JP2007063516A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2007063516A
JP2007063516A JP2005255102A JP2005255102A JP2007063516A JP 2007063516 A JP2007063516 A JP 2007063516A JP 2005255102 A JP2005255102 A JP 2005255102A JP 2005255102 A JP2005255102 A JP 2005255102A JP 2007063516 A JP2007063516 A JP 2007063516A
Authority
JP
Japan
Prior art keywords
resin composition
lactic acid
resin
weight
poly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005255102A
Other languages
Japanese (ja)
Inventor
Junzo Odera
純蔵 大寺
Toru Yano
徹 矢野
Hiroyuki Shirahama
博幸 白浜
Kazuo Sugiyama
一男 杉山
Kohei Shiraishi
浩平 白石
Toshihiko Ohashi
俊彦 大橋
Kimitaka Tahira
公孝 田平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Prefecture
Nishikawa Rubber Co Ltd
Hiroshima University NUC
Kinki University
Original Assignee
Hiroshima Prefecture
Nishikawa Rubber Co Ltd
Hiroshima University NUC
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Prefecture, Nishikawa Rubber Co Ltd, Hiroshima University NUC, Kinki University filed Critical Hiroshima Prefecture
Priority to JP2005255102A priority Critical patent/JP2007063516A/en
Publication of JP2007063516A publication Critical patent/JP2007063516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition excellent in heat resistance and impact resistance. <P>SOLUTION: This resin composition contains poly-L-lactic acid, a crystallization promoter, a flexibilizer, a compatibilizer, and a chemical synthetic fiber, such as a polyvinyl alcohol fiber, which is stable at a temperature corresponding to a melting point of polylactic acid (180°C or higher) and has biodegradability. It is preferable that the resin composition contains a D-lactic acid-starch copolymer resin, polycaprolactone, and a poly-L-lactic acid-polybutylene succinate block copolymer resin as the crystallization promoter, the flexibilizer, and the compatibilizer, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂組成物に関し、詳細には、耐熱性・耐衝撃性に優れた樹脂組成物に関する。   The present invention relates to a resin composition, and in particular, to a resin composition excellent in heat resistance and impact resistance.

従来より、(生分解性)樹脂組成物の材料としてポリ乳酸が用いられている。しかし、ポリ乳酸は一般に固く、耐衝撃性に劣るという性質を有しているため、その用途が限られてしまう傾向があった。
これに対して、例えば、特許文献1には、乳酸単位とポリエステル単位とからなる耐衝撃性付与剤をポリヒドロキシカルボン酸に付与することで、ブリードアウトを起こしにくく、柔軟性および透明性を維持しつつ、耐衝撃性を有するポリエステル組成物を得る技術が開示されている。
Conventionally, polylactic acid has been used as a material for a (biodegradable) resin composition. However, since polylactic acid is generally hard and has a property of being inferior in impact resistance, its use tends to be limited.
On the other hand, for example, in Patent Document 1, by applying an impact resistance imparting agent composed of a lactic acid unit and a polyester unit to polyhydroxycarboxylic acid, bleeding out hardly occurs, and flexibility and transparency are maintained. However, a technique for obtaining a polyester composition having impact resistance is disclosed.

特開2001−335623号公報JP 2001-335623 A

しかしながら、上記技術では、ポリヒドロキシカルボン酸と混合される耐衝撃性付与剤の相溶性が不十分であり、低比率時の硬化が低いため、充分な耐衝撃性の改善効果を得るためには、ポリエステル組成物における耐衝撃性付与剤の混合比率を上げる必要がある。一方、耐衝撃性付与剤は柔軟性が高いため耐衝撃性付与剤の混合比率を上げると柔軟性の向上に伴い軟化温度が低下してしまい、耐熱性に劣るという問題がある。
本発明は、上記課題を解決する為になされたものであり、耐熱性、耐衝撃性に優れた樹脂組成物を提供することを目的とする。
However, in the above technique, since the compatibility of the impact resistance imparting agent mixed with the polyhydroxycarboxylic acid is insufficient and the curing at a low ratio is low, in order to obtain a sufficient impact resistance improvement effect It is necessary to increase the mixing ratio of the impact resistance imparting agent in the polyester composition. On the other hand, since the impact resistance-imparting agent has high flexibility, when the mixing ratio of the impact resistance imparting agent is increased, the softening temperature is lowered with the improvement of the flexibility, and there is a problem that the heat resistance is inferior.
This invention is made | formed in order to solve the said subject, and it aims at providing the resin composition excellent in heat resistance and impact resistance.

本発明者は、鋭意検討を重ねた結果、以下の構成を採用することによって、上記目的が達成され、本発明を成すに至った。
即ち本発明は、以下の通りである。
(1)ポリL−乳酸と、結晶化促進剤と、柔軟性付与剤と、相溶化剤と、ポリ乳酸の融点(180℃以上)で安定でありかつ生分解性のある化学合成繊維とを含む樹脂組成物。
(2)化学合成繊維がポリビニルアルコールまたは4ナイロンである前記(1)に記載の樹脂組成物。
(3)結晶化促進剤がポリ−D乳酸またはD−乳酸−デンプン共重合樹脂からなるA成分と、融点または軟化点がポリ乳酸の融点または軟化点以下である生分解樹脂からなるB成分とのブロック重合体である前記(1)または(2)に記載の樹脂組成物。
(4)柔軟性付与剤がポリカプロラクトンである前記(1)〜(3)のいずれかに記載の樹脂組成物。
(5)相溶化剤がポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂である前
記(1)〜(4)のいずれかに記載の樹脂組成物。
As a result of intensive studies, the present inventor has achieved the above object by adopting the following configuration, and has achieved the present invention.
That is, the present invention is as follows.
(1) Poly L-lactic acid, a crystallization accelerator, a flexibility imparting agent, a compatibilizing agent, and a chemically synthesized fiber that is stable and biodegradable at the melting point of polylactic acid (180 ° C. or higher). A resin composition comprising.
(2) The resin composition according to (1), wherein the chemically synthesized fiber is polyvinyl alcohol or 4 nylon.
(3) A component comprising a poly-D lactic acid or D-lactic acid-starch copolymer resin as a crystallization accelerator, and a B component comprising a biodegradable resin having a melting point or softening point equal to or lower than that of polylactic acid. The resin composition as described in (1) or (2) above, which is a block polymer.
(4) The resin composition according to any one of (1) to (3), wherein the flexibility-imparting agent is polycaprolactone.
(5) The resin composition according to any one of (1) to (4), wherein the compatibilizing agent is a poly L-lactic acid-polybutylene succinate block copolymer resin.

本発明の樹脂組成物は、ポリL−乳酸と、結晶化促進剤と、柔軟性付与剤と、相溶化剤と、ポリビニルアルコール繊維(PVA繊維)等のポリ乳酸の融点(180℃以上)で安定でありかつ生分解性のある化学合成繊維とを含むことにより、耐熱性、耐衝撃性に優れたものとすることができる。   The resin composition of the present invention has a poly L-lactic acid, a crystallization accelerator, a flexibility imparting agent, a compatibilizing agent, and a melting point (180 ° C. or higher) of polylactic acid such as polyvinyl alcohol fiber (PVA fiber). By including a chemically synthetic fiber which is stable and biodegradable, it can be made excellent in heat resistance and impact resistance.

以下、本発明の樹脂組成物について詳細に説明する。
本発明に係る樹脂組成物は、ポリL−乳酸と、結晶化促進剤と、柔軟性付与剤と、相溶化剤と、PVA繊維等のポリ乳酸の融点(180℃以上)で安定でありかつ生分解性のある化学合成繊維とを含むことを特徴としている。
本発明に含まれるポリL−乳酸としては、特に限定されないが、90%発酵乳酸とデンプンの混合物中に重合触媒を添加し、脱水重合を行ったものを使用するか、市販のポリ乳酸(三井化学(株)製 レイシアH−100Jなど)または耐熱性のナノコンポジット充填剤入りのポリ乳酸など、いずれを用いてもよい。
Hereinafter, the resin composition of the present invention will be described in detail.
The resin composition according to the present invention is stable at the melting point (180 ° C. or higher) of polylactic acid such as poly L-lactic acid, crystallization accelerator, flexibility imparting agent, compatibilizing agent, and PVA fiber, and It is characterized by containing chemically synthetic fibers with biodegradability.
The poly-L-lactic acid included in the present invention is not particularly limited, but a poly-L-lactic acid obtained by adding a polymerization catalyst to a mixture of 90% fermented lactic acid and starch and performing dehydration polymerization, or commercially available polylactic acid (Mitsui (Chemical Co., Ltd., Lacia H-100J, etc.) or polylactic acid with a heat-resistant nanocomposite filler may be used.

本発明に含まれる結晶化促進剤としては、特に限定されないが、ポリ−D乳酸またはD−乳酸−デンプン共重合樹脂からなるA成分と、融点または軟化点がポリ乳酸の融点または軟化点以下である生分解樹脂からなるB成分とのブロック重合体であり、ブロック共重合方式は、特に限定されないが、A−B型、A−B−A型、B−A−B型のいずれを用いてもよい。
本発明に用いられる結晶化促進剤のB成分である、融点または軟化点がポリ乳酸の融点または軟化点以下の生分解樹脂としては、特に限定されないが、市販のポリカプロラクトン、カプロラクトン・ブチレンサクシレート、ポリブチレンアジペート・テレフタレート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート変性樹脂、ポリブチレンサクシネートカーボネート変性樹脂、ポリエチレンテレフタレートサクシネート、ポリエチレンサクシネート、ポリヒドロキシブチレートなどが挙げられ、いずれを用いても良い。
本発明に用いられる結晶化促進剤の分子量は、1,000〜2,000,000の範囲が好ましい。1,000未満の場合、共晶を形成し、結晶加速度は大となるが,樹脂が蜂蜜状で取り扱いにくくなることがあり、2,000,000を超えると溶融粘度が大となり、重合終了時に取出しにくくなることがある。
本発明に用いられる結晶化促進剤を樹脂組成物に用いる際の添加量は、特に限定されないが、ベース樹脂100重量部に対し、1〜100重量部が好ましい。1重量部未満の場合、顕著な結晶化促進効果が得られず、樹脂組成物の耐熱性が向上しない。100重量部を超えて添加すると、耐熱性は改善されるものの、現状では、樹脂のコストが大となることがある。
Although it does not specifically limit as a crystallization accelerator contained in this invention, A component which consists of poly-D lactic acid or D-lactic acid-starch copolymer resin, and melting | fusing point or a softening point is below the melting point or softening point of polylactic acid. It is a block polymer with a B component made of a certain biodegradable resin, and the block copolymerization method is not particularly limited, but any of AB type, ABA type, and BAB type can be used. Also good.
The biodegradable resin having a melting point or softening point equal to or lower than the melting point or softening point of polylactic acid, which is the B component of the crystallization accelerator used in the present invention, is not particularly limited. , Polybutylene adipate terephthalate, polybutylene succinate, polybutylene succinate adipate modified resin, polybutylene succinate carbonate modified resin, polyethylene terephthalate succinate, polyethylene succinate, polyhydroxybutyrate, etc. Also good.
The molecular weight of the crystallization accelerator used in the present invention is preferably in the range of 1,000 to 2,000,000. If it is less than 1,000, a eutectic is formed and the crystal acceleration becomes large, but the resin may be honey-like and difficult to handle, and if it exceeds 2,000,000, the melt viscosity becomes large and at the end of polymerization. It may be difficult to remove.
Although the addition amount at the time of using the crystallization promoter used for this invention for a resin composition is not specifically limited, 1-100 weight part is preferable with respect to 100 weight part of base resins. When the amount is less than 1 part by weight, a remarkable crystallization promoting effect cannot be obtained, and the heat resistance of the resin composition is not improved. If the amount exceeds 100 parts by weight, the heat resistance is improved, but at present, the cost of the resin may increase.

本発明に用いられる柔軟性付与剤としては、特に限定されないが、市販のポリカプロラクトン、カプロラクトン・ブチレンサクシレート、ポリブチレンアジペート・テレフタレート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート変性樹脂、ポリブチレンサクシネートカーボネート変性樹脂、ポリエチレンテレフタレートサクシネート、ポリエチレンサクシネート、ポリヒドロキシブチレートなど、融点または軟化点がポリ乳酸の融点または軟化点以下の生分解樹脂であれば、いずれを用いても良い。
また柔軟性付与剤は、樹脂組成物の用途目的に応じて適宜添加量を選択することができる。
柔軟性付与剤の添加量は、特に限定されないが、ポリ乳酸100重量部に対し、1〜100重量部が好ましい。1重量部未満の場合、顕著なポリ乳酸の耐衝撃性改善効果がないことがある。100重量部を超えて添加すると、樹脂組成物中の海島構造が逆転し耐衝撃性は改善されるものの、耐熱性が低下することがある。
The flexibility-imparting agent used in the present invention is not particularly limited, but commercially available polycaprolactone, caprolactone butylene succinate, polybutylene adipate terephthalate, polybutylene succinate, polybutylene succinate adipate-modified resin, polybutylene succinate Any of biodegradable resins having a melting point or softening point below the melting point or softening point of polylactic acid, such as a nitrate carbonate-modified resin, polyethylene terephthalate succinate, polyethylene succinate, and polyhydroxybutyrate may be used.
Further, the amount of the flexibility-imparting agent can be appropriately selected according to the purpose of use of the resin composition.
Although the addition amount of a softness | flexibility imparting agent is not specifically limited, 1-100 weight part is preferable with respect to 100 weight part of polylactic acid. When the amount is less than 1 part by weight, there may be no significant effect of improving the impact resistance of polylactic acid. If the amount exceeds 100 parts by weight, the sea-island structure in the resin composition is reversed and the impact resistance is improved, but the heat resistance may be lowered.

本発明に用いられる相溶化剤としては、特に限定されないが、D−またはL−ポリ乳酸、D−またはL−乳酸−デンプン共重合樹脂とポリカプロラクトン、ポリブチレンアジペート・テレフタレート、ポリブチレンサクシネートアジペート変性樹脂など、融点または軟化点がポリ乳酸の融点または軟化点以下の生分解樹脂をブロック共重合させたものが好ましい。共重合の手法は、樹脂どうしを減圧条件下で加熱溶融する脱水縮合反応や、2個以上のイソシアネート基やエポキシ基をもつ化合物を用いる架橋反応などが用いられる。
相溶化剤の添加量は、特に限定されないが、ポリ乳酸100重量部に対し1〜30重量部が好ましい。1重量部未満の場合、顕著なポリ乳酸の対衝撃性改善効果がないことがある。30重量部を超えて添加しても、耐衝撃性の改善効果は頭打ちとなることがある。また、引張強度と耐熱性が低下することもある。
The compatibilizing agent used in the present invention is not particularly limited, but D- or L-polylactic acid, D- or L-lactic acid-starch copolymer resin and polycaprolactone, polybutylene adipate terephthalate, polybutylene succinate adipate A modified resin such as a block copolymer of a biodegradable resin having a melting point or softening point below the melting point or softening point of polylactic acid is preferred. As a copolymerization method, a dehydration condensation reaction in which resins are heated and melted under reduced pressure conditions, a crosslinking reaction using a compound having two or more isocyanate groups or epoxy groups, and the like are used.
Although the addition amount of a compatibilizing agent is not specifically limited, 1-30 weight part is preferable with respect to 100 weight part of polylactic acid. When the amount is less than 1 part by weight, there may be no significant effect of improving the impact resistance of polylactic acid. Even if it is added in an amount exceeding 30 parts by weight, the effect of improving the impact resistance may reach its peak. In addition, the tensile strength and heat resistance may be reduced.

本発明に用いられる、ポリ乳酸の融点(180℃以上)で安定でありかつ生分解性のある化学合成繊維、特に限定されないが、PVAや4ナイロンが挙げられる。PVA繊維としては、特に限定されないが、市販のポリビニルアルコール繊維であればいずれを用いてもよく、成形品の耐湿性向上のためには部分ケン化品またはアルデヒド処理品が好ましい。また、繊維長ならびに繊維径も特に限定されないが、長さ20mm未満のものが樹脂と均一混合しやすく好ましい。
PVA繊維の添加量は、特に限定されないが、1〜100重量部が好ましい。1重量部未満の場合、著しい耐熱性・耐衝撃性改善効果がなく、100重量部を超えて添加すると、樹脂の流動性が悪くなることがある。
なお、化学合成繊維には、炭素繊維やアラミド繊維もあるが、生分解性がない。
A chemically synthesized fiber that is stable at the melting point of polylactic acid (180 ° C. or higher) and biodegradable and is not particularly limited, and includes PVA and 4 nylon. The PVA fiber is not particularly limited, and any commercially available polyvinyl alcohol fiber may be used. A partially saponified product or an aldehyde-treated product is preferable for improving the moisture resistance of the molded product. Further, the fiber length and fiber diameter are not particularly limited, but those having a length of less than 20 mm are preferable because they can be easily mixed with the resin.
Although the addition amount of PVA fiber is not specifically limited, 1-100 weight part is preferable. When the amount is less than 1 part by weight, there is no significant effect of improving heat resistance and impact resistance, and when the amount exceeds 100 parts by weight, the fluidity of the resin may deteriorate.
Chemically synthesized fibers include carbon fibers and aramid fibers, but are not biodegradable.

本発明の樹脂組成物には、必要に応じて架橋剤を添加してもよい。
本発明に用いられる架橋剤としては、特に限定されないが、ポリ乳酸の融点で蒸発しないものであれば、エポキシ系、シラン系、イソシアネート系など、いずれを用いてもよい。
架橋剤の添加量は、特に限定されないが、ポリ乳酸100重量部に対し0.01〜10重量部が好ましい。0.01重量部未満の場合、顕著なポリ乳酸の耐衝撃性改善効果がなく、10重量部を超えて添加するとかえって耐熱性・耐衝撃性が低下することがある。
You may add a crosslinking agent to the resin composition of this invention as needed.
The cross-linking agent used in the present invention is not particularly limited, and any epoxy-based, silane-based, or isocyanate-based one may be used as long as it does not evaporate at the melting point of polylactic acid.
Although the addition amount of a crosslinking agent is not specifically limited, 0.01-10 weight part is preferable with respect to 100 weight part of polylactic acid. When the amount is less than 0.01 part by weight, there is no remarkable effect of improving the impact resistance of polylactic acid, and when the amount exceeds 10 parts by weight, the heat resistance and impact resistance may be lowered.

以下本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
a.ポリ乳酸、結晶化促進剤、相溶化剤、ポリビニルアルコール繊維、柔軟性付与剤、架橋剤の混合
ポリL−乳酸(三井化学(株)製 レイシアH−100J) 100重量部、D−乳酸−0.1w%−デンプン共重合樹脂(結晶化促進剤) 5重量部、ポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂(相溶化剤) 20重量部、ポリビニルアルコール繊維((株)クラレ製 ビニロンRM−S182×6)(PVA繊維1) 30重量部、ポリカプロラクトン(柔軟性付与剤)(ダイセル化学工業(株)製 プラクセル H−7) 10重量部、架橋剤(旭化成ケミカルズ(株)製 デュラネートP301−75E) 0.5重量部の各ペレットをそれぞれ計量後、PE製の袋の中で予備混合したのち、(株)クリモト製SIKRニーダを用いて混練し、ストランド状に押し出し、コンベア上で冷却後、ペレット化した。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
Example 1
a. Mixing of polylactic acid, crystallization accelerator, compatibilizer, polyvinyl alcohol fiber, flexibility imparting agent, and crosslinking agent Poly L-lactic acid (Lacia H-100J, Mitsui Chemicals, Inc.) 100 parts by weight, D-lactic acid-0 .1w% -starch copolymer resin (crystallization accelerator) 5 parts by weight, poly L-lactic acid-polybutylene succinate block copolymer resin (compatibilizer) 20 parts by weight, polyvinyl alcohol fiber (Kuraray Co., Ltd. vinylon) RM-S182 × 6) (PVA fiber 1) 30 parts by weight, polycaprolactone (flexibility-imparting agent) (Dacel Chemical Industries, Ltd. Placcel H-7) 10 parts by weight, cross-linking agent (Asahi Kasei Chemicals Co., Ltd. Duranate) P301-75E) After weighing 0.5 parts by weight of each pellet, premixed in PE bags, and then used SIKR kneader manufactured by Kurimoto Co., Ltd. Kneaded, extruded into strands, cooled on a conveyor and pelletized.

b.混合樹脂の射出形成
aで作成した混合ペレットを(株)山城精機製作所製 SAV−30を用いて、荷重たわみ測定用の棒状試験片(120mm×12mm×4mm)を成形した。成形温度はスクリュウ上部、スクリュウ下部、ノズルの順番に、それぞれ170℃、175℃、180℃に設定した。また、金型温度(設定温度120℃で可動板側実測値)110℃、冷却時間120秒で実験を行った。
得られた試験片はJIS K7191−2に準拠して熱変形温度を測定した。また、JIS K7110に準拠してIzod衝撃強度を測定した。結果を表1に示す。
b. Injection molding of mixed resin A rod-shaped test piece (120 mm × 12 mm × 4 mm) for load deflection measurement was molded from the mixed pellet prepared in a using SAV-30 manufactured by Yamashiro Seiki Seisakusho. The molding temperature was set to 170 ° C., 175 ° C., and 180 ° C. in the order of the upper part of the screw, the lower part of the screw, and the nozzle. The experiment was performed at a mold temperature (measured value on the movable plate side at a set temperature of 120 ° C.) of 110 ° C. and a cooling time of 120 seconds.
The obtained test piece was measured for heat distortion temperature according to JIS K7191-2. Further, the Izod impact strength was measured in accordance with JIS K7110. The results are shown in Table 1.

実施例2
架橋剤を使用せず、PVA繊維1を(株)クラレ製 ビニロンRM−S182×6を0.5w%デュラネートで表面処理した PVA繊維2 30重量部に変更した以外は実施例1と同様にして試験片を作成したのち、同様に熱変形温度と衝撃強度とを測定した。
結果を表1に表す。
Example 2
The same procedure as in Example 1 was conducted except that PVA fiber 1 was changed to 30 parts by weight of PVA fiber 1 whose surface was treated with 0.5 w% duranate from Kuraray Co., Ltd. vinylon RM-S182 × 6 without using a crosslinking agent. After preparing the test piece, the heat distortion temperature and the impact strength were measured in the same manner.
The results are shown in Table 1.

比較例1
ポリL−乳酸 100重量部のみを用い、また、金型温度を30℃にした以外は実施例1〜4と同様にして試験片を作成し、同様に熱変形温度と衝撃強度とを測定した。
結果を表1に表す。
Comparative Example 1
A test piece was prepared in the same manner as in Examples 1 to 4 except that only 100 parts by weight of poly-L-lactic acid was used and the mold temperature was 30 ° C., and the heat distortion temperature and impact strength were measured in the same manner. .
The results are shown in Table 1.

比較例2
組成を以下のようにした以外は実施例1、2と同様にして試験片を作成し、同様に熱変形温度と衝撃強度とを測定した。
ポリL−乳酸 100重量部
D−乳酸−0.1w%−デンプン共重合樹脂 5重量部
結果を表1に表す。
Comparative Example 2
A test piece was prepared in the same manner as in Examples 1 and 2 except that the composition was as follows, and the heat distortion temperature and impact strength were measured in the same manner.
Poly L-lactic acid 100 parts by weight D-lactic acid-0.1 w% -starch copolymer resin 5 parts by weight The results are shown in Table 1.

比較例3
組成を以下のようにした以外は実施例1、2と同様にして試験片を作成し、同様に熱変形温度と衝撃強度とを測定した。
ポリL−乳酸 100重量部
D−乳酸−0.1w%−デンプン共重合樹脂 5重量部
ポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂 20重量部
結果を表1に表す。
Comparative Example 3
A test piece was prepared in the same manner as in Examples 1 and 2 except that the composition was as follows, and the heat distortion temperature and impact strength were measured in the same manner.
Poly L-lactic acid 100 parts by weight D-lactic acid-0.1 w% -starch copolymer resin 5 parts by weight Poly L-lactic acid-polybutylene succinate block copolymer resin 20 parts by weight The results are shown in Table 1.

比較例4
組成を以下のようにした以外は実施例1、2と同様にして試験片を作成し、同様に熱変形温度と衝撃強度とを測定した。
ポリL−乳酸 100重量部
D−乳酸−0.1w%−デンプン共重合樹脂 5重量部
ポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂 20重量部
ポリカプロラクトン 5重量部
結果を表1に表す。
Comparative Example 4
A test piece was prepared in the same manner as in Examples 1 and 2 except that the composition was as follows, and the heat distortion temperature and impact strength were measured in the same manner.
Poly L-lactic acid 100 parts by weight D-lactic acid-0.1 w% -starch copolymer resin 5 parts by weight Poly L-lactic acid-polybutylene succinate block copolymer resin 20 parts by weight Polycaprolactone 5 parts by weight The results are shown in Table 1. .

比較例5
組成を以下のようにした以外は実施例1、2と同様にして試験片を作成し、同様に熱変形温度と衝撃強度とを測定した。
ポリL−乳酸 100重量部
D−乳酸−0.1w%−デンプン共重合樹脂 5重量部
ポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂 20重量部
ポリカプロラクトン 10重量部
結果を表1に表す。
Comparative Example 5
A test piece was prepared in the same manner as in Examples 1 and 2 except that the composition was as follows, and the heat distortion temperature and impact strength were measured in the same manner.
Poly L-lactic acid 100 parts by weight D-lactic acid-0.1 w% -starch copolymer resin 5 parts by weight Poly L-lactic acid-polybutylene succinate block copolymer resin 20 parts by weight Polycaprolactone 10 parts by weight The results are shown in Table 1. .

Figure 2007063516
Figure 2007063516

表1から明らかなように、本発明に係る実施例1〜2は耐熱性・耐衝撃性に優れている。   As is clear from Table 1, Examples 1 and 2 according to the present invention are excellent in heat resistance and impact resistance.

比較例6〜8
PVA繊維に代えて麻繊維を用いた比較例を下記表2に示す。
Comparative Examples 6-8
A comparative example using hemp fibers instead of PVA fibers is shown in Table 2 below.

Figure 2007063516
Figure 2007063516

表2から明らかなように、PVA繊維に代えて麻繊維を用いた場合には、物性、特に衝撃強度が不十分であった。即ち、単に繊維を添加しただけでは、物性は不十分であった。   As is apparent from Table 2, when hemp fibers were used instead of PVA fibers, physical properties, particularly impact strength, were insufficient. That is, the physical properties were insufficient by simply adding fibers.

本発明の樹脂組成物から得られる成形品は、自動車部品、家電製品、一般産業資材として使用できる。   Molded articles obtained from the resin composition of the present invention can be used as automobile parts, home appliances, and general industrial materials.

Claims (5)

ポリL−乳酸と、結晶化促進剤と、柔軟性付与剤と、相溶化剤と、ポリ乳酸の融点(180℃以上)で安定でありかつ生分解性のある化学合成繊維とを含む樹脂組成物。   Resin composition containing poly-L-lactic acid, crystallization accelerator, flexibility imparting agent, compatibilizing agent, and chemically synthesized fiber that is stable at the melting point of polylactic acid (180 ° C. or higher) and biodegradable object. 化学合成繊維がポリビニルアルコールまたは4ナイロンである請求項1記載の樹脂組成物。   The resin composition according to claim 1, wherein the chemically synthetic fiber is polyvinyl alcohol or 4-nylon. 結晶化促進剤がポリ−D乳酸またはD−乳酸−デンプン共重合樹脂からなるA成分と、融点または軟化点がポリ乳酸の融点または軟化点以下である生分解樹脂からなるB成分とのブロック重合体である請求項1または2に記載の樹脂組成物。   Block weight of component A composed of poly-D lactic acid or D-lactic acid-starch copolymer resin as crystallization accelerator and component B composed of biodegradable resin whose melting point or softening point is below the melting point or softening point of polylactic acid The resin composition according to claim 1, which is a coalescence. 柔軟性付与剤がポリカプロラクトンである請求項1〜3のいずれかに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, wherein the flexibility-imparting agent is polycaprolactone. 相溶化剤がポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂である請求項1〜4のいずれかにに記載の樹脂組成物。   The resin composition according to any one of claims 1 to 4, wherein the compatibilizing agent is a poly L-lactic acid-polybutylene succinate block copolymer resin.
JP2005255102A 2005-09-02 2005-09-02 Resin composition Pending JP2007063516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255102A JP2007063516A (en) 2005-09-02 2005-09-02 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255102A JP2007063516A (en) 2005-09-02 2005-09-02 Resin composition

Publications (1)

Publication Number Publication Date
JP2007063516A true JP2007063516A (en) 2007-03-15

Family

ID=37926067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255102A Pending JP2007063516A (en) 2005-09-02 2005-09-02 Resin composition

Country Status (1)

Country Link
JP (1) JP2007063516A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189812A (en) * 2007-02-05 2008-08-21 Nishikawa Rubber Co Ltd Crystallization accelerator for polylactic acid and method for its preparation
JP2008280474A (en) * 2007-05-14 2008-11-20 Nishikawa Rubber Co Ltd Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof
JP2009024058A (en) * 2007-07-18 2009-02-05 Biobase Kk Polylactic acid resin composition and additive for polylactic acid resin
JP2010111834A (en) * 2008-11-10 2010-05-20 Unitika Ltd Aliphatic polyester resin pellet and molding obtained by molding the same
WO2010082639A1 (en) 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
JP2010202757A (en) * 2009-03-03 2010-09-16 Ricoh Co Ltd Resin composition and molded article using the same
JP2010248314A (en) * 2009-04-13 2010-11-04 Unitika Ltd Aliphatic polyester resin composition and molded article obtained by molding the same
GB2488811A (en) * 2011-03-09 2012-09-12 Cleaning And Paper Disposables Plc Biodegradable polyester blend
JP2013028692A (en) * 2011-07-28 2013-02-07 Unitika Ltd Aliphatic polyester resin composition pellet, and molding obtained by molding the same
WO2013074099A1 (en) * 2011-11-16 2013-05-23 Empire Technology Development Llc Three-dimensional porous biodegradable cell scaffold
CN108659481A (en) * 2018-05-31 2018-10-16 广州找塑料新材料科技有限公司 Vinal enhances high-modulus polyethylene terephthalate composite material and preparation method and application
CN113683875A (en) * 2021-09-26 2021-11-23 上海日之升科技有限公司 Degradable high-toughness heat-resistant polylactic acid-starch composite material and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726001A (en) * 1993-07-12 1995-01-27 Dainippon Ink & Chem Inc Continuous production of biodegradable polyester polymer
JPH0925400A (en) * 1995-05-08 1997-01-28 Mitsubishi Rayon Co Ltd Polylactic acid resin composition and method of molding thereof
JPH09169897A (en) * 1995-12-19 1997-06-30 Unitika Ltd Biodegradable fiber reinforced molding and its production
JPH11124495A (en) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd Polylactic acid-based polymer composition and molded product
JP2001335623A (en) * 2000-03-22 2001-12-04 Dainippon Ink & Chem Inc Impact resistance-imparting agent and polyester composition containing it
JP2002138142A (en) * 2000-10-31 2002-05-14 Nishikawa Rubber Co Ltd Method of producing polyhydroxycarboxylic acid
JP2003206341A (en) * 2002-01-11 2003-07-22 Daicel Chem Ind Ltd Manufacturing method of polyester-type polymer
WO2004063282A1 (en) * 2003-01-10 2004-07-29 Nec Corporation Kenaf-fiber-reinforced resin composition
JP2005002174A (en) * 2003-06-10 2005-01-06 Toray Ind Inc Resin composition and molded article made of the same
JP2005120119A (en) * 2003-10-14 2005-05-12 Mitsubishi Plastics Ind Ltd Flame-retardant injection-molded body
JP2005138458A (en) * 2003-11-07 2005-06-02 Fuji Xerox Co Ltd Member and its production method
JP2007023189A (en) * 2005-07-19 2007-02-01 Univ Kinki Compatibilizing agent and resin composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726001A (en) * 1993-07-12 1995-01-27 Dainippon Ink & Chem Inc Continuous production of biodegradable polyester polymer
JPH0925400A (en) * 1995-05-08 1997-01-28 Mitsubishi Rayon Co Ltd Polylactic acid resin composition and method of molding thereof
JPH09169897A (en) * 1995-12-19 1997-06-30 Unitika Ltd Biodegradable fiber reinforced molding and its production
JPH11124495A (en) * 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd Polylactic acid-based polymer composition and molded product
JP2001335623A (en) * 2000-03-22 2001-12-04 Dainippon Ink & Chem Inc Impact resistance-imparting agent and polyester composition containing it
JP2002138142A (en) * 2000-10-31 2002-05-14 Nishikawa Rubber Co Ltd Method of producing polyhydroxycarboxylic acid
JP2003206341A (en) * 2002-01-11 2003-07-22 Daicel Chem Ind Ltd Manufacturing method of polyester-type polymer
WO2004063282A1 (en) * 2003-01-10 2004-07-29 Nec Corporation Kenaf-fiber-reinforced resin composition
JP2005105245A (en) * 2003-01-10 2005-04-21 Nec Corp Kenaf fiber-reinforced resin composition
JP2005002174A (en) * 2003-06-10 2005-01-06 Toray Ind Inc Resin composition and molded article made of the same
JP2005120119A (en) * 2003-10-14 2005-05-12 Mitsubishi Plastics Ind Ltd Flame-retardant injection-molded body
JP2005138458A (en) * 2003-11-07 2005-06-02 Fuji Xerox Co Ltd Member and its production method
JP2007023189A (en) * 2005-07-19 2007-02-01 Univ Kinki Compatibilizing agent and resin composition

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189812A (en) * 2007-02-05 2008-08-21 Nishikawa Rubber Co Ltd Crystallization accelerator for polylactic acid and method for its preparation
JP2008280474A (en) * 2007-05-14 2008-11-20 Nishikawa Rubber Co Ltd Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof
JP2009024058A (en) * 2007-07-18 2009-02-05 Biobase Kk Polylactic acid resin composition and additive for polylactic acid resin
JP2010111834A (en) * 2008-11-10 2010-05-20 Unitika Ltd Aliphatic polyester resin pellet and molding obtained by molding the same
US9290613B2 (en) 2009-01-16 2016-03-22 Biobase Corporation Polylactic acid resin composition and additive for polylactic acid resin
WO2010082639A1 (en) 2009-01-16 2010-07-22 バイオベース株式会社 Polylactic acid resin composition and additive for polylactic acid resin
JP2010202757A (en) * 2009-03-03 2010-09-16 Ricoh Co Ltd Resin composition and molded article using the same
JP2010248314A (en) * 2009-04-13 2010-11-04 Unitika Ltd Aliphatic polyester resin composition and molded article obtained by molding the same
GB2488811B (en) * 2011-03-09 2015-02-25 Floreon Transforming Packaging Ltd Biodegradable polymer blend
GB2488811A (en) * 2011-03-09 2012-09-12 Cleaning And Paper Disposables Plc Biodegradable polyester blend
JP2013028692A (en) * 2011-07-28 2013-02-07 Unitika Ltd Aliphatic polyester resin composition pellet, and molding obtained by molding the same
WO2013074099A1 (en) * 2011-11-16 2013-05-23 Empire Technology Development Llc Three-dimensional porous biodegradable cell scaffold
US10232086B2 (en) 2011-11-16 2019-03-19 Empire Technology Development Llc Three-dimensional porous biodegradable cell scaffold
CN108659481A (en) * 2018-05-31 2018-10-16 广州找塑料新材料科技有限公司 Vinal enhances high-modulus polyethylene terephthalate composite material and preparation method and application
CN113683875A (en) * 2021-09-26 2021-11-23 上海日之升科技有限公司 Degradable high-toughness heat-resistant polylactic acid-starch composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2007063516A (en) Resin composition
Notta-Cuvier et al. Tailoring polylactide (PLA) properties for automotive applications: Effect of addition of designed additives on main mechanical properties
KR101281834B1 (en) Biodegradable polymer composite
JP2017522442A (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
JP5036539B2 (en) Biodegradable polyester resin composition, method for producing the same, and molded product obtained by molding the composition
JP6646323B2 (en) Polylactic acid resin composition and method for producing the same
JP2005298797A (en) Aliphatic polyester resin composition-molded item
JP2007217513A (en) Polylactic acid resin composition and molded product
JP2007023188A (en) Resin composition
JP2007023189A (en) Compatibilizing agent and resin composition
JP2007262222A (en) Polylactic acid-based resin composition for injection molding, method for producing the same and injection molded product
JP2009040948A (en) Polylactic acid resin composition for injection molding, and production method therefor
EP2688957B1 (en) Biobased polymer compositions
JP2007091790A (en) Organic fiber-reinforced polylactic acid resin composition and molded article
JP2001064379A (en) Production of compatible aliphatic polyester and its composition
JP5085871B2 (en) POLYLACTIC ACID RESIN COMPOSITION, MOLDED ARTICLE USING THE SAME, AND MANUFACTURING METHOD
JP2011006639A (en) Thermoplastic resin composition
WO2016103788A1 (en) Polylactic acid resin composition
JP2008222865A (en) Biomass resin composition
JP4977890B2 (en) Polylactic acid resin composition and method for producing the same
JP2007045915A (en) Polylactic acid resin composition
JP4639847B2 (en) Polylactic acid resin molded body and polylactic acid resin composition
JP2007039513A (en) Polybutylene succinate resin composition, its production method, molded article comprising the same
JP2013181047A (en) Resin molded product
KR101610130B1 (en) Polymer resin composition for automotive interior or exterior material, article for automotive interior or exterior and preparing method of the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111122