JP2008280474A - Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof - Google Patents

Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof Download PDF

Info

Publication number
JP2008280474A
JP2008280474A JP2007127713A JP2007127713A JP2008280474A JP 2008280474 A JP2008280474 A JP 2008280474A JP 2007127713 A JP2007127713 A JP 2007127713A JP 2007127713 A JP2007127713 A JP 2007127713A JP 2008280474 A JP2008280474 A JP 2008280474A
Authority
JP
Japan
Prior art keywords
polymer alloy
copolymer
polylactic acid
parts
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007127713A
Other languages
Japanese (ja)
Inventor
Nobuyuki Sakuta
信幸 作田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishikawa Rubber Co Ltd
Original Assignee
Nishikawa Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishikawa Rubber Co Ltd filed Critical Nishikawa Rubber Co Ltd
Priority to JP2007127713A priority Critical patent/JP2008280474A/en
Publication of JP2008280474A publication Critical patent/JP2008280474A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer alloy and a molded article thereof which reconcile such three conflicting physical properties as the impact resistance, the thermal resistance and the flexibility in a high balance and which contain approximately 50% by mass or more of a polylactic acid. <P>SOLUTION: The polymer alloy contains (A) a polylactic acid, (B) a polypropylene and (C) a copolymer of D-lactic acid and sugars. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリ乳酸、ポリプロピレン、およびD-乳酸と糖類との共重合体を含有することを特徴とするポリマーアロイに関する。より詳しくは、耐衝撃性、耐熱性、そして柔軟性の相反する3つの物性を高いバランスで両立する、ポリ乳酸を約50質量%以上含むポリマーアロイおよびその成形品と製造方法に関する。   The present invention relates to a polymer alloy containing polylactic acid, polypropylene, and a copolymer of D-lactic acid and a saccharide. More specifically, the present invention relates to a polymer alloy containing about 50% by mass or more of polylactic acid and a molded product thereof and a production method thereof, which achieves a high balance of three physical properties that conflict with each other in impact resistance, heat resistance, and flexibility.

近年、自動車業界ではプラスチック材料にかかわるCO2低減の期待からカーボンニュートラルなバイオプラスチックの自動車部品への採用が試みられており、実際にいくつかの例が報告されている。 In recent years, the use of carbon-neutral bioplastics in automobile parts has been attempted in the automobile industry in the hope of reducing CO 2 related to plastic materials, and several examples have been reported.

バイオプラスチックの中でも特にポリ乳酸は、融点が150〜180℃と比較的高く、剛性もあり溶融成形が可能なバイオプラスチックである。しかし、ポリ乳酸単体では、自動車部品のように過度の外力や高温下で使用する場合、その特性は不十分であり適用には限界がある。   Among the bioplastics, polylactic acid is a bioplastic that has a relatively high melting point of 150 to 180 ° C., has rigidity, and can be melt-molded. However, polylactic acid alone has insufficient properties when used under excessive external force or high temperature like automobile parts, and its application is limited.

この問題を解決する方法として、例えば、ポリ乳酸に有機系充填剤として古紙粉を配合することによる耐衝撃性、耐熱性に優れた自動車部品用材料が報告されている(特許文献1参照)。しかし、特許文献1に記載の材料では柔軟性に乏しいという問題がある。一方、ポリ乳酸成形品に柔軟性を付与する方法として、ポリ乳酸に脂肪族ポリエステルを配合することで柔軟性に優れた成形品が報告されている(特許文献2参照)。しかし、特許文献2に記載の材料には、耐熱性に乏しいという問題がある。   As a method for solving this problem, for example, a material for automobile parts excellent in impact resistance and heat resistance by mixing waste paper powder as an organic filler with polylactic acid has been reported (see Patent Document 1). However, the material described in Patent Document 1 has a problem of poor flexibility. On the other hand, as a method for imparting flexibility to a polylactic acid molded article, a molded article excellent in flexibility has been reported by blending an aliphatic polyester with polylactic acid (see Patent Document 2). However, the material described in Patent Document 2 has a problem of poor heat resistance.

ここで、ポリ乳酸成形品において、耐衝撃性、耐熱性、そして柔軟性の3項目を同時に満たすためには、ポリ乳酸と別の優れた物性の樹脂との混合が考えられる。しかしながらポリ乳酸は極性を有する樹脂であり、ポリ乳酸に無極性の汎用樹脂、たとえばポリプロピレンを混合しても樹脂同士の界面は相分離し、混合した組成物を射出成形しても前記3項目の物性を全て満足することはできない。   Here, in order to simultaneously satisfy the three items of impact resistance, heat resistance and flexibility in a polylactic acid molded product, it is conceivable to mix polylactic acid with a resin having other excellent physical properties. However, polylactic acid is a resin having polarity. Even if a non-polar general-purpose resin such as polypropylene is mixed with polylactic acid, the interface between the resins is phase-separated. Not all physical properties can be satisfied.

特開2005-8712号公報JP 2005-8712 A 特開2005-36179号公報JP 2005-36179 A

本発明は、従来技術における上記の問題点を改良し、耐衝撃性、耐熱性、および柔軟性の相反する3つの物性を高いバランスで両立する、ポリマーアロイおよびそのポリ乳酸成形品を提供することを目的とする。   The present invention provides a polymer alloy and a polylactic acid molded product thereof, which improve the above-mentioned problems in the prior art and achieve a high balance of the three physical properties that conflict with impact resistance, heat resistance, and flexibility. With the goal.

本発明者は、上記課題を解決するために鋭意検討を重ねた結果、(A)ポリ乳酸、(B)ポリプロピレン、および(C)D-乳酸と糖類との共重合体を含有するポリマーアロイポリマーアロイを見出し、本発明を完成させた。ここで(A)ポリ乳酸とはポリ-L-乳酸(PLLA)である。   As a result of intensive studies in order to solve the above-mentioned problems, the present inventor has (A) polylactic acid, (B) polypropylene, and (C) a polymer alloy polymer containing a copolymer of D-lactic acid and a saccharide. The alloy was found and the present invention was completed. Here, (A) polylactic acid is poly-L-lactic acid (PLLA).

すなわち、本発明は以下よりなる。
1.(A)ポリ乳酸、(B)ポリプロピレン、および(C)D-乳酸と糖類との共重合体を含有するポリマーアロイ。
2.(A)ポリ乳酸100重量部に対し、(B)ポリプロピレンを60〜100重量部、および(C)D-乳酸と糖類との共重合体を含有するポリマーアロイを1〜10重量部を含有する前項1に記載のポリマーアロイ。
3.(B)ポリプロピレンの荷重たわみ温度(JIS K7191、荷重0.45MPa)が100℃以上である前項1または2に記載のポリマーアロイ。
4.(C)D-乳酸と糖類との共重合体が、D-乳酸とデンプンとの共重合体である前項1〜3のいずれか1項に記載のポリマーアロイ。
5.(D)相溶化剤をさらに含有する前項1〜4のいずれか1項に記載のポリマーアロイ。
6.(A)ポリ乳酸100重量部に対し、(D)相溶化剤を2〜10重量部含有する前項5に記載のポリマーアロイ。
7.(D)相溶化剤が、アクリル系ブロック共重合体、スチレン−ブタジエン共重合体、2重結合部分を水素添加したスチレン−ブタジエン共重体から選択される少なくとも1種類である前項5または6に記載のポリマーアロイ。
8.(E)柔軟性付与剤をさらに含有する前項1〜7のいずれか1項に記載のポリマーアロイ。
9.(A)ポリ乳酸100重量部に対し、(E)柔軟性付与剤を2〜10重量部含有する前項8に記載のポリマーアロイ。
10.(E)柔軟性付与剤がスチレン−エチレン−プロピレン−スチレン共重合体、スチレン-ブタジエン共重合体から選択される少なくとも1種類である前項8または9に記載のポリマーアロイ。
11.前項1〜10のいずれか1項に記載されるポリマーアロイを成形してなる成形品。
12.以下の工程を含むポリマーアロイの製造方法。
(1)(A)ポリ乳酸および(C)D-乳酸と糖類との共重合体を溶融混練する工程
(2)さらに(B)ポリプロピレン、(D)相溶化剤、および(E)柔軟性付与剤を配合し、再度溶融混練する工程
That is, this invention consists of the following.
1. A polymer alloy containing (A) polylactic acid, (B) polypropylene, and (C) a copolymer of D-lactic acid and a saccharide.
2. (A) 100 parts by weight of polylactic acid contains (B) 60 to 100 parts by weight of polypropylene, and (C) 1 to 10 parts by weight of a polymer alloy containing a copolymer of D-lactic acid and a saccharide. 2. The polymer alloy according to item 1.
3. (B) The polymer alloy according to item 1 or 2, wherein the deflection temperature under load (JIS K7191, load 0.45 MPa) of polypropylene is 100 ° C. or higher.
4). (C) The polymer alloy according to any one of items 1 to 3, wherein the copolymer of D-lactic acid and saccharide is a copolymer of D-lactic acid and starch.
5. (D) The polymer alloy according to any one of items 1 to 4, further comprising a compatibilizing agent.
6). (A) The polymer alloy according to item 5 above, which contains 2 to 10 parts by weight of a compatibilizing agent with respect to 100 parts by weight of polylactic acid.
7). (D) Item 5 or 6, wherein the compatibilizer is at least one selected from an acrylic block copolymer, a styrene-butadiene copolymer, and a styrene-butadiene copolymer obtained by hydrogenating a double bond portion. Polymer alloy.
8). (E) The polymer alloy according to any one of items 1 to 7, further comprising a flexibility-imparting agent.
9. 9. The polymer alloy according to item 8 above, which contains 2 to 10 parts by weight of (E) a flexibility imparting agent with respect to 100 parts by weight of (A) polylactic acid.
10. (E) The polymer alloy according to item 8 or 9, wherein the flexibility-imparting agent is at least one selected from a styrene-ethylene-propylene-styrene copolymer and a styrene-butadiene copolymer.
11. 11. A molded article formed by molding the polymer alloy described in any one of 1 to 10 above.
12 The manufacturing method of the polymer alloy including the following processes.
(1) A step of melt-kneading a copolymer of (A) polylactic acid and (C) D-lactic acid and a saccharide
(2) Step of further blending (B) polypropylene, (D) compatibilizer, and (E) flexibility imparting agent, and melt-kneading again

本発明のポリマーアロイによれば、耐衝撃性、耐熱性、および柔軟性の3項目を同時に満たし、過度の外力や高温下で使用に耐えうるポリ乳酸成形品を提供することができる。従って自動車用部品、OA機器、情報・通信機器、家庭電化製品、家庭日用品へ適用することができる。   According to the polymer alloy of the present invention, it is possible to provide a polylactic acid molded product that satisfies the three items of impact resistance, heat resistance and flexibility at the same time and can withstand use under excessive external force or high temperature. Therefore, the present invention can be applied to automobile parts, OA equipment, information / communication equipment, home appliances and household goods.

〈ポリマーアロイの組成〉
本発明のポリマーアロイは、(A)ポリ乳酸、(B)ポリプロピレン、および(C)D-乳酸と糖類との共重合体を含む。
<Composition of polymer alloy>
The polymer alloy of the present invention includes (A) polylactic acid, (B) polypropylene, and (C) a copolymer of D-lactic acid and a saccharide.

(A)ポリ乳酸
本発明に使用するポリ乳酸におけるL-乳酸およびD-乳酸の含有量は、特に制限されること無く好適に使用することができる。ポリ乳酸の製造方法としては、公知の重合方法を用いることができ、例えば、乳酸からの直接重合法およびラクチドを介する開環重合法などが挙げられる。
(A) Polylactic acid The contents of L-lactic acid and D-lactic acid in the polylactic acid used in the present invention can be suitably used without any particular limitation. As a method for producing polylactic acid, a known polymerization method can be used, and examples thereof include a direct polymerization method from lactic acid and a ring-opening polymerization method via lactide.

ポリ乳酸の分子量や分子量分布については、実質的に成形加工が可能であれば特に制限されるものではないが、重量平均分子量としては、通常3万以上、好ましくは5万以上、さらに7万以上であることが望ましい。   The molecular weight and molecular weight distribution of polylactic acid are not particularly limited as long as it can be practically processed, but the weight average molecular weight is usually 30,000 or more, preferably 50,000 or more, and further 70,000 or more. It is desirable that

ポリ乳酸の融点については、特に制限されるものではないが、140℃以上であることが好ましく、さらに150℃以上であることが好ましく、特に160℃以上であることが望ましい。   The melting point of polylactic acid is not particularly limited, but is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and particularly preferably 160 ° C. or higher.

ポリ乳酸の製造法は特に限定されるものではなく、乳酸、または乳酸と脂肪族ヒドロキシカルボン酸との混合物を直接脱水縮合する方法、乳酸の環状二量体を溶融重合する開環重合法、乳酸と脂肪族ヒドロキシカルボン酸の環状二量体を溶融重合する開環重合法、乳酸、脂肪族ジオールおよび脂肪族ジカルボン酸の混合物を直接脱水重縮合する方法などが挙げられる。   The production method of polylactic acid is not particularly limited, and a method of directly dehydrating condensation of lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid, a ring-opening polymerization method of melt-polymerizing a cyclic dimer of lactic acid, and lactic acid And a ring-opening polymerization method in which a cyclic dimer of an aliphatic hydroxycarboxylic acid and a mixture of lactic acid, an aliphatic diol and an aliphatic dicarboxylic acid are directly dehydrated and polycondensed.

(B)ポリプロピレン(無極性樹脂)
本発明のポリマーアロイにおける(B)ポリプロピレンの配合量は、(A)ポリ乳酸100重量部に対して、60〜100重量部の範囲内とすることが好ましい。(A)ポリ乳酸100重量部に対して、(B)ポリプロピレンを60重量部より少なく配合すると、ポリマーアロイ成形品の構造が、ポリ乳酸の中に無極性樹脂が点在する構造となり、成形品が加水分解の影響を非常に受けやすくなるからである。
(B) Polypropylene (nonpolar resin)
The blending amount of (B) polypropylene in the polymer alloy of the present invention is preferably in the range of 60 to 100 parts by weight per 100 parts by weight of (A) polylactic acid. When blending less than 60 parts by weight of (B) polypropylene with 100 parts by weight of (A) polylactic acid, the structure of the polymer alloy molded product becomes a structure in which non-polar resin is dotted in the polylactic acid, and the molded product Is very susceptible to hydrolysis.

本明細書において、「無極性樹脂」とは、電気双極子を持たない分子により構成された樹脂、あるいは極性結合をもっていても分子の対称性からその双極子モーメントがうち消された構造を持つ分子、またはそれに近い極性の低い極性結合を持つ分子により構成された樹脂を意味する。無極性樹脂として、ポリプロピレン、ポリエチレン等のポリオレフィン樹脂が挙げられるが、特にポリプロピレンを用いる。これはポリプロピレンが汎用樹脂として、もっとも幅広く使用されており、コスト的にも有利だからである。これらの無極性樹脂は広く市販されている。   In this specification, “nonpolar resin” means a resin composed of molecules having no electric dipole, or a molecule having a structure in which the dipole moment is eliminated due to the symmetry of the molecule even if it has a polar bond. Or a resin composed of molecules having a polar bond with low polarity close to that. Nonpolar resins include polyolefin resins such as polypropylene and polyethylene, and polypropylene is particularly used. This is because polypropylene is most widely used as a general-purpose resin and is advantageous in terms of cost. These nonpolar resins are widely commercially available.

(C)D-乳酸と糖類との共重合体
本発明のポリマーアロイは、結晶化促進剤としてD-乳酸と糖類との共重合体を含有する。本発明のポリマーアロイにおけるD-乳酸と糖類との共重合体の配合量は、ポリ乳酸100重量部に対して1〜10重量部の範囲内とすることが好ましい。1重量部未満であると結晶化促進剤として樹脂強度向上効果が低く、10重量部以上にすると生分解速度が低下したり、着色したりするからである。
(C) Copolymer of D-lactic acid and saccharide The polymer alloy of the present invention contains a copolymer of D-lactic acid and saccharide as a crystallization accelerator. The blending amount of the copolymer of D-lactic acid and saccharide in the polymer alloy of the present invention is preferably in the range of 1 to 10 parts by weight with respect to 100 parts by weight of polylactic acid. This is because if it is less than 1 part by weight, the effect of improving the resin strength as a crystallization accelerator is low, and if it is 10 parts by weight or more, the biodegradation rate is reduced or colored.

前記D-乳酸は、市販されている純度(水溶液中の濃度)50%から95%までのいずれのものも利用可能であるが、入手の容易な90%乳酸が好ましい。この際、前記D-乳酸の光学純度は80%以上であることが好ましい。糖類としては、特に制限されないが、デンプン、ブドウ糖、ショ糖、および酢酸セルロース等が挙げられ、中でも原料コスト、反応性等の点からデンプンが好ましい。   As the D-lactic acid, commercially available purity (concentration in an aqueous solution) of 50% to 95% can be used, but 90% lactic acid which is easily available is preferable. At this time, the optical purity of the D-lactic acid is preferably 80% or more. The saccharide is not particularly limited, and examples thereof include starch, glucose, sucrose, and cellulose acetate. Among them, starch is preferable from the viewpoint of raw material cost, reactivity, and the like.

D-乳酸と糖類との共重合体におけるD-乳酸と糖類の配合比は、質量比で99.9〜90:0.1〜10の範囲内とすることが好ましい。糖類の配合比が0.1未満であると結晶化促進剤としての効果が低く、10以上であると結晶化促進剤としての作用が強すぎて、配合された樹脂の融点が高すぎて成形加工が困難になるためである。   The blending ratio of D-lactic acid and saccharide in the copolymer of D-lactic acid and saccharide is preferably within a range of 99.9 to 90: 0.1 to 10 by mass ratio. If the compounding ratio of the saccharide is less than 0.1, the effect as a crystallization accelerator is low, and if it is 10 or more, the action as a crystallization accelerator is too strong, and the melting point of the compounded resin is too high, and the molding process is too high. This is because it becomes difficult.

(D)相溶化剤
本発明のポリマーアロイは、さらに相溶化剤を配合することができる。本発明のポリマーアロイにおける相溶化剤の配合量は、ポリ乳酸100重量部に対して2〜10重量部の範囲内とすることが好ましい。配合量が2未満であると相溶化剤としての効果が低く、10以上であると耐熱性および耐衝撃性に劣り、更にコストも高くなるからである。
(D) Compatibilizer The polymer alloy of the present invention can further contain a compatibilizer. The blending amount of the compatibilizer in the polymer alloy of the present invention is preferably in the range of 2 to 10 parts by weight with respect to 100 parts by weight of polylactic acid. This is because if the blending amount is less than 2, the effect as a compatibilizer is low, and if it is 10 or more, the heat resistance and impact resistance are inferior, and the cost increases.

相溶化剤として、例えば、アクリル系ブロック共重合体、スチレン−ブタジエン共重合体、二重結合部分を水素添加したスチレン−ブタジエン共重合体が挙げられる。これらの相溶化剤は、1種を単独で用いてもよく、複数種を組合わせて用いてもよい。   Examples of the compatibilizer include acrylic block copolymers, styrene-butadiene copolymers, and styrene-butadiene copolymers obtained by hydrogenating double bond portions. These compatibilizers may be used alone or in combination of two or more.

前記アクリル系ブロック共重合体は、ゲルパーミエーションクロマトグラフィーで測定した重量平均分子量が、3000〜100000の範囲内であることが好ましい。分子量が3000未満の低分子量であると、成形品からブリードアウトの恐れがあり、分子量が100000以上では他の樹脂との混練時に溶融粘度が高すぎるため、うまく混練できないからである。アクリル系ブロック共重合体は、アクリル系重合体ブロックとプロピレン系重合体ブロックからなることが好ましい。アクリル系重合体ブロックとプロピレン系重合体ブロックとの混合比(質量)を、10〜90:90〜10の範囲内とすることが好ましい。この範囲内とすることで、ポリプロピレンのポリ乳酸への相溶化性の向上が期待できるからである。   The acrylic block copolymer preferably has a weight average molecular weight measured by gel permeation chromatography within a range of 3,000 to 100,000. If the molecular weight is less than 3000, there is a risk of bleeding out from the molded product, and if the molecular weight is 100,000 or more, the melt viscosity is too high when kneading with other resins, so that kneading cannot be performed well. The acrylic block copolymer is preferably composed of an acrylic polymer block and a propylene polymer block. The mixing ratio (mass) of the acrylic polymer block and the propylene polymer block is preferably in the range of 10 to 90:90 to 10. It is because the compatibility of polypropylene with polylactic acid can be expected to be within this range.

前記スチレン−ブタジエン共重合体は、スチレン系単量体単位の含有量が10〜90質量%の範囲内であることが好ましい。この範囲内とすることで、相溶化剤としての機能が期待できるからである。スチレン−ブタジエン共重合体の構造としては、例えば、ランダム、ブロック、テーパー等公知の構造が挙げられる。また、スチレン−ブタジエン共重合体は単独で用いてもよいし、複数種を組合わせて用いてもよい。   The styrene-butadiene copolymer preferably has a styrene monomer unit content in the range of 10 to 90% by mass. It is because the function as a compatibilizing agent can be expected by setting it within this range. Examples of the structure of the styrene-butadiene copolymer include known structures such as random, block, and taper. Moreover, a styrene-butadiene copolymer may be used independently and may be used in combination of multiple types.

前記二重結合部分を水素添加したスチレン−ブタジエン共重合体は、スチレン系単量体単位の含有量が10〜90質量%の範囲内であることが好ましい。この範囲内とすることで、相溶化剤としての機能が期待できるからである。   The styrene-butadiene copolymer obtained by hydrogenating the double bond portion preferably has a styrene monomer unit content in the range of 10 to 90% by mass. It is because the function as a compatibilizing agent can be expected by setting it within this range.

(E)柔軟性付与剤
本発明のポリマーアロイは、さらに柔軟性付与剤を配合することができる。本発明のポリマーアロイにおける柔軟性付与剤の配合量は、ポリ乳酸100重量部に対して2〜10重量部の範囲内とすることが好ましい。この範囲内とすることにより、柔軟性に優れた成形品が得られ、コスト的にも優位であるからである。
(E) Flexibility-imparting agent The polymer alloy of the present invention may further contain a flexibility-imparting agent. The blending amount of the flexibility-imparting agent in the polymer alloy of the present invention is preferably in the range of 2 to 10 parts by weight with respect to 100 parts by weight of polylactic acid. By setting it within this range, a molded product having excellent flexibility can be obtained, which is advantageous in terms of cost.

柔軟性付与剤としては、例えば、スチレン−エチレン−プロピレン−スチレン共重合体、スチレン−ブタジエン共重合体などが挙げられる。これらの柔軟性付与剤は、1種を単独で用いてもよく、複数種を組合わせて用いてもよい。   Examples of the flexibility-imparting agent include styrene-ethylene-propylene-styrene copolymer and styrene-butadiene copolymer. These flexibility-imparting agents may be used alone or in combination of two or more.

前記スチレン−エチレン−プロピレン−スチレン共重合体は、スチレン系単量体単位の含有量が10〜90質量%の範囲内であることが好ましい。この範囲内とすることで、柔軟性付与剤としての機能が期待できるからである。スチレン−エチレン−プロピレン−スチレン共重合体の構造としては、例えば、ランダム、ブロック、テーパー等公知の構造が挙げられる。また、スチレン−エチレン−プロピレン−スチレン共重合体は単独で用いてもよいし、複数種を組合わせて用いてもよい。また、前記スチレン−ブタジエン共重合体は、スチレン系単量体単位の含有量が10〜90質量%の範囲内であることが好ましい。この範囲内とすることで、柔軟性付与剤としての機能が期待できるからである。   The styrene-ethylene-propylene-styrene copolymer preferably has a styrene monomer unit content in the range of 10 to 90% by mass. It is because the function as a softness | flexibility imparting agent can be anticipated by setting it as this range. Examples of the structure of the styrene-ethylene-propylene-styrene copolymer include known structures such as random, block, and taper. Moreover, a styrene-ethylene-propylene-styrene copolymer may be used independently and may be used in combination of multiple types. The styrene-butadiene copolymer preferably has a styrene monomer unit content in the range of 10 to 90% by mass. It is because the function as a softness | flexibility imparting agent can be anticipated by setting it as this range.

〈ポリマーアロイの製造方法〉
本発明のポリマーアロイは、以下の工程(1)および(2)を含む方法により製造することができる。
(1)(A)ポリ乳酸および(C)D-乳酸と糖類との共重合体を、溶融混練する工程
(2)さらに(B)ポリプロピレン、(D)相溶化剤、(E)柔軟性付与剤を配合し、再度溶融混練する工程
<Method for producing polymer alloy>
The polymer alloy of the present invention can be produced by a method including the following steps (1) and (2).
(1) A step of melt kneading a copolymer of (A) polylactic acid and (C) D-lactic acid and a saccharide
(2) Step of further blending (B) polypropylene, (D) compatibilizer, (E) flexibility imparting agent, and melt-kneading again

工程(1)は、(A)ポリ乳酸および(C)D-乳酸と糖類との共重合体(いずれも固形物)を、高速攪拌機、低速攪拌機などを用いて均一に混合した後、一軸または多軸の押し出し機で溶融混練し、ペレットを得る工程である。   In step (1), (A) polylactic acid and (C) a copolymer of D-lactic acid and saccharide (both solid materials) are uniformly mixed using a high-speed stirrer, a low-speed stirrer, etc. This is a step of melt-kneading with a multi-screw extruder to obtain pellets.

また、工程(2)は、工程(1)で得られたペレットに、(B)ポリプロピレン、(D)相溶化剤および(E)柔軟性付与剤を、高速攪拌機、低速攪拌機などを用いて均一に混合した後、一軸または多軸の押し出し機で溶融混練する工程である。   In step (2), (B) polypropylene, (D) compatibilizer, and (E) flexibility imparting agent are uniformly added to the pellets obtained in step (1) using a high-speed stirrer, a low-speed stirrer, or the like. And then kneading with a uniaxial or multiaxial extruder.

前記配合成分の押し出し機への供給方法は、(A)ポリ乳酸および(C)D-乳酸と糖類との共重合体、または(B)ポリプロピレン、(D)相溶化剤および(E)柔軟性付与剤を高速攪拌機、低速攪拌機などを用いて均一に混合した後ホッパーより供給する一括法であってもよく、別々に押し出し機に直接供給する別添加法でもよい。   The method of supplying the compounding ingredients to the extruder includes (A) polylactic acid and (C) a copolymer of D-lactic acid and a saccharide, or (B) polypropylene, (D) a compatibilizing agent, and (E) flexibility. A batch method in which the imparting agent is uniformly mixed using a high-speed stirrer, a low-speed stirrer or the like and then fed from the hopper may be used, or a separate addition method in which the imparting agent is separately fed directly to the extruder may be used.

溶融混練時の温度は、150〜200℃の範囲内とすることが好ましい。また、溶融混練時間は、30〜900秒の範囲内とすることが好ましい。   The temperature during melt kneading is preferably in the range of 150 to 200 ° C. The melt kneading time is preferably in the range of 30 to 900 seconds.

本発明のポリマーアロイには、必要に応じて、成形加工性、樹脂強度、難燃性等の向上を目的として、ヒュームドシリカ、湿式シリカ、カーボンブラック、タルク、マイカ、クレー、アルミナ、黒鉛等の各種無機充填剤を添加してもよい。また耐衝撃性を上げる目的で、脂肪酸、大豆油、菜種油、ロジン等の植物油系軟化剤、セルロース粉末、繊維、天然ゴム、ファクチス等を添加してもよい。さらに発泡させることを目的として、重炭酸ナトリウム、重炭酸アンモニウム、炭酸ナトリウム、炭酸アンモニウム等の無機発泡剤や、アゾジカルボンアミド、p,p'-オキシビスベンゼンスルホニルヒドラジド等の有機発泡剤を添加してもよい。   For the polymer alloy of the present invention, fumed silica, wet silica, carbon black, talc, mica, clay, alumina, graphite, etc., if necessary, for the purpose of improving molding processability, resin strength, flame retardancy, etc. Various inorganic fillers may be added. For the purpose of increasing impact resistance, fatty acid, soybean oil, rapeseed oil, rosin and other vegetable oil softeners, cellulose powder, fiber, natural rubber, factice and the like may be added. For the purpose of foaming, inorganic foaming agents such as sodium bicarbonate, ammonium bicarbonate, sodium carbonate, ammonium carbonate, and organic foaming agents such as azodicarbonamide, p, p'-oxybisbenzenesulfonylhydrazide are added. May be.

〈ポリマーアロイの成形方法〉
本発明のポリマーアロイは、通常のプラスチックの成形に用いられる押出機、射出成形機などを用いて押し出し、射出成形が可能である。射出成形条件は、ポリマーアロイの組成、分子量、配合割合、添加剤の種類等を勘案して適宜決定すればよく、とくに制限されるものではないが、例えば、シリンダ温度160〜180℃、射出圧力45〜70kg/cm2、射出時間0.5〜10秒、ノズル温度175〜185℃等が採用できる。
<Polymer alloy molding method>
The polymer alloy of the present invention can be extruded and injection-molded using an extruder, an injection molding machine or the like used for ordinary plastic molding. The injection molding conditions may be appropriately determined in consideration of the composition of the polymer alloy, the molecular weight, the blending ratio, the type of additives, etc., and are not particularly limited. For example, the cylinder temperature is 160 to 180 ° C., the injection pressure 45 to 70 kg / cm 2 , injection time 0.5 to 10 seconds, nozzle temperature 175 to 185 ° C., etc. can be employed.

また、金型の加熱温度は、30〜130℃であることが好ましい。なお、射出成形されたポリマーアロイの金型内での保持時間(冷却時間)は、例えば30〜180秒であるのが好ましい。   Moreover, it is preferable that the heating temperature of a metal mold | die is 30-130 degreeC. In addition, it is preferable that the retention time (cooling time) in the metal mold | die of the injection-molded polymer alloy is 30 to 180 seconds, for example.

本発明の成形品の具体例としては、例えば、バンパー、インスツルメントパネルおよびドアトリム等の自動車用樹脂部品等、各種筐体等の電化製品用樹脂部品、コンテナーおよび栽培容器等の農業資材や農業機械用樹脂部品、浮きおよび水産加工品容器等の水産業務用樹脂部品、皿、コップおよびスプーン等の食器や食品容器、注射器や点滴容器等の医療用樹脂部品、ドレーン材、フェンス、収納箱および工事用配電盤等の住宅・土木・建築材用樹脂部品、並びにクーラーボックス、団扇および玩具等のレジャー、雑貨用樹脂部品、が挙げられる。また、フィルム、シート、パイプ等の押出成形品、および中空成形品等とすることもできる。   Specific examples of the molded product of the present invention include, for example, automotive resin parts such as bumpers, instrument panels and door trims, resin parts for electrical appliances such as various cases, agricultural materials such as containers and cultivation containers, and agriculture Resin parts for machinery, plastic parts for marine products such as floats and processed fishery products containers, dishes and food containers such as dishes, cups and spoons, medical resin parts such as syringes and infusion containers, drain materials, fences, storage boxes and Resin parts for housing, civil engineering, and building materials such as construction switchboards, and leisure and miscellaneous resin parts for coolers, fan fans, and toys. Moreover, it can also be set as extrusion molded articles, such as a film, a sheet | seat, a pipe, and a hollow molded article.

〈ポリマーアロイの特性〉
上記の方法によれば、耐衝撃性、耐熱性、そして柔軟性に優れた本発明のポリマーアロイおよびその成形品を得ることができる。
<Characteristics of polymer alloy>
According to said method, the polymer alloy of this invention excellent in impact resistance, heat resistance, and a softness | flexibility and its molded article can be obtained.

ポリマーアロイおよびその成形品の耐衝撃性は、JIS K7110に規定される測定方法により測定するIzod衝撃強度により評価することができる。Izod衝撃強度とは、所定の形状・寸法に作製した試験片の一端を固定し、これをハンマーによって打撃し、衝撃に要するエネルギーと試験片の断面積から得る、衝撃強さをいう。Izod衝撃強度は、例えば、Izod衝撃試験機(安田精機製作所(株)製)などを用いて測定することができる。本発明のポリマーアロイおよびその成形品は、Izod衝撃強度が4.0kJ/m2以上であれば、良好な耐衝撃性を有していると評価できる。 The impact resistance of a polymer alloy and its molded product can be evaluated by Izod impact strength measured by a measuring method specified in JIS K7110. The Izod impact strength refers to the impact strength obtained from the energy required for impact and the cross-sectional area of the test piece by fixing one end of the test piece prepared in a predetermined shape and size and hitting it with a hammer. The Izod impact strength can be measured using, for example, an Izod impact tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). The polymer alloy of the present invention and the molded product thereof can be evaluated as having good impact resistance when the Izod impact strength is 4.0 kJ / m 2 or more.

ポリマーアロイおよびその成形品の耐熱性は、JIS K7191に規定される測定方法により測定する荷重たわみ温度により評価することができる。荷重たわみ温度とは、一定速度で昇温したときにプラスチックの単純ばりが規定された荷重の下で一定量だけたわむときの温度をいう。荷重たわみ温度は、例えば、自動ディストーションテスター(安田精機製作所(株)製)などを用いて測定することができる。本発明のポリマーアロイおよびその成形品は、荷重たわみ温度が115℃以上であれば、良好な耐熱性を有していると評価できる。   The heat resistance of the polymer alloy and its molded product can be evaluated by the deflection temperature under load measured by the measuring method specified in JIS K7191. The deflection temperature under load refers to the temperature at which a simple beam of plastic bends by a certain amount under a prescribed load when the temperature is raised at a constant speed. The deflection temperature under load can be measured using, for example, an automatic distortion tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd.). If the deflection temperature under load is 115 ° C. or higher, the polymer alloy of the present invention and the molded product thereof can be evaluated as having good heat resistance.

ポリマーアロイおよびその成形品の柔軟性は、JIS K7161に規定される測定方法により測定する引張破断伸びにより評価することができる。引張破断伸びは、例えば、オートグラフInstoron 5566(インストロン(株)製)などを用いて測定することができる。本発明のポリマーアロイおよびその成形品は、引張破断伸びが5%以上であれば、良好な柔軟性を有していると評価できる。   The flexibility of the polymer alloy and its molded product can be evaluated by the tensile elongation at break measured by the measuring method specified in JIS K7161. The tensile breaking elongation can be measured using, for example, Autograph Instoron 5566 (manufactured by Instron Co., Ltd.). The polymer alloy of the present invention and its molded product can be evaluated as having good flexibility if the tensile elongation at break is 5% or more.

1.成形品の作製
(材料)
以下の材料を使用して、実施例1および比較例1〜6の成形品を作製した。
(A)ポリ乳酸:LACEA H-100J(三井化学(株)製)
(B)ポリプロピレン:荷重たわみ温度(JIS K7110B法):115℃、ノバテックBC03C(日本ポリプロ(株)製)
(C)D-乳酸と糖類との共重合体:COPLA-D(D-乳酸(PURAC DLA 90(ピューラック社製)とデンプン(0.1質量%)からモノブチルスズオキシド(0.05質量%)を触媒とし、195℃、0.01kPaの条件下で12〜22時間直接重縮合反応を行って得た材料。西川ゴム社製(特許第3739003号))
(D)相溶化剤:
アクリル系ブロック共重合体、パラペットG(クラレ(株)製)
スチレン−ブタジエン共重合体、タフテックN501(旭化成(株)製)
水素添加スチレン−ブタジエン共重合体(旭化成(株)製)
(E)柔軟性付与剤:
スチレン−エチレン−プロピレン−スチレン共重合体、SEPTON 2004(クラレ(株)製)
1. Fabrication of molded products (materials)
Molded articles of Example 1 and Comparative Examples 1 to 6 were produced using the following materials.
(A) Polylactic acid: LACEA H-100J (Mitsui Chemicals)
(B) Polypropylene: Deflection temperature under load (JIS K7110B method): 115 ° C, Novatec BC03C (manufactured by Nippon Polypro Co., Ltd.)
(C) Copolymer of D-lactic acid and saccharide: COPLA-D (from D-lactic acid (PURAC DLA 90 (Pureac) and starch (0.1% by mass) and monobutyltin oxide (0.05% by mass) as a catalyst) , Material obtained by direct polycondensation reaction for 12-22 hours under the conditions of 195 ° C. and 0.01 kPa (manufactured by Nishikawa Rubber Co., Ltd. (Patent No. 3739003))
(D) Compatibilizer:
Acrylic block copolymer, Parapet G (manufactured by Kuraray Co., Ltd.)
Styrene-butadiene copolymer, Tuftec N501 (Asahi Kasei Corporation)
Hydrogenated styrene-butadiene copolymer (manufactured by Asahi Kasei Corporation)
(E) Flexibility imparting agent:
Styrene-ethylene-propylene-styrene copolymer, SEPTON 2004 (manufactured by Kuraray Co., Ltd.)

(実施例1)成形品Aの作製
(A)ポリ乳酸ペレット100重量部に対し、(C)D-乳酸と糖類との共重合体ペレットを5重量部配合し、2軸押出機(TEX-30α、日本製鋼所(株)製)で溶融混練してペレットを得た
。このとき、2軸押出機での樹脂溶融温度は190℃以下とした。
その後、得られたD-乳酸と糖類との共重合体入りポリ乳酸ペレット中のポリ乳酸成分100重量部に対し、(B)ポリプロピレン85重量部、(D)相溶化剤5重量部、(E)柔軟性付与剤5重量部を配合して2軸押出機により190℃以下で溶融混練して押出し、ポリマーアロイのペレットを得た。
(Example 1) Production of molded product A
(A) 100 parts by weight of polylactic acid pellets are blended with 5 parts by weight of copolymer pellets of (C) D-lactic acid and saccharide, and a twin screw extruder (TEX-30α, manufactured by Nippon Steel Works) And kneaded to obtain pellets. At this time, the resin melting temperature in the twin screw extruder was set to 190 ° C. or less.
Thereafter, (B) 85 parts by weight of polypropylene, (D) 5 parts by weight of compatibilizer, (E) with respect to 100 parts by weight of the polylactic acid component in the obtained polylactic acid pellets containing a copolymer of D-lactic acid and saccharide. ) 5 parts by weight of a flexibility-imparting agent was blended and melt-kneaded at 190 ° C. or lower by a twin-screw extruder and extruded to obtain polymer alloy pellets.

得られたポリマーアロイペレットを180℃で射出成形してポリマーアロイ成形品を作製した。このときの金型温度は40℃、成形サイクルの時間は40秒とした。得られた成形品を110℃に保った熱風乾燥オーブン(熱風循環式定温恒温機そよかぜ、イスズ製作所(株)製)で15分間アニーリングしてポリ乳酸成分を結晶化し、ポリマーアロイ成形品Aを得た。得られた成形品Aを、恒湿機中で温度23℃、湿度50%の状態で48時間以上静置して樹脂の状態を安定化させ、各物性を測定した。   The obtained polymer alloy pellets were injection molded at 180 ° C. to produce a polymer alloy molded product. The mold temperature at this time was 40 ° C., and the molding cycle time was 40 seconds. The resulting molded product was annealed for 15 minutes in a hot air drying oven (hot air circulation type constant temperature and temperature controlled soyokaze, manufactured by Isuzu Manufacturing Co., Ltd.) maintained at 110 ° C. to crystallize the polylactic acid component to obtain a polymer alloy molded product A It was. The obtained molded product A was allowed to stand for 48 hours or more in a humidity controller at a temperature of 23 ° C. and a humidity of 50% to stabilize the state of the resin, and each physical property was measured.

(実施例2)成形品Bの作製
(C)D-乳酸と糖類との共重合体の配合量を、(A)ポリ乳酸100重量部に対して2.5重量部とした以外は、実施例1と同様にして成形品Bを作製し、各物性を測定した。
(Example 2) Production of molded product B
(C) Molded product B was prepared in the same manner as in Example 1 except that the amount of the copolymer of D-lactic acid and saccharide was 2.5 parts by weight with respect to 100 parts by weight of (A) polylactic acid. Each physical property was measured.

(実施例3)成形品Cの作製
(D)相溶化剤であるアクリル系ブロック共重合体の配合量を、(A)ポリ乳酸100重量部に対して2.5重量部とした以外は、実施例1と同様にして成形品Cを作製し、各物性を測定した。
(Example 3) Production of molded product C
(D) Molded product C is produced in the same manner as in Example 1 except that the blending amount of the acrylic block copolymer as a compatibilizer is 2.5 parts by weight with respect to 100 parts by weight of (A) polylactic acid. Each physical property was measured.

(実施例4)成形品Dの作製
(E)柔軟性付与剤であるスチレン−エチレン−プロピレン−スチレン共重合体の配合量を、(A)ポリ乳酸100重量部に対して2.5重量部とした以外は、実施例1と同様にして成形品Dを作製し、各物性を測定した。
(Example 4) Production of molded product D
(E) The same amount as that of Example 1 except that the blending amount of the styrene-ethylene-propylene-styrene copolymer, which is a flexibility-imparting agent, was 2.5 parts by weight with respect to 100 parts by weight of (A) polylactic acid. Molded product D was prepared and each physical property was measured.

(実施例5および6)成形品EおよびFの作製
(D)相溶化剤としてスチレン−ブタジエン共重合体(成形品E)、または水素添加スチレン−ブタジエン共重合体(成形品F)を用いた以外は、実施例1と同様にして、成形品EおよびFを作製した。
(Examples 5 and 6) Production of molded products E and F
(D) In the same manner as in Example 1, except that styrene-butadiene copolymer (molded product E) or hydrogenated styrene-butadiene copolymer (molded product F) was used as the compatibilizer, molded product E And F were prepared.

(実施例7)成形品Gの作製
実施例1で2段混練により作製した成形品Aに対し、同時混練で成形品Gを作製した。(A)ポリ乳酸ペレット100重量部に対し、(C)D-乳酸と糖類との共重合体ペレットを5重量部、(B)ポリプロピレンを85重量部、(D)相溶化剤5重量部、(E)柔軟性付与剤5重量部を配合して2軸押出機により190℃以下で溶融混練して押出し、ポリマーアロイのペレットを得た。(同時混練)当該ペレットを射出成形して成形品Gを得た後、成形品Gを実施例1と同じ条件でアニーリングした。実施例1と同じ条件で成形品Gの状態を安定化させた後、各物性を評価した。
Example 7 Production of Molded Product G Molded product G was produced by simultaneous kneading with respect to molded product A produced by two-stage kneading in Example 1. (A) 100 parts by weight of polylactic acid pellets, (C) 5 parts by weight of copolymer pellets of D-lactic acid and saccharide, (B) 85 parts by weight of polypropylene, (D) 5 parts by weight of compatibilizer, (E) 5 parts by weight of a flexibility-imparting agent was blended and melt-kneaded at 190 ° C. or lower by a twin-screw extruder and extruded to obtain polymer alloy pellets. (Simultaneous kneading) After the pellets were injection molded to obtain a molded product G, the molded product G was annealed under the same conditions as in Example 1. After stabilizing the state of the molded product G under the same conditions as in Example 1, each physical property was evaluated.

(実施例8)成形品Hの作製
(D)相溶化剤であるアクリル系ブロック共重合体を配合しなかった以外は、実施例1と同様にして成形品Hを作製し、各物性を評価した。
(Example 8) Production of molded product H
(D) Except that the acrylic block copolymer as a compatibilizing agent was not blended, a molded product H was produced in the same manner as in Example 1, and each physical property was evaluated.

(実施例9)成形品Iの作製
(E)柔軟性付与剤であるスチレン−エチレン−プロピレン−スチレン共重合体を配合しなかった以外は、実施例1と同様にして成形品Iを作製し、各物性を評価した。
(Example 9) Production of molded product I
(E) Except that the styrene-ethylene-propylene-styrene copolymer, which is a flexibility-imparting agent, was not blended, a molded product I was produced in the same manner as in Example 1, and each physical property was evaluated.

(比較例1)成形品aの作製
(A)ポリ乳酸を180℃で射出成形し、成形品aを得た。このときの金型温度は40℃、成形サイクルの時間は40秒とした。得られた成形品は110℃に保った熱風乾燥オーブンで15分間アニーリングし、ポリ乳酸を結晶化した。その後、実施例1と同じ条件で成形品aを安定化させた後、各物性を評価した。
(Comparative Example 1) Production of molded product a
(A) Polylactic acid was injection molded at 180 ° C. to obtain a molded product a. The mold temperature at this time was 40 ° C., and the molding cycle time was 40 seconds. The obtained molded product was annealed in a hot air drying oven maintained at 110 ° C. for 15 minutes to crystallize polylactic acid. Then, after stabilizing the molded article a on the same conditions as Example 1, each physical property was evaluated.

(比較例2)成形品bの作製
(B)ポリプロピレンを180℃で射出成形し、成形品bを得た。このときの金型温度は40℃、成形サイクルの時間は40秒した。その後、実施例1と同じ条件で成形品bを安定化させた後、各物性を評価した。
(Comparative Example 2) Production of molded product b
(B) Polypropylene was injection molded at 180 ° C. to obtain a molded product b. At this time, the mold temperature was 40 ° C., and the molding cycle time was 40 seconds. Then, after stabilizing the molded article b on the same conditions as Example 1, each physical property was evaluated.

(比較例3)成形品cの作製
(A)ポリ乳酸100重量部に対し、(B)ポリプロピレン85重量部配合して2軸押出機により190℃以下で溶融混練して押出し、ペレットを得た。得られたペレットを射出成形し、成形品を得た後、成形品cを実施例と同じ条件でアニーリングした。その後、実施例1と同じ条件で成形品cを安定化させた後、各物性を評価した。
(Comparative Example 3) Production of molded product c
(A) Polylactic acid (100 parts by weight) was blended with (B) polypropylene (85 parts by weight) and melt-kneaded at 190 ° C. or lower using a twin-screw extruder to obtain pellets. The obtained pellets were injection molded to obtain a molded product, and then the molded product c was annealed under the same conditions as in the example. Then, after stabilizing the molded article c on the same conditions as Example 1, each physical property was evaluated.

(比較例4)成形品dの作製
(C)D-乳酸と糖類との共重合体であるCOPLA-Dを配合しなかった以外は、実施例1と同様にして成形品dを作製し、各物性を評価した。
(Comparative Example 4) Production of molded product d
(C) Except that COPLA-D, which is a copolymer of D-lactic acid and saccharide, was not blended, a molded product d was produced in the same manner as in Example 1, and each physical property was evaluated.

2.成形品の物性評価
下記(1)〜(4)の手順により成形品A〜Iおよび成形品a〜dの物性を評価した。各成形品の配合処方および物性を表1に示す。
(1) 荷重たわみ温度
自動ディストーションテスターNO148HD-PC(安田精機製作所(株)製)を用いて、JIS K7191に規定する方法により、荷重0.45MPaの条件で測定した。
(2) Izod衝撃強度
Izod衝撃試験装置(安田精機製作所(株)製)を用いて、JIS K7110に規定する方法により、ハンマーの秤量2.75Jの条件で測定した。
(3) 引張破断伸び
オートグラフInstron 5566(インストロン(株)製)を用いて、JIS K7161に規定する方法により、引張速度5mm/minの条件で測定した。
(4) 成形性
金型温度110℃、冷却時間120秒の成形条件において、表1に示す物性と同等な性能の成形品が得られた場合を○、成形できなかった(もち状で結晶化しなかった)場合を×とした。成形できない場合、表1に示す物性と同等な性能を得るには、更なる冷却時間を必要とする。
2. Evaluation of physical properties of molded products The physical properties of the molded products A to I and the molded products a to d were evaluated by the following procedures (1) to (4). Table 1 shows the formulation and physical properties of each molded product.
(1) Deflection temperature under load Using an automatic distortion tester NO148HD-PC (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), it was measured under the condition of a load of 0.45 MPa by the method specified in JIS K7191.
(2) Izod impact strength
Using an Izod impact test device (manufactured by Yasuda Seiki Seisakusho Co., Ltd.), the measurement was performed under the condition of a hammer weighing 2.75 J by the method specified in JIS K7110.
(3) Tensile elongation at break Using an autograph Instron 5566 (manufactured by Instron Co., Ltd.), the elongation at break was measured under the condition of a tensile speed of 5 mm / min by the method specified in JIS K7161.
(4) Formability ○ When a molded product with the performance equivalent to the physical properties shown in Table 1 was obtained under the molding conditions of a mold temperature of 110 ° C and a cooling time of 120 seconds, it could not be molded (crystallized in a sticky shape) No)) was marked with x. If molding is not possible, further cooling time is required to obtain performance equivalent to the physical properties shown in Table 1.

Figure 2008280474
Figure 2008280474

表1から分かるように(A)ポリ乳酸と(B)ポリプロピレンを少なくとも含む配合の内、(C)D-乳酸と糖類との共重合体を含んでいる成形品A〜Iは成形性に優れており、冷却時間120秒でも表1に示す物性と同等な材料を成形できた。これは(C)D-乳酸と糖類との共重合体が(A)ポリ乳酸の結晶化を促進しているためと考えられた。これに関しては特許第3739003号公報にその記載がある。   As can be seen from Table 1, among the blends containing at least (A) polylactic acid and (B) polypropylene, molded articles A to I containing a copolymer of (C) D-lactic acid and saccharide are excellent in moldability. Even with a cooling time of 120 seconds, a material equivalent to the physical properties shown in Table 1 could be formed. This was thought to be because (C) the copolymer of D-lactic acid and saccharide promoted crystallization of (A) polylactic acid. This is described in Japanese Patent No. 3739003.

成形品H及びIは成形品cに(C)D-乳酸と糖類との共重合体を加え、更に(E)柔軟性付与剤、又は(D)相溶化剤を加えた配合であり、成形品cと比べて引張破断伸び又は/及びIzod衝撃強度の向上が見られ、(E)柔軟性付与剤、又は(D)相溶化剤が有意であることが分かった。   Molded articles H and I are blended with (C) D-lactic acid and saccharide copolymer added to molded article c, and (E) flexibility imparting agent or (D) compatibilizer. The tensile elongation at break or / and the Izod impact strength were improved as compared with the product c, and it was found that (E) the flexibility-imparting agent or (D) the compatibilizing agent was significant.

また、成形品A〜Gは、(A)ポリ乳酸からなる成形品a、および(B)ポリプロピレンからなる成形品bと比較して、荷重たわみ温度、Izod衝撃強度、および引張破断伸びの相反する3つの物性をバランス良く両立しており、上記の良好なIzod衝撃強度(4.0kJ/m2以上)、荷重たわみ温度(115℃以上)、および引張破断伸び(5%以上)をほぼ満足した。 In addition, the molded products A to G are contrary to the deflection temperature under load, Izod impact strength, and tensile elongation at break as compared with (A) molded product a made of polylactic acid and (B) molded product b made of polypropylene. The three physical properties were well balanced and almost satisfied the above-mentioned good Izod impact strength (4.0 kJ / m 2 or more), deflection temperature under load (115 ° C. or more), and tensile elongation at break (5% or more).

(C)D-乳酸と糖類との共重合体、(D)相溶化剤、および(E)柔軟性付与剤を用いることなく、(A)ポリ乳酸と(B)ポリプロピレンとを配合して得た成形品cは、成形品Aと比較してIzod衝撃強度と引張破断伸びが大きく劣ることが分かった。   (C) A copolymer of D-lactic acid and saccharide, (D) compatibilizer, and (E) without using a flexibility-imparting agent, obtained by blending (A) polylactic acid and (B) polypropylene. The molded product c was found to be significantly inferior to the molded product A in Izod impact strength and tensile elongation at break.

さらに、成形品Aの配合から(C)D-乳酸と糖類との共重合体を除いた成形品dと、成形品Aとを比較することにより、(C)D-乳酸と糖類との共重合体の配合により、成形品の耐衝撃性が高くなると伴にその標準偏差が小さくなっており生産性に優れることが分かった。また、成形品Aの配合から(D)相溶化剤を除いた成形品e、および(E)柔軟性付与剤を除いた成形品fと、成形品Aとを比較することにより、(D)相溶化剤と(E)柔軟性付与剤の配合が有意であることが分かった。   Furthermore, by comparing the molded product A with the molded product d obtained by removing the copolymer of (C) D-lactic acid and saccharide from the blend of molded product A, the copolymer of (C) D-lactic acid and saccharide is obtained. It has been found that, by blending the polymer, the standard deviation is reduced as the impact resistance of the molded product is increased, and the productivity is excellent. Further, by comparing the molded product A with the molded product A from which (D) the compatibilizer was removed from the blend of the molded product A, and (E) the molded product f from which the flexibility-imparting agent was removed, (D) It was found that the combination of compatibilizer and (E) softener was significant.

成形品Aの(C)D-乳酸と糖類との共重合体、(D)相溶化剤、および(E)柔軟性付与剤の配合量を、ポリ乳酸100重量部に対し、5重量部から2.5重量部へとそれぞれ変化させた成形品B〜Dは、成形品Aと比較して、耐熱性はほぼ変わらなかったが、耐衝撃性はやや低下した。   The blending amount of (C) a copolymer of D-lactic acid and saccharide, (D) a compatibilizing agent, and (E) a flexibility-imparting agent in molded product A is from 5 parts by weight to 100 parts by weight of polylactic acid. The molded products B to D, which were changed to 2.5 parts by weight, had almost the same heat resistance as that of the molded product A, but the impact resistance slightly decreased.

成形品Aは(D)相溶化剤として、アクリル系ブロック共重合体を配合したのに対し、スチレン−ブタジエン共重合体(成形品E)または水素添加スチレン−ブタジエン共重合体(成形品F)を配合した成形品EまたはFは、(D)相溶化剤を配合しなかった成形品eと比較して、成形品Aと同様に耐熱性および耐衝撃性の向上が見られた。また、成形品A、EおよびFを比較すると、性能のバランスが良いのは成形品Aであった。   Molded product A was blended with acrylic block copolymer (D) as a compatibilizer, whereas styrene-butadiene copolymer (molded product E) or hydrogenated styrene-butadiene copolymer (molded product F). In the molded product E or F blended with (D), compared with the molded product e blended with no compatibilizer, the heat resistance and impact resistance were improved as in the molded product A. Further, when the molded products A, E, and F were compared, it was the molded product A that had a good balance of performance.

2段混練することにより得たポリマーアロイから製造した成形品Aに対し、成形品Gは、全ての材料(A)〜(E)を一度の溶融混練(同時混練)することにより得たポリマーアロイから製造した成形品である。成形品AとGの物性を比較すると、成形品Gは成形品Aと同じ配合比であるにもかかわらず、成形品Aと比較してその物性が低下した。この結果から、同時混練より2段混練して製造することにより、優れた特性のポリマーアロイが得られることが分かった。   For molded product A produced from a polymer alloy obtained by two-stage kneading, molded product G is a polymer alloy obtained by melt-kneading (simultaneously kneading) all materials (A) to (E) once. Is a molded product manufactured from When the physical properties of the molded products A and G were compared, the physical properties of the molded product G were lower than those of the molded product A, although the blending ratio was the same as that of the molded product A. From this result, it was found that a polymer alloy having excellent characteristics can be obtained by two-stage kneading than simultaneous kneading.

これらの結果から、成形品A〜Iの中でも、特に成形品Aの配合および製造方法で得られるポリマーアロイ成形品は、耐衝撃性、耐熱性、および柔軟性の相反する3つの物性を高いバランスで両立することが分かった。   From these results, among the molded products A to I, the polymer alloy molded product obtained by the blending and manufacturing method of the molded product A in particular has a high balance of three properties that conflict with impact resistance, heat resistance, and flexibility. It turns out that both are compatible.

Claims (12)

(A)ポリ乳酸、(B)ポリプロピレン、および(C)D-乳酸と糖類との共重合体を含有するポリマーアロイ。   A polymer alloy containing (A) polylactic acid, (B) polypropylene, and (C) a copolymer of D-lactic acid and a saccharide. (A)ポリ乳酸100重量部に対し、(B)ポリプロピレンを60〜100重量部、および(C)D-乳酸と糖類との共重合体を含有するポリマーアロイを1〜10重量部を含有する請求項1に記載のポリマーアロイ。   (A) 100 parts by weight of polylactic acid contains (B) 60 to 100 parts by weight of polypropylene, and (C) 1 to 10 parts by weight of a polymer alloy containing a copolymer of D-lactic acid and a saccharide. The polymer alloy according to claim 1. (B)ポリプロピレンの荷重たわみ温度(JIS K7191、荷重0.45MPa)が100℃以上である請求項1または2に記載のポリマーアロイ。   (B) The polymer alloy according to claim 1 or 2, wherein the polypropylene has a deflection temperature under load (JIS K7191, load 0.45 MPa) of 100 ° C or higher. (C)D-乳酸と糖類との共重合体が、D-乳酸とデンプンとの共重合体である請求項1〜3のいずれか1項に記載のポリマーアロイ。   (C) The polymer alloy according to any one of claims 1 to 3, wherein the copolymer of D-lactic acid and saccharide is a copolymer of D-lactic acid and starch. (D)相溶化剤をさらに含有する請求項1〜4のいずれか1項に記載のポリマーアロイ。   The polymer alloy according to any one of claims 1 to 4, further comprising (D) a compatibilizing agent. (A)ポリ乳酸100重量部に対し、(D)相溶化剤を2〜10重量部含有する請求項5に記載のポリマーアロイ。   The polymer alloy according to claim 5, which contains 2 to 10 parts by weight of (D) a compatibilizer with respect to 100 parts by weight of (A) polylactic acid. (D)相溶化剤が、アクリル系ブロック共重合体、スチレン−ブタジエン共重合体、2重結合部分を水素添加したスチレン−ブタジエン共重体から選択される少なくとも1種類である請求項5または6に記載のポリマーアロイ。   7. The compatibilizer (D) is at least one selected from an acrylic block copolymer, a styrene-butadiene copolymer, and a styrene-butadiene copolymer obtained by hydrogenating a double bond portion. The polymer alloy described. (E)柔軟性付与剤をさらに含有する請求項1〜7のいずれか1項に記載のポリマーアロイ。   The polymer alloy according to any one of claims 1 to 7, further comprising (E) a flexibility-imparting agent. (A)ポリ乳酸100重量部に対し、(E)柔軟性付与剤を2〜10重量部含有する請求項8に記載のポリマーアロイ。   The polymer alloy according to claim 8, comprising 2 to 10 parts by weight of (E) a flexibility-imparting agent with respect to 100 parts by weight of (A) polylactic acid. (E)柔軟性付与剤がスチレン−エチレン−プロピレン−スチレン共重合体、スチレン-ブタジエン共重合体から選択される少なくとも1種類である請求項8または9に記載のポリマーアロイ。   10. The polymer alloy according to claim 8 or 9, wherein (E) the flexibility-imparting agent is at least one selected from a styrene-ethylene-propylene-styrene copolymer and a styrene-butadiene copolymer. 請求項1〜10のいずれか1項に記載されるポリマーアロイを成形してなる成形品。   The molded article formed by shape | molding the polymer alloy as described in any one of Claims 1-10. 以下の工程を含むポリマーアロイの製造方法。
(1) (A)ポリ乳酸および(C)D-乳酸と糖類との共重合体を溶融混練する工程
(2) さらに(B)ポリプロピレン、(D)相溶化剤、および(E)柔軟性付与剤を配合し、再度溶融混練する工程
The manufacturing method of the polymer alloy including the following processes.
(1) A step of melt-kneading a copolymer of (A) polylactic acid and (C) D-lactic acid and a saccharide
(2) A step of further blending (B) polypropylene, (D) compatibilizer, and (E) flexibility imparting agent, and melt-kneading again
JP2007127713A 2007-05-14 2007-05-14 Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof Pending JP2008280474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007127713A JP2008280474A (en) 2007-05-14 2007-05-14 Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007127713A JP2008280474A (en) 2007-05-14 2007-05-14 Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008280474A true JP2008280474A (en) 2008-11-20

Family

ID=40141560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007127713A Pending JP2008280474A (en) 2007-05-14 2007-05-14 Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008280474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294185A (en) * 2018-09-10 2019-02-01 武汉金发科技有限公司 A kind of automotive bumper material and the preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131716A (en) * 2004-11-04 2006-05-25 Mitsui Chemicals Inc Thermoplastic resin composition
JP2006241445A (en) * 2005-02-04 2006-09-14 Mitsui Chemicals Inc Thermoplastic resin composition and its molded product
JP2006321988A (en) * 2005-04-20 2006-11-30 Toray Ind Inc Resin composition and molded product made therefrom
JP2006348060A (en) * 2005-06-13 2006-12-28 Cp Kasei Kk Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet
JP2007023189A (en) * 2005-07-19 2007-02-01 Univ Kinki Compatibilizing agent and resin composition
JP2007063516A (en) * 2005-09-02 2007-03-15 Hiroshima Univ Resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131716A (en) * 2004-11-04 2006-05-25 Mitsui Chemicals Inc Thermoplastic resin composition
JP2006241445A (en) * 2005-02-04 2006-09-14 Mitsui Chemicals Inc Thermoplastic resin composition and its molded product
JP2006321988A (en) * 2005-04-20 2006-11-30 Toray Ind Inc Resin composition and molded product made therefrom
JP2006348060A (en) * 2005-06-13 2006-12-28 Cp Kasei Kk Foamed sheet made of thermoplastic resin and method for producing container made of the same sheet
JP2007023189A (en) * 2005-07-19 2007-02-01 Univ Kinki Compatibilizing agent and resin composition
JP2007063516A (en) * 2005-09-02 2007-03-15 Hiroshima Univ Resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109294185A (en) * 2018-09-10 2019-02-01 武汉金发科技有限公司 A kind of automotive bumper material and the preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5233105B2 (en) Polylactic acid resin molded product
JP3824547B2 (en) Biodegradable polyester resin composition, method for producing the same, and foam and molded product obtained therefrom
JP5036539B2 (en) Biodegradable polyester resin composition, method for producing the same, and molded product obtained by molding the composition
US7767732B2 (en) Flame-retardant biodegradable polyester resin composition, production method therefor, and product molded/formed therefrom
EP2268739B1 (en) Heat resistant polylactic acid compounds
JP2017522442A (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
EP2748256B1 (en) A compound comprising plla and pdla
EP2607428A1 (en) Resin composition
JP5469322B2 (en) Environmentally friendly thermoplastic resin composition
JP2007063516A (en) Resin composition
CA2917356A1 (en) Heat resistant polylactic acid
WO2006101076A1 (en) Aliphatic polyester resin composition and molded body
JP2017222791A (en) Poly-3-hydroxyalkanoate-based resin composition and molded body
JP3785904B2 (en) Polylactic acid composition and method for producing the same
JP2011080015A (en) Molded spectacles article, method for producing the same, and spectacles
JP2009040948A (en) Polylactic acid resin composition for injection molding, and production method therefor
PL217738B1 (en) Method for the modification of properties of polylactide or polylactide containing compounds
CN102007182B (en) Ethylene alkyl acrylate toughened poly(hydroxyalkanoic acid) compositions
KR20200071817A (en) 3-dimension printer polylactic acid filament eggshell composition which has excellent heat resistance and mechanical property and filament for 3-dimension printer using the same
EP2688957B1 (en) Biobased polymer compositions
JP2001064379A (en) Production of compatible aliphatic polyester and its composition
JP2007023188A (en) Resin composition
JP2007262339A (en) Polylactic acid-based polyester resin composition, method for producing the same and molding using the same
JP2005145028A (en) Molding production method and molding
JP2008280474A (en) Polymer alloy comprised of polylactic acid and polypropylene, and its molded article, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090907

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120724

Free format text: JAPANESE INTERMEDIATE CODE: A02