JP2006077126A - Resin composition and resin molded product - Google Patents

Resin composition and resin molded product Download PDF

Info

Publication number
JP2006077126A
JP2006077126A JP2004262749A JP2004262749A JP2006077126A JP 2006077126 A JP2006077126 A JP 2006077126A JP 2004262749 A JP2004262749 A JP 2004262749A JP 2004262749 A JP2004262749 A JP 2004262749A JP 2006077126 A JP2006077126 A JP 2006077126A
Authority
JP
Japan
Prior art keywords
lactic acid
oil
resin
mass
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004262749A
Other languages
Japanese (ja)
Inventor
Kazuya Tanaka
一也 田中
Jun Takagi
潤 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2004262749A priority Critical patent/JP2006077126A/en
Publication of JP2006077126A publication Critical patent/JP2006077126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin molded product excellent in impact resistance and given by using a lactic acid-based resin as a base. <P>SOLUTION: This resin composition is formed by mixing 1-20 pts.mass of vegetable fat and oil and 0.01-5 pts.mass of a crosslinking agent which crosslinks at least the vegetable fat and oil into 100 pts.mass of a lactic acid-based resin. Caster oil is preferably used as the vegetable fat and oil. The resin composition is molded into the molded product having an Izod impact strength of ≥5 kJ/m<SP>2</SP>, so that the resin molded product is excellent in the impact strength. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、植物原料樹脂をベース成分とし、ゴムような粘弾性を備え、耐衝撃性に優れた樹脂成形体に関するものである。   The present invention relates to a resin molded body having a plant raw material resin as a base component, viscoelasticity like rubber, and excellent impact resistance.

プラスチックはあらゆる産業分野および日用品分野に浸透しており、全世界の年間生産量は約1億トンにも達している。その大半は使用後に廃棄されており、これが地球環境を乱す原因の一つとして認識されてきている。そのため、枯渇性資源の有効活用が近年重要視され、再生可能資源の利用が重要な課題となっている。
現在、その解決策として最も注目されているのが、植物原料プラスチックの利用である。植物原料プラスチックは、非枯渇資源を利用し、プラスチック製造時における枯渇性資源の節約を図ることができるだけでなく、優れたリサイクル性を備えている。
Plastics have permeated all industrial and daily necessities, with annual global production reaching approximately 100 million tons. Most of them are discarded after use, and this has been recognized as one of the causes that disturb the global environment. For this reason, effective use of exhaustible resources has been emphasized in recent years, and the use of renewable resources has become an important issue.
Currently, the most noticeable solution is the use of plant-based plastics. Plant-based plastics can not only use non-depleted resources, save exhaustible resources during plastic production, but also have excellent recyclability.

植物原料プラスチックの中でも、特に、乳酸系樹脂は澱粉の発酵により得られる乳酸を原料とし、化学工学的に量産可能であり、かつ、透明性、剛性、耐熱性等が優れていることから、ポリスチレンやポリエチレンテレフタレートの代替材料として、フィルム包装材や射出成形分野において注目されている。
しかしながら、乳酸系樹脂は剛性が高いものの、比較的耐衝撃性に弱く脆い材料であり、単独で耐衝撃性が必要とされる分野に使用することは非常に困難である。そこで、ポリ乳酸系樹脂に動植物油を配合することにより、耐衝撃性を向上させる手法が特開平11−116785号公報(特許文献1)等で提案されている。
Among plant-derived plastics, in particular, lactic acid-based resins are made from lactic acid obtained by fermentation of starch, can be mass-produced by chemical engineering, and have excellent transparency, rigidity, heat resistance, etc. As an alternative material for polyethylene terephthalate and polyethylene terephthalate, it is attracting attention in the field of film packaging and injection molding.
However, although the lactic acid-based resin has high rigidity, it is a material that is relatively weak in impact resistance and is brittle, and it is very difficult to use it in a field that requires impact resistance alone. In view of this, Japanese Patent Application Laid-Open No. 11-116785 (Patent Document 1) and the like have proposed a method for improving impact resistance by adding animal and vegetable oils to a polylactic acid resin.

前記特許文献1ではポリ乳酸系樹脂に配合する動植物油として、エポキシ化大豆油が挙げらえているが、単にポリ乳酸系樹脂に配合する動植物油に配合するだけでは、ポリ乳酸系樹脂の軟質化を生じるだけであり、所要の弾性、特に高温時における弾性を付与できず、十分な耐衝撃性の向上効果を得ることは難しい。
特開平11−116785号公報
In Patent Document 1, epoxidized soybean oil is listed as an animal and vegetable oil to be blended with a polylactic acid resin. However, by simply blending with an animal and vegetable oil to be blended with a polylactic acid resin, the softening of the polylactic acid resin is described. It is difficult to obtain a sufficient impact resistance improvement effect because the required elasticity, particularly at a high temperature, cannot be imparted.
Japanese Patent Laid-Open No. 11-116785

本発明は、前記問題に鑑みてなされたもので、乳酸系樹脂に対して、植物油脂を配合するだけでなく、少なくとも植物油脂を架橋する架橋剤を配合することにより、植物油脂同士を架橋して、ゴムのような粘弾性を付与して、耐衝撃性を高めることを課題としている。   This invention is made | formed in view of the said problem, and not only mix | blends vegetable oil and fat with respect to lactic acid-type resin, but also mix | blends vegetable oil and fat by blending the crosslinking agent which bridge | crosslinks vegetable oil and fat at least. Thus, it is an object to improve the impact resistance by imparting viscoelasticity like rubber.

前記課題を解決するため、本発明は、第1に、乳酸系樹脂(A)100質量部に対して、植物油脂(B)を1〜20質量部と、少なくとも植物油脂を架橋する架橋剤(C)0.01〜5質量部とを配合してなる樹脂組成物を提供している。   In order to solve the above-mentioned problems, first, the present invention is based on 100 parts by mass of the lactic acid resin (A), 1 to 20 parts by mass of vegetable oil (B), and a crosslinking agent that crosslinks at least the vegetable oil ( C) The resin composition formed by blending 0.01 to 5 parts by mass is provided.

乳酸系樹脂に単に植物油脂を配合しただけで架橋剤が共存しなければ、植物油脂は可塑剤として機能することになり、樹脂組成物の成形体は軟質化して、ガラス転移温度(Tg)が低下する。一方、乳酸系樹脂に植物油脂と架橋剤を配合すると、植物油脂同士および植物油脂と乳酸系樹脂を架橋でき、該植物油脂が高分子量化してゴムのような粘弾性を有するものとなり、樹脂組成物からなる成形体の耐衝撃性を向上させることができる。かつ、該樹脂組成物の成形体は軟質化せず、Tgの低下もほとんど起こらない。   If a vegetable oil and fat is simply blended with a lactic acid resin and the crosslinking agent does not coexist, the vegetable oil and fat will function as a plasticizer, and the molded product of the resin composition becomes soft and has a glass transition temperature (Tg). descend. On the other hand, when vegetable oils and fats and a crosslinking agent are blended with lactic acid-based resins, vegetable oils and fats and vegetable oils and lactic acid-based resins can be cross-linked, and the vegetable oils and fats have a high molecular weight and have viscoelastic properties like rubber. The impact resistance of a molded article made of a product can be improved. And the molded object of this resin composition does not soften, and the fall of Tg hardly arises.

本発明では、様々な植物油脂を用いることができるが、なかでも植物油脂(B)として、ひまし油を使用することが好ましい。ひまし油は、安定性、分散性、低温特性、電気特性、色味に優れていることに加えて、乳酸系樹脂に近い屈折率を有する。そのため、透明性をほとんど損なうことなく、乳酸系樹脂の成形体に耐衝撃性を付与することができる。
なお、植物油脂(B)の屈折率が、乳酸系樹脂の屈折率に近く、該乳酸系樹脂の屈折率に対して±5%の範囲のものであると、透明性を維持できる。よって、透明性を必要とする樹脂成形体を設ける場合には、前記植物油脂はひまし油に限定されず、前記範囲の屈折率を有する植物油脂(B)と該植物油脂を互いに架橋する架橋剤を配合してもよい。
In this invention, although various vegetable fats and oils can be used, it is preferable to use a castor oil as vegetable fats and oils (B) especially. Castor oil has a refractive index close to that of a lactic acid resin, in addition to being excellent in stability, dispersibility, low temperature characteristics, electrical characteristics, and color. Therefore, impact resistance can be imparted to the molded body of the lactic acid-based resin with almost no loss of transparency.
In addition, transparency can be maintained as the refractive index of the vegetable oil (B) is close to the refractive index of the lactic acid-based resin and is in the range of ± 5% with respect to the refractive index of the lactic acid-based resin. Therefore, when providing the resin molding which needs transparency, the said vegetable oil and fat is not limited to a castor oil, The cross-linking agent which bridge | crosslinks the vegetable oil and fat (B) which has the refractive index of the said range, and this vegetable oil and fat mutually. You may mix | blend.

本発明では、架橋剤(C)として様々な化合物を用いることができるが、好ましい架橋剤としてイソシアネート化合物とカルボジイミド化合物を挙げることができる。   In the present invention, various compounds can be used as the crosslinking agent (C). Preferred examples of the crosslinking agent include isocyanate compounds and carbodiimide compounds.

イソシアネート化合物は、反応性に優れているため、少量の添加で、植物油脂を効率的に架橋することができる。また、イソシアネート化合物は、乳酸系樹脂と植物油脂との架橋も効率的に進行させる。
カルボジイミド化合物は、反応性に優れているだけでなく、乳酸系樹脂に耐加水分解性を付与することができる。これにより、植物油脂とカルボジイミド化合物とを添加した乳酸系樹脂は、高い耐久性が必要とされる用途にも用いることが可能となる。
Since isocyanate compounds are excellent in reactivity, vegetable oils and fats can be efficiently crosslinked with a small amount of addition. In addition, the isocyanate compound efficiently promotes crosslinking between the lactic acid resin and the vegetable oil.
The carbodiimide compound is not only excellent in reactivity, but also can impart hydrolysis resistance to the lactic acid resin. Thereby, the lactic acid-based resin to which the vegetable oil and fat and the carbodiimide compound are added can be used for applications that require high durability.

本発明は、第2に、樹脂組成物からなる樹脂成形体を提供しており、該樹脂成形体は、植物油脂と該植物油脂同士を架橋する架橋剤を配合して粘弾性を持たせているため、JISK−7110に準拠して測定されるアイゾット衝撃強度を5kJ/m以上、より好ましくは8kJ/m以上として、耐衝撃性に優れたものとすることができる。
また、本発明の樹脂組成物は、耐熱性を有するため、射出成形が可能で、所要形状とした射出成形体を製造することができる
成形体の形態は特に限定されないが、例えばフィルム、シート、平面的あるいは立体的形状を有するプレート等が含まれる。優れた耐衝撃性に優れているため家電製品、自動車内装部品または建材等のあらゆる分野で耐熱性が必要とされる用途に用いることができる。
Secondly, the present invention provides a resin molded body comprising a resin composition, and the resin molded body has viscoelasticity by blending a vegetable oil and a crosslinking agent that crosslinks the vegetable oil and fat. because you are, the Izod impact strength is measured according to JISK-7110 5kJ / m 2 or more, more preferably be those as 8 kJ / m 2 or more, excellent in impact resistance.
Moreover, since the resin composition of the present invention has heat resistance, it can be injection-molded, and an injection-molded body having a required shape can be produced.
Although the form of a molded object is not specifically limited, For example, the plate etc. which have a film, a sheet | seat, a planar or three-dimensional shape, etc. are contained. Since it has excellent impact resistance, it can be used in applications requiring heat resistance in all fields such as home appliances, automobile interior parts, and building materials.

本発明の樹脂組成物を前記射出成形に限らず、押出成形等によっても成形しているフィルム、シートまたはプレートを提供している。平均厚さを50〜1000μm程度としたフィルム、シートまたはプレートも優れた耐熱性を有するため、OA機器の絶縁部材等の耐衝撃が必要とされる用途に使用することができる。
なお、フィルムはJIS K 6900における定義では「長さおよび幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるもの」とされている。また、シートは「薄く、一般にその厚さが長さと幅のわりには小さく平らな製品をいう」とされている。このようにフィルムとシートの区別は明確でないため、本発明ではフィルムとは厚さ200μm未満、シートとは厚さ200μm以上500μm未満のものとして区別し、厚さ500mμm以上1000μm以下の二次元状あるいは三次元状のものはプレートと称する。
The present invention provides a film, sheet, or plate in which the resin composition of the present invention is formed not only by the injection molding but also by extrusion molding or the like. Films, sheets or plates having an average thickness of about 50 to 1000 μm also have excellent heat resistance, so that they can be used for applications that require impact resistance such as insulating members for OA equipment.
The film is defined in JIS K 6900 as “a thin flat product whose thickness is extremely small compared to the length and width and whose maximum thickness is arbitrarily limited, and is usually supplied in the form of a roll. It is said that. The sheet is said to be "a thin product, generally a product whose thickness is small and flat for the length and width". Thus, since the distinction between a film and a sheet is not clear, in the present invention, the film is distinguished as having a thickness of less than 200 μm, and the sheet is distinguished as having a thickness of from 200 μm to less than 500 μm. A three-dimensional thing is called a plate.

上述のように、乳酸系樹脂に対して、植物油脂と架橋剤とを配合することにより、植物油脂が架橋され、さらには植物油脂と乳酸系樹脂とが架橋される。植物油脂は、架橋によって高分子量化することにより、ゴム成分として作用するようになる。その結果、本発明の樹脂組成物は、軟質化を伴わずに所要の粘弾性を有するものとなり、耐衝撃性に優れた成形体を設けることができる。
また、本発明の樹脂組成物は、乳酸系樹脂を含むことからリサイクル性に備え、かつ、使用後に廃棄しても自然環境に悪影響を及ぼさない。
As described above, vegetable oils and fats are cross-linked by blending vegetable oils and fats and a crosslinking agent with the lactic acid resins, and further, vegetable oils and fats and lactic acid-based resins are cross-linked. Vegetable oils and fats act as rubber components by increasing their molecular weight by crosslinking. As a result, the resin composition of the present invention has the required viscoelasticity without being softened, and can provide a molded article excellent in impact resistance.
In addition, since the resin composition of the present invention contains a lactic acid resin, it is provided with recyclability and does not adversely affect the natural environment even when discarded after use.

以下、本発明の実施形態について説明する。
本発明の樹脂組成物は、乳酸系樹脂(A)、植物油脂(B)および架橋剤(C)を含み、その配合は、乳酸系樹脂(A)100質量部に対して、植物油脂(B)が1〜20質量部、架橋剤(C)が0.01〜5質量部である。
以下に前記(A)、(B)、(C)の各成分について詳述する。
Hereinafter, embodiments of the present invention will be described.
The resin composition of the present invention contains a lactic acid resin (A), a vegetable oil (B), and a crosslinking agent (C). ) Is 1 to 20 parts by mass, and the crosslinking agent (C) is 0.01 to 5 parts by mass.
The components (A), (B), and (C) will be described in detail below.

(乳酸系樹脂)
本発明に用いる乳酸系樹脂(A)は、構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸およびD−乳酸である共重合体のポリ(DL−乳酸)や、これらの混合体を含む。
(Lactic acid resin)
The lactic acid-based resin (A) used in the present invention includes poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, structural units that are L-lactic acid and D -Copolymer poly (DL-lactic acid) which is lactic acid or a mixture thereof.

乳酸系樹脂のDL構成(D−乳酸構造とL−乳酸構造とのモル比)は、L−乳酸:D−乳酸=100:0〜90:10、もしくは、L−乳酸:D−乳酸=0:100〜10:90であることが好ましい。かかる範囲外では、乳酸系樹脂の結晶性が低くなり、これを成形した部品は耐熱性が得られにくく、用途が制限されることがある。より好ましくは、L−乳酸:D−乳酸=99.5:0.5〜94:6、もしくは、L−乳酸:D−乳酸=0.5:99.5〜6:94である。   The DL configuration of the lactic acid resin (molar ratio of D-lactic acid structure to L-lactic acid structure) is L-lactic acid: D-lactic acid = 100: 0 to 90:10, or L-lactic acid: D-lactic acid = 0. : It is preferable that it is 100-10: 90. Outside this range, the crystallinity of the lactic acid-based resin is low, and the molded part is difficult to obtain heat resistance, and its use may be limited. More preferably, L-lactic acid: D-lactic acid = 99.5: 0.5 to 94: 6, or L-lactic acid: D-lactic acid = 0.5: 99.5 to 6:94.

異なるDL構成を有する複数の乳酸系樹脂を混合して用いることもできる。その場合、複数の乳酸系樹脂がそれぞれ上記範囲のDL構成を有するか、もしくは全体の平均が上記範囲のDL構成を有することが好ましい。例えばL−乳酸またはD−乳酸のホモポリマーと、L−乳酸とD−乳酸との共重合体とを混合すると、ブリードが発生しにくく、耐熱性のバランスを制御することができる。   A plurality of lactic acid resins having different DL configurations can also be mixed and used. In that case, it is preferable that a plurality of lactic acid-based resins each have a DL structure in the above range, or the average of the whole has a DL structure in the above range. For example, when L-lactic acid or a homopolymer of D-lactic acid and a copolymer of L-lactic acid and D-lactic acid are mixed, bleeding is unlikely to occur and the balance of heat resistance can be controlled.

本発明で好適に用いられる乳酸系樹脂の代表的なものとして、三井化学(株)製「レイシア(商品名)」シリーズ、カーギル・ダウ社製「Nature
Works(商品名)」シリーズ等が挙げられる。
Representative examples of the lactic acid resin suitably used in the present invention include “Lacia (trade name)” series manufactured by Mitsui Chemicals, Inc. and “Nature” manufactured by Cargill Dow.
"Works (trade name)" series and the like.

乳酸系樹脂の重合法としては、縮重合法、開環重合法など公知の方法を、いずれも採用することができる。例えば、縮重合法では、L−乳酸またはD−乳酸、あるいはこれらの混合物を、直接脱水縮重合して任意の組成を持った乳酸系樹脂を得ることができる。   Any known method such as a condensation polymerization method or a ring-opening polymerization method can be employed as the polymerization method for the lactic acid resin. For example, in the condensation polymerization method, L-lactic acid, D-lactic acid, or a mixture thereof can be directly subjected to dehydration condensation polymerization to obtain a lactic acid resin having an arbitrary composition.

また、乳酸の環状二量体であるラクチドを、必要に応じて重合調整剤等を用いながら、選ばれた触媒を使用して開環重合させることで、乳酸系樹脂を得ることができる。ラクチドには、L−乳酸の2量体であるL−ラクチド、D−乳酸の2量体であるD−ラクチド、さらにL−乳酸とD−乳酸からなるDL−ラクチドがある。開環重合法では、これらを必要に応じて混合して重合することにより、任意の組成、結晶性をもつ乳酸系樹脂を得ることができる。   A lactate resin can be obtained by subjecting lactide, which is a cyclic dimer of lactic acid, to ring-opening polymerization using a selected catalyst while using a polymerization regulator or the like as necessary. Lactide includes L-lactide, which is a dimer of L-lactic acid, D-lactide, which is a dimer of D-lactic acid, and DL-lactide composed of L-lactic acid and D-lactic acid. In the ring-opening polymerization method, a lactic acid resin having an arbitrary composition and crystallinity can be obtained by mixing and polymerizing as necessary.

さらに、耐熱性を向上させるなどの必要に応じ、乳酸系樹脂の本質的な性質を損なわない範囲、すなわち、乳酸系樹脂成分を90wt%以上含有する範囲で、少量の共重合成分を用いてもよい。
このような共重合成分として、テレフタル酸のような非脂肪族ジカルボン酸、ビスフェノールAのエチレンオキサイド付加物のような非脂肪族ジオール等が挙げられる。また、乳酸以外の他のヒドロキシカルボン酸(好ましくはα−ヒドロキシカルボン酸)、脂肪族ジオール、脂肪族ジカルボン酸等を共重合成分として用いてもよい。これらの共重合成分は、単独で用いてもよく、複数を組み合わせて用いてもよい。
Furthermore, if necessary, such as improving heat resistance, a small amount of a copolymer component may be used as long as the essential properties of the lactic acid resin are not impaired, that is, within a range containing 90 wt% or more of the lactic acid resin component. Good.
Examples of such copolymer components include non-aliphatic dicarboxylic acids such as terephthalic acid, non-aliphatic diols such as bisphenol A ethylene oxide adducts, and the like. Further, other hydroxycarboxylic acid (preferably α-hydroxycarboxylic acid) other than lactic acid, aliphatic diol, aliphatic dicarboxylic acid and the like may be used as a copolymerization component. These copolymerization components may be used alone or in combination of two or more.

乳酸系樹脂の共重合成分として用いられる他のヒドロキシカルボン酸としては、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシカルボン酸や、カプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類が挙げられる。   Examples of other hydroxycarboxylic acid used as a copolymer component of the lactic acid-based resin include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, Examples thereof include bifunctional aliphatic hydroxycarboxylic acids such as 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid and 2-hydroxycaproic acid, and lactones such as caprolactone, butyrolactone and valerolactone.

乳酸系樹脂の共重合成分として用いられる脂肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール等が挙げられる。
乳酸系樹脂の共重合成分として用いられる脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸およびドデカン二酸等が挙げられる。
Examples of the aliphatic diol used as a copolymer component of the lactic acid resin include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like.
Examples of the aliphatic dicarboxylic acid used as a copolymerization component of the lactic acid-based resin include succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid.

さらに、乳酸系樹脂の分子量増大を目的として、少量の鎖延長剤を用いてもよい。鎖延長剤としては、例えばジイソシアネート化合物、エポキシ化合物、酸無水物などを使用できる。   Furthermore, a small amount of chain extender may be used for the purpose of increasing the molecular weight of the lactic acid resin. As the chain extender, for example, a diisocyanate compound, an epoxy compound, an acid anhydride and the like can be used.

乳酸系樹脂の重量平均分子量の好ましい範囲は、5万〜40万であり、より好ましくは10万〜25万である。重量平均分子量が5万未満では、乳酸系樹脂の実用物性がほとんど発現されず、40万を超えると、乳酸系樹脂の溶融粘度が高くなりすぎて、その成形加工性が低下する。   The preferable range of the weight average molecular weight of the lactic acid resin is 50,000 to 400,000, more preferably 100,000 to 250,000. When the weight average molecular weight is less than 50,000, practical physical properties of the lactic acid resin are hardly expressed. When the weight average molecular weight exceeds 400,000, the melt viscosity of the lactic acid resin becomes too high, and the molding processability is lowered.

(植物油脂)
本発明に用いる植物油脂(B)には、乾性油、半乾性油、不乾性油およびその他の植物脂が含まれる。なお、以下の植物油脂は、単独で用いてもよく、複数を組み合わせて用いてもよい。
(vegetable oil)
The vegetable oils and fats (B) used in the present invention include drying oils, semi-drying oils, non-drying oils and other vegetable fats. In addition, the following vegetable fats and oils may be used independently and may be used in combination of multiple.

乾性油の具体例としては、アカムリット油、麻実油、あまに油、イサノ油、うるし核油、えごま油、オイチシカ油、かや油、くるみ油、けし油、ざくろ種子油、サフラワー油、しなぎり油、大豆油、タバコ種子油、トウハゼ核油、日本きり油、ゴム種子油、月見草種子油、ひまわり種子油、ぶどう種子油、ほうせんか種子油、みつば種子油、ルンバナット油等が挙げられる。   Specific examples of drying oils include: Acamrit oil, hemp seed oil, linseed oil, isano oil, sea urchin kernel oil, sesame oil, pear oil, pod oil, walnut oil, poppy oil, pomegranate seed oil, safflower oil, shiflower oil Nagiri oil, soybean oil, tobacco seed oil, tomato seed kernel oil, Japanese drill oil, rubber seed oil, evening primrose seed oil, sunflower seed oil, grape seed oil, spinach seed oil, honey seed oil, rumba nut oil and the like.

半乾性油の具体例としては、あんず核油、オレンジ種子油、かぼちゃ種子油、からし菜種子油、ごま油、小麦胚芽油、西洋すもも油、大根種油、コーン油、トマト種子油、なたね油、にんじん種子油、ぬか油、ペカン油、扁桃油、綿実油、らい麦油、レモン油等が挙げられる。   Specific examples of semi-drying oil include apricot kernel oil, orange seed oil, pumpkin seed oil, mustard rape seed oil, sesame oil, wheat germ oil, western potato oil, radish seed oil, corn oil, tomato seed oil, rapeseed oil, Examples include carrot seed oil, bran oil, pecan oil, tonsil oil, cottonseed oil, rye oil, lemon oil and the like.

不乾性油の具体例としては、あさがお油、らいきょう油、オリーブ油、オリーブ核油、カシュー実油、カポック油、キャベツ種子油、コーヒー豆油、さざんか油、茶油、つばき油、東柏油、麦角油、ひまし油、落花生油等が挙げられる。   Specific examples of non-drying oils include Asaga oil, Japanese arabic oil, olive oil, olive kernel oil, cashew seed oil, kapok oil, cabbage seed oil, coffee bean oil, sazanka oil, tea oil, camellia oil, Dongguan oil, ergot oil , Castor oil, peanut oil and the like.

その他の植物脂の具体例としては、イリベ脂、ウクフバ脂、うるしろう、カカオ脂、ガルシニア脂、クス実脂、クスム脂、月桂樹実油、コーフン核油、シア脂、大風子油、ツカン油、ツカン核油、トウハゼ脂、ニクヅク脂、ババス核脂、パーム油、パーム核油、ヒドノカルプス油、ブラジルパーム核油、ボルネオ脂、ムルムル脂、木ロウ、やし油等が挙げられる。   Specific examples of other plant fats include iribe fat, ukufuba fat, roux wax, cacao butter, garcinia fat, cous cinnamon fat, cousin oleum, laurel coconut oil, kofun kernel oil, shea butter, daikon oil, tsukan oil, Tucan kernel oil, spruce oil, garlic oil, babas kernel oil, palm oil, palm kernel oil, hydnocalps oil, Brazil palm kernel oil, borneo fat, murmuru fat, tree wax, palm oil and the like.

上記の中でも特に、ひまし油が本発明において最も好適である。ひまし油は、安定性、分散性、低温特性、電気特性、色味に優れている。また、ひまし油の屈折率は乳酸系樹脂の屈折率に近いため、ひまし油を配合することにより乳酸系樹脂の透明性をほとんど損なうことなく、その耐衝撃性を向上させることができる。   Among these, castor oil is most suitable in the present invention. Castor oil is excellent in stability, dispersibility, low temperature characteristics, electrical characteristics, and color. Moreover, since the refractive index of castor oil is close to the refractive index of lactic acid resin, the impact resistance can be improved by adding castor oil with almost no loss of transparency of the lactic acid resin.

ポリ乳酸の屈折率は1.455であり、ひまし油の屈折率は1.477である。したがって、ひまし油の他に、屈折率が配当する乳酸系樹脂の屈折率の±5%程度である植物油脂を用いる場合にも、ひまし油を用いる場合と同等程度に透明性をほとんど損なうことなく、乳酸系樹脂に耐衝撃性を付与する効果を期待できる。   Polylactic acid has a refractive index of 1.455, and castor oil has a refractive index of 1.477. Therefore, in addition to castor oil, when using vegetable oils and fats whose refractive index is about ± 5% of the refractive index of the lactic acid-based resin to which the dividend is distributed, lactic acid can be used with almost no loss of transparency to the same extent as when castor oil is used. The effect of imparting impact resistance to the resin can be expected.

また、上記植物油脂は、水素添加、ケン化分解、酸化重合、自己縮合等の処理を施した植物油脂誘導体として用いることもできる。   Moreover, the said vegetable oil and fat can also be used as a vegetable oil and fat derivative which performed processes, such as hydrogenation, saponification decomposition, oxidation polymerization, and self-condensation.

植物油脂の配合量については、乳酸系樹脂100質量部に対して、植物油脂を1〜20質量部、好ましくは5〜15質量部とする。かかる範囲で植物油脂を配合することにより、植物油脂のブリードアウトを生じることなく、乳酸系樹脂の耐衝撃性を改良することができる。植物油脂の配合量が、乳酸系樹脂100質量部あたり1質量部未満では、乳酸系樹脂の耐衝撃性を改良する効果がほとんど得られず、20質量部を超えると、植物油脂のブリードアウトを防ぐことが困難になる。   About the compounding quantity of vegetable oil and fat, vegetable oil and fat shall be 1-20 mass parts with respect to 100 mass parts of lactic acid-type resin, Preferably it is 5-15 mass parts. By blending vegetable oils and fats in such a range, the impact resistance of the lactic acid-based resin can be improved without causing the vegetable oils and fats to bleed out. If the amount of vegetable oil / fat is less than 1 part by mass per 100 parts by mass of the lactic acid-based resin, the effect of improving the impact resistance of the lactic acid-based resin can hardly be obtained. It becomes difficult to prevent.

(架橋剤)
本発明では、架橋剤(C)として様々な化合物を用いることができるが、植物油脂同士を効率的に架橋できると共に乳酸系樹脂と植物油脂とを架橋できるものが好適に用いられる。例えば、イソシアネート化合物、カルボジイミド化合物、エポキシ基を含有するエポキシ化合物、金属化合物、アジリジニル化合物等が挙げられる。架橋剤は、植物油脂の高分子量化に寄与するだけでなく、好適な粘弾性を達成し、かつ植物油脂のブリードアウトを防ぐ等の観点から、前記のように、植物油脂と乳酸系樹脂との架橋にも寄与するものであることが望ましい。
(Crosslinking agent)
In this invention, although various compounds can be used as a crosslinking agent (C), what can bridge | crosslink lactic acid-type resin and vegetable fats and oils while being able to bridge | crosslink vegetable oils and fats suitably is used suitably. For example, an isocyanate compound, a carbodiimide compound, an epoxy compound containing an epoxy group, a metal compound, an aziridinyl compound, and the like can be given. The crosslinking agent not only contributes to increase the molecular weight of the vegetable oil and fat, but also achieves suitable viscoelasticity and prevents bleeding out of the vegetable oil and fat. It is desirable that it also contributes to cross-linking.

上記の中でも特に、イソシアネート化合物、カルボジイミド化合物を用いることが好ましい。イソシアネート化合物は、少量の添加で植物油脂を効率的に架橋するだけでなく、乳酸系樹脂と植物油脂との架橋も効率的に進行させる。
また、カルボジイミド化合物は、効率的な架橋だけでなく、乳酸系樹脂に耐加水分解性を付与することができる。以下にイソシアネート化合物とカルボジイミド化合物の具体例を挙げるが、これに限定されるものではない。
Among these, it is particularly preferable to use an isocyanate compound or a carbodiimide compound. The isocyanate compound not only efficiently cross-links vegetable oils and fats with a small amount of addition, but also efficiently crosslinks lactic acid resins and vegetable oils and fats.
Moreover, the carbodiimide compound can provide not only efficient crosslinking but also hydrolysis resistance to the lactic acid-based resin. Although the specific example of an isocyanate compound and a carbodiimide compound is given to the following, it is not limited to this.

イソシアネート化合物の具体例としては、4,4'−ジフェニルメタンジイソシアネート、トルエンジイソシアネート、キシレンジイソシアネート、イソホロンジイソシアネート、メチレンビスシクロヘキシルジイソシアネート等が挙げられる。   Specific examples of the isocyanate compound include 4,4′-diphenylmethane diisocyanate, toluene diisocyanate, xylene diisocyanate, isophorone diisocyanate, and methylenebiscyclohexyl diisocyanate.

カルボジイミド化合物の具体例としては、ビス(ジプロピルフェニル)カルボジイミド、ポリ(4,4'−ジフェニルメタンカルボジイミド)、ポリ(p−フェニレンカルボジイミド)、ポリ(m−フェニレンカルボジイミド)、ポリ(トリルカルボジイミド)、ポリ(ジイソプロピルフェニレンカルボジイミド)、ポリ(メチル−ジイソプロピルフェニレンカルボジイミド)、ポリ(トリイソプロピルフェニレンカルボジイミド)等が挙げられる。   Specific examples of the carbodiimide compound include bis (dipropylphenyl) carbodiimide, poly (4,4′-diphenylmethanecarbodiimide), poly (p-phenylenecarbodiimide), poly (m-phenylenecarbodiimide), poly (tolylcarbodiimide), poly (Diisopropylphenylenecarbodiimide), poly (methyl-diisopropylphenylenecarbodiimide), poly (triisopropylphenylenecarbodiimide) and the like.

架橋剤の配合量は、乳酸系樹脂100質量部に対して、架橋剤を0.01〜5質量部、好ましくは0.05〜4質量部、より好ましくは0.1〜3質量部である。
前記0.01〜5質量部の範囲で架橋剤を配合することにより、乳酸系樹脂のゲル化を生じることなく、植物油脂の架橋や、乳酸系樹脂と植物油脂との架橋を行うことができる。架橋剤の配合量が、乳酸系樹脂100質量部あたり0.01質量部未満では、植物油脂を十分に架橋することができず、樹脂成形体の耐衝撃性を向上させる効果も得られない。一方、架橋剤の配合量が、乳酸系樹脂100質量部あたり5質量部を超えると、粘度が上昇するため成形性が劣る。
The compounding amount of the crosslinking agent is 0.01 to 5 parts by mass, preferably 0.05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the lactic acid resin. .
By blending a crosslinking agent in the range of 0.01 to 5 parts by mass, it is possible to perform crosslinking of vegetable oils and fats and crosslinking of lactic acid resins and vegetable oils without causing gelation of lactic acid resins. . When the blending amount of the crosslinking agent is less than 0.01 parts by mass per 100 parts by mass of the lactic acid resin, the vegetable oil cannot be sufficiently crosslinked, and the effect of improving the impact resistance of the resin molded product cannot be obtained. On the other hand, when the amount of the crosslinking agent exceeds 5 parts by mass per 100 parts by mass of the lactic acid resin, the viscosity increases and the moldability is inferior.

本発明の樹脂組成物には、本発明の効果を損なわない範囲で、熱安定剤、抗酸化剤、UV吸収剤、光安定剤、顔料、染料、造核剤、可塑剤、無機充填剤などの添加剤を配合することができる。これら添加剤の配合量は、所望される性能に応じて適宜に選択される。   The resin composition of the present invention includes a heat stabilizer, an antioxidant, a UV absorber, a light stabilizer, a pigment, a dye, a nucleating agent, a plasticizer, an inorganic filler, and the like as long as the effects of the present invention are not impaired. Additives can be blended. The amount of these additives is appropriately selected according to the desired performance.

本発明の樹脂組成物は、様々な成形法により、フィルム、シートもしくはプレート等に加工して用いることができる。フィルムやシートは平坦材であるが、プレートには平坦材と3次元構造を有する立体構造材が含まれる。以下、成形方法の一例について説明する。   The resin composition of the present invention can be used after being processed into a film, sheet, plate or the like by various molding methods. The film or sheet is a flat material, but the plate includes a flat material and a three-dimensional structure material having a three-dimensional structure. Hereinafter, an example of the molding method will be described.

まず、乳酸系樹脂(A)、植物油脂(B)、架橋剤(C)、さらに必要に応じて配合する他の添加剤を混合する。押出成形もしくは射出成形を行う場合、混合は押出成形機もしくは射出成形機に付設された原料投入口に全ての原料を投入して行う。そして原料を成形機内で混練し、あるいは押出口の直前で混合した後、射出成形金型もしくは押出成形金型に直接押し出し、該金型で所定形状に成形する。あるいは、予めドライブレンドした原料を、二軸押出機を用いてストランド形状に押し出してペレットを作成し、該ペレットを射出成形金型、押出成形金型等の金型内に押し出して、所定形状に成形する。いずれの方法においても、原料の分解による分子量の低下を考慮する必要があるが、均一に混合させるためには後者を選択することが好ましい。   First, a lactic acid resin (A), a vegetable oil (B), a crosslinking agent (C), and other additives to be blended as necessary are mixed. In the case of performing extrusion molding or injection molding, mixing is performed by charging all raw materials into a raw material charging port attached to the extrusion molding machine or the injection molding machine. The raw materials are kneaded in a molding machine or mixed immediately before the extrusion port, and then directly extruded into an injection mold or an extrusion mold, and molded into a predetermined shape with the mold. Alternatively, a dry blended raw material is extruded into a strand shape using a twin screw extruder to create a pellet, and the pellet is extruded into a mold such as an injection mold or an extrusion mold to obtain a predetermined shape. Mold. In any method, it is necessary to consider a decrease in molecular weight due to decomposition of the raw material, but the latter is preferably selected for uniform mixing.

具体的には、乳酸系樹脂(A)、植物油脂(B)、架橋剤(C)および他の添加剤を十分に乾燥して水分を除去した後、二軸押出機を用いて溶融混合し、ストランド形状に押し出してペレットを作成する。その際、乳酸系樹脂はL−乳酸構造とD−乳酸構造のモル比(DL構成)によって融点が変化すること、原料の配合割合によって樹脂組成物の粘度が変化すること等を考慮して、溶融押出温度を適宜選択することが好ましい。実際には160〜230℃の温度範囲が通常選択される。   Specifically, the lactic acid resin (A), vegetable oil (B), cross-linking agent (C) and other additives are sufficiently dried to remove moisture, and then melt mixed using a twin screw extruder. Extrude into a strand shape to make pellets. In that case, considering that the melting point of the lactic acid resin changes depending on the molar ratio of the L-lactic acid structure and the D-lactic acid structure (DL configuration), the viscosity of the resin composition changes depending on the blending ratio of the raw materials, etc. It is preferable to appropriately select the melt extrusion temperature. In practice, a temperature range of 160-230 ° C. is usually selected.

上記方法で作成したペレットを十分に乾燥して水分を除去した後、以下の方法で射出成形あるいは押出成形して、シートもしくはプレートの成形を行う。さらに、シートを延伸することにより、フィルムが成形される。3次元構造を有する立体構造材は、射出成形で直接作成するか、あるいは所定厚みで押出成形されたシートもしくは平面状プレートをプレス法やTダイキャスト法で所要の立体形状に成形加工して作成する。   The pellets prepared by the above method are sufficiently dried to remove moisture, and then injection molding or extrusion molding is performed by the following method to form a sheet or plate. Furthermore, a film is shape | molded by extending | stretching a sheet | seat. A three-dimensional structure material with a three-dimensional structure is created directly by injection molding, or a sheet or flat plate extruded by a predetermined thickness is formed into a required three-dimensional shape by pressing or T-die casting. To do.

射出成形の方法は特に限定されないが、代表的には熱可塑性樹脂用の一般射出成形法、ガスアシスト成形法、射出圧縮成形法等の射出成形法が用いられる。上記方法の他にも、目的に応じて、インモールド成形法、ガスプレス成形法、2色成形法、サンドイッチ成形法、PUSH−PULL、SCORIM(Shear Controlled Orientation in Injection Moulding)等を採用することができる。   The injection molding method is not particularly limited, but typically, an injection molding method such as a general injection molding method for a thermoplastic resin, a gas assist molding method, an injection compression molding method or the like is used. In addition to the above methods, in-mold molding method, gas press molding method, two-color molding method, sandwich molding method, PUSH-PULL, SCORIM (Shear Controlled Orientation in Injection Molding), etc. may be adopted according to the purpose. it can.

フィルムは押出成形で得られたシートをフィルム延伸法で少なくとも一方向に延伸させて形成している。フィルム延伸法であれば任意の方法が採用され、例えばロール延伸、テンター延伸法、チューブラー法、インフレーション法等を採用することができる。   The film is formed by stretching a sheet obtained by extrusion molding in at least one direction by a film stretching method. Any method may be employed as long as it is a film stretching method. For example, a roll stretching method, a tenter stretching method, a tubular method, an inflation method, or the like can be employed.

本発明の樹脂組成物の成形体は、耐衝撃性に優れることから、JISK−7110に準拠して測定されるアイゾット衝撃強度として、5kJ/m以上、さらには8kJ/m以上を達成することが可能である。このような高度な耐衝撃性は、従来の乳酸系樹脂をベースとする樹脂成形体では達成できないレベルである。 Molding of the resin composition of the present invention is excellent in impact resistance, as Izod impact strength is measured according to JISK-7110, 5kJ / m 2 or more, further to achieve 8 kJ / m 2 or more It is possible. Such high impact resistance is at a level that cannot be achieved by a conventional resin molded body based on a lactic acid resin.

以下、本発明を実施例および比較例に基づいて説明する。
各実施例および各比較例の樹脂組成物の成分および配合量は下記の表1、表2に示す。表1、表2中、成分量を示す数値の単位は質量部である。
Hereinafter, the present invention will be described based on examples and comparative examples.
The components and blending amounts of the resin compositions of each Example and each Comparative Example are shown in Tables 1 and 2 below. In Tables 1 and 2, the unit of the numerical value indicating the component amount is part by mass.

各実施例および各比較例では、以下の方法で耐衝撃性を評価した。
(耐衝撃性)
JISK−7110に準拠して2号A試験片(ノッチ付き、長さ64mm×幅12.7mm×厚み4mm)を作成し、(株)東洋精機製作所製のアイゾット衝撃試験機(型式:JISL−D)を用いて、23℃におけるアイゾット衝撃強度の測定を行った。アイゾット衝撃強度が5kJ/m以上を合格とした。
In each example and each comparative example, impact resistance was evaluated by the following method.
(Impact resistance)
A No. 2A test piece (notched, length 64 mm x width 12.7 mm x thickness 4 mm) was prepared according to JISK-7110, and an Izod impact tester (model: JISL-D) manufactured by Toyo Seiki Seisakusho Co., Ltd. ) Was used to measure the Izod impact strength at 23 ° C. An Izod impact strength of 5 kJ / m 2 or more was accepted.

Figure 2006077126
Figure 2006077126

Figure 2006077126
Figure 2006077126

表1、表2中に記載の各成分は以下の通りである。
乳酸系樹脂A:カーギル・ダウ社製「Nature
Works 4032D(商品名)」
(DL構成:L−乳酸/D−乳酸=98.6/1.4、重量平均分子量:20万)
植物油脂B−1:ナカライテスク(株)製のひまし油
植物油脂B−2:あまに油「ナカライテクス社製」
植物油脂B−3;綿実油 「ナカライテクス社製」
架橋剤C :ナカライテスク(株)製4,4'-ジフェニルメタンジイソシアナート
(MDI)
Each component described in Tables 1 and 2 is as follows.
Lactic acid resin A: “Nature” manufactured by Cargill Dow
Works 4032D (trade name) "
(DL constitution: L-lactic acid / D-lactic acid = 98.6 / 1.4, weight average molecular weight: 200,000)
Vegetable oil and fat B-1: Castor oil manufactured by Nacalai Tesque Co., Ltd. Vegetable oil and fat B-2: Amani oil "manufactured by Nakarai-Tex Corporation"
Vegetable oil B-3; cottonseed oil “Nakarai-Tex”
Crosslinking agent C: 4,4'-diphenylmethane diisocyanate manufactured by Nacalai Tesque
(MDI)

(実施例1)
乳酸系樹脂Aの100質量部に対して、植物油脂B−1を1質量部、架橋剤Cを0.2質量部配合したものをドライブレンドし、三菱重工(株)製の40mmφ小型同方向二軸押出機に供給し、180℃で混練して、コンパウンドとし、これをペレット状に成形した。得られたペレットを東芝機械(株)製の射出成形機「IS50E(商品名)」(スクリュー径25mm)を用いて、長さ200mm×幅3mm×厚さ4mmの板材に射出成形した。主な成形条件は以下の通りである。
Example 1
Dry blend of 100 parts by weight of lactic acid resin A with 1 part by weight of vegetable oil B-1 and 0.2 parts by weight of cross-linking agent C, 40 mmφ small size same direction made by Mitsubishi Heavy Industries Ltd. It supplied to the twin-screw extruder, knead | mixed at 180 degreeC, it was set as the compound, and this was shape | molded in the pellet form. The obtained pellets were injection molded into a plate having a length of 200 mm, a width of 3 mm and a thickness of 4 mm using an injection molding machine “IS50E (trade name)” (screw diameter: 25 mm) manufactured by Toshiba Machine Co., Ltd. The main molding conditions are as follows.

1)温度条件:シリンダー温度(195℃)、金型温度(20℃)
2)射出条件:射出圧力(115MPa)、保持圧力(55MPa)
3)計量条件:スクリュー回転数(65rpm)、背圧(15MPa)
1) Temperature conditions: cylinder temperature (195 ° C), mold temperature (20 ° C)
2) Injection conditions: injection pressure (115 MPa), holding pressure (55 MPa)
3) Measuring conditions: screw rotation speed (65 rpm), back pressure (15 MPa)

次に、射出成形で得られた板材を、(株)大栄科学精器製作所製のベーキング試験装置「DKS−5S(商品名)」内に静置し、70℃で2時間熱処理を行った。その後、該熱処理後の板材を用いて、耐衝撃性の評価を行った。結果を前記表1に示す。   Next, the plate material obtained by injection molding was allowed to stand in a baking test apparatus “DKS-5S (trade name)” manufactured by Daiei Kagaku Seisakusho Co., Ltd., and heat-treated at 70 ° C. for 2 hours. Thereafter, impact resistance was evaluated using the plate material after the heat treatment. The results are shown in Table 1.

(実施例2)
乳酸系樹脂Aの100質量部に対して、植物油脂B−1を20質量部、架橋剤Cを0.2質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。結果を表1に示す。
(Example 2)
In the same manner as in Example 1, except that 100 parts by mass of the lactic acid-based resin A was dry blended with 20 parts by mass of vegetable oil B-1 and 0.2 parts by mass of the crosslinking agent C. Production and evaluation of a plate material which is an injection-molded body were performed. The results are shown in Table 1.

(実施例3)
乳酸系樹脂Aの100質量部に対して、植物油脂B−1を10質量部、架橋剤Cを0.01質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。結果を表1に示す。
(Example 3)
In the same manner as in Example 1, except that 100 parts by mass of lactic acid-based resin A was dry blended with 10 parts by mass of vegetable oil B-1 and 0.01 parts by mass of crosslinking agent C. Production and evaluation of a plate material which is an injection-molded body were performed. The results are shown in Table 1.

(実施例4)
乳酸系樹脂Aの100質量部に対して、植物油脂B−1を10質量部、架橋剤Cを5質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。結果を表1に示す。
Example 4
Injection molding in the same manner as in Example 1 except that 100 parts by mass of lactic acid resin A was dry blended with 10 parts by mass of vegetable oil B-1 and 5 parts by mass of crosslinking agent C. Production and evaluation of a plate material as a body were performed. The results are shown in Table 1.

(実施例5)
乳酸系樹脂Aの100質量部に対して、植物油脂Bー2を10質量部、架橋剤Cを0.2質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。結果を表1に示す。
(Example 5)
In the same manner as in Example 1, except that 100 parts by mass of lactic acid resin A was dry blended with 10 parts by mass of vegetable oil B-2 and 0.2 parts by mass of crosslinking agent C. Production and evaluation of a plate material which is an injection-molded body were performed. The results are shown in Table 1.

(実施例6)
乳酸系樹脂Aの100質量部に対して、植物油脂B−3を10質量部、架橋剤Cを1.0質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。結果を表1に示す。
(Example 6)
In the same manner as in Example 1, except that 100 parts by mass of the lactic acid-based resin A was dry blended with 10 parts by mass of vegetable oil B-3 and 1.0 part by mass of the crosslinking agent C. Production and evaluation of a plate material which is an injection-molded body were performed. The results are shown in Table 1.

(比較例1)
乳酸系樹脂のみを、実施例1と同様の方法で板材に射出成形し、その評価を実施例1と同様に行った。即ち、本比較例の樹脂組成物は、植物油脂も架橋剤も含まない。結果を前記表2に示す。
(Comparative Example 1)
Only the lactic acid-based resin was injection-molded into a plate material in the same manner as in Example 1, and the evaluation was performed in the same manner as in Example 1. That is, the resin composition of this comparative example does not contain vegetable oils or fats and crosslinking agents. The results are shown in Table 2 above.

(比較例2)
乳酸系樹脂Aの100質量部に対して、植物油脂B−1を10質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。すなわち本比較例の樹脂組成物は、架橋剤を含まない。結果を表2に示す。
(Comparative Example 2)
Production and evaluation of a plate material that is an injection-molded body in the same manner as in Example 1 except that 10 parts by mass of vegetable oil B-1 was blended with 100 parts by mass of lactic acid-based resin A. Went. That is, the resin composition of this comparative example does not contain a crosslinking agent. The results are shown in Table 2.

(比較例3)
乳酸系樹脂Aの100質量部に対して、架橋剤Cを0.2質量部配合したものをドライブレンドしたこと以外、実施例1と同様の方法で、射出成形体である板材の作製と評価を行った。すなわち本比較例の樹脂組成物は、植物油脂を含まない。結果を表2に示す。
(Comparative Example 3)
Production and evaluation of a plate material that is an injection-molded body in the same manner as in Example 1 except that dry blending of 0.2 parts by mass of the crosslinking agent C is performed with respect to 100 parts by mass of the lactic acid resin A. Went. That is, the resin composition of this comparative example does not contain vegetable oils and fats. The results are shown in Table 2.

表1から明らかなように、本発明の樹脂組成物からなる実施例1〜5の射出成形体は、アイゾット衝撃強度が5kJ/m以上であり、耐衝撃性に優れていることが確認できた。また、乳酸系樹脂Aの100質量部に対して、植物油脂が1〜20質量部の範囲内では、植物油脂の配合量が多いほど、耐衝撃性が向上する傾向が見られた。 As is clear from Table 1, it can be confirmed that the injection molded articles of Examples 1 to 5 made of the resin composition of the present invention have an Izod impact strength of 5 kJ / m 2 or more and are excellent in impact resistance. It was. Moreover, in the range of 1-20 mass parts of vegetable oils and fats with respect to 100 mass parts of lactic acid-type resin A, the tendency for impact resistance to improve was seen, so that there were many compounding quantities of vegetable oils and fats.

表2から明らかなように、植物油脂および架橋剤のいずれも含まない比較例1、ならびに植物油脂および架橋剤のうちいずれか一方を含まない比較例2〜3の射出成形体は、アイゾット衝撃強度がいずれも5kJ/m未満であり、耐衝撃性に劣るものであることが確認できた。比較例1〜3の射出成形体は、耐衝撃性が実用レベルに達しておらず、用途が非常に限定されるものであった。 As is apparent from Table 2, the injection molded articles of Comparative Example 1 containing neither vegetable oil or fat and cross-linking agent, nor Comparative Examples 2 to 3 containing either one of vegetable oil or fat and cross-linking agent were Izod impact strength. Are less than 5 kJ / m 2 , confirming that the impact resistance is poor. The injection-molded products of Comparative Examples 1 to 3 had a shock resistance that did not reach a practical level, and their applications were very limited.

図1に、岩木製作所(株)製「VES−F3」の粘弾性測定装置を用い測定した実施例5(図中の3、3’)、比較例1(図中の1,1’)および比較例2(図中の2、2’)の板材の粘弾性測定結果のグラフを示す。
図1より、比較例2では、比較例1に対してガラス転移温度が大きく低温側にシフトしていることが理解できる。このようなガラス転移温度の低下が生じるのは、比較例2の板材に含まれる植物油脂が、可塑剤として作用しているためと考えられる。
一方、実施例5では、比較例1に対してガラス転移温度がほとんど低下していない。これは、実施例5に含まれる植物油脂が架橋剤により架橋され、可塑剤として機能することなくゴム成分として作用しているためである。実施例5のグラフの−60℃付近に、ゴムによる副分散が見られることも、植物油脂が架橋剤により架橋され、ゴム弾性を有するようになったことを示している。
FIG. 1 shows Example 5 (3, 3 ′ in the figure), Comparative Example 1 (1, 1 ′ in the figure) measured using the “VES-F3” viscoelasticity measuring device manufactured by Iwaki Seisakusho Co., Ltd. The graph of the viscoelasticity measurement result of the board | plate material of the comparative example 2 (2, 2 'in a figure) is shown.
From FIG. 1, it can be understood that in Comparative Example 2, the glass transition temperature is larger than that of Comparative Example 1 and is shifted to the lower temperature side. The decrease in the glass transition temperature is considered to be because the vegetable oil contained in the plate material of Comparative Example 2 acts as a plasticizer.
On the other hand, in Example 5, the glass transition temperature is hardly lowered as compared with Comparative Example 1. This is because the vegetable oil contained in Example 5 is cross-linked by the cross-linking agent and functions as a rubber component without functioning as a plasticizer. The fact that sub-dispersion by rubber is observed at around −60 ° C. in the graph of Example 5 also indicates that vegetable oils and fats are crosslinked by a crosslinking agent and have rubber elasticity.

本発明の樹脂組成物からは、耐衝撃性に優れた成形体が得られるため、本発明は様々な成形品に適用することができ、例えばフィルム、シート、平板状プレートあるいは立体的プレートに適用することができる。本発明の樹脂組成物およびその成形品は、家電、OA機器、自動車部品等の各種産業用途および食品、医療、薬品、化粧品等の各種包装用フィルム、農業用フィルム、工業用保護フィルム、日常生活用品として広範に用いられる。   Since the resin composition of the present invention provides a molded article having excellent impact resistance, the present invention can be applied to various molded products, for example, a film, a sheet, a flat plate, or a three-dimensional plate. can do. The resin composition of the present invention and its molded product are used in various industrial applications such as home appliances, OA equipment, and automobile parts, and various packaging films such as food, medical, medicine, and cosmetics, agricultural films, industrial protective films, and daily life. Widely used as a product.

実施例2、比較例1および比較例2の板材の粘弾性測定結果のグラフである。It is a graph of the viscoelasticity measurement result of the board | plate material of Example 2, the comparative example 1, and the comparative example 2. FIG.

Claims (7)

乳酸系樹脂(A)100質量部に対して、植物油脂(B)を1〜20質量部と、少なくとも前記植物油脂を架橋する架橋剤(C)を0.01〜5質量部配合してなる樹脂組成物。   1 to 20 parts by mass of vegetable oil (B) and 0.01 to 5 parts by mass of a crosslinking agent (C) for crosslinking at least the vegetable oil and fat are blended with 100 parts by mass of the lactic acid resin (A). Resin composition. 前記植物油脂(B)が、ひまし油である請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the vegetable oil (B) is castor oil. 前記植物油脂(B)の屈折率が、前記乳酸系樹脂の屈折率に近く、該乳酸系樹脂の屈折率に対して±5%の範囲のものである請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the vegetable oil (B) has a refractive index close to that of the lactic acid resin and in a range of ± 5% with respect to the refractive index of the lactic acid resin. 前記架橋剤(C)が、イソシアネート化合物あるいはカルボジイミド化合物である請求項1乃至請求項3のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, wherein the crosslinking agent (C) is an isocyanate compound or a carbodiimide compound. 請求項1乃至請求項4のいずれか1項に記載の樹脂組成物の成形体であって、JISK−7110に準拠して測定したアイゾット衝撃強度が、5kJ/m以上である成形体。 5. A molded article of the resin composition according to claim 1, wherein the molded article has an Izod impact strength of 5 kJ / m 2 or more measured according to JISK-7110. 平均厚さ200μm未満のフィルム、平均厚さ200μm以上500μm未満のシート、平均厚さ500μm以上の平板状プレートあるいは立体的プレートからなる請求項5に記載の成形体。   The molded product according to claim 5, comprising a film having an average thickness of less than 200 µm, a sheet having an average thickness of 200 µm or more and less than 500 µm, a flat plate having an average thickness of 500 µm or more, or a three-dimensional plate. 透明性を有する請求項5または請求項6に記載の成形体。   The molded article according to claim 5 or 6, which has transparency.
JP2004262749A 2004-09-09 2004-09-09 Resin composition and resin molded product Pending JP2006077126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004262749A JP2006077126A (en) 2004-09-09 2004-09-09 Resin composition and resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004262749A JP2006077126A (en) 2004-09-09 2004-09-09 Resin composition and resin molded product

Publications (1)

Publication Number Publication Date
JP2006077126A true JP2006077126A (en) 2006-03-23

Family

ID=36156849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262749A Pending JP2006077126A (en) 2004-09-09 2004-09-09 Resin composition and resin molded product

Country Status (1)

Country Link
JP (1) JP2006077126A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143829A (en) * 2004-11-18 2006-06-08 Kanebo Ltd Polylactic acid-based resin molding and method for producing the same
JP2007138097A (en) * 2005-11-22 2007-06-07 Kaneka Corp Polylactic acid-based resin composition
JP2008189697A (en) * 2007-01-31 2008-08-21 Pentel Corp Oily ink composition for ball-point pen
WO2008120722A1 (en) 2007-03-30 2008-10-09 Toray Industries, Inc. Polymer, and film or sheet comprising the same
WO2009063943A1 (en) * 2007-11-16 2009-05-22 Nec Corporation Shape memory resin, shaped article using the same and method of using the shaped article
WO2009133958A1 (en) 2008-04-28 2009-11-05 花王株式会社 Manufacturing method for polylactic acid resin compositions
CN103450649A (en) * 2013-09-13 2013-12-18 四川大学 High-toughness polylactic acid/crosslinked polyurethane compound and preparation method thereof
CN105199350A (en) * 2015-11-02 2015-12-30 浙江工业大学 Reactive blending and toughening modified polylactic acid based composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116785A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molded article and production thereof
JP2002327107A (en) * 2001-05-02 2002-11-15 Unitika Ltd Polylactic acid-based film and method for producing the same
JP2003003052A (en) * 2001-06-20 2003-01-08 Mitsubishi Plastics Ind Ltd Resin composition, film and method of disposal
JP2003128900A (en) * 2001-10-23 2003-05-08 Mitsubishi Plastics Ind Ltd Lactic acid resin articles and its recycling process
JP2003327107A (en) * 2002-05-15 2003-11-19 Nissin Kogyo Co Ltd Brake hydraulic pressure control device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116785A (en) * 1997-10-09 1999-04-27 Mitsui Chem Inc Molded article and production thereof
JP2002327107A (en) * 2001-05-02 2002-11-15 Unitika Ltd Polylactic acid-based film and method for producing the same
JP2003003052A (en) * 2001-06-20 2003-01-08 Mitsubishi Plastics Ind Ltd Resin composition, film and method of disposal
JP2003128900A (en) * 2001-10-23 2003-05-08 Mitsubishi Plastics Ind Ltd Lactic acid resin articles and its recycling process
JP2003327107A (en) * 2002-05-15 2003-11-19 Nissin Kogyo Co Ltd Brake hydraulic pressure control device for vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143829A (en) * 2004-11-18 2006-06-08 Kanebo Ltd Polylactic acid-based resin molding and method for producing the same
JP2007138097A (en) * 2005-11-22 2007-06-07 Kaneka Corp Polylactic acid-based resin composition
JP2008189697A (en) * 2007-01-31 2008-08-21 Pentel Corp Oily ink composition for ball-point pen
US8058361B2 (en) 2007-03-30 2011-11-15 Toray Industries, Inc. Polymer and a film or sheet containing the same
WO2008120722A1 (en) 2007-03-30 2008-10-09 Toray Industries, Inc. Polymer, and film or sheet comprising the same
JP5526544B2 (en) * 2007-03-30 2014-06-18 東レ株式会社 Polymer and film or sheet containing the same
KR101391018B1 (en) * 2007-03-30 2014-04-30 도레이 카부시키가이샤 Polymer, and film or sheet comprising the same
WO2009063943A1 (en) * 2007-11-16 2009-05-22 Nec Corporation Shape memory resin, shaped article using the same and method of using the shaped article
US8470935B2 (en) 2007-11-16 2013-06-25 Nec Corporation Shape-memory resin, molded product composed of the resin, and method of using the molded product
JP5651952B2 (en) * 2007-11-16 2015-01-14 日本電気株式会社 Shape memory resin, molded body using the same, and method of using the molded body
US8232354B2 (en) 2008-04-28 2012-07-31 Kao Corporation Method for producing a polylactic acid resin composition
CN102015889B (en) * 2008-04-28 2013-02-06 花王株式会社 Manufacturing method for polylactic acid resin compositions
JP2009286999A (en) * 2008-04-28 2009-12-10 Kao Corp Method for producing polylactic acid resin composition
WO2009133958A1 (en) 2008-04-28 2009-11-05 花王株式会社 Manufacturing method for polylactic acid resin compositions
CN103450649A (en) * 2013-09-13 2013-12-18 四川大学 High-toughness polylactic acid/crosslinked polyurethane compound and preparation method thereof
CN105199350A (en) * 2015-11-02 2015-12-30 浙江工业大学 Reactive blending and toughening modified polylactic acid based composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
Krishnan et al. Toughening of polylactic acid: an overview of research progress
TWI325005B (en)
CN105038165B (en) Biological base thermoplastic elastomer with shape memory function and preparation method thereof
KR101281834B1 (en) Biodegradable polymer composite
CN113631657A (en) Polyhydroxyalkanoate resin composition, molded article thereof, and film or sheet
Graiver et al. Biodegradable soy protein–polyester blends by reactive extrusion process
KR101651319B1 (en) Biologically degradable polymeric composition with high deformability
WO2017110164A1 (en) Polylactic acid resin composition and method for producing same
JP2007063516A (en) Resin composition
JP7110228B2 (en) biodegradable film
JP2006077126A (en) Resin composition and resin molded product
Osman et al. Effects of durian seed flour on processing torque, tensile, thermal and biodegradation properties of polypropylene and high density polyethylene composites
KR20120134163A (en) Biodegradable resin composition havign excellent thermostability and vessels comprising the same
JP2006206913A (en) Injection-molded object, process for producing the same, and pellet for use for injection-molded object
JP2006291214A (en) Injection-molded article, process for producing the same, and pellet used for injection molded article
Samarasinghe et al. Biodegradable plastic composites from corn gluten meal
JP4384949B2 (en) Injection molded body
JP2007023188A (en) Resin composition
Ismail et al. The effect of epoxidized natural rubber (ENR-50) as a compatibilizer on properties of high-density polyethylene/soya powder blends
JP2001031853A (en) Polylactic acid-based polymer composition
JP2008000046A (en) Cord for cord-type bush cutter composed of biodegradable resin
Thakur Soy-based bioplastics
Wu et al. Processing and properties of biobased blends from soy meal and natural rubber
JP2008222865A (en) Biomass resin composition
Asraf et al. Degradation properties of biodegradable polymers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100824