JP2011074354A - Resin composition - Google Patents

Resin composition Download PDF

Info

Publication number
JP2011074354A
JP2011074354A JP2010115391A JP2010115391A JP2011074354A JP 2011074354 A JP2011074354 A JP 2011074354A JP 2010115391 A JP2010115391 A JP 2010115391A JP 2010115391 A JP2010115391 A JP 2010115391A JP 2011074354 A JP2011074354 A JP 2011074354A
Authority
JP
Japan
Prior art keywords
resin composition
mass
parts
natural rubber
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010115391A
Other languages
Japanese (ja)
Inventor
Toru Yano
徹 矢野
Keiko Sakaguchi
敬子 阪口
Kohei Shiraishi
浩平 白石
Kazuo Sugiyama
一男 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishikawa Rubber Co Ltd
Kinki University
Original Assignee
Nishikawa Rubber Co Ltd
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishikawa Rubber Co Ltd, Kinki University filed Critical Nishikawa Rubber Co Ltd
Priority to JP2010115391A priority Critical patent/JP2011074354A/en
Publication of JP2011074354A publication Critical patent/JP2011074354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition which principally contains polylactic acid and has improved impact resistance and improved heat resistance. <P>SOLUTION: The resin composition contains polylactic acid, natural rubber, a crystal nucleating agent and a hydrolysis inhibitor. Moreover the resin composition having a carbodiimide compound as the hydrolysis inhibitor is provided. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は樹脂組成物に関し、詳細には、天然ゴムを含むポリ乳酸系樹脂組成物に関する。   The present invention relates to a resin composition, and in particular, to a polylactic acid resin composition containing natural rubber.

従来より、(生分解性)樹脂組成物の材料としてポリ乳酸が用いられている。しかし、ポリ乳酸は一般に固く、耐衝撃性に劣るという性質を有しているため、その用途が限られてしまう傾向があり、これに対処するため天然ゴム、天然ゴムを含む改質剤等を用いた種々のブレンド手段が提案されている(特許文献1〜4)。特許文献4には、ポリ乳酸樹脂に炭酸カルシウム等の結晶核剤とトリアセチン(酢酸トリグリセリド)等の結晶化促進剤を加え、耐熱性を向上させた第1のポリ乳酸樹脂を得る工程と、ポリ乳酸樹脂にこれと反応するゴム等の柔軟性樹脂を加え、耐衝撃性を向上させた第2のポリ乳酸樹脂を得る工程と、前記第1及び第2のポリ乳酸樹脂を混合して成形する工程とを含む、低い金型温度と短い成形サイクルで結晶化が進み強度・剛性・耐熱性・耐衝撃性に優れたポリ乳酸樹脂成形体の製造方法が記載されている。また、特許文献5では、高耐熱性のポリ乳酸を含む成形品の製造方法を開示しているが、天然ゴムの使用については開示されていない。
一方、本出願人らは、ポリL−乳酸と、結晶化促進剤、柔軟性付与剤、相溶化剤を含む耐熱性・耐衝撃性に優れた樹脂組成物を提案した(特許文献6)。しかしながら、この樹脂組成物の耐衝撃性及び耐熱性については、更に改善の余地があることが判明した。
Conventionally, polylactic acid has been used as a material for a (biodegradable) resin composition. However, since polylactic acid is generally hard and has a property of being inferior in impact resistance, its use tends to be limited. To cope with this, natural rubber, a modifier containing natural rubber, etc. are used. Various blending means used have been proposed (Patent Documents 1 to 4). Patent Document 4 includes a step of obtaining a first polylactic acid resin having improved heat resistance by adding a crystal nucleating agent such as calcium carbonate and a crystallization accelerator such as triacetin (acetic acid triglyceride) to polylactic acid resin, Adding a flexible resin such as rubber that reacts with the lactic acid resin to obtain a second polylactic acid resin having improved impact resistance, and mixing and molding the first and second polylactic acid resins And a process for producing a polylactic acid resin molded article having excellent strength, rigidity, heat resistance, and impact resistance, which has progressed in crystallization at a low mold temperature and a short molding cycle. Patent Document 5 discloses a method for producing a molded product containing high heat-resistant polylactic acid, but does not disclose the use of natural rubber.
On the other hand, the present applicants proposed a resin composition excellent in heat resistance and impact resistance, which contains poly-L-lactic acid, a crystallization accelerator, a flexibility imparting agent, and a compatibilizing agent (Patent Document 6). However, it has been found that there is room for further improvement in the impact resistance and heat resistance of the resin composition.

特開2004−143315号公報JP 2004-143315 A 特開2005−255722号公報JP 2005-255722 A 特開2009−84333号公報JP 2009-84333 A 特開2008−201863号公報JP 2008-201863 A 特許第4259284号公報Japanese Patent No. 4259284 特開2007−23188号公報JP 2007-23188 A

本発明は、ポリ乳酸を主体に含む樹脂組成物であって、耐衝撃性及び耐熱性あるいは更に機械的特性が改善された樹脂組成物を提供しようとするものである。   The present invention intends to provide a resin composition mainly containing polylactic acid, which has improved impact resistance and heat resistance or further improved mechanical properties.

本発明は以下の通りである。
1)ポリ乳酸、天然ゴム、結晶核剤、及び加水分解抑制剤を含む樹脂組成物(以下、「本発明の樹脂組成物」ともいう)。
本発明の樹脂組成物は、上記成分以外にエポキシ化天然ゴム及び/又は中鎖脂肪酸トリグリセリドを含むことが好ましく、両者を含むことが更に好ましい。
The present invention is as follows.
1) A resin composition containing polylactic acid, natural rubber, a crystal nucleating agent, and a hydrolysis inhibitor (hereinafter also referred to as “resin composition of the present invention”).
The resin composition of the present invention preferably contains epoxidized natural rubber and / or medium chain fatty acid triglyceride in addition to the above components, and more preferably contains both.

本発明の樹脂組成物は耐衝撃性及び耐熱性あるいは更に機械的特性が改善されると共に植物度も97%程度に改善することができ、汎用プラスチックの代替として広く使用できる。また、本発明の樹脂組成物は、配合成分をブレンドしたものを一工程でブレンドポリマーとすることができるので、極めて簡易に製造できかつ経済的である。   The resin composition of the present invention can improve impact resistance and heat resistance or further mechanical properties, and can improve plantiness to about 97%, and can be widely used as an alternative to general-purpose plastics. In addition, the resin composition of the present invention can be produced very easily and economically because a blended blended component can be made into a blend polymer in one step.

本発明の樹脂組成物の成分について説明する。
(加水分解抑制剤)
本発明に用いられる加水分解抑制剤としては、ポリ乳酸、天然ゴム、結晶核剤等のポリマー成分の加水分解を抑制する機能を有するものであれば、特に制限はないが、例えば、ヒンダードフェノール系酸化防止剤、エチレン−ビニルアルコール共重合体、リン酸エステルまたはリン酸エステルの誘導体、オキサゾリンまたはオキサゾリン誘導体、イソシアネートまたはイソシアネート誘導体、エポキシ化合物またはエポキシ化合物の誘導体、カルボジイミド化合物等が挙げられる。加水分解抑制剤としては、中でもカルボジイミド化合物が好ましい。
本発明の樹脂組成物に用いられるカルボジイミド化合物は、カルボジイミド基を1以上有する化合物であり、主としてポリ乳酸の加水分解を抑制し得る機能を有する。カルボジイミド化合物としては、低分子でも高分子でもよいが、高分子化合物が好ましい。このカルボジイミド化合物の質量平均分子量Mwは、500〜60,000が好ましく、1,000〜40,000が更に好ましい。また、カルボジイミド化合物の数平均分子量は、500以上で、好ましくは1000以上更には1300以上が好ましく、2000以上が更に好ましい。数平均分子量が500未満だと樹脂組成物の製造時において装置への供給が困難であるため好ましくない。この数平均分子量Mnの上限は質量平均分子量Mwと同程度である。そして、多分散度Mw/Mnは、1.0〜6.0が好ましい。また、カルボジイミド化合物のカルボジイミド基の含有量は、2〜2,000個/分子が好ましく、2〜500個/分子が更に好ましい。カルボジイミド化合物としては、分子量が500以下の低分子化合物では、スタバクゾール1−LF(ラインケミー社製)等が挙げられ、高分子化合物では市販のカルボジライトLA−1(日清紡製)が好ましい。なお、カルボジイミド基が1分子中に3個以上含むものをポリカルボジイミド化合物ともいう。
本発明の樹脂組成物に用いられる加水分解抑制剤の添加量は、ポリ乳酸100質量部に対して、好ましくは、0.2質量部以上、更に好ましくは、1質量部以上、特に1.5質量部以上、最も好ましくは2.0質量部以上含有することが本発明の目的を達成するために有効であり、特に上限はないが略10質量部以上では効果の改善はみられない。また、後に説明する表3より3.0質量部以下が好ましい結果も得ている。
加水分解抑制剤は、天然ゴム等の各成分からなる当該混合物に含まれる水分除去等による加水分解抑制機能の外、後述のエポキシ化天然ゴムとのエポキシ基との架橋反応のように、成分に含まれる官能基を介して架橋反応等を行う機能を有する。この架橋反応等は、天然ゴム及びエポキシ化天然ゴムからなるゴム分散相とポリ乳酸からなる樹脂マトリクス相の界面間に生じると考えられ、耐衝撃性、耐熱性、及び機械的特性(高温高湿条件における経時での保持特性(耐加水分解特性)を含む)の改善に寄与するものと考えられる。
このような架橋反応を行う化合物として、ポリアミン、ポリオール、ポリカルボン酸、酸無水物、有機カルボン酸アンモニウム塩、ジチオカルバミン酸塩等を併用することもできる。
The components of the resin composition of the present invention will be described.
(Hydrolysis inhibitor)
The hydrolysis inhibitor used in the present invention is not particularly limited as long as it has a function of suppressing hydrolysis of polymer components such as polylactic acid, natural rubber, and crystal nucleating agent. For example, hindered phenol And antioxidants, ethylene-vinyl alcohol copolymers, phosphate esters or phosphate ester derivatives, oxazolines or oxazoline derivatives, isocyanates or isocyanate derivatives, epoxy compounds or epoxy compound derivatives, carbodiimide compounds, and the like. Among them, a carbodiimide compound is preferable as the hydrolysis inhibitor.
The carbodiimide compound used in the resin composition of the present invention is a compound having one or more carbodiimide groups and mainly has a function capable of suppressing hydrolysis of polylactic acid. The carbodiimide compound may be a low molecule or a polymer, but a polymer compound is preferred. The mass average molecular weight Mw of the carbodiimide compound is preferably 500 to 60,000, and more preferably 1,000 to 40,000. The number average molecular weight of the carbodiimide compound is 500 or more, preferably 1000 or more, more preferably 1300 or more, and still more preferably 2000 or more. If the number average molecular weight is less than 500, it is not preferable because it is difficult to supply the resin composition to the apparatus during the production of the resin composition. The upper limit of the number average molecular weight Mn is about the same as the mass average molecular weight Mw. The polydispersity Mw / Mn is preferably 1.0 to 6.0. Further, the content of the carbodiimide group of the carbodiimide compound is preferably 2 to 2,000 / molecule, more preferably 2 to 500 / molecule. Examples of the carbodiimide compound include stavaxol 1-LF (manufactured by Rhein Chemie) and the like as low molecular compounds having a molecular weight of 500 or less, and commercially available carbodilite LA-1 (manufactured by Nisshinbo) as the polymer compound. A compound containing three or more carbodiimide groups in one molecule is also referred to as a polycarbodiimide compound.
The addition amount of the hydrolysis inhibitor used in the resin composition of the present invention is preferably 0.2 parts by mass or more, more preferably 1 part by mass or more, particularly 1.5 parts per 100 parts by mass of polylactic acid. It is effective to achieve the object of the present invention to contain at least part by mass, and most preferably at least 2.0 parts by mass. There is no particular upper limit, but no improvement is seen at about 10 parts by mass or more. Moreover, the result with preferable 3.0 mass parts or less from Table 3 demonstrated later is also obtained.
In addition to the hydrolysis inhibiting function by moisture removal etc. contained in the mixture consisting of each component such as natural rubber, the hydrolysis inhibitor is added to the component as in the crosslinking reaction with the epoxy group with the epoxidized natural rubber described later. It has a function of performing a crosslinking reaction or the like via the contained functional group. This cross-linking reaction is considered to occur between the rubber dispersed phase composed of natural rubber and epoxidized natural rubber and the resin matrix phase composed of polylactic acid. Impact resistance, heat resistance, and mechanical properties (high temperature and high humidity) It is considered that it contributes to improvement of retention characteristics (including hydrolysis resistance) over time under conditions.
As a compound that performs such a crosslinking reaction, polyamine, polyol, polycarboxylic acid, acid anhydride, organic carboxylic acid ammonium salt, dithiocarbamate, and the like can be used in combination.

(ポリ乳酸)
本発明において、ポリ乳酸とは、L−乳酸及び/又はD−乳酸由来のモノマー単位で構成されるポリマーである。本発明の効果を損なわない範囲で、L−乳酸またはD−乳酸に由来しない、他のモノマー単位を含んでいても良い。他のモノマー単位としては、単糖、オリゴ糖、多糖等が挙げられ、10mol%以下含むことができる。また、ポリ乳酸の質量平均分子量は、50,000〜300,000の範囲が好ましい。かかる範囲を下回ると機械物性等が十分発現されない場合があり、上回る場合は加工性に劣る傾向にある。
本発明に用いられるポリ乳酸として、例えば、ポリL−乳酸としては、特に限定されないが、90%発酵乳酸とデンプンの混合物中に重合触媒を添加し、脱水重合を行ったものを使用するか、市販のポリ乳酸(三井化学(株)製レイシアH−100など)または耐熱性のナノコンポジット充填剤入りのポリ乳酸など、いずれを用いてもよい。なお、充填剤等の添加剤を含むポリ乳酸の該添加剤は、本発明の樹脂組成物の配合割合の算定においては、ポリ乳酸とは別に取り扱う。
例えば、本発明においては、ポリ乳酸として、ポリL−乳酸を用いる場合は、結晶核剤として、D−乳酸をモノマー単位として少なくとも含む単独重合体又は共重合体を用いることが、本発明のポリ乳酸系樹脂組成物の耐衝撃性及び耐熱性を維持する観点から好ましい。
(Polylactic acid)
In the present invention, polylactic acid is a polymer composed of monomer units derived from L-lactic acid and / or D-lactic acid. Other monomer units not derived from L-lactic acid or D-lactic acid may be included as long as the effects of the present invention are not impaired. Examples of other monomer units include monosaccharides, oligosaccharides, polysaccharides and the like, and they can be contained in an amount of 10 mol% or less. The mass average molecular weight of polylactic acid is preferably in the range of 50,000 to 300,000. If it falls below this range, mechanical properties and the like may not be fully expressed, and if it exceeds, the processability tends to be inferior.
As polylactic acid used in the present invention, for example, poly L-lactic acid is not particularly limited, but a polymerization catalyst is added to a mixture of 90% fermented lactic acid and starch, and dehydrated polymerization is used. Any of commercially available polylactic acid (such as Lacia H-100 manufactured by Mitsui Chemicals, Inc.) or polylactic acid containing a heat-resistant nanocomposite filler may be used. In addition, in the calculation of the compounding ratio of the resin composition of this invention, this additive of polylactic acid containing additives, such as a filler, is handled separately from polylactic acid.
For example, in the present invention, when poly-L-lactic acid is used as the polylactic acid, it is possible to use a homopolymer or copolymer containing at least D-lactic acid as a monomer unit as the crystal nucleating agent. From the viewpoint of maintaining the impact resistance and heat resistance of the lactic acid resin composition.

(天然ゴム)
本発明の樹脂組成物に用いられる天然ゴムとは、通常に天然に産するゴムだけでなく合成されるポリイソプレンも含まれる。しかし、近年、植物由来であることが望まれるため天然に産するゴムをメインとする。合成ポリイソプレンを用いる場合は、シス−1,4結合含量の高いものが好ましい。天然ゴムとしては、例えば天然ゴムラテックス、リブドスモークドシート、ホワイトクレープ、ペールクレープ、エステートブラウンクレープ、コンポクレープ、薄手ブラウンクレープ、厚手ブランケットクレープ、フラットバーククレープ、及び純スモークドブランケットクレープ等のシートゴム、ブロックゴム等が挙げられる。
本発明の樹脂組成物において、天然ゴムの添加量はポリ乳酸100質量部に対して1〜30質量部が好ましく、1.5〜30質量部が更に好ましく、2〜20質量部又は2〜13質量部、更には2.5〜12.5質量部が特に好ましい。1質量部未満の場合、耐衝撃性改善効果は得られない傾向がある。30質量部を超えて添加すると耐熱性が低下する傾向がある。
(Natural rubber)
The natural rubber used in the resin composition of the present invention includes not only a naturally occurring rubber but also a polyisoprene synthesized. However, in recent years, since it is desired to be derived from plants, natural rubber is mainly used. When synthetic polyisoprene is used, those having a high cis-1,4 bond content are preferred. Examples of natural rubber include sheet rubber such as natural rubber latex, ribbed smoked sheet, white crepe, pale crepe, estate brown crepe, component crepe, thin brown crepe, thick blanket crepe, flat bar crepe, and pure smoked blanket crepe. Examples include block rubber.
In the resin composition of the present invention, the amount of natural rubber added is preferably 1 to 30 parts by weight, more preferably 1.5 to 30 parts by weight, and 2 to 20 parts by weight or 2 to 13 parts per 100 parts by weight of polylactic acid. Part by mass, and further 2.5 to 12.5 parts by mass are particularly preferable. If the amount is less than 1 part by mass, the impact resistance improving effect tends not to be obtained. When added over 30 parts by mass, the heat resistance tends to decrease.

(結晶核剤)
本発明の樹脂組成物に用いられる結晶核剤としては、ポリ乳酸の結晶化を促進する機能を有するものであれば、無機系又は有機系のどちらでも特に限定されないが、好ましくは有機系で当該ポリ乳酸とはキラリティの異なる乳酸をモノマー単位として少なくとも含む単独重合体又は共重合体が挙げられる。共重合性モノマーとしては、デンプン、グルコマンナン等の多糖、ブドウ糖等の単糖、ショ糖、マルトース等の二糖、シクロデキストリン等のオリゴ糖等が挙げられ、具体的には、当該ポリ乳酸とはキラリティの異なるポリ乳酸、同乳酸−デンプン共重合体樹脂等が挙げられ、これらのいずれを用いてもよいが、0.1質量%〜1質量%の糖の入った該乳酸−デンプン共重合樹脂がより好ましい。上述したように本発明においては、ポリ乳酸として、ポリL−乳酸を用いる場合は、当該ポリ乳酸とはキラリティの異なるポリ乳酸は、D−乳酸をモノマー単位として少なくとも含む単独重合体又は共重合体となる。
また、結晶核剤の分子量は、特に限定されないが、1,000〜2,000,000の範囲が好ましい。1,000以下の場合、共晶を形成し、結晶化速度は大となるが樹脂が蜂蜜状で取り扱いにくくなることがあり、2,000,000を越えると溶融粘度が大となり、重合終了時に取出しにくくなることがある。
本発明の樹脂組成物における、結晶核剤の添加量は特に限定されないが、ポリ乳酸100質量部に対し、1〜15質量部が好ましく、0.5〜12質量部が更に好ましく、1〜10質量部が特に好ましい。1質量部未満の場合、顕著な結晶化促進効果が得られ難い傾向があり、15質量部を超えて添加すると樹脂強度が低下する傾向がある。
(Crystal nucleating agent)
The crystal nucleating agent used in the resin composition of the present invention is not particularly limited as long as it has a function of accelerating crystallization of polylactic acid, but is preferably an organic type. Examples of the polylactic acid include homopolymers or copolymers containing at least lactic acid having different chirality as a monomer unit. Examples of the copolymerizable monomer include polysaccharides such as starch and glucomannan, monosaccharides such as glucose, disaccharides such as sucrose and maltose, oligosaccharides such as cyclodextrin, and the like. Examples thereof include polylactic acid and lactic acid-starch copolymer resin having different chiralities, and any of these may be used, but the lactic acid-starch copolymer containing 0.1% by mass to 1% by mass of sugar. A resin is more preferable. As described above, in the present invention, when poly L-lactic acid is used as the polylactic acid, the polylactic acid having a different chirality from the polylactic acid is a homopolymer or copolymer containing at least D-lactic acid as a monomer unit. It becomes.
The molecular weight of the crystal nucleating agent is not particularly limited, but is preferably in the range of 1,000 to 2,000,000. In the case of 1,000 or less, a eutectic is formed and the crystallization speed is increased, but the resin may be honey-like and difficult to handle, and if it exceeds 2,000,000, the melt viscosity becomes large and at the end of the polymerization. It may be difficult to remove.
The addition amount of the crystal nucleating agent in the resin composition of the present invention is not particularly limited, but is preferably 1 to 15 parts by weight, more preferably 0.5 to 12 parts by weight, with respect to 100 parts by weight of polylactic acid. Part by mass is particularly preferred. When the amount is less than 1 part by mass, a remarkable crystallization promoting effect tends to be hardly obtained, and when the amount exceeds 15 parts by mass, the resin strength tends to decrease.

(エポキシ化天然ゴム)
本発明に用いられるエポキシ化天然ゴムとは、過酸化水素、過酢酸等のエポキシ化剤により上記天然ゴムにエポキシ基を導入したものであり、特に限定されないが、エポキシ基の導入量は天然ゴムの二重結合のモル数に対して20%〜50%が好ましい。
本発明の樹脂組成物において、エポキシ化天然ゴムの添加量はポリ乳酸100質量部に対して0.1〜30質量部が好ましく、0.2〜10質量部が更に好ましく、0.25〜5質量部が特に好ましい。また、天然ゴムとエポキシ化天然ゴムとの質量比は、前者:後者で、98:2〜40:60が好ましく、90:10〜50:50が更に好ましい。また、天然ゴムとエポキシ化天然ゴムの和は、ポリ乳酸100質量部に対して、1〜30質量部が好ましく、1.5〜30質量部が更に好ましく、2〜20質量部又は2〜13質量部、更には2.5〜12.5質量部が特に好ましい。上記好ましい範囲に応じて、耐衝撃性の更なる改善が期待できるとともに耐熱性が確保され、更にロール作業性も良好に維持される。これは、前述したようにエポキシ化天然ゴムと加水分解抑制剤との(架橋)反応生成物等が、天然ゴムをポリ乳酸中に均一に分散させる相溶化剤として機能しているものと考えられる。
また、本発明の樹脂組成物は、天然ゴム並びにエポキシ化天然ゴムの分解を抑制するために一般的なゴム用老化防止剤を用いることが好ましい。この老化防止剤は、ポリ乳酸100質量部に対して0.05〜0.5質量部用いることが好ましく、0.1〜0.3質量部用いることが更に好ましい。
(Epoxidized natural rubber)
The epoxidized natural rubber used in the present invention is one in which an epoxy group is introduced into the natural rubber with an epoxidizing agent such as hydrogen peroxide or peracetic acid, and is not particularly limited. It is preferably 20% to 50% with respect to the number of moles of the double bond.
In the resin composition of the present invention, the amount of epoxidized natural rubber added is preferably 0.1 to 30 parts by weight, more preferably 0.2 to 10 parts by weight, and more preferably 0.25 to 5 parts per 100 parts by weight of polylactic acid. Part by mass is particularly preferred. The mass ratio of natural rubber to epoxidized natural rubber is the former: the latter, preferably 98: 2 to 40:60, and more preferably 90:10 to 50:50. Moreover, 1-30 mass parts is preferable with respect to 100 mass parts of polylactic acid, and the sum of natural rubber and epoxidized natural rubber has still more preferable 1.5-30 mass parts, 2-20 mass parts or 2-13. Part by mass, and further 2.5 to 12.5 parts by mass are particularly preferable. According to the preferable range, further improvement in impact resistance can be expected, heat resistance is ensured, and roll workability is also maintained well. As described above, it is considered that the (crosslinking) reaction product of the epoxidized natural rubber and the hydrolysis inhibitor functions as a compatibilizing agent for uniformly dispersing the natural rubber in polylactic acid. .
The resin composition of the present invention preferably uses a general anti-aging agent for rubber in order to suppress degradation of natural rubber and epoxidized natural rubber. This anti-aging agent is preferably used in an amount of 0.05 to 0.5 parts by weight, more preferably 0.1 to 0.3 parts by weight, based on 100 parts by weight of polylactic acid.

(中鎖脂肪酸トリグリセリド)
本発明において、中鎖脂肪酸トリグリセリドは、本発明のポリ乳酸系樹脂組成において、耐衝撃性を著しく向上させる。これは、中鎖脂肪酸トリグリセリドが同系に分散されたときに中鎖脂肪酸の鎖長が同系において極めて適切な嵩高さを有し、主としてその投錨効果によるものと考えられる。これは、前記特許文献4に記載のトリアセチンが結晶化促進剤として用いられることとは対照的であり、後述の比較例からも作用機構が異なることはあきらかである。
この中鎖脂肪酸トリグリセリドの中鎖脂肪酸は炭素数4〜12の脂肪酸であることが、上記作用を効果的に発揮させるために好ましく、炭素数5〜10であることが更に好ましい。この中鎖脂肪酸分子部分は、直鎖、分岐、環状、あるいはこれらの組み合わせであってよく、飽和でも不飽和でもよい。また、中鎖脂肪酸分子部分は、グリセリンの3個の水酸基に同一のものでも、互いに異なるものでも上記炭素数の範囲であれば置換することができる。また、前記種々の分子は単独又は組み合わせて用いることができる。
上記作用を効果的に発揮させるための中鎖脂肪酸トリグリセリドの添加量は、ポリ乳酸100質量部に対して、0.5〜10質量部が好ましく、さらに好ましい範囲は、1〜7質量部、さらには1〜5質量部、そして1〜3質量部である。中鎖脂肪酸トリグリセリドの添加量が7質量部を超えると、樹脂の耐熱性が低下する傾向があり、例えば、自動車内装部品に要求される80℃以上の耐熱性が示せず、実用的でなくなる可能性がある。
(Medium chain fatty acid triglyceride)
In the present invention, medium chain fatty acid triglyceride significantly improves impact resistance in the polylactic acid resin composition of the present invention. This is considered to be mainly due to the anchoring effect of the chain length of the medium chain fatty acid having a very appropriate bulk in the same system when the medium chain fatty acid triglyceride is dispersed in the same system. This is in contrast to the use of triacetin described in Patent Document 4 as a crystallization accelerator, and it is clear that the mechanism of action is different from the comparative examples described later.
The medium chain fatty acid of the medium chain fatty acid triglyceride is preferably a fatty acid having 4 to 12 carbon atoms in order to effectively exhibit the above action, and more preferably 5 to 10 carbon atoms. This medium chain fatty acid molecular moiety may be linear, branched, cyclic, or a combination thereof, and may be saturated or unsaturated. Further, the medium chain fatty acid molecule portion can be substituted with the same or different from the three hydroxyl groups of glycerin as long as the number of carbon atoms is within the above range. The various molecules can be used alone or in combination.
The addition amount of medium chain fatty acid triglyceride for effectively exhibiting the above action is preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of polylactic acid, more preferably 1 to 7 parts by mass, Is 1-5 parts by mass and 1-3 parts by mass. If the addition amount of medium-chain fatty acid triglycerides exceeds 7 parts by mass, the heat resistance of the resin tends to decrease. For example, the heat resistance of 80 ° C. or higher required for automobile interior parts cannot be shown, and it may become impractical. There is sex.

本発明は、所望の特性を得るために天然ゴムを上記以外の手法により化学修飾したものや、ポリカプロラクトン等の柔軟性付与剤を併用してもよい。例えば、ポリカプロラクトン等を併用し、樹脂組成物の耐熱性を向上させること等が挙げられる。しかしながら、ポリカプロラクトンを添加すると樹脂の植物度が低下する。
本発明の樹脂組成物は、上記以外の添加剤を添加することができる。具体的な添加剤としては、耐候性改良剤、例えば、酸化チタンなどの紫外線吸収剤、ヒンダードアミン系光安定剤、及び酸化防止剤;滑剤、例えば、高級脂肪酸系アルコール、脂肪族アマイド、金属石鹸、及び脂肪酸エステルなどが例示できる。
本発明の樹脂組成物は、ゴム分散相の平均粒子径が、3μm以下であり、分散相平均粒子径0.2〜2.5μmがさらに好ましく、0.3〜2.0μmが特に好ましい。この平均粒子径は、偏光顕微鏡を用い、200℃のホットステージ上で加熱溶融させ、目視観察により、天然ゴム粒子を450〜550個測定し、算術平均により求められる値を意味する。
In the present invention, natural rubber may be chemically modified by a method other than the above in order to obtain desired characteristics, or a softness-imparting agent such as polycaprolactone may be used in combination. For example, polycaprolactone or the like is used in combination to improve the heat resistance of the resin composition. However, the addition of polycaprolactone reduces the plantiness of the resin.
Additives other than those described above can be added to the resin composition of the present invention. Specific additives include weather resistance improvers, such as ultraviolet absorbers such as titanium oxide, hindered amine light stabilizers, and antioxidants; lubricants such as higher fatty acid alcohols, aliphatic amides, metal soaps, And fatty acid esters.
In the resin composition of the present invention, the average particle size of the rubber dispersed phase is 3 μm or less, the average particle size of the dispersed phase is more preferably 0.2 to 2.5 μm, and particularly preferably 0.3 to 2.0 μm. This average particle diameter means a value obtained by arithmetically averaging 450 to 550 natural rubber particles measured by visual observation using a polarizing microscope, heated and melted on a hot stage at 200 ° C.

本発明の樹脂組成物を製造する手段としては、温度、圧力等の条件を調整すること等、特に制限はない。このような手段には公知の装置、例えば、二軸押出機、ニーダー等を用いることが挙げられる。
本発明では、上記各成分を含むブレンドを二軸押出機に投入して樹脂組成物とすることが好ましい。
ここで、二軸押出機のブレンド条件は、温度180〜200℃が好ましい。
上記二軸押出機でブレンドされ、押出し成形された樹脂組成物は、そのまま製品としてもよいし、ペレット化して射出成形用としてもよい。また、該ペレット化した本発明の樹脂組成物は、他の樹脂又はゴムとともに用いて射出成形機や押出機により成形体を製造することもできる。
The means for producing the resin composition of the present invention is not particularly limited, such as adjusting conditions such as temperature and pressure. Examples of such means include use of a known apparatus such as a twin screw extruder and a kneader.
In the present invention, it is preferable to add a blend containing the above-described components to a twin screw extruder to obtain a resin composition.
Here, the blending condition of the twin-screw extruder is preferably a temperature of 180 to 200 ° C.
The resin composition blended and extruded by the above twin screw extruder may be used as it is, or may be pelletized for injection molding. Further, the pelletized resin composition of the present invention can be used together with other resins or rubbers to produce a molded body by an injection molding machine or an extruder.

以下、本発明を実施例によって詳細に説明するが、本発明はこれらに限定されるものではない。
実施例1
a.天然ゴム(NR)のペレット化
温度40℃に設定した8インチオープンロールにギロチンカッターで10cm角に切断したNRブロック(スリランカ製ペールクレープ)を投入、約1kgの量のNRをロールに巻きつかせ、約10分程度可塑化させた(可塑化時のロール間隙:1.5mm)。この可塑化させたものを後述のポリL−乳酸のペレットと同様なサイズに細かく裁断した。
b.樹脂組成物のペレット化
ポリ乳酸(ポリL−乳酸、三井化学(株)製レイシアH−100)100質量部、天然ゴムペレット2.5質量部、D−乳酸−0.1質量%−デンプン共重合樹脂(結晶核剤)5質量部、加水分解抑制剤(カルボジイミド化合物、カルボジライトLA−1、日清紡(株)製)3質量部の各ペレットをそれぞれ計量後、PE製の袋の中で予備混合したのち、樹脂温180℃に設定した二軸押出機(クリモト製S1KRCニーダ)に投入し、コンベア上にストランド状に押出した後、ペレタイザでペレット化した。
c.ペレットの射出形成
bで作成したペレットを(株)山城精機製作所製の射出成型機SAV−30を用いて、JIS K7110のIzod試験片、JIS 7113の1号引張試験片と荷重たわみ測定用の棒状試験片(120mm×12mm×4mm)を成形した。成形温度はシリンダー温度、スクリュウ上部、スクリュウ下部、ノズルの順番に、それぞれ180℃、170℃、175℃、180℃に設定した。また、射出時間20秒、冷却時間100秒、(射出時間と冷却時間の合計の成形時間2分)、金型温度(成形温度)110℃、で試験片を成形した。試験片取出し後に、アフターキュア温度110℃で、アフターキュア時間2時間、熱処理をして、最終試験片とした.熱処理による、変形や収縮は見られなかった。
得られた試験片はJIS K7110に準拠してIzod衝撃強度を測定した。但し、2号試験片を用いた。また、JIS K7191−1−B法に準拠して荷重たわみ温度を測定した。但し、エッジワイズ試験片を用いた。また、JIS K7113の最大引張強度および破断時の伸び、並びにJIS K 7113に準拠して弾性係数も併せて測定した。結果を表1に示す。
実施例2〜15、参考例1、比較例1〜4
実施例1の成分及びその配合量(質量部)を表1記載のものに変更した以外は、実施例1と同様にペレットを作製すると共に試験片を作製して評価し、結果を表1に示した。なお、エポキシ化天然ゴムは、エポキシ化:50モル%、タイ国のMuang Mai Guthrie Public Company Limited製ENR50である。これは、実施例1のa.天然ゴム(NR)のペレット化の際にNRをロールに巻きつかせると同時に必要量を添加した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
Example 1
a. Natural rubber (NR) pelletization An 8-inch open roll set at a temperature of 40 ° C is loaded with an NR block (Sri Lanka pale crepe) cut into 10 cm square by a guillotine cutter, and an amount of about 1 kg of NR is wound on the roll. , And plasticized for about 10 minutes (roll gap during plasticization: 1.5 mm). This plasticized product was finely cut into the same size as the poly L-lactic acid pellet described later.
b. Pelletization of resin composition 100 parts by mass of polylactic acid (poly L-lactic acid, Lacia H-100 manufactured by Mitsui Chemicals, Inc.), 2.5 parts by mass of natural rubber pellets, D-lactic acid-0.1% by mass-starch Each pellet of 5 parts by mass of polymer resin (crystal nucleating agent) and 3 parts by mass of hydrolysis inhibitor (carbodiimide compound, carbodilite LA-1, manufactured by Nisshinbo Co., Ltd.) is weighed and then premixed in a PE bag. After that, it was put into a twin-screw extruder (S1KRC kneader manufactured by Kurimoto) set at a resin temperature of 180 ° C., extruded into a strand shape on a conveyor, and then pelletized with a pelletizer.
c. Injection molding of pellets Using the injection molding machine SAV-30 manufactured by Yamashiro Seiki Seisakusho Co., Ltd., the pellets prepared in b were JIS K7110 Izod test specimens, JIS 7113 No. 1 tensile test specimens, and rods for load deflection measurement. A test piece (120 mm × 12 mm × 4 mm) was molded. The molding temperature was set to 180 ° C., 170 ° C., 175 ° C., and 180 ° C. in the order of the cylinder temperature, the upper part of the screw, the lower part of the screw, and the nozzle. Further, a test piece was molded at an injection time of 20 seconds, a cooling time of 100 seconds, (a total molding time of injection time and cooling time of 2 minutes), and a mold temperature (molding temperature) of 110 ° C. After taking out the test piece, it was heat-treated at an after-curing temperature of 110 ° C. and an after-curing time of 2 hours to obtain a final test piece. There was no deformation or shrinkage due to heat treatment.
The obtained test piece was measured for Izod impact strength according to JIS K7110. However, No. 2 test piece was used. Further, the deflection temperature under load was measured in accordance with JIS K7191-1-B method. However, edgewise test pieces were used. Further, the maximum tensile strength and elongation at break of JIS K7113 and the elastic modulus were also measured in accordance with JIS K7113. The results are shown in Table 1.
Examples 2 to 15, Reference Example 1, Comparative Examples 1 to 4
Except that the components of Example 1 and the amount (parts by mass) thereof were changed to those shown in Table 1, pellets were prepared and evaluated as in Example 1, and the results are shown in Table 1. Indicated. The epoxidized natural rubber is epoxidized: 50 mol%, ENR50 manufactured by Muang Mai Guthrie Public Company Limited in Thailand. This is because a. During the pelletization of natural rubber (NR), NR was wound around a roll and at the same time the required amount was added.

Figure 2011074354
Figure 2011074354

上表から以下のことが理解される。
実施例1〜15と参考例1(特許文献6の実施例1を転記したものであり、成形条件は同文献による)を含む同文献の実施例1〜4との比較から、本発明の樹脂組成物は、特許文献6の樹脂組成物に比べて耐熱性及び耐衝撃性が改善できることが理解できる。なお、柔軟性付与剤はポリカプロラクトン、相溶化剤はポリL−乳酸−ポリブチレンサクシネートブロック共重合樹脂である。
実施例1〜5と比較例2及び3との比較から、本発明の樹脂組成物1は、耐衝撃性及び耐熱性が両立して改善されるが、天然ゴム又は加水分解抑制剤を用いないと耐熱性は満たすが、耐衝撃性が確保されない。比較例2のようにゴム成分を添加しないと、成形性が低下し、成形できなくなる。
本発明の樹脂組成物2の実施例6〜10では、ゴム成分として、エポキシ化天然ゴムを添加すると、天然ゴム単独の場合に比べ、ゴム成分10質量部以上添加した場合、耐熱性を確保しつつ耐衝撃性が更に改善できる。
実施例9、11、比較例1では、加水分解抑制剤を添加しないと耐加水分解性が低下し、耐衝撃性が著しく低下する。
実施例9〜15、比較例4では、天然ゴムとエポキシ化天然ゴムの比率(質量)は98:2〜40:60の範囲が好ましいことを示唆している。エポキシ化天然ゴムの比率が、60%を超えると、ロール作業性が著しく低下する。また、ゴム成分を全部エポキシ化天然ゴムにすると、比較例5に示すように耐衝撃性が著しく低下する。
なお、実施例12〜15、比較例4で用いたゴム用老化防止剤は、2,2,4−トリメチル−1,2−ジハイドロキノリン(ノンフレックスRD、精工化学製)である。
The following is understood from the above table.
From the comparison with Examples 1 to 4 of the same literature including Examples 1 to 15 and Reference Example 1 (Example 1 of Patent Document 6 is transcribed and molding conditions are according to the same literature), the resin of the present invention It can be understood that the composition can improve heat resistance and impact resistance as compared with the resin composition of Patent Document 6. The flexibility-imparting agent is polycaprolactone, and the compatibilizing agent is poly L-lactic acid-polybutylene succinate block copolymer resin.
From comparison between Examples 1 to 5 and Comparative Examples 2 and 3, the resin composition 1 of the present invention improves both impact resistance and heat resistance, but does not use natural rubber or a hydrolysis inhibitor. Although heat resistance is satisfied, impact resistance is not ensured. If the rubber component is not added as in Comparative Example 2, the moldability is lowered and the molding becomes impossible.
In Examples 6 to 10 of the resin composition 2 of the present invention, when epoxidized natural rubber is added as a rubber component, heat resistance is ensured when 10 parts by mass or more of the rubber component is added compared to the case of natural rubber alone. The impact resistance can be further improved.
In Examples 9 and 11 and Comparative Example 1, if no hydrolysis inhibitor is added, the hydrolysis resistance is lowered and the impact resistance is significantly lowered.
In Examples 9 to 15 and Comparative Example 4, it is suggested that the ratio (mass) of natural rubber to epoxidized natural rubber is preferably in the range of 98: 2 to 40:60. When the ratio of the epoxidized natural rubber exceeds 60%, roll workability is remarkably lowered. Moreover, if the rubber component is entirely epoxidized natural rubber, impact resistance is significantly lowered as shown in Comparative Example 5.
The rubber anti-aging agent used in Examples 12 to 15 and Comparative Example 4 is 2,2,4-trimethyl-1,2-dihydroquinoline (Nonflex RD, manufactured by Seiko Chemical Co., Ltd.).

実施例17
ポリ乳酸、天然ゴム、結晶核剤、加水分解抑制剤、及びエポキシ化天然ゴムについては、実施例9と同じものを用いた。
a.天然ゴム(NR)とエポキシ化天然ゴム(ENR)のペレット化
温度40℃に設定した8インチオープンロールにギロチンカッターで10cm角に切断したNRブロックを投入、900gのNRと100gのENRをロールに巻きつかせ、約10分程度可塑化させた(可塑化時のロール間隙:1.5mm)。この可塑化させたものを後述のポリL−乳酸のペレットと同様なサイズに細かく裁断した。
b.樹脂組成物のペレット化
ポリ乳酸100質量部、NRとENRのペレット10質量部、結晶核剤5質量部、加水分解抑制剤3質量部の各ペレット及び中鎖脂肪酸トリグリセリド(オクチル酸トリグリセリド、日油(株)製パナセート800)1質量部をそれぞれ計量後、予備混合したのち、樹脂温180℃に設定した二軸押出機(クリモト製S1KRCニーダ)に投入し、コンベア上にストランド状に押出した後、ペレタイザでペレット化した。
c.ペレットの射出形成
bで作成したペレットを(株)山城精機製作所製の射出成型機SAV−30を用いて、JIS K7110のIzod試験片、JIS 7113の1号引張試験片と荷重たわみ測定用の棒状試験片(120mm×12mm×4mm)を成形した。成形温度はシリンダー温度、スクリュウ上部、スクリュウ下部、ノズルの順番に、それぞれ180℃、170℃、175℃、180℃に設定した。また、射出時間20秒、冷却時間100秒、(射出時間と冷却時間の合計の成形時間2分)、金型温度(成形温度)110℃、で試験片を成形した。試験片取出し後に、アフターキュア温度110℃で、アフターキュア時間2時間、熱処理をして、最終試験片とした.熱処理による、変形や収縮は見られなかった。
得られた試験片はJIS K7110に準拠してIzod衝撃強度を測定した。但し、1号試験片を用いた。また、JIS K7191−1−B法に準拠して荷重たわみ温度を測定した。但し、フラットワイズ試験片を用いた。結果を表2に示す。
Example 17
The same polylactic acid, natural rubber, crystal nucleating agent, hydrolysis inhibitor, and epoxidized natural rubber as in Example 9 were used.
a. Pelletization of natural rubber (NR) and epoxidized natural rubber (ENR) An NR block cut into 10 cm square with a guillotine cutter is put into an 8-inch open roll set at a temperature of 40 ° C, and 900 g of NR and 100 g of ENR are put into a roll It was wound and plasticized for about 10 minutes (roll gap during plasticization: 1.5 mm). This plasticized product was finely cut into the same size as the poly L-lactic acid pellet described later.
b. Pelletization of resin composition Each pellet of polylactic acid 100 parts by mass, NR and ENR pellets 10 parts by mass, crystal nucleating agent 5 parts by mass, hydrolysis inhibitor 3 parts by mass and medium chain fatty acid triglyceride (octylic acid triglyceride, NOF After weighing 1 part by mass of each Panacet 800 manufactured by Co., Ltd., premixed, and then put into a twin-screw extruder (S1 KRC kneader made by Kurimoto) set at a resin temperature of 180 ° C. and extruded into a strand on a conveyor And pelletized with a pelletizer.
c. Injection molding of pellets Using the injection molding machine SAV-30 manufactured by Yamashiro Seiki Seisakusho Co., Ltd., the pellets prepared in b were JIS K7110 Izod test specimens, JIS 7113 No. 1 tensile test specimens, and rods for load deflection measurement. A test piece (120 mm × 12 mm × 4 mm) was molded. The molding temperature was set to 180 ° C., 170 ° C., 175 ° C., and 180 ° C. in the order of the cylinder temperature, the upper part of the screw, the lower part of the screw, and the nozzle. Further, a test piece was molded at an injection time of 20 seconds, a cooling time of 100 seconds, (a total molding time of injection time and cooling time of 2 minutes), and a mold temperature (molding temperature) of 110 ° C. After taking out the test piece, it was heat-treated at an after-curing temperature of 110 ° C. and an after-curing time of 2 hours to obtain a final test piece. There was no deformation or shrinkage due to heat treatment.
The obtained test piece was measured for Izod impact strength according to JIS K7110. However, No. 1 test piece was used. Further, the deflection temperature under load was measured in accordance with JIS K7191-1-B method. However, a flatwise test piece was used. The results are shown in Table 2.

実施例16、18〜22
実施例17の成分及びその配合量(質量部)を表2記載のものに変更した以外は、実施例1と同様にペレットを作製すると共に試験片を作製して評価し、結果を表2に示した。
Examples 16, 18-22
Except that the components of Example 17 and the blending amount (parts by mass) thereof were changed to those shown in Table 2, pellets were prepared and evaluated as in Example 1, and the results are shown in Table 2. Indicated.

Figure 2011074354
Figure 2011074354

上表から以下のことが理解される。
実施例16〜20:これら実施例から、実施例16に対し、少量の中鎖脂肪酸トリグリセリドの添加増量によって、耐衝撃性が著しく向上する。また、自動車内装部品に適した80℃以上の耐熱性を維持している。
実施例21:7質量部の中鎖脂肪酸トリグリセリドを添加すると耐衝撃性は向上するものの耐熱性が若干低下する。
実施例22:特許文献4に記載のトリアセチン(酢酸トリグリセリド)を中鎖脂肪酸トリグリセリドに変えて5質量部添加すると、実施例20に比べ耐熱性は同等であるが、耐衝撃性が劣る。これは本例ではトリグリセリドの脂肪酸が炭素数2と中鎖脂肪酸トリグリセリドの中鎖脂肪酸より低いためである。
The following is understood from the above table.
Examples 16 to 20: From these examples, the impact resistance is remarkably improved by adding a small amount of medium chain fatty acid triglyceride to Example 16 in comparison with Example 16. Moreover, the heat resistance of 80 degreeC or more suitable for a vehicle interior component is maintained.
Example 21: Addition of 7 parts by mass of medium chain fatty acid triglyceride improves impact resistance but slightly decreases heat resistance.
Example 22: When 5 parts by mass of triacetin (acetic acid triglyceride) described in Patent Document 4 is added to medium chain fatty acid triglyceride, the heat resistance is equivalent to that of Example 20, but the impact resistance is inferior. This is because in this example, the fatty acid of the triglyceride is lower than the medium chain fatty acid having 2 carbon atoms and the medium chain fatty acid triglyceride.

実施例23〜33、比較例5
加水分解抑制剤(カルボジイミド化合物)の分子量を変更し、表3に従う配合成分及び配合量(質量部)を用い、上記と同様にペレットを作製すると共に試験片を作製して同様に評価し、結果を表3に示した。ただし、Izod衝撃強度の試験片は、1号試験片を、荷重たわみ温度の試験片は、JIS K7191−1−B法で、フラットワイズで、測定した。また、試験片の耐加水分解を評価するため、強度保持率を測定した。強度保持率(%)は、試験片を温度50℃、湿度95%の雰囲気で6週間処理後の引張強度の保持率(処理後)を、100×(処理後/処理前)として求めた。なお、ポリ乳酸、天然ゴム、結晶核剤、及びエポキシ化天然ゴムについては、実施例1と同じものを用いた。また、カルボジイミド化合物(サンプルA〜E)の詳細は、表4に示した。サンプルDは、前記カルボジライトLA−1である。表4に示した分子量は、各カルボジイミド化合物を、ブタノールに溶解し、温度40℃で72時間攪拌処理した後、GPCクロマトグラフを用いて測定した。サンプルFは、分子量363のモノマー(ビス(ジプロピルフェニル)カルボジイミド)(ラインケミー社製スタバクゾール1−LF)である。
Examples 23 to 33, Comparative Example 5
The molecular weight of the hydrolysis inhibitor (carbodiimide compound) was changed, and using the blending components and blending amounts (parts by mass) according to Table 3, pellets were produced in the same manner as described above, and test pieces were produced and evaluated in the same manner. Are shown in Table 3. However, the Izod impact strength test piece was No. 1 test piece, and the load deflection temperature test piece was measured flat-wise by the JIS K7191-1-B method. Moreover, in order to evaluate the hydrolysis resistance of a test piece, the strength retention was measured. The strength retention rate (%) was obtained by setting the tensile strength retention rate (after treatment) after 6 weeks of treatment of the test piece in an atmosphere of temperature 50 ° C. and humidity 95% as 100 × (after treatment / before treatment). The same polylactic acid, natural rubber, crystal nucleating agent, and epoxidized natural rubber as in Example 1 were used. Details of the carbodiimide compounds (samples A to E) are shown in Table 4. Sample D is the carbodilite LA-1. The molecular weights shown in Table 4 were measured using a GPC chromatograph after dissolving each carbodiimide compound in butanol and stirring at a temperature of 40 ° C. for 72 hours. Sample F is a monomer (bis (dipropylphenyl) carbodiimide) having a molecular weight of 363 (Stabaxol 1-LF manufactured by Rhein Chemie).

Figure 2011074354
Figure 2011074354

Figure 2011074354
Figure 2011074354

表3及び4から以下のことが理解される。
1)実施例23と他の実施例の比較から、エポキシ化天然ゴムを併用する場合、加水分解抑制剤のカルボジイミド化合物の数平均分子量Mnは、1300以上、好ましくは、3000以上であることが、機械的強度(高温高湿条件における耐加水分解性(強度保持率)を含む)、耐熱性を維持しつつ耐衝撃性の改善に有効であることが分かる。
2)実施例24〜31からカルボジイミド化合物の添加量は、ポリ乳酸100質量部に対して1.5〜2質量部が最も有効であることが分かる。
The following is understood from Tables 3 and 4.
1) From the comparison between Example 23 and other examples, when epoxidized natural rubber is used in combination, the number average molecular weight Mn of the carbodiimide compound of the hydrolysis inhibitor is 1300 or more, preferably 3000 or more. It can be seen that it is effective in improving the impact resistance while maintaining the mechanical strength (including hydrolysis resistance (strength retention) under high temperature and high humidity conditions) and heat resistance.
2) From Examples 24-31, it can be seen that 1.5-2 parts by mass of the carbodiimide compound is most effective with respect to 100 parts by mass of polylactic acid.

Claims (11)

ポリ乳酸、天然ゴム、結晶核剤、及び加水分解抑制剤を含む樹脂組成物。   A resin composition comprising polylactic acid, natural rubber, a crystal nucleating agent, and a hydrolysis inhibitor. 前記加水分解抑制剤は、カルボジイミド化合物である、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the hydrolysis inhibitor is a carbodiimide compound. エポキシ化天然ゴムを含む、請求項1又は2に記載の樹脂組成物。   The resin composition of Claim 1 or 2 containing an epoxidized natural rubber. 中鎖脂肪酸トリグリセリドを含む、請求項1〜3のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, comprising a medium chain fatty acid triglyceride. ポリ乳酸は、ポリL−乳酸であり、結晶核剤はD−乳酸をモノマー単位として少なくとも含む単独重合体又は共重合体である、請求項1〜4のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 4, wherein the polylactic acid is poly L-lactic acid, and the crystal nucleating agent is a homopolymer or copolymer containing at least D-lactic acid as a monomer unit. . カルボジイミド化合物は、数平均分子量が500以上である、請求項2〜5のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 2 to 5, wherein the carbodiimide compound has a number average molecular weight of 500 or more. 中鎖脂肪酸トリグリセリドの中鎖脂肪酸は炭素数4〜12の脂肪酸である、請求項1〜6のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 6, wherein the medium chain fatty acid of the medium chain fatty acid triglyceride is a fatty acid having 4 to 12 carbon atoms. ポリ乳酸100質量部、天然ゴム1〜30質量部、結晶核剤1〜15質量部、及びカルボジイミド化合物0.2質量部以上を含む、請求項1〜7のいずれか1項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 7, comprising 100 parts by mass of polylactic acid, 1 to 30 parts by mass of natural rubber, 1 to 15 parts by mass of a crystal nucleating agent, and 0.2 parts by mass or more of a carbodiimide compound. object. ポリ乳酸100質量部に対して、エポキシ化天然ゴム0.1〜30質量部を含む、請求項1〜8のいずれか1項に記載の樹脂組成物。   The resin composition of any one of Claims 1-8 containing 0.1-30 mass parts of epoxidized natural rubbers with respect to 100 mass parts of polylactic acid. ポリ乳酸100質量部に対して、中鎖脂肪酸トリグリセリド0.5〜10質量部を含む、請求項1〜9のいずれか1項に記載の樹脂組成物。   The resin composition of any one of Claims 1-9 containing 0.5-10 mass parts of medium chain fatty acid triglycerides with respect to 100 mass parts of polylactic acid. 天然ゴムとエポキシ化天然ゴムとの質量比は、前者:後者で、98:2〜40:60である、請求項1〜10のいずれか1項に記載の樹脂組成物。   11. The resin composition according to claim 1, wherein a mass ratio of the natural rubber to the epoxidized natural rubber is 98: 2 to 40:60 in the former: the latter.
JP2010115391A 2009-09-03 2010-05-19 Resin composition Pending JP2011074354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010115391A JP2011074354A (en) 2009-09-03 2010-05-19 Resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009203785 2009-09-03
JP2010115391A JP2011074354A (en) 2009-09-03 2010-05-19 Resin composition

Publications (1)

Publication Number Publication Date
JP2011074354A true JP2011074354A (en) 2011-04-14

Family

ID=44018668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115391A Pending JP2011074354A (en) 2009-09-03 2010-05-19 Resin composition

Country Status (1)

Country Link
JP (1) JP2011074354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219151A (en) * 2011-04-06 2012-11-12 Nishikawa Rubber Co Ltd Resin composition
US20150362647A1 (en) * 2013-02-01 2015-12-17 Murata Manufacturing Co., Ltd. Display device and laminated optical film
US20160099403A1 (en) * 2013-04-10 2016-04-07 Mitsui Chemicals, Inc. Layered body
US20160204337A1 (en) * 2013-09-02 2016-07-14 Mitsui Chemicals, Inc. Layered body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912810A (en) * 1995-06-26 1997-01-14 Daicel Chem Ind Ltd Styrene polymer composition
JP2004143315A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Polymer blend and method for producing the same
JP2005255722A (en) * 2004-03-09 2005-09-22 Tosoh Corp Resin composition and manufacturing method therefor
JP2007023188A (en) * 2005-07-19 2007-02-01 Univ Kinki Resin composition
JP2007045915A (en) * 2005-08-09 2007-02-22 Kri Inc Polylactic acid resin composition
JP2007126509A (en) * 2005-11-01 2007-05-24 Wintech Polymer Ltd Thermoplastic polyester resin composition
JP2007191551A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Thermoformed article
JP2008031472A (en) * 2006-07-05 2008-02-14 Mitsubishi Plastics Ind Ltd Tubular molded product made of biodegradable resin
JP2008179742A (en) * 2007-01-26 2008-08-07 Seed:Kk Elastomer composition, its manufacturing method and eraser using the composition
JP2008184543A (en) * 2007-01-30 2008-08-14 Tokai Rubber Ind Ltd Manufacturing method for thermoplastic elastomer product and thermoplastic elastomer product obtained by it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912810A (en) * 1995-06-26 1997-01-14 Daicel Chem Ind Ltd Styrene polymer composition
JP2004143315A (en) * 2002-10-25 2004-05-20 Toyota Motor Corp Polymer blend and method for producing the same
JP2005255722A (en) * 2004-03-09 2005-09-22 Tosoh Corp Resin composition and manufacturing method therefor
JP2007023188A (en) * 2005-07-19 2007-02-01 Univ Kinki Resin composition
JP2007045915A (en) * 2005-08-09 2007-02-22 Kri Inc Polylactic acid resin composition
JP2007126509A (en) * 2005-11-01 2007-05-24 Wintech Polymer Ltd Thermoplastic polyester resin composition
JP2007191551A (en) * 2006-01-18 2007-08-02 Teijin Chem Ltd Thermoformed article
JP2008031472A (en) * 2006-07-05 2008-02-14 Mitsubishi Plastics Ind Ltd Tubular molded product made of biodegradable resin
JP2008179742A (en) * 2007-01-26 2008-08-07 Seed:Kk Elastomer composition, its manufacturing method and eraser using the composition
JP2008184543A (en) * 2007-01-30 2008-08-14 Tokai Rubber Ind Ltd Manufacturing method for thermoplastic elastomer product and thermoplastic elastomer product obtained by it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219151A (en) * 2011-04-06 2012-11-12 Nishikawa Rubber Co Ltd Resin composition
US20150362647A1 (en) * 2013-02-01 2015-12-17 Murata Manufacturing Co., Ltd. Display device and laminated optical film
US10126473B2 (en) * 2013-02-01 2018-11-13 Murata Manufacturing Co., Ltd. Display device and laminated optical film
US20160099403A1 (en) * 2013-04-10 2016-04-07 Mitsui Chemicals, Inc. Layered body
US20160204337A1 (en) * 2013-09-02 2016-07-14 Mitsui Chemicals, Inc. Layered body

Similar Documents

Publication Publication Date Title
Kim et al. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites
Balakrishnan et al. Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends
EP3187540B1 (en) Polyester resin composition and molding
CN108559232A (en) A kind of starch plastics film and preparation method thereof that tearing-resistant performance is excellent
Liu et al. Preparation and characterization of reinforced starch-based composites with compatibilizer by simple extrusion
EP2607428A1 (en) Resin composition
WO2006132187A1 (en) Biodegradable polyester resin composition, method for producing same, and molded body obtained by molding such composition
Bajwa et al. Influence of biobased plasticizers on 3D printed polylactic acid composites filled with sustainable biofiller
US10538662B2 (en) Polylactic acid resin composition and method for producing same
JP2009096892A (en) Polylactic acid-based resin composition and molded article of the same
CN113956630A (en) Completely biodegradable film and preparation method thereof
JP5344902B2 (en) Resin composition and molded body formed by molding the same
JP2011074354A (en) Resin composition
JP2007308650A (en) Biodegradable resin composition
Pan et al. Enhanced oxygen barrier properties of poly (lactic acid) via oxygen scavenging strategy combining with uniaxial stretching
EP4032954B1 (en) Biopolymer composition, preparation method for same and bioplastic using same
Fuqua et al. Characterization of polypropylene/corn fiber composites with maleic anhydride grafted polypropylene
Obasi et al. Effects of native cassava starch and compatibilizer on biodegradable and tensile properties of polypropylene
JP5573355B2 (en) Resin composition
JP2012219151A (en) Resin composition
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP2009242520A (en) Polylactic acid resin composition and molded article obtained by molding the same
CN112063099A (en) Degradable ABS plastic and preparation method thereof
JP2008195784A (en) Polyester-based resin composition and molded article thereof
JP2009221241A (en) Resin composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128