JP2006143829A - Polylactic acid-based resin molding and method for producing the same - Google Patents

Polylactic acid-based resin molding and method for producing the same Download PDF

Info

Publication number
JP2006143829A
JP2006143829A JP2004334080A JP2004334080A JP2006143829A JP 2006143829 A JP2006143829 A JP 2006143829A JP 2004334080 A JP2004334080 A JP 2004334080A JP 2004334080 A JP2004334080 A JP 2004334080A JP 2006143829 A JP2006143829 A JP 2006143829A
Authority
JP
Japan
Prior art keywords
polylactic acid
acid
crystallization
molded product
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334080A
Other languages
Japanese (ja)
Inventor
Keisuke Okuma
敬介 大熊
Hirokado Nakamura
博門 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Original Assignee
Kanebo Synthetic Fibers Ltd
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Synthetic Fibers Ltd, Kanebo Ltd filed Critical Kanebo Synthetic Fibers Ltd
Priority to JP2004334080A priority Critical patent/JP2006143829A/en
Publication of JP2006143829A publication Critical patent/JP2006143829A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polylactic acid-based resin molding obtained by crystallizing a polylactic acid-based resin having excellent impact resistance while maintaining transparency, and a method for producing the same. <P>SOLUTION: This polylactic acid-based resin molding having ≥30% crystallinity comprises 0.1-15.0 pts. by weight castor oil-based fatty acid ester to 100 pts. by weight polylactic acid. This resin molding has such a level of impact resistance as usable for various containers, home electrical appliances, automobile parts, etc., and transparency to an extent not largely impairing transparency originally possessed by the polylactic acid. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、射出成形等により作製されたポリ乳酸系樹脂組成物の成形品に関する。さらに詳しくは、結晶化することで耐衝撃性が向上し、且つ透明性が維持されるポリ乳酸系樹脂成形品及びその製造方法に関するものである。   The present invention relates to a molded article of a polylactic acid resin composition produced by injection molding or the like. More specifically, the present invention relates to a polylactic acid resin molded article whose impact resistance is improved by crystallization and whose transparency is maintained, and a method for producing the same.

近年、自然環境保護の見地から、自然環境中で分解する生分解性樹脂及びその成形品が求められている。中でも、脂肪族ポリエステルなどの生分解性樹脂の研究・開発が活発に行われている。特に、ポリ乳酸は生分解性樹脂であるだけでなく、石油を原料とせず、再生可能資源であるトウモロコシ等の植物を原料としていることにより、循環型社会の構築に向けての材料としての注目が大きい。   In recent years, from the viewpoint of protecting the natural environment, biodegradable resins that decompose in the natural environment and molded articles thereof have been demanded. In particular, research and development of biodegradable resins such as aliphatic polyesters are actively conducted. In particular, polylactic acid is not only a biodegradable resin, but it does not use petroleum as a raw material, but also uses plants such as corn, which is a renewable resource, as a material for building a recycling society. Is big.

ポリ乳酸は、他の生分解性樹脂と比較して融点が150〜180℃と高く、しかも透明性に優れるため、成形用材料として期待されている。しかし、ポリ乳酸は、その剛直な分子構造の為に、強度は高い一方、耐衝撃性に劣り脆いという欠点がある。   Polylactic acid is expected to be a molding material because it has a melting point as high as 150 to 180 ° C. compared to other biodegradable resins and is excellent in transparency. However, polylactic acid has high strength due to its rigid molecular structure, but has the disadvantage of being inferior in impact resistance and fragile.

ポリ乳酸の耐衝撃性を改善するための方法として、成形加工法による改質がある。これは、ポリ乳酸に各種改質剤を加えたものを、成形時又は成形後に熱処理を行い結晶化させることで耐衝撃性を得る方法である。通常、ポリ乳酸単独を結晶化しても耐衝撃性は向上しないが、特許文献1には、ポリ乳酸に脂肪酸エステルを添加し結晶化を行うことにより、耐衝撃性を改良する方法が開示されている。また、特許文献2には、ポリ乳酸等の脂肪族ポリエステルに変性エラストマーをブレンドしアニール処理を行うことで、耐衝撃性が向上すると記載してある。さらに、特許文献3では、乳酸系樹脂に脂肪族ポリエステルをブレンドし、射出成形後に結晶化することで、耐衝撃性が向上すると記載してある。   As a method for improving the impact resistance of polylactic acid, there is a modification by a molding method. This is a method of obtaining impact resistance by crystallizing polylactic acid with various modifiers at the time of molding or after molding. Usually, even if polylactic acid alone is crystallized, the impact resistance is not improved. However, Patent Document 1 discloses a method for improving impact resistance by adding a fatty acid ester to polylactic acid and performing crystallization. Yes. Further, Patent Document 2 describes that impact resistance is improved by blending a modified elastomer with an aliphatic polyester such as polylactic acid and performing an annealing treatment. Furthermore, Patent Document 3 describes that impact resistance is improved by blending an aliphatic polyester with a lactic acid resin and crystallizing it after injection molding.

しかし、これらの方法では耐衝撃性を向上することはできるが、透明性についての記載はない。この方法で耐衝撃性を確保すると、透明でなくなるかまたは透明性が極端に低下してしまうからである。通常、ポリ乳酸を熱処理等で結晶化させると、結晶サイズがミクロンオーダーからサブmm程度となり、ポリ乳酸の結晶自体が光散乱の要因となり白濁してしまう。   However, although these methods can improve impact resistance, there is no description about transparency. This is because if the impact resistance is secured by this method, it is not transparent or the transparency is extremely lowered. Usually, when polylactic acid is crystallized by heat treatment or the like, the crystal size becomes from the micron order to about sub mm, and the polylactic acid crystal itself becomes a factor of light scattering and becomes cloudy.

一方、特定の結晶核剤をポリ乳酸に添加することで結晶化速度を高め、加熱結晶化しても透明性を維持する方法が特許文献4、特許文献5に開示されている。しかし、これには耐衝撃性の改善についての記載はない。   On the other hand, Patent Document 4 and Patent Document 5 disclose methods of increasing the crystallization speed by adding a specific crystal nucleating agent to polylactic acid and maintaining transparency even when heat crystallization is performed. However, there is no mention of improvement in impact resistance.

即ち、ポリ乳酸系樹脂を結晶化して得られる成形品に、透明性が維持されたまま、優れた耐衝撃性を有するポリ乳酸系樹脂成形品は未だ得られていない。   That is, a polylactic acid resin molded article having excellent impact resistance while maintaining transparency in a molded article obtained by crystallizing a polylactic acid resin has not yet been obtained.

特開平11−116784号公報JP-A-11-116784 特開2004−35691号公報JP 2004-35691 A 特開2003−335933号公報JP 2003-335933 A 特開平11−5849号公報JP-A-11-5849 特開平11−116783号公報Japanese Patent Laid-Open No. 11-116783

本発明が解決しようとする課題は、ポリ乳酸系樹脂を結晶化して得られる成形品におい
て、優れた耐衝撃性を有し、且つ透明性を維持することができるポリ乳酸系樹脂成形品及びその製造方法を提供することにある。
The problem to be solved by the present invention is a molded product obtained by crystallizing a polylactic acid resin, and has a superior impact resistance and can maintain transparency, and a molded product thereof It is to provide a manufacturing method.

本発明者らは、上述の課題を解決すべく鋭意研究を重ねた結果、本発明を完成するに至った。即ち、ポリ乳酸100重量部に対して、ヒマシ油系脂肪酸エステルを0.1〜15.0重量部含有するポリ乳酸系樹脂組成物を使用し、成形時又は成形後に結晶化させることによって、アイゾット衝撃強度が6kJ/m以上の耐衝撃性、且つ、2mm厚のHaze値が50%以下の透明性を有するポリ乳酸系樹脂成形品が得られることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have completed the present invention. That is, by using a polylactic acid resin composition containing 0.1 to 15.0 parts by weight of castor oil fatty acid ester with respect to 100 parts by weight of polylactic acid and crystallizing at the time of molding or after molding, Izod It has been found that a polylactic acid-based resin molded article having an impact resistance of 6 kJ / m 2 or more and transparency having a 2 mm thickness Haze value of 50% or less can be obtained.

本発明のポリ乳酸系樹脂成形品は、各種容器や家電製品、自動車部品等に使用できるレベルの耐衝撃性を有し、且つ、本来ポリ乳酸が有する透明性を大きく損なわない程度の透明性を有する。   The polylactic acid-based resin molded article of the present invention has a level of impact resistance that can be used for various containers, household appliances, automobile parts, etc., and has a transparency that does not significantly impair the transparency inherent in polylactic acid. Have.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のポリ乳酸系樹脂成形品は、ポリ乳酸とヒマシ油系脂肪酸エステルを含有するポリ乳酸樹脂組成物を成形時又は成形後に結晶化することで得られるポリ乳酸系樹脂成形品である。   The polylactic acid resin molded article of the present invention is a polylactic acid resin molded article obtained by crystallizing a polylactic acid resin composition containing polylactic acid and a castor oil fatty acid ester at the time of molding or after molding.

(ポリ乳酸)
本発明に用いられるポリ乳酸は、実質的にL−乳酸又はD−乳酸由来のモノマー単位のみで構成されるポリマーである。ここで「実質的に」とは、本発明の効果を損なわない範囲で、L−乳酸又はD−乳酸に由来しない、他のモノマー単位を含んでいても良いと言う意味である。ポリ乳酸が、L−乳酸又はD−乳酸に由来するモノマー単位だけからなる場合には、重合体は結晶性で高融点を有する。さらには、L−乳酸、D−乳酸由来のモノマー単位の比率(D/L比と略称する)を変化させる事により、結晶性・融点を自在に調節する事ができるので、用途に応じ、実用特性を制御することが可能である。
(Polylactic acid)
The polylactic acid used in the present invention is a polymer composed substantially only of monomer units derived from L-lactic acid or D-lactic acid. Here, “substantially” means that other monomer units not derived from L-lactic acid or D-lactic acid may be included as long as the effects of the present invention are not impaired. When polylactic acid is composed of only monomer units derived from L-lactic acid or D-lactic acid, the polymer is crystalline and has a high melting point. Furthermore, the crystallinity and melting point can be adjusted freely by changing the ratio of monomer units derived from L-lactic acid and D-lactic acid (abbreviated as D / L ratio). It is possible to control the characteristics.

また、ポリ乳酸の性質を損なわない程度に、他のヒドロキシカルボン酸単位との共重合体であっても、脂肪族ジオールや脂肪族ジカルボン酸との共重合体であってもよい。ポリ乳酸に共重合される上記の「他のヒドロキシカルボン酸単位」としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシ−カルボン酸やカプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類などを挙げることができる。ポリ乳酸に共重合される上記「脂肪族ジオール」としては、エチレングリコール、1,4−ブタンジオール,1,4−シクロヘキサンジメタノールなどを挙げることができる。また、ポリ乳酸に共重合される上記「脂肪族ジカルボン酸」としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸などを挙げることができる。   Further, it may be a copolymer with another hydroxycarboxylic acid unit or a copolymer with an aliphatic diol or an aliphatic dicarboxylic acid as long as the properties of polylactic acid are not impaired. Examples of the “other hydroxycarboxylic acid units” copolymerized with polylactic acid include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy3,3-dimethylbutyric acid. And bifunctional aliphatic hydroxy-carboxylic acids such as 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid and 2-hydroxycaproic acid, and lactones such as caprolactone, butyrolactone and valerolactone. Examples of the “aliphatic diol” copolymerized with polylactic acid include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the “aliphatic dicarboxylic acid” copolymerized with polylactic acid include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.

さらに、耐熱性を向上させるなどの必要に応じ、少量共重合成分としてテレフタル酸のような非脂肪族ジカルボン酸及び/又はビスフェノールAのエチレンオキサイド付加物のような非脂肪族ジオールを共重合させてもよい。また、分子量増大を目的として少量の鎖延長剤、例えばジイソシアネート化合物、エポキシ化合物、酸無水物などを共重合させることもできる。   Furthermore, if necessary, such as improving heat resistance, a non-aliphatic dicarboxylic acid such as terephthalic acid and / or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A may be copolymerized as a small amount copolymerization component. Also good. A small amount of a chain extender such as a diisocyanate compound, an epoxy compound, or an acid anhydride can be copolymerized for the purpose of increasing the molecular weight.

ポリ乳酸の重合法としては、縮重合法、開環重合法、その他の公知の重合法を採用する
ことができる。例えば、縮重合法では、L−乳酸或いはD−乳酸或いはこれらの混合物を直接脱水縮重合して任意の組成を持ったポリ乳酸を得ることができる。また、開環重合法では、乳酸の環状二量体であるラクチドを必要に応じて重合調整剤等を用いながら、選ばれた触媒を使用してポリ乳酸を得ることができる。この際、ラクチドには、L−乳酸の2量体であるL−ラクチド、D−乳酸の2量体であるD−ラクチド、或いはL−乳酸とD−乳酸からなるDL−ラクチドがあり、これらを必要に応じて混合して重合することにより任意の組成及び結晶性を有するポリ乳酸を得ることができる。
As a polymerization method of polylactic acid, a condensation polymerization method, a ring-opening polymerization method, and other known polymerization methods can be employed. For example, in the condensation polymerization method, polylactic acid having an arbitrary composition can be obtained by directly dehydrating condensation polymerization of L-lactic acid, D-lactic acid or a mixture thereof. In the ring-opening polymerization method, polylactic acid can be obtained using a selected catalyst while using lactide, which is a cyclic dimer of lactic acid, with a polymerization regulator or the like as necessary. In this case, the lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, or DL-lactide composed of L-lactic acid and D-lactic acid. If necessary, polylactic acid having an arbitrary composition and crystallinity can be obtained by mixing and polymerizing.

本発明において使用するポリ乳酸の分子量は、目的とする用途、例えば射出成形品にした場合に、実質的に十分な機械物性を示すものであれば、その分子量は特に制限されない。分子量が低いと得られる成形品の強度が低下し、分解速度が速くなる。逆に高いと加工性が低下し、成形が困難になる。   The molecular weight of the polylactic acid used in the present invention is not particularly limited as long as it exhibits substantially sufficient mechanical properties when used in an intended application, for example, an injection molded product. When the molecular weight is low, the strength of the obtained molded product is lowered and the decomposition rate is increased. On the other hand, if it is high, the workability is lowered and molding becomes difficult.

かかる点を考慮すると、本発明に使用するポリ乳酸の重量平均分子量の好ましい範囲は、5万から40万、より好ましくは10万から25万である。なお、ポリ乳酸の代表的なものとしては、三井化学(株)製レイシアシリーズ、トヨタ自動車(株)製エコプラスチック(U’z)シリーズ、カーギル・ダウ製Nature Worksシリーズなどが挙げられる。   Considering this point, the preferred range of the weight average molecular weight of the polylactic acid used in the present invention is 50,000 to 400,000, more preferably 100,000 to 250,000. Representative examples of polylactic acid include the Lacia series manufactured by Mitsui Chemicals, the Eco Plastic (U'z) series manufactured by Toyota Motor Corporation, and the Nature Works series manufactured by Cargill Dow.

(ヒマシ油系脂肪酸エステル)
本発明に用いられるヒマシ油系脂肪酸エステルは、ヒマシ油から誘導される脂肪酸エステル系である。ヒマシ油 は、分子内に3個弱(より正確には 2.7個)のリシノール酸を構成脂肪酸として含むトリグリセリドであり、ここでリシノール酸とは18個の炭素原子のうち、9〜10位の炭素原子間に二重結合を有しかつ12位の炭素原子にOH基を有する脂肪酸である。
(Castor oil fatty acid ester)
The castor oil fatty acid ester used in the present invention is a fatty acid ester derived from castor oil. Castor oil is a triglyceride containing less than 3 (more precisely, 2.7) ricinoleic acid as a constituent fatty acid in the molecule, where ricinoleic acid is 9 to 10 positions out of 18 carbon atoms. It is a fatty acid having a double bond between carbon atoms and having an OH group at the 12th carbon atom.

ヒマシ油系脂肪酸エステルは、例えば、ヒマシ油又は水添ヒマシ油と、少なくとも一部がオキシ脂肪酸である一価の脂肪酸又はその脂肪酸を縮合した縮合脂肪酸とのエステル化反応等により精製される。ここで、水添ヒマシ油は、ヒマシ油の構成脂肪酸であるリノール酸を水素添加して12−ヒドロキシステアリン酸に変換したものである。また、一価の脂肪酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、ベヘミン酸、モンタン酸、オレイン酸、リシノール酸、12−ヒドロキシステアリン酸等が挙げられる。   The castor oil fatty acid ester is purified by, for example, an esterification reaction between castor oil or hydrogenated castor oil and a monovalent fatty acid that is at least partially oxy fatty acid or a condensed fatty acid obtained by condensing the fatty acid. Here, hydrogenated castor oil is obtained by hydrogenating linoleic acid, which is a constituent fatty acid of castor oil, and converting it to 12-hydroxystearic acid. Examples of the monovalent fatty acid include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behemic acid, montanic acid, oleic acid, ricinoleic acid, and 12-hydroxystearic acid.

(ヒマシ油系脂肪酸エステルの添加量)
本発明におけるヒマシ油系脂肪酸エステルの添加量は、ポリ乳酸100重量部に対して、0.1〜15.0重量部になるように添加でき、好ましくは5.0〜13.0重量部、さらに好ましくは7.5〜12.5重量部である。15重量部を超えると、粘度が低下し、ポリ乳酸との混練が難しくなる。
(Addition amount of castor oil fatty acid ester)
The amount of castor oil fatty acid ester added in the present invention can be added to 0.1 to 15.0 parts by weight, preferably 5.0 to 13.0 parts by weight, relative to 100 parts by weight of polylactic acid. More preferably, it is 7.5-12.5 weight part. When it exceeds 15 parts by weight, the viscosity is lowered, and kneading with polylactic acid becomes difficult.

(有機添加剤・無機添加剤)
本発明の製造方法により製造する成形品には、本発明の効果を損なわない限り、結晶化速度の向上、耐熱性の向上、機械物性の向上、耐ブロッキング性の向上等の諸物性を改善するために有機添加剤や無機添加剤を添加することもできる。
(Organic and inorganic additives)
The molded article produced by the production method of the present invention improves various physical properties such as an improvement in crystallization speed, an improvement in heat resistance, an improvement in mechanical properties, and an improvement in blocking resistance, as long as the effects of the present invention are not impaired. Therefore, an organic additive or an inorganic additive can also be added.

有機添加剤としては、脂肪酸アミド、脂肪酸塩、脂肪族アルコール及び脂肪酸エステルが挙げられる。この中で脂肪酸アミドとしては、モノ脂肪酸アミド類、N−置換モノ脂肪酸アミド類、ビス脂肪酸アミド類、N−置換脂肪酸ビスアミド類、N−置換尿素類が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。この中でもモノ脂肪酸アミド類、N−置換モノ脂肪酸アミド類、ビス脂肪酸アミド類が好適であり、特に、パル
ミチン酸アミド、ステアリン酸アミド、エルカ酸アミド、ベヘニン酸アミド、リシノール酸アミド、ヒドロキシステアリン酸アミド、N−オレイルパルミチン酸アミド、N−ステアリルエルカ酸アミド、エチレンビスカプリン酸アミド、エチレンビスオレイン酸アミド、エチレンビスラウリン酸アミド、エチレンビスエルカ酸アミド、m−キシリレンビスステアリン酸アミド、m−キシリレンビス−12−ヒドロキシステアリン酸アミドが好適に用いられる。
Organic additives include fatty acid amides, fatty acid salts, fatty alcohols and fatty acid esters. Among these, examples of the fatty acid amide include mono fatty acid amides, N-substituted mono fatty acid amides, bis fatty acid amides, N-substituted fatty acid bisamides, and N-substituted ureas. These may be one kind or a mixture of two or more kinds. Of these, mono-fatty acid amides, N-substituted mono-fatty acid amides, and bis-fatty acid amides are preferable. In particular, palmitic acid amide, stearic acid amide, erucic acid amide, behenic acid amide, ricinoleic acid amide, hydroxy stearic acid amide. N-oleyl palmitic acid amide, N-stearyl erucic acid amide, ethylene biscapric acid amide, ethylene bisoleic acid amide, ethylene bislauric acid amide, ethylene biserucic acid amide, m-xylylene bis stearic acid amide, m- Xylylene bis-12-hydroxystearic acid amide is preferably used.

脂肪酸塩としては、ラウリン酸塩、ミリスチン酸、パルミチン酸塩、オレイン酸塩、ステアリン酸塩、イソステアリン酸塩、ベヘニン酸塩、モンタン酸塩等が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。この中でもステアリン酸の塩類やモンタン酸の塩類が好適であり、特に、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸カルシウム、ステアリン酸亜鉛、モンタン酸カルシウムが好適に用いられる。   Examples of the fatty acid salt include laurate, myristic acid, palmitate, oleate, stearate, isostearate, behenate, and montanate. These may be one kind or a mixture of two or more kinds. Among them, stearic acid salts and montanic acid salts are preferable, and sodium stearate, potassium stearate, calcium stearate, zinc stearate, and calcium montanate are particularly preferably used.

脂肪族アルコールとしては、脂肪族モノアルコール類、脂肪族多価アルコール類、環状アルコール類が挙げられる。これらは一種類又は二種類以上の混合物であってもよい。この中でも脂肪族モノアルコール類が好適であり、特にステアリルアルコールが好適に用いられる。   Examples of the aliphatic alcohol include aliphatic monoalcohols, aliphatic polyhydric alcohols, and cyclic alcohols. These may be one kind or a mixture of two or more kinds. Of these, aliphatic monoalcohols are preferred, and stearyl alcohol is particularly preferred.

脂肪酸エステルとしては、モノ脂肪酸エステル、エチレングリコールモノエステル及びエチレングリコールジエステル、グリセリンモノエステル、グリセリンジエステル及びグリセリントリエステルが挙げられる。これらは一種類又は二種類以上の混合物であってもよい。この中でもエチレングリコールのジエステル類が好適であり、特にエチレングリコールジステアレートが好適に用いられる。   Examples of fatty acid esters include mono fatty acid esters, ethylene glycol monoesters and ethylene glycol diesters, glycerin monoesters, glycerin diesters, and glycerin triesters. These may be one kind or a mixture of two or more kinds. Of these, ethylene glycol diesters are preferred, and ethylene glycol distearate is particularly preferred.

無機添加剤の具体例としては、例えば、タルク、カオリナイト、SiO2、クレー、炭酸カルシウム、酸化チタン、酸化亜鉛、硫酸バリウム等が挙げられるが、成形品の透明性、耐衝撃性を損なわないように適宜、条件(添加量、粒子サイズ)を選択する必要がある。 Specific examples of the inorganic additive include, for example, talc, kaolinite, SiO 2 , clay, calcium carbonate, titanium oxide, zinc oxide, barium sulfate, etc., but the transparency and impact resistance of the molded product are not impaired. Thus, it is necessary to appropriately select conditions (addition amount, particle size).

また、成形時の金型内での結晶化や生成した成形品の熱処理による結晶化などの成形加工時の結晶化速度をさらに向上させることを目的とした場合、SiO2成分を10重量%以上含む結晶性の無機物が好ましく、具体的には、タルクTM−30(富士タルク社製)、カオリンJP−100(土屋カオリン社製)、NNカオリンクレー(土屋カオリン社製)、カオリナイトASP一170(富士タルク社製)、カオリンUW(エンゲルハード社製)、タルクRF(富士タルク社製)等が挙げられる。この場合、粒径が小さく、樹脂と溶融混練した場合に凝集することなく良好に分散するものが好適に用いられる。 In addition, when the purpose is to further improve the crystallization speed during molding such as crystallization in the mold during molding or crystallization by heat treatment of the formed molded product, the SiO 2 component is 10% by weight or more. The crystalline inorganic substance contained is preferable. Specifically, talc TM-30 (manufactured by Fuji Talc), kaolin JP-100 (manufactured by Tsuchiya Kaolin), NN kaolin clay (manufactured by Tsuchiya Kaolin), kaolinite ASP-1170 (Made by Fuji Talc), kaolin UW (made by Engelhard), talc RF (made by Fuji Talc), etc. are mentioned. In this case, those having a small particle size and being well dispersed without being aggregated when melt-kneaded with a resin are preferably used.

(有機添加剤・無機添加剤の添加量)
有機添加剤や無機添加剤の添加量は、添加剤の種類にもよるが、一般に本発明の効果を極端に損なわない量を添加する事ができる。
(Amount of organic and inorganic additives added)
Although the addition amount of an organic additive or an inorganic additive depends on the kind of additive, generally an amount that does not extremely impair the effects of the present invention can be added.

(その他の添加剤)
本発明の製造方法により製造する成形品には、本発明の効果を損なわない限り、各種エラストマー(SBR、NBR、SBS型3元ブロック共重合体熱可塑性エラストマー等)や添加剤(可塑剤、顔料、安定剤、帯電防止剤、末端封鎖剤、紫外線吸収剤、酸化防止剤、難燃剤、離型剤、滑剤、染料、抗菌剤)、フィラー(耐衝撃性コア/シェル型粒子、インパクトモディフアイアー等)、顔料(メタリック顔料、パール顔料)を目的や用途に応じて適宜使用することができる。
(Other additives)
As long as the effects of the present invention are not impaired, various types of elastomers (SBR, NBR, SBS type ternary block copolymer thermoplastic elastomers, etc.) and additives (plasticizers, pigments) , Stabilizers, antistatic agents, endblockers, UV absorbers, antioxidants, flame retardants, mold release agents, lubricants, dyes, antibacterial agents, fillers (impact core / shell particles, impact modifiers) Etc.) and pigments (metallic pigments, pearl pigments) can be appropriately used according to the purpose and application.

(ポリ乳酸系樹脂成形品)
本発明のポリ乳酸系樹脂成形品は、射出成形法、射出圧縮成形法、押出成形法、ブロー成形法、プレス成形法、真空圧空成形法等、現在公知の任意の成形方法により成形されたものである。本発明では、上記の成形方法でポリ乳酸系樹脂成形品を成形する際に、成形時又は成形後に結晶化操作を行う事で、耐衝撃性が優れ、且つ透明性が維持されたポリ乳酸樹脂成形品を好適に製造することができる。
(Polylactic acid resin molded product)
The polylactic acid-based resin molded product of the present invention is molded by any currently known molding method such as injection molding, injection compression molding, extrusion molding, blow molding, press molding, vacuum pressure molding, etc. It is. In the present invention, when a polylactic acid resin molded product is molded by the above molding method, a polylactic acid resin having excellent impact resistance and transparency is maintained by performing a crystallization operation at the time of molding or after molding. A molded article can be suitably manufactured.

(製造方法)
次に、本発明のポリ乳酸系樹脂成形品の製造方法、特に射出成形品を製造する方法について説明する。なお、ここでは主に射出成形する場合について述べるが、その他の成形方法については公知の成形方法を採用すればよい。
(Production method)
Next, a method for producing a polylactic acid resin molded product of the present invention, particularly a method for producing an injection molded product will be described. Here, the case of injection molding will be mainly described, but a known molding method may be adopted for other molding methods.

ポリ乳酸とヒマシ油系脂肪酸エステルは、例えば二軸押出機等を用いてストランド形状に押出すなどしてペレットを作製した後、射出成形機を用いて射出成形品を作製する方法などを採用する事ができる。具体的には、例えば、ポリ乳酸を十分に乾燥して水分を除去した後、二軸押出機等を用いてポリ乳酸を溶融させながら、ヒマシ油系脂肪酸エステルを液注入させ溶融混練し、ストランド形状に押出してペレットを作製するなどすればよい。その際、ポリ乳酸の融点が、L−乳酸とD−乳酸の組成比によって変化する事や、ヒマシ油系脂肪酸エステルの混合の割合によって、混合樹脂の融点が変化する事などを考慮して、溶融押出温度を適宜選択する事が好ましい。実際には100℃〜250℃の温度範囲が選択される。このように作製したペレットは十分に乾燥して水分を除去した後射出成形を行えばよい。   Polylactic acid and castor oil fatty acid ester adopt a method of producing an injection molded product using an injection molding machine after producing pellets by extruding into a strand shape using a twin screw extruder, for example. I can do things. Specifically, for example, after polylactic acid is sufficiently dried to remove moisture, castor oil fatty acid ester is injected and melted and kneaded while melting polylactic acid using a twin screw extruder or the like. What is necessary is just to extrude into a shape and to produce a pellet. At that time, considering that the melting point of polylactic acid changes depending on the composition ratio of L-lactic acid and D-lactic acid, and that the melting point of the mixed resin changes depending on the mixing ratio of castor oil fatty acid ester, It is preferable to appropriately select the melt extrusion temperature. In practice, a temperature range of 100 ° C. to 250 ° C. is selected. The pellets thus produced may be sufficiently dried to remove moisture and then injection molded.

射出成形の方法は、特に限定するものではない。代表的な例として、熱可塑性樹脂用の一般射出成形法、ガスアシスト成形法、射出圧縮成形法等を挙げることができる。その他目的に合わせて、上記の方法以外でインモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法、PUSH−PULL等を採用する事もできる。この際、射出成形装置は、一般射出成形機、ガスアシスト成形機及び射出圧縮成形機などと、これらに用いられる成形用金型及び付帯機器、金型温度制御装置及び原料乾燥装置等とから構成されるのが一般的である。成形条件は、射出シリンダー内での樹脂の熱分解を避けるため、溶融樹脂温度を170〜210℃の温度範囲で成形するのが好ましい。   The method of injection molding is not particularly limited. Typical examples include general injection molding methods for thermoplastic resins, gas assist molding methods, injection compression molding methods, and the like. In addition to the above methods, an in-mold molding method, a gas press molding method, a two-color molding method, a sandwich molding method, PUSH-PULL, or the like can be employed in accordance with other purposes. At this time, the injection molding apparatus is composed of a general injection molding machine, a gas assist molding machine, an injection compression molding machine, etc., and a molding die and ancillary equipment used therefor, a mold temperature control device, a raw material drying device, and the like. It is common to be done. The molding conditions are preferably such that the molten resin temperature is in a temperature range of 170 to 210 ° C. in order to avoid thermal decomposition of the resin in the injection cylinder.

本発明では、ポリ乳酸系樹脂組成物を、成形時、又は成形後に何らかの方法で結晶化させる必要がある。その具体例としては、例えば、成形時に該組成物の溶融物を金型内に充填し、金型内でそのまま結晶化させる方法(以下、金型内結晶化法という)、及び該組成物の非晶性の成形品を乾熱処理又は湿熱処理する方法(以下、後結晶化法という)を挙げることができる。この金型内結晶化法及び後結晶化法では、成形品を結晶化する際の最適の温度条件等が異なる。   In the present invention, it is necessary to crystallize the polylactic acid resin composition by some method at the time of molding or after molding. Specific examples thereof include, for example, a method in which a melt of the composition is filled in a mold at the time of molding and crystallized as it is in the mold (hereinafter referred to as in-mold crystallization method), and Examples thereof include a method in which an amorphous molded product is subjected to a dry heat treatment or a wet heat treatment (hereinafter referred to as a post-crystallization method). In the in-mold crystallization method and the post-crystallization method, the optimum temperature conditions for crystallization of the molded product are different.

金型内結晶化法の場合、金型の設定温度条件は、該組成物の示差走査熱量分析における降温時の結晶化開始温度から、結晶化終了温度までの温度範囲が好ましく、結晶化ピークの頂点付近の温度がより好ましい。結晶化開始温度より高い温度では、結晶化速度が著しく遅くなり、生産性、操作性が悪くなったり、さらには結晶化しなくなり、目的とする成形品が得られない場合があり、逆に結晶化終了温度より低い温度では結晶化速度が著しく遅く、目的とする成形品が得られない場合がある。この方法では、金型内の保持時間は、該組成物によっても異なるが、金型内で、成形品が十分に結晶化するにたる時間以上であれば、特に制限はない。   In the case of the in-mold crystallization method, the set temperature condition of the mold is preferably a temperature range from the crystallization start temperature at the time of temperature drop to the crystallization end temperature in the differential scanning calorimetry of the composition, A temperature near the apex is more preferable. If the temperature is higher than the crystallization start temperature, the crystallization rate is remarkably slow, the productivity and operability are deteriorated, and further, crystallization may not occur and the desired molded product may not be obtained. At a temperature lower than the end temperature, the crystallization rate is remarkably slow, and the intended molded product may not be obtained. In this method, the holding time in the mold varies depending on the composition, but there is no particular limitation as long as it is longer than the time required for the molded product to sufficiently crystallize in the mold.

一方、後結晶化法(乾熱処理)の場合、設定温度条件は、該組成物のガラス転移温度(Tg)から融点(Tm)までの温度範囲、より好ましくは(Tg+5℃)から(Tm−2
0℃)、さらに好ましくは(Tg+l0℃)から(Tm−30℃)までの温度範囲がよい。設定温度がTmより高い場合は、短時間で結晶化させても耐衝撃性を損ねたり、形状が歪んだりする場合があり、さらに長時間加熱すると融解する場合がある。逆にTgより低い温度では、結晶化速度が著しく遅く、目的とする成形品が得られない場合がある。この方法では成形品を乾熱処理する時間は、組成物により異なるが、成形品が十分に結晶化するに足る時間以上であれば、特に制限されない。
On the other hand, in the case of the post-crystallization method (dry heat treatment), the set temperature condition is the temperature range from the glass transition temperature (Tg) to the melting point (Tm) of the composition, more preferably from (Tg + 5 ° C.) to (Tm−2).
0 ° C.), more preferably a temperature range from (Tg + 10 ° C.) to (Tm−30 ° C.). When the set temperature is higher than Tm, the impact resistance may be impaired or the shape may be distorted even if crystallization is performed in a short time, and further melting may occur when heated for a long time. On the other hand, at a temperature lower than Tg, the crystallization rate is remarkably slow, and the intended molded product may not be obtained. In this method, the time for the dry heat treatment of the molded product varies depending on the composition, but is not particularly limited as long as it is longer than the time required for the molded product to be sufficiently crystallized.

また、後結晶化法(湿熱処理)の場合、上記乾熱処理での設定温度に加えて、加湿雰囲気下で結晶化を行う。湿熱処理時の相対湿度は60%以上が好ましく、さらに好ましくは80%以上である。この方法では成形品を湿熱処理する時間は、組成物により異なるが、成形品が十分に結晶化するに足る時間以上であれば、特に制限されない。   In the case of a post-crystallization method (wet heat treatment), crystallization is performed in a humidified atmosphere in addition to the set temperature in the dry heat treatment. The relative humidity during the wet heat treatment is preferably 60% or more, more preferably 80% or more. In this method, the time for wet heat treatment of the molded product varies depending on the composition, but is not particularly limited as long as it is a time sufficient for the molded product to be sufficiently crystallized.

上記の結晶化操作を行う際、成形品を固定しなくても良いが、成形品の変形を防止する為に、金型、樹脂型等で固定するほうがより好ましい。また、生産性を考慮に入れて、梱包した状態で熱処理を行う事もできる。   When performing the above crystallization operation, the molded product does not have to be fixed. However, in order to prevent deformation of the molded product, it is more preferable to fix the molded product with a mold, a resin mold or the like. Further, in consideration of productivity, heat treatment can be performed in a packed state.

以下、実施例によって本発明を詳細に説明するが、本発明は、これらの実施例に何ら限定されるものではない。尚、評価は下記の方法で行った。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all. The evaluation was performed by the following method.

(評価方法)
(1)耐衝撃性
JIS K 7110に準拠したアイゾット衝撃試験により、アイゾット衝撃強度を測定した。試験片はJIS1号試験片(3.18mm(1/8インチ)厚みノッチ付き)であり、衝撃試験機「IM−401」((株)上島製作所製)を用いて測定した。
(Evaluation methods)
(1) Impact resistance Izod impact strength was measured by an Izod impact test based on JIS K 7110. The test piece was a JIS No. 1 test piece (with a 3.18 mm (1/8 inch) thickness notch), and was measured using an impact tester “IM-401” (manufactured by Ueshima Seisakusho).

(2)透明性(以下、Hazeと省略する。)
濁度計「NDH−2000」(日本電色工業(株)製)を用いて、厚さ約2mmの平板成形品のHazeを測定した。
(2) Transparency (hereinafter abbreviated as Haze)
Using a turbidimeter “NDH-2000” (manufactured by Nippon Denshoku Industries Co., Ltd.), the haze of a flat molded product having a thickness of about 2 mm was measured.

(3)結晶化度
示差走査熱量計「DSC−7」(パーキンエルマー製)にて、昇温速度が10℃/minで、ポリ乳酸系樹脂に起因する融解熱量(ΔHm)及び結晶化熱量(ΔHc)を測定し、下記式によりポリ乳酸系樹脂の結晶化度を算出した。
結晶化度 (%)=100×(ΔHm+ΔHc)/93
(3) Crystallinity With a differential scanning calorimeter “DSC-7” (manufactured by PerkinElmer), the rate of temperature increase is 10 ° C./min, the heat of fusion (ΔHm) and the heat of crystallization caused by the polylactic acid resin ( ΔHc) was measured, and the degree of crystallinity of the polylactic acid resin was calculated by the following formula.
Crystallinity (%) = 100 × (ΔHm + ΔHc) / 93

(湿熱処理による結晶化)
(実施例1−1)
ポリ乳酸(D体比率1.0%、相対粘度3.1)100重量部と、ヒマシ油系脂肪酸エステル「リックサイザーC−401」(伊藤製油(株)製)10重量部を、二軸押出機「NR2−22」(ナカタニ機械(株)製)を用いて、シリンダー設定温度170−200℃の条件にて溶融混練し、得られたポリ乳酸系樹脂組成物をペレット形状にした。
(Crystallization by wet heat treatment)
(Example 1-1)
100 parts by weight of polylactic acid (D-form ratio 1.0%, relative viscosity 3.1) and 10 parts by weight of castor oil fatty acid ester “Rick Sizer C-401” (manufactured by Ito Oil Co., Ltd.) Using a machine “NR2-22” (manufactured by Nakatani Machinery Co., Ltd.), the mixture was melt-kneaded at a cylinder setting temperature of 170 to 200 ° C., and the resulting polylactic acid-based resin composition was formed into a pellet shape.

次に該ペレットを小型射出成形機「MINIMAT 14/7B」(住友重機械工業(株)製)を用いて、シリンダー設定温度170−200℃の条件にて溶融し、設定温度30℃の金型に充填し、冷却時間は30秒として、JIS1号試験片(3.18mm(1/8インチ)厚みノッチ付き)、2mm厚の平板成形品を得た。得られた成形品の結晶化度、耐衝撃性及び透明性の測定及び評価を行った。また、得られた成形品を、恒温高湿試験装置「IG400」(ヤマト科学(株)製)内に静置し、50℃、80%RH(相対湿度)で1週間の湿熱処理を行った。湿熱処理後の成形品の結晶化度、耐衝撃性及び透明性の
測定及び評価を行った。結果を表1に示す。
Next, the pellets were melted using a small injection molding machine “MINIMAT 14 / 7B” (manufactured by Sumitomo Heavy Industries, Ltd.) at a cylinder set temperature of 170 to 200 ° C., and a mold having a set temperature of 30 ° C. The JIS No. 1 test piece (with a 3.18 mm (1/8 inch) thickness notch) and a 2 mm thick flat plate molded product were obtained with a cooling time of 30 seconds. The obtained molded product was measured and evaluated for crystallinity, impact resistance and transparency. Moreover, the obtained molded article was left still in a constant temperature and high humidity test apparatus “IG400” (manufactured by Yamato Kagaku Co., Ltd.), and wet heat treatment was performed at 50 ° C. and 80% RH (relative humidity) for one week. . The crystallinity, impact resistance and transparency of the molded product after the wet heat treatment were measured and evaluated. The results are shown in Table 1.

(実施例1−2〜1−6)
ヒマシ油系脂肪酸エステルの種類、添加量を表1のように変えた以外は実施例1−1と同様に行った。結果を表1に示す。
(Examples 1-2 to 1-6)
It carried out similarly to Example 1-1 except having changed the kind of castor oil type fatty acid ester, and the addition amount as shown in Table 1. The results are shown in Table 1.

(比較例1−1)
ヒマシ油脂肪酸エステルを除いた以外は、実施例1−1と同様に行った。結果を表1に示す。
(Comparative Example 1-1)
The same procedure as in Example 1-1 was performed except that the castor oil fatty acid ester was excluded. The results are shown in Table 1.

(比較例1−2)
ポリ乳酸100重量部と可塑剤「トリアセチン」(大八化学(株)製)10重量部を用いた以外、実施例1−1と同様に行った。結果を表1に示す。
(Comparative Example 1-2)
The same procedure as in Example 1-1 was performed, except that 100 parts by weight of polylactic acid and 10 parts by weight of a plasticizer “Triacetin” (manufactured by Daihachi Chemical Co., Ltd.) were used. The results are shown in Table 1.

(比較例1−3)
ポリ乳酸100重量部と耐衝撃性付与剤「プラメートPD−150」(大日本インキ化学工業(株)製)20重量部を用いた以外、実施例1−1と同様に行った。結果を表1に示す。
(Comparative Example 1-3)
The same procedure as in Example 1-1 was performed, except that 100 parts by weight of polylactic acid and 20 parts by weight of impact imparting agent “Plamate PD-150” (manufactured by Dainippon Ink & Chemicals, Inc.) were used. The results are shown in Table 1.

(乾熱処理による結晶化)
(実施例2−1)
実施例1−1と同様の方法で射出成形品を得た後、得られた成形品を乾燥機「DFS82」(ヤマト科学(株)製)内に静置し、60℃で1時間の乾熱処理を行った。乾熱処理後の成形品の結晶化度、耐衝撃性及び透明性などの測定及び評価を行った。結果を表2に示す。
(Crystallization by dry heat treatment)
(Example 2-1)
After obtaining an injection molded product by the same method as in Example 1-1, the obtained molded product was allowed to stand in a dryer “DFS82” (manufactured by Yamato Scientific Co., Ltd.) and dried at 60 ° C. for 1 hour. Heat treatment was performed. Measurements and evaluations of crystallinity, impact resistance and transparency of the molded product after the dry heat treatment were performed. The results are shown in Table 2.

(実施例2−2、2−3)
乾熱処理条件を表2のように変えた以外は、実施例2−1と同様に行った。結果を表2に示す。
(Example 2-2, 2-3)
The same procedure as in Example 2-1 was conducted except that the dry heat treatment conditions were changed as shown in Table 2. The results are shown in Table 2.

(比較例2−1〜2−3)
ヒマシ油脂肪酸エステルを除いた以外は、実施例2−1〜2−3と同様に行った。結果を表2に示す。
(Comparative Examples 2-1 to 2-3)
The same procedure as in Examples 2-1 to 2-3 was performed except that the castor oil fatty acid ester was excluded. The results are shown in Table 2.

(金型内結晶化)
(実施例3−1)
実施例1−1と同様の方法でペレットを得た後、該ペレットを小型射出成形機「MINIMAT 14/7B」(住友重機械工業(株)製)を用いて、シリンダー設定温度170−200℃の条件にて溶融し、設定温度90℃の金型に充填し、冷却時間は90秒として、JIS1号試験片(3.18mm(1/8インチ)厚みノッチ付き)、2mm厚の平板成形品を得た。得られた成形品の結晶化度、耐衝撃性及び透明性などの測定及び評価を行った。結果を表3に示す。
(In-mold crystallization)
(Example 3-1)
After obtaining pellets by the same method as in Example 1-1, the pellets were set to a cylinder set temperature of 170 to 200 ° C. using a small injection molding machine “MINIMAT 14 / 7B” (manufactured by Sumitomo Heavy Industries, Ltd.). JIS No. 1 test piece (with 3.18 mm (1/8 inch) thickness notch), 2 mm thick flat plate molded product, melted under the conditions of Got. The obtained molded product was measured and evaluated for crystallinity, impact resistance and transparency. The results are shown in Table 3.

(比較例3−1)
ヒマシ油脂肪酸エステルを除いた以外は、実施例3−1と同様に行った。結果を表3に示す。
(Comparative Example 3-1)
The same procedure as in Example 3-1 was performed except that the castor oil fatty acid ester was excluded. The results are shown in Table 3.

表1、2、3から明らかなように、実施例のポリ乳酸系樹脂成形品は、結晶化度30%以上で、アイゾット衝撃強度が6kJ/m以上、且つ2mm厚のHaze値が50%以下で
あり、結晶化による耐衝撃性の向上と透明性の維持が示された。
As is apparent from Tables 1, 2, and 3, the polylactic acid-based resin molded product of the example has a crystallinity of 30% or more, an Izod impact strength of 6 kJ / m 2 or more, and a 2 mm thick Haze value of 50%. The following shows that the impact resistance is improved by crystallization and the transparency is maintained.

他方、ポリ乳酸単独の成形品の場合、比較例2−2、2−3のように、結晶化度30%以上でも実施例のような耐衝撃性は得られず、透明性も失われる。比較例1−1、2−1、3−1では結晶化が起きなかった。また、比較例1−2では結晶化度30%以上でアイゾット衝撃強度がN.B.(破断せず)となり、耐衝撃性は得られるものの、透明性が失われる。比較例1−3では、結晶化度30%以上で、アイゾット衝撃強度5.8kJ/m、Haze52.9%であり、耐衝撃性、透明性ともに劣るものであった。 On the other hand, in the case of a molded product of polylactic acid alone, as in Comparative Examples 2-2 and 2-3, even when the degree of crystallinity is 30% or more, the impact resistance as in Examples is not obtained, and the transparency is lost. In Comparative Examples 1-1, 2-1, and 3-1, crystallization did not occur. In Comparative Example 1-2, the Izod impact strength was N.P. B. (No breakage) and impact resistance is obtained, but transparency is lost. In Comparative Example 1-3, the crystallinity was 30% or more, the Izod impact strength was 5.8 kJ / m 2 , and the Haze was 52.9%, and both the impact resistance and the transparency were inferior.

本発明のポリ乳酸系樹脂成形品は、結晶化を行う事で優れた耐衝撃性を有し、且つ透明性も有しているので、各種容器や家電製品、自動車部品等の成形品に好適に使用される。   The polylactic acid-based resin molded product of the present invention has excellent impact resistance by crystallization and also has transparency, so it is suitable for molded products such as various containers, household appliances, and automobile parts. Used for.

Claims (2)

ポリ乳酸100重量部に対して、ヒマシ油系脂肪酸エステルを0.1〜15.0重量部含有するポリ乳酸樹脂組成物から成る、結晶化度30%以上有するポリ乳酸系樹脂成形品。 A polylactic acid resin molded article having a crystallinity of 30% or more, comprising a polylactic acid resin composition containing 0.1 to 15.0 parts by weight of castor oil fatty acid ester with respect to 100 parts by weight of polylactic acid. ポリ乳酸系樹脂組成物のガラス転移温度から融点までの温度範囲内で結晶化させる金型内結晶化法、又は後結晶化法を用いて結晶化することを特徴とする、請求項1記載のポリ乳酸系樹脂成形品の製造方法。 The crystallization is performed using an in-mold crystallization method in which crystallization is performed within a temperature range from a glass transition temperature to a melting point of the polylactic acid-based resin composition, or a post-crystallization method. A method for producing a polylactic acid resin molded product.
JP2004334080A 2004-11-18 2004-11-18 Polylactic acid-based resin molding and method for producing the same Pending JP2006143829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334080A JP2006143829A (en) 2004-11-18 2004-11-18 Polylactic acid-based resin molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004334080A JP2006143829A (en) 2004-11-18 2004-11-18 Polylactic acid-based resin molding and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006143829A true JP2006143829A (en) 2006-06-08

Family

ID=36623898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334080A Pending JP2006143829A (en) 2004-11-18 2004-11-18 Polylactic acid-based resin molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006143829A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138097A (en) * 2005-11-22 2007-06-07 Kaneka Corp Polylactic acid-based resin composition
JP2008031402A (en) * 2006-06-29 2008-02-14 Nagoya City Hydrogenated castor oil-based reaction product, modifier for polylactic acid, polylactic acid composition and polylactic acid molded article
US9238728B2 (en) 2011-01-24 2016-01-19 Arkema Inc. Epoxidized fatty acid alkyl esters as flexibilizers for poly(lactic acid)
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin
WO2017099168A1 (en) 2015-12-08 2017-06-15 Bioworks株式会社 Polylactic acid resin composition and polylactic acid resin molded article
WO2017136373A1 (en) * 2016-02-01 2017-08-10 Henkel IP & Holding GmbH Transesterification of polylactic acid with natural oils
WO2019195066A1 (en) * 2018-04-06 2019-10-10 Henkel IP & Holding GmbH Laminating adhesives using polyester from transesterification of polylactic acid with natural oils
US11891480B2 (en) 2016-02-01 2024-02-06 Henkel Ag & Co. Kgaa Laminating adhesives using polyester from transesterification of polylactic acid with natural oils

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177826A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Agricultural film
JPH11116785A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molded article and production thereof
JPH11116784A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molding and its production
JP2005290255A (en) * 2004-04-01 2005-10-20 Sanyo Chem Ind Ltd Ester compound for polyester resin composition
JP2006077126A (en) * 2004-09-09 2006-03-23 Mitsubishi Plastics Ind Ltd Resin composition and resin molded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07177826A (en) * 1993-12-22 1995-07-18 Mitsui Toatsu Chem Inc Agricultural film
JPH11116785A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molded article and production thereof
JPH11116784A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molding and its production
JP2005290255A (en) * 2004-04-01 2005-10-20 Sanyo Chem Ind Ltd Ester compound for polyester resin composition
JP2006077126A (en) * 2004-09-09 2006-03-23 Mitsubishi Plastics Ind Ltd Resin composition and resin molded product

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138097A (en) * 2005-11-22 2007-06-07 Kaneka Corp Polylactic acid-based resin composition
JP2008031402A (en) * 2006-06-29 2008-02-14 Nagoya City Hydrogenated castor oil-based reaction product, modifier for polylactic acid, polylactic acid composition and polylactic acid molded article
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin
US9238728B2 (en) 2011-01-24 2016-01-19 Arkema Inc. Epoxidized fatty acid alkyl esters as flexibilizers for poly(lactic acid)
WO2017099168A1 (en) 2015-12-08 2017-06-15 Bioworks株式会社 Polylactic acid resin composition and polylactic acid resin molded article
US11299622B2 (en) 2015-12-08 2022-04-12 Bioworks Corporation Polylactic acid resin composition and polylactic acid resin molded article
WO2017136373A1 (en) * 2016-02-01 2017-08-10 Henkel IP & Holding GmbH Transesterification of polylactic acid with natural oils
US10294328B2 (en) 2016-02-01 2019-05-21 Henkel IP & Holding GmbH Transesterification of polylactic acid with natural oils
US10941246B2 (en) 2016-02-01 2021-03-09 Henkel IP & Holding GmbH Transesterification of polylactic acid with natural oils
US11891480B2 (en) 2016-02-01 2024-02-06 Henkel Ag & Co. Kgaa Laminating adhesives using polyester from transesterification of polylactic acid with natural oils
WO2019195066A1 (en) * 2018-04-06 2019-10-10 Henkel IP & Holding GmbH Laminating adhesives using polyester from transesterification of polylactic acid with natural oils

Similar Documents

Publication Publication Date Title
EP1454958B1 (en) Lactic acid polymer composition and molded object thereof
JP4611214B2 (en) Biodegradable resin composition
JP4762683B2 (en) Biodegradable resin composition
JP4487305B2 (en) Polylactic acid resin composition and molded body thereof
JP5339670B2 (en) Resin composition and injection molded body
JP5143374B2 (en) Biodegradable resin composition
JP2007126589A (en) Injection-molded article
WO2023245997A1 (en) Marine degradable polyhydroxyalkanoate composition, molded body and preparation method therefor
JP2006328163A (en) Polylactic acid-based resin composition, molding of the same and method for molding the same
JP4252570B2 (en) Pellet manufacturing method
JP2006089643A (en) Resin composition and molded body thereof
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP2005298617A (en) Injection molded product
JP2004143203A (en) Injection molded product
JP4117147B2 (en) Injection molded body
JP3905896B2 (en) Biodegradable film with improved water vapor barrier property and method for controlling water vapor barrier property
JP2008195784A (en) Polyester-based resin composition and molded article thereof
JP2007284595A (en) Aliphatic polyester film
JP2007182501A (en) Injection molded product
JP2004323791A (en) Injection molded product
JP4246523B2 (en) Lactic acid resin composition
JP5128750B2 (en) Biodegradable resin composition
JP4576166B2 (en) Injection molded body
JP2006052342A (en) Resin molding
JP2013216743A (en) Heat-resistant polylactic acid-based molded article and method for producing the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071121

A521 Written amendment

Effective date: 20071121

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Effective date: 20100427

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831