power was 3200 Ky/lam HV.

実〃16例4。Actual 16 cases 4.

実施例1.のボラジンの代υにポ2シナ7タレンを使用
して実Mli例1と同、様に熱分1了して得た窒化ホウ
素80モルチと窒化アルミニウム20千ルチの合計54
0mG’にアルミニウム10tnfを添加した混合粉末
を実、栴例1と同様にして圧力4.50P♂、温度17
00℃で15分間保持して本発明の合成法による試料4
を作製したこうして得た試料4は、X静回折の結果、六
方晶窒化ホウ素の存在が認められず、100%の立方晶
窒化ホウ素の回折線であった。仁の試料4の硬さは、5
800Ff/咽2■Vであった。
Example 1. A total of 54 ml of boron nitride 80 ml and aluminum nitride 20,000 ml obtained by heating in the same manner as in Example 1 using Po2Sina7talene in place of borazine υ.
A mixed powder containing 0mG' and 10tnf of aluminum was prepared in the same manner as in Example 1 at a pressure of 4.50P♂ and a temperature of 17%.
Sample 4 produced by the synthesis method of the present invention by holding at 00°C for 15 minutes
As a result of X-static diffraction, the thus obtained sample 4 showed no presence of hexagonal boron nitride, and the diffraction line was 100% cubic boron nitride. The hardness of sample 4 is 5
It was 800Ff/throat 2■V.

比較の目的で市販の六方晶窒化ホウ170モル%とQ化
アルミニウム20モルチとアルミニfy /A10モル
チを同様にして作製した所、Xh寝回折の結果、立方晶
窒化ホウ素と六方晶窒化ホウ素の両方が認められ、その
硬さは、28001FF/+♂HVであった。
For comparison purposes, 170 mol% of commercially available hexagonal boron nitride, 20 mol% of aluminum Q oxide, and 10 mol% of aluminum fy/A were prepared in the same manner, and as a result of Xh horizontal diffraction, both cubic boron nitride and hexagonal boron nitride were found. was observed, and its hardness was 28001FF/+♂HV.

なお、実施例1へ4の合成法で得た立方晶窒化ホウ素は
、それぞれX線回折及び硬さ測定後、2Nの苛性ソーダ
−水溶液中で30分間煮沸して100チの立方晶窒化ホ
ウ)(にした。
In addition, the cubic boron nitride obtained by the synthesis method of Examples 1 to 4 was obtained by X-ray diffraction and hardness measurement, and then boiled for 30 minutes in a 2N caustic soda aqueous solution to obtain 100 cm of cubic boron nitride) ( I made it.

〔産業上の利用nJ能性〕[Industrial use nJ ability]

以上の結果、本発明の立方晶窒化ホウ素の合成法は、従
来の大方晶窒化ホウ素を出発原料とするものよりも低い
圧力、温度争件で立方晶窒化ホウ素の合成が可能でろ力
、しかも立方晶窒化ホウ素への転換率が100−のもの
で、その立方静窒化ホウ素は、高純度で微に10なもの
が得られる。又、木発明の合成法によって得る立方晶窒
化ホウ素を利用した焼結体は、焼結性にすぐれておシ、
得られる焼結体が高硬度、緻密であることから旋削工具
及ヒリーマ、エンドミル、ドリルなどの穴あけ工具とし
ての回転工具を含めた切削用工具、又は機械部品治工具
及び切断工具を含めた耐摩耗用工具、更には研削工具な
どにも応用でき、その他立方晶窒化ホウ素が有して払る
高い熱伝導性と高い電気抵抗性から電子回路におけるヒ
ートシンクにも応用できるもので産業上の有用性が極め
て高いものでちる。
As a result of the above, the method for synthesizing cubic boron nitride of the present invention enables the synthesis of cubic boron nitride at lower pressure and temperature than the conventional method using macrogonal boron nitride as a starting material. The conversion rate to crystalline boron nitride is 100, and the cubic static boron nitride is highly purified and has a purity of only 10. In addition, the sintered body using cubic boron nitride obtained by the synthesis method of Wood's invention has excellent sinterability.
Since the resulting sintered body is highly hard and dense, it is suitable for use in cutting tools, including turning tools and rotary tools used as drilling tools such as millers, end mills, and drills, or wear-resistant tools, including machine parts jigs and cutting tools. It can be applied to tools such as cutting tools and even grinding tools, and due to the high thermal conductivity and high electrical resistance that cubic boron nitride has, it can also be applied to heat sinks in electronic circuits, making it industrially useful. It's extremely expensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ボラジンと熱分解して得た密化ホウ素の結晶
性を示す赤外線吸収スペクトルによる回折図。 第2図は、圧力6.50Paにおける、ボラジンを熱分
解して得た窒化ホウ素の立方晶窒化ホウ素への転換率の
説明図。 特許出願人 東芝タンガロイ株式会社 同上 日本碍子株式会社 第1図 第2図 係持8を聞
Figure 1 is a diffraction diagram based on an infrared absorption spectrum showing the crystallinity of densified boron obtained by thermal decomposition with borazine. FIG. 2 is an explanatory diagram of the conversion rate of boron nitride obtained by thermally decomposing borazine to cubic boron nitride at a pressure of 6.50 Pa. Patent applicant: Toshiba Tungaloy Co., Ltd. Nippon Insulators Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1) ボラジン及び/又はボラジン誘導体を熱分解し
7て得られる窒化ホウ素と金属及び/又は金属化合物か
らなる触媒との混合物を圧力3GPa以上温席700℃
以上で反応させ、しか石後得られた生成物より前記触媒
を除去することを特徴とする立方晶窒化ホウ素の合成法
(1) A mixture of boron nitride obtained by thermally decomposing borazine and/or borazine derivatives and a catalyst consisting of a metal and/or a metal compound is heated at a temperature of 700° C. at a pressure of 3 GPa or more.
A method for synthesizing cubic boron nitride, characterized in that the catalyst is removed from the product obtained after the above reaction.
(2) 上記混合物がボラジン及び/又はボラジン誘導
体を熱分解して得られる窒化ホウ素50モル係〜95モ
ル% ト鍾化アルミニウム5モルチ〜50モル係からな
る仁とを特徴とする特許請求の範囲第1項記載の立方晶
窒化ホウ素の合成法。
(2) The above-mentioned mixture comprises 50 to 95 mol% of boron nitride obtained by thermally decomposing borazine and/or a borazine derivative, and 5 to 50 mol% of aluminum nitride. A method for synthesizing cubic boron nitride according to item 1.
JP6347284A 1984-03-30 1984-03-30 Synthesis of cubic boron nitride crystal Granted JPS60204607A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6347284A JPS60204607A (en) 1984-03-30 1984-03-30 Synthesis of cubic boron nitride crystal
US06/667,802 US4545968A (en) 1984-03-30 1984-11-02 Methods for preparing cubic boron nitride sintered body and cubic boron nitride, and method for preparing boron nitride for use in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6347284A JPS60204607A (en) 1984-03-30 1984-03-30 Synthesis of cubic boron nitride crystal

Publications (2)

Publication Number Publication Date
JPS60204607A true JPS60204607A (en) 1985-10-16
JPS6255896B2 JPS6255896B2 (en) 1987-11-21

Family

ID=13230203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6347284A Granted JPS60204607A (en) 1984-03-30 1984-03-30 Synthesis of cubic boron nitride crystal

Country Status (1)

Country Link
JP (1) JPS60204607A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108715A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108709A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108708A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108713A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108714A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108712A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108711A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108706A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108717A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108707A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108710A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108716A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108715A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108709A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108708A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108713A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108714A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108712A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108711A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108706A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108717A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108707A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108710A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride
JPS62108716A (en) * 1985-11-07 1987-05-20 Denki Kagaku Kogyo Kk Production of cubic boron nitride

Also Published As

Publication number Publication date
JPS6255896B2 (en) 1987-11-21

Similar Documents

Publication Publication Date Title
Lu et al. Growth of SiC nanorods at low temperature
JPS60204607A (en) Synthesis of cubic boron nitride crystal
US4545968A (en) Methods for preparing cubic boron nitride sintered body and cubic boron nitride, and method for preparing boron nitride for use in the same
Lohstroh et al. Reaction steps in the Li–Mg–N–H hydrogen storage system
TW201130735A (en) Process for preparing hexachlordisilan
US8632743B2 (en) Synthesis of carbon nitrides from carbon dioxide
US6306358B1 (en) Crystalline turbostratic boron nitride powder and method for producing same
Wegner et al. A low temperature pyrolytic route to amorphous quasi-hexagonal boron nitride from hydrogen rich (NH 4) 3 Mg (BH 4) 5
JPS63502823A (en) Ceramic product manufacturing method
JP3839539B2 (en) Crystalline disordered layered boron nitride powder and method for producing the same
Cho et al. Synthesis of red-emitting nanocrystalline phosphor CaAlSiN 3: Eu 2+ derived from elementary constituents
Lee et al. A novel process for combustion synthesis of AlN powder
Huczko et al. Efficient one‐pot combustion synthesis of few‐layered graphene
Zeng et al. Combustion synthesis of Sialon Powders (Si6‐zAlzOzN8‐z, z= 0.3, 0.6)
JP4695173B2 (en) Method for preparing titanium nitride powder
JPH0144672B2 (en)
JPH0510282B2 (en)
US8449854B2 (en) Method for preparation of new superhard B-C-N material and material made therefrom
JPS62289230A (en) Manufacture of cubic system boron nitride using fusing agentand cubic system boron nitride manufactured through said method
Nakano et al. High pressure reactions and formation mechanism of cubic BN in the system BN Mg3N2
JP3854303B2 (en) Method for producing crystalline disordered layer boron nitride powder
Neal et al. Solid-state NMR examination of the formation of β-sialon by carbothermal reduction and nitridation of halloysite clay
Zou et al. Catalyst-free synthesis of lithium hydride at room temperature
EP0162137A2 (en) Method for preparing boron nitride
JP3931015B2 (en) Method for synthesizing inorganic material containing carbide using plant organic raw material as carbon source