JP2007045915A - Polylactic acid resin composition - Google Patents

Polylactic acid resin composition Download PDF

Info

Publication number
JP2007045915A
JP2007045915A JP2005231103A JP2005231103A JP2007045915A JP 2007045915 A JP2007045915 A JP 2007045915A JP 2005231103 A JP2005231103 A JP 2005231103A JP 2005231103 A JP2005231103 A JP 2005231103A JP 2007045915 A JP2007045915 A JP 2007045915A
Authority
JP
Japan
Prior art keywords
lactic acid
poly
plla
pdla
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005231103A
Other languages
Japanese (ja)
Inventor
Houtetsu Kin
奉哲 金
Yoshikazu Kondo
義和 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2005231103A priority Critical patent/JP2007045915A/en
Publication of JP2007045915A publication Critical patent/JP2007045915A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat resistance and crystallinity of a polylactic acid resin and improve moldability of a stereo complex by partially forming the stereo complex in the polylactic acid resin and industrially readily obtain a highly heat-resistant and high-modulus molded product which has been impossible in a conventional polylactic acid thereby. <P>SOLUTION: The polylactic acid resin composition comprises 2.5-10.0 wt.% poly-D-lactic acid mainly composed of D-lactic acid and 90.0-97.5 wt.% poly-L-lactic acid mainly composed of L-lactic acid, wherein the part forms the stereo complex and the resin composition has at least 4% breaking elongation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、成形性に優れるポリ乳酸樹脂組成物に関する。   The present invention relates to a polylactic acid resin composition having excellent moldability.

ポリL−乳酸は生分解性ポリマーの一種であり、原料が再生産可能な植物資源或いは日常生活の食物残渣或いは故紙等から製造され、石油資源を要しないことや、廃棄物が自然界で分解し、従来のプラスチック製品のように腐らず廃棄物問題となることが少ない等現在から将来にわたっての資源・エネルギー、環境問題の解決に大きな役割を果たすことが期待されている。又、農業用資材等に使用された場合使用後も回収する必要がなく、又、コンビニ弁当や食品の包装容器に使用された場合、使用後に食品・食べ物の残りを分別することなくそのまま生ごみとして捨てることが可能であり、植物起源の生分解樹脂の特徴を生かした材料サイクル或いは物流の合理化が可能となる等、省力化・省エネルギー化に大きく貢献できる。又、生体内に使用する場合においてもその分解物は人体に無害な乳酸や二酸化炭素と水になることから、医療用材料等にも使用されている。   Poly-L-lactic acid is a kind of biodegradable polymer, and the raw materials are manufactured from recyclable plant resources, food residues from daily life, waste paper, etc., and no petroleum resources are required, and waste is decomposed in nature. It is expected to play a major role in solving resources, energy, and environmental problems from the present to the future. In addition, when used for agricultural materials, etc., it is not necessary to collect after use, and when used for convenience store lunches or food packaging containers, the food is left as it is without being separated after use. It is possible to dispose of the material as a biodegradable resin of plant origin, and it is possible to rationalize the material cycle or logistics, which can greatly contribute to labor saving and energy saving. Even when used in a living body, the decomposition product becomes lactic acid, carbon dioxide and water which are harmless to the human body, and is therefore used for medical materials.

しかしながら、ポリL-乳酸はPS、PET樹脂と同様透明性に優れる反面,耐熱性や伸度、衝撃性が低いこと等実用上熱的物性、機械的物性・性能に問題があり、幅広い用途展開を図る上で課題となっており、未だ十分に使用されているとは言えない。   However, poly-L-lactic acid is excellent in transparency like PS and PET resins, but has problems in terms of thermal properties, mechanical properties, and performance, such as low heat resistance, elongation, and impact properties. It has become a problem when trying to achieve this, and it cannot be said that it is still used sufficiently.

このようなポリL-乳酸の耐熱性、低耐衝撃性や成形性が悪い等の欠点を解決するため、ポリL-乳酸骨格にベンゼン環や水素結合を形成するアミド結合を導入する方法,ポリL-乳酸と他の耐熱性や力学物性に優れた樹脂とブレンドする方法等が提案されている。   In order to solve the disadvantages such as heat resistance, low impact resistance and poor moldability of poly L-lactic acid, a method of introducing an amide bond that forms a benzene ring or a hydrogen bond in the poly L-lactic acid skeleton, poly A method of blending L-lactic acid with other resins having excellent heat resistance and mechanical properties has been proposed.

又、ポリ乳酸の原料である乳酸は光学活性な炭素原子を分子中に有しており、L−乳酸、D−乳酸の光学異性体を持つ。そこで、ポリL−乳酸(以下、PLLAという)とポリD−乳酸(以下、PDLAという)及びこれらの共重合体が存在する。これらのポリ乳酸中で、L−乳酸或いはD−乳酸の比率が高い(光学純度が高い)ものは、結晶性が高く、耐熱性や力学物性に優れる。一方、PDLA中のL−乳酸の比率やPLLA中のD−乳酸の比率が比較的高い共重合体は結晶性が低く、或いは非晶性であり、耐熱性が低く又力学物性が低い。このPDLA中のL−乳酸或いはPLLA中のD-乳酸の量が通常5%を超えると結晶性は著しく低下し、10%を超えると完全に非晶質になると言われている。   Lactic acid, which is a raw material for polylactic acid, has an optically active carbon atom in the molecule, and has optical isomers of L-lactic acid and D-lactic acid. Therefore, poly L-lactic acid (hereinafter referred to as PLLA), poly D-lactic acid (hereinafter referred to as PDLA), and copolymers thereof exist. Among these polylactic acids, those having a high ratio of L-lactic acid or D-lactic acid (high optical purity) have high crystallinity and excellent heat resistance and mechanical properties. On the other hand, a copolymer having a relatively high ratio of L-lactic acid in PDLA and a ratio of D-lactic acid in PLLA has low crystallinity or is amorphous, has low heat resistance, and low mechanical properties. When the amount of L-lactic acid in PDLA or D-lactic acid in PLLA usually exceeds 5%, the crystallinity is remarkably lowered, and when it exceeds 10%, it is said to be completely amorphous.

しかし、お互いに光学活性なPDLAとPLLAが一定の規則的構造を有すると新しいポリ乳酸構造を有し、耐熱性や力学物性がPLLAやPDLAよりもはるかに向上する。これは、ステレオコンプレックスと呼ばれる。これまで、ステレオコンプレックスを形成する方法はいろいろ検討されてきた。その中には溶液法で作る方法(例えば、非特許文献1、2)、ステレオコンプレックス融点以上で成形する溶融法(例えば、特許文献1、2、3、4、5)などが提案されている。   However, when PDLA and PLLA that are optically active with each other have a certain regular structure, they have a new polylactic acid structure, and heat resistance and mechanical properties are much improved over PLLA and PDLA. This is called a stereo complex. Until now, various methods for forming a stereo complex have been studied. Among them, a method using a solution method (for example, Non-Patent Documents 1 and 2), a melting method for molding at a stereo complex melting point or higher (for example, Patent Documents 1, 2, 3, 4, 5) and the like have been proposed. .

Macromolecules,20、906(1987)Macromolecules, 20, 906 (1987) Macromolecules,24、5651(1991)Macromolecules, 24, 5651 (1991). 特開昭61−36321号公報JP-A-61-36321 特開昭63−241024号公報JP 63-24014 A 特開2000−17163号公報JP 2000-17163 A 特開2002−356543号公報JP 2002-356543 A 特開2003−238672号公報JP 2003-238672-A

しかし従来提案されている方法やステレオコンプレックス組成物或いは成形体は、十分な性能を有するものになっておらず、或いは極めて硬度が高く且つ溶融流動性に乏しく成形性が不良で実用的に色々な成形体を得るには至っていない。   However, the conventionally proposed methods and stereocomplex compositions or molded products do not have sufficient performance, or have extremely high hardness, poor melt flowability, poor moldability, and various practical use. A compact has not been obtained.

本発明者らは、上記問題点を鋭意検討し本発明を完成するに至った。即ち、本発明の目的はポリ乳酸樹脂中に部分的にステレオコンプレックスを形成させることにより、ポリ乳酸樹脂の耐熱性や結晶性を改善し、且つステレオコンプレックスの成形性を改善するものであり、本発明により、従来ポリ乳酸では不可能であった高耐熱、高弾性成形体を工業的容易に得ようとするものである。   The present inventors have intensively studied the above problems and have completed the present invention. That is, the object of the present invention is to improve the heat resistance and crystallinity of the polylactic acid resin and improve the moldability of the stereocomplex by partially forming a stereocomplex in the polylactic acid resin. According to the present invention, a high heat resistance and high elasticity molded body, which has been impossible with conventional polylactic acid, is easily obtained industrially.

本発明の第一は、D−乳酸を主とするポリD−乳酸2.5〜10.0重量%とL−乳酸を主とするポリL−乳酸90.0〜97.5重量%とよりなり、その一部がステレオコンプレックスを形成しており、破断伸度が少なくとも4%であるポリ乳酸樹脂組成物である。
本発明の第二は、D−乳酸を主とするポリD−乳酸4.0〜7.5重量%とL−乳酸を主とするポリL−乳酸92.5〜96.0重量%とよりなる請求項1記載のポリ乳酸樹脂組成物である。
本発明の第三は、昇温時の結晶化温度が90〜105℃であり且つ210〜230℃での融解熱が少なくとも3J/gである請求項1又は2記載のポリ乳酸樹脂組成物である。
The first of the present invention is 2.5 to 10.0% by weight of poly-D-lactic acid mainly composed of D-lactic acid and 90.0 to 97.5% by weight of poly-L-lactic acid mainly composed of L-lactic acid. And a part thereof forms a stereo complex, and is a polylactic acid resin composition having a breaking elongation of at least 4%.
The second of the present invention is 4.0 to 7.5% by weight of poly-D-lactic acid mainly containing D-lactic acid and 92.5 to 96.0% by weight of poly-L-lactic acid mainly containing L-lactic acid. The polylactic acid resin composition according to claim 1.
3rd of this invention is the polylactic acid resin composition of Claim 1 or 2 whose crystallization temperature at the time of temperature rising is 90-105 degreeC, and heat of fusion in 210-230 degreeC is at least 3 J / g. is there.

本発明により、従来のポリ乳酸組成物では耐熱性が低く又結晶化速度が遅い為に、比較的狭い用途でしか使用されていなかったものが、部分的に形成したステレオコンプレックスによる耐熱性の改善、又、分子オーダーで形成されているステレオコンプレックスのフィラー効果(モレキュラーコンポジット効果:molecular composite)による強度、弾性率の改善或いは結晶化速度アップによる成型速度アップや延伸温度・倍率のアップが可能となり、得られた成形物の物性向上や成形性の改善が可能となり、今までにないより幅広い用途で使用できる成形体や成形方法が可能な組成物を得ることが出来る。   According to the present invention, the conventional polylactic acid composition has a low heat resistance and a low crystallization rate, so that it was used only in relatively narrow applications, but the heat resistance is improved by a partially formed stereocomplex. In addition, it is possible to improve the strength and elastic modulus by the filler effect (molecular composite effect) of the stereo complex formed in the molecular order, or increase the molding speed and the stretching temperature and magnification by increasing the crystallization speed. The resulting molded product can be improved in physical properties and moldability, and a molded product that can be used in a wider range of applications and a molding method can be obtained.

以下、具体的に本発明を説明するが本発明はこれに限定されるものではない。尚、本明細書において特に明記しない限り「部」は、「重量部」を意味する。
本発明で使用する、ポリL−乳酸やポリD−乳酸は、例えば、特開平9−143253号公報に示している様に植物原料から発酵法により得られたL−乳酸(HOCH(CH)COOH)或いはD−乳酸を直接縮合して得ることが出来る。又、特開平7−206851号公報に示している様に、乳酸の低分子縮合物(乳酸オリゴマー)を熱分解して得られる乳酸の環状2量体(D−ラクチド、L−ラクチド)を開環重合しても同様のポリ乳酸樹脂(PDLA、PLLA)を得ることが出来る。ポリ乳酸の好ましい分子量は、目的や用途、必要性能或いは成形方法によって自ずから最適値が決められるが、通常、1、1、1、3、3、3−ヘキサフルオロ−2−イソプロパノール溶媒でのGPC(ゲルパーミエーションクロマトグラフィー)測定では、数平均分子量(Mn)が少なくとも50、000(ポリスチレン換算)、好ましくは少なくとも100、000、更に好ましくは120、000〜500、000である。尚、重量平均分子量は、ポリ乳酸においては、通常1.1〜5×Mn、好ましくは1.1〜3×Mnである。しかし、特別な用途(例えば、発泡用途、インフレーションフィルム用途、等)においてはこの範囲以外でも十分に使用可能である。
Hereinafter, the present invention will be specifically described, but the present invention is not limited thereto. In the present specification, “parts” means “parts by weight” unless otherwise specified.
The poly L-lactic acid and poly D-lactic acid used in the present invention are, for example, L-lactic acid (HOCH (CH 3 ) obtained from a plant raw material by fermentation as shown in JP-A-9-143253. COOH) or D-lactic acid can be obtained by direct condensation. Further, as disclosed in JP-A-7-208551, a cyclic dimer of lactic acid (D-lactide, L-lactide) obtained by thermally decomposing a low-molecular condensate of lactic acid (lactic acid oligomer) is opened. Similar polylactic acid resins (PDLA, PLLA) can be obtained by ring polymerization. The preferred molecular weight of polylactic acid is naturally determined by the purpose, application, required performance or molding method, but usually GPC (1, 1, 1, 3, 3, 3-hexafluoro-2-isopropanol solvent GPC ( In the gel permeation chromatography) measurement, the number average molecular weight (Mn) is at least 50,000 (in terms of polystyrene), preferably at least 100,000, more preferably 120,000 to 500,000. In addition, in polylactic acid, a weight average molecular weight is 1.1-5xMn normally, Preferably it is 1.1-3xMn. However, in special applications (for example, foaming applications, blown film applications, etc.), it can be used sufficiently outside this range.

ポリ乳酸組成については、D−乳酸を主とするポリD−乳酸(PDLA)2.5〜10.0重量%とL−乳酸を主とするポリL−乳酸(PLLA)90.0〜97.5重量%とよりなり、好ましくはD−乳酸を主とするポリD−乳酸(PDLA)4.0〜7.5重量%とL−乳酸を主とするポリL−乳酸(PLLA)92.5〜96.0重量%とよりなり、更に好ましくはD−乳酸を主とするポリD−乳酸5.0〜7.0重量%とL−乳酸を主とするポリL−乳酸93.0〜95.0重量%とよりなる。PDLAが2.5重量%より少ない場合は、ポリ乳酸樹脂の物性や成形性の改善が十分ではなく、一方10.0重量%を超えるとステレオコンプレックス部分が多くなり逆に成形性の低下や物性の低下がある。   Regarding the polylactic acid composition, 2.5 to 10.0% by weight of poly-D-lactic acid (PDLA) mainly containing D-lactic acid and 90.0 to 97. 9% poly-L-lactic acid (PLLA) mainly containing L-lactic acid. 5% by weight, preferably poly-D-lactic acid (PDLA) mainly composed of D-lactic acid (4.0 to 7.5% by weight) and poly-L-lactic acid mainly composed of L-lactic acid (PLLA) 92.5 Of poly-L-lactic acid mainly composed of D-lactic acid and 5.0-7.0% by weight of poly-D-lactic acid mainly composed of D-lactic acid and 93.0 to 95-poly L-lactic acid mainly composed of L-lactic acid. 0.0% by weight. When the PDLA is less than 2.5% by weight, the physical properties and moldability of the polylactic acid resin are not sufficiently improved. On the other hand, when the PDLA exceeds 10.0% by weight, the stereocomplex portion is increased, and conversely, the moldability is deteriorated and the physical properties are decreased. There is a decline.

D−乳酸を主とするポリD−乳酸(PDLA)とは、D−乳酸が少なくとも96重量%以上、好ましくは98重量%以上、更に好ましくは99重量%以上のポリ乳酸を言う。又、L−乳酸を主とするポリL−乳酸(PLLA)とは、L−乳酸が少なくとも96重量%以上、好ましくは98重量%以上、更に好ましくは99重量%以上のポリ乳酸を言う。96重量%未満ではそれぞれPDLA或いはPLLAの結晶性が十分でなく成形物の耐熱性や力学的特性が低下する。D−乳酸或いはL−乳酸以外の成分は、L−乳酸或いはD−乳酸でもよいし、乳酸に重合可能な他の成分(例えば、2価以上のアルコール性化合物或いは2価以上のカルボン酸化合物、或いは開環重合可能な化合物(例えば、環状ラクトン、環状エーテル、環状ラクタム、等))である。   The poly-D-lactic acid (PDLA) mainly composed of D-lactic acid refers to polylactic acid having a D-lactic acid content of at least 96% by weight, preferably 98% by weight or more, and more preferably 99% by weight or more. Further, poly-L-lactic acid (PLLA) mainly composed of L-lactic acid means polylactic acid containing L-lactic acid of at least 96% by weight, preferably 98% by weight or more, and more preferably 99% by weight or more. If it is less than 96% by weight, the crystallinity of PDLA or PLLA is not sufficient, respectively, and the heat resistance and mechanical properties of the molded product deteriorate. Components other than D-lactic acid or L-lactic acid may be L-lactic acid or D-lactic acid, and other components that can be polymerized into lactic acid (for example, a divalent or higher valent alcohol compound or a divalent or higher carboxylic acid compound, Alternatively, it is a compound capable of ring-opening polymerization (for example, cyclic lactone, cyclic ether, cyclic lactam, etc.).

本発明のポリ乳酸樹脂組成物は、破断伸度が少なくとも4%、好ましくは少なくとも10%、更に好ましくは15〜30%である。従来のポリ乳酸樹脂或いはステレオコンプレックス樹脂は破断伸度が高々3%であり、その結果、成形性や衝撃強度に乏しいものである。本発明による破断伸度の改善の理由は完全には解明されていないが次のように推測される。例えば、PLLA単独では非常に単純な分子構造の為に、分子鎖間の相互作用(例えば、水素結合、π-π電子相互作用、イオン結合、等)が殆どなく、PLLAにかけられた外力はPLLA分子の最も弱いところに集中し、その分子が切断する。そうなると、外力はその隣の分子切断を引起し、更にその隣の分子の切断を誘導する。こうして、単なる一分子の切断が材料全体の破断につながる。ところが、本発明では、わずか数%であるがPLLA中にPLLA/PDLAのステレオコンプレックスが存在することにより、破断伸度が驚くべきことに極めて大きくなる。この理由は明確ではないが、PLLA/PDLAステレオコンプレックスが非常に小さいオーダーで形成され、好ましくは高々10μm程度の巾或いは直径、更に好ましくは高々1μm程度の巾或いは直径、特に好ましくは高々0.1μm程度の巾或いは直径を有する領域で形成され、究極の姿としてはPLLA1分子とPDLA1分子からなる分子複合体(モレキュラーステレオコンポジット)が形成される為に、そのステレオコンプレックス領域が他のPLLA領域の補強材(強化材)となり、破断に到る間での応力集中を防ぐ為に変形の自由度が増し、結果的に破断伸度が大きくなったものと思われる。ステレオコンプレックスを効率的に形成させ、且つ補強用になるべく小さい領域で形成させる為には、2軸押し出し機の様な一定方向に樹脂の流れがあり、且つ双方の樹脂が極めて小さいオーダーで混合できる手法が好ましい。或いは、PLLAとPDLAとを別々の溶融押し出し機にて溶融し、所定の流量で流し、それらをポリマー管内で合流させ混ぜ合わせることも好ましい。この際に、静的混練素子を使用する事によって更にステレオコンプレックス形成効率は改善する。静的混練素子の効果は単に効率的にステレオコンプレックスを形成するだけではなく、形成したステレオコンプレックスの大きさや量を任意に制御可能であることや形成したステレオコンプレックスがより細長くなることや一定方向に配向する点である。この為に、例えば、フィルムや繊維等一定方法に延伸するか変形する用途により、好ましい方をとることができる。   The polylactic acid resin composition of the present invention has a breaking elongation of at least 4%, preferably at least 10%, more preferably 15-30%. The conventional polylactic acid resin or stereocomplex resin has a breaking elongation of at most 3%, and as a result, is poor in moldability and impact strength. The reason for the improvement in the elongation at break according to the present invention is not completely understood, but is presumed as follows. For example, because PLLA alone has a very simple molecular structure, there is almost no interaction between molecular chains (for example, hydrogen bond, π-π electron interaction, ionic bond, etc.), and the external force applied to PLLA is PLLA It concentrates on the weakest part of the molecule and the molecule breaks. When this happens, the external force causes the next molecule to break, and further induces the next molecule to break. Thus, a mere single molecule break leads to the entire material breaking. However, in the present invention, the elongation at break is surprisingly extremely large due to the presence of the PLLA / PDLA stereocomplex in PLLA, although only a few percent. The reason for this is not clear, but the PLLA / PDLA stereocomplex is formed in a very small order, preferably a width or diameter of at most about 10 μm, more preferably a width or diameter of at most about 1 μm, particularly preferably at most 0.1 μm. It is formed with a region having a certain width or diameter. Ultimately, a molecular complex composed of PLLA1 molecule and PDLA1 molecule (molecular stereocomposite) is formed, so that the stereocomplex region reinforces other PLLA regions. It is considered that the degree of freedom of deformation has increased in order to prevent stress concentration in the course of breaking, resulting in a higher elongation at break. In order to efficiently form a stereo complex and form it in as small an area as possible for reinforcement, there is a flow of resin in a certain direction like a biaxial extruder, and both resins can be mixed in a very small order. The technique is preferred. Alternatively, it is also preferable that PLLA and PDLA are melted in separate melt extruders, flowed at a predetermined flow rate, and merged by mixing them in a polymer tube. At this time, the stereo complex formation efficiency is further improved by using a static kneading element. The effect of the static kneading element is not only to efficiently form a stereo complex, but also the size and amount of the formed stereo complex can be arbitrarily controlled, and the formed stereo complex can be elongated and in a certain direction. It is a point to be oriented. For this purpose, for example, the preferred one can be taken depending on the use of stretching or deformation in a certain method such as film or fiber.

ステレオコンプレックスの有無の判定は、例えば組成物をDSCにて昇温過程で測定する場合、通常のPLLA或いはPDLAの結晶化温度(Tc)より低温(Tc1)に結晶化の発熱が見られること、更にPLLAやPDLAの融点(Tm)より高温に新たな融点(Tm1)を示すことから容易に判断可能である。その融点(Tm1)での融解熱(ΔHm1)はPLLA中でのPDLAの量或いはPDLA中でのPLLAの量に比例する。この事より、PLLA中のステレオコンプレックス量或いはPDLA中のステレオコンプレックス量の定量化が可能となる。   The determination of the presence or absence of the stereo complex is, for example, when the composition is measured by DSC during the temperature rising process, crystallization exotherm is observed at a lower temperature (Tc1) than the crystallization temperature (Tc) of normal PLLA or PDLA, Further, it can be easily judged from the fact that a new melting point (Tm1) is shown at a temperature higher than the melting point (Tm) of PLLA or PDLA. The heat of fusion (ΔHm1) at the melting point (Tm1) is proportional to the amount of PDLA in PLLA or the amount of PLLA in PDLA. This makes it possible to quantify the amount of stereo complex in PLLA or the amount of stereo complex in PDLA.

本発明のポリ乳酸樹脂組成物は固体状態では勿論であるが、溶液状態でもステレオコンプレックスを形成していることが特徴である。例えば、添付図2に示すGPC曲線(破線)はPLLAの中に少量のPDLAをブレンドして一部にステレオコンプレックスを形成させたPLLA樹脂組成物を1、1、1、3、3、3−ヘキサフルオロ−2−イソプロパノール溶液に溶解し、GPC測定したものである。ここでわかることはオリジナル(実線)の分子量分布以外にリテンションタイムの短い成分やリテンションタイムの長い成分が観察される。この事は、PLLAとPDLAが分子構造の一部でステレオコンプレックスを形成していることを示すものである。即ち、リテンションタイムの短い成分は実質的に分子量が長くなっているものであり、PLLAとPDLAが分子の一部でステレオコンプレックスを形成した為に、分子量が長くなったものと思われる。一方、リテンションタイムの長い成分は一般的なGPCの解釈では分子量が短いことを示すが、この場合は分子量が短くなったものではなく、PLLAとPDLAとのステレオコンプレックスがほぼ分子全体にわたって生じた為に、生成したステレオコンプレックスの溶剤に対する溶解度が低下し(即ち、分子の拡がりが小さくなり)、その結果リテンションタイムが長いところにピークが出現したものである。   The polylactic acid resin composition of the present invention is characterized in that it forms a stereocomplex even in a solution state, as a matter of course in a solid state. For example, the GPC curve (dashed line) shown in FIG. 2 shows the PLLA resin composition in which a small amount of PDLA is blended in PLLA to form a stereo complex in part, 1, 1, 1, 3, 3, 3- This was dissolved in a hexafluoro-2-isopropanol solution and measured by GPC. What can be seen here is a component with a short retention time and a component with a long retention time in addition to the original (solid line) molecular weight distribution. This indicates that PLLA and PDLA form a stereocomplex with part of the molecular structure. That is, the component with a short retention time has a substantially long molecular weight, and it seems that the molecular weight is increased because PLLA and PDLA form a stereo complex with a part of the molecule. On the other hand, components with a long retention time indicate that the molecular weight is short in general GPC interpretation, but in this case, the molecular weight is not shortened, and the stereocomplex of PLLA and PDLA is generated over almost the entire molecule. Further, the solubility of the produced stereocomplex in the solvent is lowered (that is, the molecular spread is reduced), and as a result, a peak appears where the retention time is long.

上記の2通りのステレオコンプレックスの形成により、材料の性質を高めるフィラーとしての完全ステレオコンプレックス部分とPLLAとの親和性に優れた材料の伸びを改善した部分ステレオコンプレックスの存在により、材料は優れた成形性と物性をしめし、通常のポリL−乳酸成形物に負けない強度を保つことができた。特に、高分子量側のピークの面積が全体の面積に対して、好ましくは45〜60%、更に好ましくは少なくとも48〜53%である。45%より少ない場合は、成形性が幾分低下する可能性があり、60%より大きくなると力学的物性が低下する場合がある。低分子量側は好ましく40〜55%、更に好ましくは47〜52%である。40%より少ない場合は、補強効果が十分でない場合があり、又55%より大きい場合、補強効果は十分でも成形性や力学的に脆い場合がある。   Due to the formation of the above two stereocomplexes, the material has excellent molding due to the presence of the partial stereocomplex that improves the elongation of the material with excellent affinity between PLLA and the complete stereocomplex part as a filler that enhances the properties of the material. The strength and physical properties were confirmed, and the strength comparable to that of a normal poly L-lactic acid molded product could be maintained. In particular, the peak area on the high molecular weight side is preferably 45 to 60%, more preferably at least 48 to 53% with respect to the total area. If it is less than 45%, the moldability may be somewhat lowered, and if it is more than 60%, the mechanical properties may be lowered. The low molecular weight side is preferably 40 to 55%, more preferably 47 to 52%. If it is less than 40%, the reinforcing effect may not be sufficient, and if it is greater than 55%, the reinforcing effect may be sufficient even if the reinforcing effect is sufficient.

本発明は、昇温時の結晶化温度が、好ましくは90〜105℃、更に好ましくは95〜100℃であり、且つ210〜230℃での融解熱が、好ましくは少なくとも3J/g、更に好ましくは5〜18J/gである。結晶化温度が90℃より低い場合は、成型サイクルは短くなるが、成型時の結晶性の制御が困難になることがあり、例えばバッチ毎に物性が変わったり或いは成型品の部分、部位によって結晶性が異なったり或いは結晶性の違いによる透明性、光沢或いは歪が異なったりする。一方、105℃より大きい場合は完全に結晶化する為に金型温度を高くしたり或いは時間を長くしたり、結果として生産性が低くなることがある。また、融解熱が3J/g未満であると、結晶性が少ないために冷却に時間を要し、成型サイクルが長くなる傾向にある。   In the present invention, the crystallization temperature at the time of temperature rise is preferably 90 to 105 ° C, more preferably 95 to 100 ° C, and the heat of fusion at 210 to 230 ° C is preferably at least 3 J / g, more preferably Is 5-18 J / g. When the crystallization temperature is lower than 90 ° C, the molding cycle becomes short, but it may be difficult to control the crystallinity during molding. For example, the physical properties may change from batch to batch, or the crystal may vary depending on the part or part of the molded product. Or the transparency, gloss, or distortion due to the difference in crystallinity. On the other hand, when the temperature is higher than 105 ° C., the mold temperature may be increased or the time may be lengthened for complete crystallization, resulting in lower productivity. On the other hand, if the heat of fusion is less than 3 J / g, the crystallinity is low, so cooling takes time and the molding cycle tends to be long.

以下に実施例を示して、本発明を更に詳細に説明するが本発明はこれに限定されるものではない。実施例中の%或いは部は特に断らない限り、重量%或いは重量部を示す。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto. Unless otherwise specified, “%” or “part” in the examples represents “% by weight” or “part by weight”.

(実験例1)
PLLAとしては、重量平均分子量20万、光学純度99%のPLLAを使用し、PDLAとしては、重量平均分子量40万、光学純度99%のPURAC社製PDLAを使用した。このPLLA/PDLAを100/0、95/5、90/10、75/25(重量比)でドライブレンドし、2軸混練機にて200℃で5分間溶融ブレンドした。溶融混練機の出口のストランドは大体3mm程度の直径を有する。PLLA100%のものは透明なストランドが得られたが、PDLAが5、10、25%の物については幾分へイズがあり、この時点で既にステレオコンプレックスを形成していることがわかる。得られたストランドをペレタイザーで長さ3〜5mmに切断しペレットを得る。ペレットを直ちに200℃にて圧力を30MPaかけ3分間ホットプレスして、その後急冷して1mm厚みのシートを作成した。
(Experimental example 1)
As PLLA, PLLA having a weight average molecular weight of 200,000 and an optical purity of 99% was used. As PDLA, PDLA manufactured by PURAC having a weight average molecular weight of 400,000 and an optical purity of 99% was used. This PLLA / PDLA was dry blended at 100/0, 95/5, 90/10, 75/25 (weight ratio), and melt blended at 200 ° C. for 5 minutes in a twin-screw kneader. The strand at the outlet of the melt kneader has a diameter of about 3 mm. Transparent strands were obtained with 100% PLLA, but there was some haze for those with PDLA of 5, 10 and 25%, and it can be seen that a stereo complex has already been formed at this point. The obtained strand is cut into a length of 3 to 5 mm with a pelletizer to obtain pellets. The pellet was immediately hot-pressed at 200 ° C. under a pressure of 30 MPa for 3 minutes, and then rapidly cooled to prepare a 1 mm thick sheet.

物性評価用にはダンベル形(JIS2号片)に打ち抜いたものを用いた試験片を用いた。引っ張り強度はJIS K 7161により、島津製作所社製のAUTOGRAPH
5000にて測定した。熱的性質の測定はリガク社製のRIGAKU DSC8230にて測定した。ステレオコンプレックスの割合はポリL−乳酸及びポリD−乳酸ホモポリマーの融解熱とステレオコンプレックスの融解熱の比率より算出した。GPC測定はJASCO
ENGINEERING製のRI−930検出機を用いポンプは880−PUを使用し、カラムは東ソー社製のTOSOH−TSKGEL GMHHr−Mを用い、1、1、1、3、3、3−ヘキサフルオロ−2−イソプロパノールを流動相として行った。図1に引っ張り試験のSSカーブを示す。表1に結果を示す。ステレオコンプレックスの比率と引っ張り物性の間に極めて特徴的な結果が示された。即ち、PDLAの割合が0%又は20%以上では、引っ張り試験での破断伸度が5%程度或いはそれ以下と小さくなるが、PDLAの量が2.5〜10%では破断伸度が10%以上と特徴的に大きくなる。破断伸度は外力に対して、ポリマー分子鎖が如何に均一に外力を分散して対応できるかによるものである。PDLAの量が2.5%未満では、ほぼPLLAに似た構造をとる為に、こうした外力に対して応力を分散して対応することが少なく、極めて破断しやすいことがわかる。ステレオコンプレックスはPLLA/PDLAの2本鎖によるステレオコンプレックスであり、分子の剛直性が大きく、結晶化しやすい。その為に、PLLA中で分子オーダーの強化材的な働きや結晶核剤的な働きをすると考えられる。一方、PDLAの量が20%以上では、ステレオコンプレックスの量が多すぎて変形しにくくなり、外力に対して弱いところに応力集中が生じて容易に破断すると思われる。従って、良好な物性及び成形性を兼備するには、PLLA中のPDLAの量は2.5〜10%が適当である。
For physical property evaluation, a test piece using a punched dumbbell shape (JIS No. 2 piece) was used. The tensile strength is JIS K 7161, AUTOGRAPH made by Shimadzu Corporation
Measured at 5000. The thermal properties were measured with a RIGAKU DSC8230 manufactured by Rigaku Corporation. The ratio of the stereo complex was calculated from the ratio of the heat of fusion of poly L-lactic acid and poly D-lactic acid homopolymer to the heat of fusion of stereo complex. GPC measurement is JASCO
ENGINEERING RI-930 detector, pump 880-PU, Tosoh TOSOH-TSKGEL GMHHr-M, 1, 1, 1, 3, 3, 3-hexafluoro-2 -Isopropanol was used as the fluid phase. FIG. 1 shows the SS curve of the tensile test. Table 1 shows the results. A very characteristic result was shown between the ratio of the stereo complex and the tensile properties. That is, when the percentage of PDLA is 0% or 20% or more, the elongation at break in the tensile test is about 5% or less, but when the amount of PDLA is 2.5 to 10%, the elongation at break is 10%. Characteristically larger. The elongation at break depends on how uniformly the polymer molecular chain can disperse the external force with respect to the external force. It can be seen that when the amount of PDLA is less than 2.5%, the structure is almost similar to PLLA, and therefore, the external force is less likely to disperse and deal with such external forces, and is very easily broken. The stereocomplex is a stereocomplex composed of PLLA / PDLA double strands, has high molecular rigidity, and is easily crystallized. For this reason, it is considered that it functions as a reinforcing material on the molecular order or as a crystal nucleating agent in PLLA. On the other hand, when the amount of PDLA is 20% or more, the amount of stereocomplex is too large to be easily deformed, and stress concentration is likely to occur in a place weak against external force, so that it may be easily broken. Accordingly, in order to combine good physical properties and moldability, the amount of PDLA in PLLA is suitably 2.5 to 10%.

但し、表中のTは透明、Hは不透明、THはその中間を示す。 In the table, T is transparent, H is opaque, and TH is intermediate.

(実験例2)
実験例1のシートサンプルを使って延伸テストを行った。延伸用サンプルはJIS2号ダンベル形状にホットカッターにて打ち抜いたものを使用した。ダンベル試験片を手回し延伸機にて、表2に示す温度の延伸浴中で延伸を行った。PDLAの量が2.5〜10%に満たないものでは、延伸温度が110℃以上になるとサンプルが軟化し殆ど延伸できなくなる。又、10%を超えても逆に硬くなり殆ど延伸できない。PDLAの量が2.5%以上のものでは延伸時に十分な温度がかけられ且つ幅広い延伸倍率でも均一な延伸が可能となり、高強度・高弾性又、高生産性となる。
(Experimental example 2)
A stretching test was conducted using the sheet sample of Experimental Example 1. The stretching sample used was a JIS No. 2 dumbbell punched out with a hot cutter. The dumbbell test piece was hand-drawn and stretched in a stretching bath at a temperature shown in Table 2 by a stretching machine. When the amount of PDLA is less than 2.5 to 10%, when the stretching temperature is 110 ° C. or higher, the sample is softened and hardly stretched. On the other hand, if it exceeds 10%, it becomes hard and hardly stretched. When the amount of PDLA is 2.5% or more, a sufficient temperature is applied at the time of stretching, and uniform stretching is possible even at a wide range of stretching ratios, resulting in high strength, high elasticity, and high productivity.

本発明の応用としては、通常のポリ乳酸分野でも特に耐熱性と成型サイクルを改善することが出来、工業的な価値が大きい。従来公知のPLLA/PDLAステレオコンプレックスでは殆ど成形できず、又成形体の物性が非常に脆く実用上の大きな問題であった。本提案により、成形性と耐熱性を両立する事によって、ポリ乳酸樹脂の用途を格段に拡大する事が可能となり工業的価値が極めて高くなる。本提案になる成形品は、通常の射出成型、押し出し成形、或いはインフレーション成形、繊維製造、微粒子製造或いはコーティング材料や接着剤分野等色々な分野への応用が可能となり大きく成形条件や設備仕様を変更せずに実施可能である。   As an application of the present invention, the heat resistance and molding cycle can be improved particularly in the ordinary polylactic acid field, and the industrial value is great. Conventionally known PLLA / PDLA stereocomplexes can hardly be molded, and the physical properties of the molded body are very brittle, which is a serious problem in practical use. This proposal makes it possible to remarkably expand the uses of polylactic acid resin by achieving both formability and heat resistance, and thus the industrial value becomes extremely high. The proposed molded product can be applied to various fields such as normal injection molding, extrusion molding, inflation molding, fiber manufacturing, fine particle manufacturing, coating materials and adhesives fields, greatly changing molding conditions and equipment specifications. It is possible to implement without.

図1は本発明の樹脂組成物から得られたシート(2)及び対照とするPLLAから得られたシート(1)、PLLA/PDLA(50/50)ステレオコンプレックスから得られたシート(3)の引っ張り試験におけるストレス−ストレインカーブである。横軸はシートの伸び(%)を示し、縦軸はシートにかかる応力を示す。尚、(2)、(3)のカーブは原点を横軸の正の方向にずらせている。FIG. 1 shows a sheet (2) obtained from the resin composition of the present invention, a sheet (1) obtained from PLLA as a control, and a sheet (3) obtained from PLLA / PDLA (50/50) stereocomplex. It is a stress-strain curve in a tensile test. The horizontal axis indicates the elongation (%) of the sheet, and the vertical axis indicates the stress applied to the sheet. In the curves (2) and (3), the origin is shifted in the positive direction of the horizontal axis. 図2は本発明の樹脂組成物(破線)及びPLLA(実線)のGPCカーブを示す。横軸はリテンションタイムから表される分子量、縦軸はその分子量の割合を表す。又、本発明の樹脂組成物においては、高分子量側成分(図中I)及び低分子量側成分(図中II)からなっており、それぞれの成分量は全体の面積に対しての面積の比により求められる。FIG. 2 shows the GPC curves of the resin composition (broken line) and PLLA (solid line) of the present invention. The horizontal axis represents the molecular weight expressed from the retention time, and the vertical axis represents the ratio of the molecular weight. The resin composition of the present invention comprises a high molecular weight side component (I in the figure) and a low molecular weight side component (II in the figure), and the amount of each component is the ratio of the area to the total area. Is required.

Claims (3)

D−乳酸を主とするポリD−乳酸2.5〜10.0重量%とL−乳酸を主とするポリL−乳酸90.0〜97.5重量%とよりなり、その一部がステレオコンプレックスを形成しており、破断伸度が少なくとも4%であるポリ乳酸樹脂組成物。   It consists of 2.5 to 10.0% by weight of poly-D-lactic acid mainly composed of D-lactic acid and 90.0 to 97.5% by weight of poly-L-lactic acid mainly composed of L-lactic acid, part of which is stereo. A polylactic acid resin composition forming a complex and having a breaking elongation of at least 4%. D−乳酸を主とするポリD−乳酸4.0〜7.5重量%とL−乳酸を主とするポリL−乳酸92.5〜96.0重量%とよりなる請求項1記載のポリ乳酸樹脂組成物。   The poly according to claim 1, comprising 4.0 to 7.5% by weight of poly-D-lactic acid mainly composed of D-lactic acid and 92.5 to 96.0% by weight of poly-L-lactic acid mainly composed of L-lactic acid. Lactic acid resin composition. 昇温時の結晶化温度が90〜105℃であり且つ210〜230℃での融解熱が少なくとも3J/gである請求項1又は2記載のポリ乳酸樹脂組成物。

The polylactic acid resin composition according to claim 1 or 2, wherein the crystallization temperature at the time of temperature rise is 90 to 105 ° C and the heat of fusion at 210 to 230 ° C is at least 3 J / g.

JP2005231103A 2005-08-09 2005-08-09 Polylactic acid resin composition Withdrawn JP2007045915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231103A JP2007045915A (en) 2005-08-09 2005-08-09 Polylactic acid resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231103A JP2007045915A (en) 2005-08-09 2005-08-09 Polylactic acid resin composition

Publications (1)

Publication Number Publication Date
JP2007045915A true JP2007045915A (en) 2007-02-22

Family

ID=37849018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231103A Withdrawn JP2007045915A (en) 2005-08-09 2005-08-09 Polylactic acid resin composition

Country Status (1)

Country Link
JP (1) JP2007045915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235170A (en) * 2008-03-26 2009-10-15 Sekisui Plastics Co Ltd Method for producing polylactic acid resin foamed particle for in-mold expansion molding
EP2186846A1 (en) 2008-11-17 2010-05-19 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
JP2011074354A (en) * 2009-09-03 2011-04-14 Nishikawa Rubber Co Ltd Resin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235170A (en) * 2008-03-26 2009-10-15 Sekisui Plastics Co Ltd Method for producing polylactic acid resin foamed particle for in-mold expansion molding
EP2186846A1 (en) 2008-11-17 2010-05-19 Cheil Industries Inc. Natural Fiber-Reinforced Polylactic Acid Resin Composition and Molded Product Made Using the Same
JP2011074354A (en) * 2009-09-03 2011-04-14 Nishikawa Rubber Co Ltd Resin composition

Similar Documents

Publication Publication Date Title
Claro et al. Biodegradable blends with potential use in packaging: A comparison of PLA/chitosan and PLA/cellulose acetate films
Xiong et al. Preparation and characterization of poly (lactic acid)/starch composites toughened with epoxidized soybean oil
Kfoury et al. Recent advances in high performance poly (lactide): from “green” plasticization to super-tough materials via (reactive) compounding
US10435557B2 (en) High heat deflection temperature polylactic acids with tunable flexibility and toughness
Balakrishnan et al. Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends
JP5183203B2 (en) Biodegradable resin composition and molded body thereof
JP2017222846A (en) Biodegradable polymer blend
EP2907850B1 (en) Polyester resin composition, and molded article comprising said resin composition
JP4611214B2 (en) Biodegradable resin composition
JP6034866B2 (en) POLY-3-HYDROXYALKANOATE RESIN COMPOSITION AND MOLDED ARTICLE
JP5867406B2 (en) Biodegradable film
Di Lorenzo Poly (l-lactic acid)/poly (butylene succinate) biobased biodegradable blends
JP2006328284A (en) Resin composition and molded product
JP3666172B2 (en) Naturally decomposable resin composition and molded product thereof
JP2017132076A (en) Glossiness filament for melting laminate type 3d printer
JPH11302521A (en) Polylactic acid composition and its molding product
JP2005525448A (en) Polyester blend composition and biodegradable film made therefrom
JP2007217513A (en) Polylactic acid resin composition and molded product
JP2022512805A (en) Reinforced biodegradable composite material
JP2008163111A (en) Polylactic acid stereocomplex molded item and its manufacturing method
JP2011080015A (en) Molded spectacles article, method for producing the same, and spectacles
KR102466532B1 (en) Water based biodegadable composition, products including the same and manufacturing method of water based biodegadable products
JP2007045915A (en) Polylactic acid resin composition
JP3972950B2 (en) Biodegradable resin composition and molded product thereof
Liu et al. Toughening modification of poly (lactic acid) via melt blending

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080806

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100609