WO2006101076A1 - Aliphatic polyester resin composition and molded body - Google Patents

Aliphatic polyester resin composition and molded body Download PDF

Info

Publication number
WO2006101076A1
WO2006101076A1 PCT/JP2006/305547 JP2006305547W WO2006101076A1 WO 2006101076 A1 WO2006101076 A1 WO 2006101076A1 JP 2006305547 W JP2006305547 W JP 2006305547W WO 2006101076 A1 WO2006101076 A1 WO 2006101076A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acrylic resin
modifier
resin composition
aliphatic polyester
Prior art date
Application number
PCT/JP2006/305547
Other languages
French (fr)
Japanese (ja)
Inventor
Madoka Furuta
Michihiro Kaai
Yasumasa Horibe
Takeshi Kanamori
Original Assignee
Toagosei Co., Ltd.
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd., Toyota Jidosha Kabushiki Kaisha filed Critical Toagosei Co., Ltd.
Priority to CN2006800019251A priority Critical patent/CN101103072B/en
Publication of WO2006101076A1 publication Critical patent/WO2006101076A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups

Definitions

  • the present invention relates to an aliphatic polyester resin composition having excellent thermal stability and molding processability, and a molded body thereof.
  • biodegradable polymers that can be decomposed in the natural environment and molded articles thereof have been demanded. ing.
  • polylactic acid is recently gaining attention as a bioplastic because it is obtained from plant-derived raw materials such as corn, sugar cane, and sweet potato. Materials obtained from these plant raw materials are easily converted into water and carbon dioxide by combustion (pyrolysis) or biodegradation. This carbon dioxide is originally stored in the plant by photosynthesis. Therefore, bioplastics are environmentally friendly plastics because they do not increase the concentration of carbon dioxide in the atmosphere during combustion or biodegradation.
  • polylactic acid has a feature that its melting point is higher than that of other aliphatic polyester resins and it has excellent heat resistance.
  • the melted polylactic acid Since the melted polylactic acid has a low melt viscosity and melt tension, it causes necking during molding of, for example, a finale or a sheet, resulting in unstable thickness and width of the film, and breakage of the yarn during fiber molding. Or cause Also, problems can easily occur when the frost line of inflation molding becomes unstable, or when the blow molding nozzle is drawn down and the molded product becomes uneven.
  • Patent Document 1 discloses a biodegradable polyester resin composition comprising a biodegradable polyester resin, a biodegradable aliphatic monoaromatic copolymer polyester resin, and a (meth) acrylate compound.
  • Patent Document 2 discloses a biodegradable resin film or sheet in which a specific epoxy compound is blended with a biodegradable resin and has excellent hydrolysis resistance.
  • Patent Document 3 discloses a biodegradable resin composition comprising a biodegradable polyester resin containing polylactic acid and a layered silicate, and further containing a reactive compound having an epoxy group.
  • Patent Document 4 discloses a polylactic acid resin composition comprising polylactic acid, an aliphatic polyester other than polylactic acid, and a modified olefin compound.
  • the modified olefin compound contains an ethylene-glycidyl metatalylate copolymer.
  • Patent Document 5 discloses a crystalline biodegradable resin composition obtained by annealing a composition containing an aliphatic polyester and a modified elastomer.
  • the aliphatic polyester contains polylactic acid
  • the modified elastomer contains an acrylic elastomer.
  • the biodegradable polyester resin composition described in Patent Document 1 is not suitable for biodegradable polyester resins, biodegradable aliphatic monoaromatic polyester resins, and (meth) acrylate esters. It is manufactured by adding an oxide and melt-kneading. In that case, the use of a (meth) acrylic acid ester compound having a functional group such as a glycidinole group causes a hydrogen abstraction reaction and a crosslinking reaction of a polylactic acid resin as a biodegradable polyester resin, resulting in a partially crosslinked product. Is produced and coloration such as yellowing is likely to occur.
  • Patent Document 2 a long chain branched polymer is produced by the reaction of a hydroxyl group and a carboxyl group at the terminal of a polylactic acid molecule with an epoxy group-containing polymer.
  • the effect of improving sex is recognized.
  • the number of epoxy groups per molecule is too large (for example, Patent Document 2 uses a homopolymer of glycidyl metatalylate, and Patent Document 3 uses 50% glycidyl metatalylate and 50% styrene in Example 3).
  • % Of the copolymer is used), the reaction of the hydroxyl group and carboxyl group at the polylactic acid molecule terminal with the epoxy group is local, and its control is difficult.
  • the crosslinking reaction proceeds excessively in the molding machine, the resin composition reaches a gelled state, and the discharge becomes unstable. There arises a problem that the surface of the obtained molded body becomes non-uniform. That is, the resin composition has a problem of lacking thermal stability.
  • the amount of the modified olefin compound is 5% by weight or more based on the aliphatic polyester.
  • the blending amount of the acrylic elastomer is 10% by weight or more based on the aliphatic polyester such as polylactic acid.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-67894
  • Patent Document 2 JP 2004-10693 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-261756
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-123055
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-35691
  • the present invention has been made in view of the above-mentioned problems, and while suppressing excessive crosslinking reaction, it is possible to improve molding processability by a thickening effect and to exhibit excellent thermal stability.
  • An object is to provide an aliphatic polyester resin composition.
  • an aliphatic polyester resin composition comprises 0.1 to 1 mass of an acrylic resin modifier (B) to 100 mass parts of an aliphatic polyester resin (A) whose main component is a polymer having a lactic acid unit. It is contained in the ratio of parts.
  • the content of lactide or lactic acid in the aliphatic polyester resin (A) is less than 0.2% by mass.
  • the glass transition temperature of the acrylic resin modifier (B) is 0 ° C or higher, the average number of epoxy groups per molecule is 3 to 30, and the mass average molecular weight is 1,000 to 30,000. It is.
  • the epoxy group of the acrylic resin-based modifier (B) is a fatty acid under the specific requirements of both the aliphatic polyester resin (A) and the acrylic resin-based modifier (B). It can react with a carboxynole group or a hydroxynore group present at the terminal of the group polyester resin (A) to form an appropriate cross-linked structure.
  • the epoxy group in the acrylic resin modifier (B) is a carboxyl group or hydroxy group at the terminal of the aliphatic polyester resin (A).
  • the value of 15 15 5 5 is preferably from ⁇ 0.35 to 0.1. According to this configuration, it is possible to improve the molding force resistance with little change in fluidity of the aliphatic polyester resin composition.
  • the epoxy equivalent of the acrylic resin-based modified homogeneous lj (B) is preferably 0.70 to 3. OOmeqZg. According to this configuration, the amount of the epoxy group contained in the acrylic resin modifier (B) is determined in consideration of the molecular weight and the average number of epoxy groups per molecule. Therefore, it is possible to easily set the degree of the crosslinking reaction within an appropriate range, and to further exert the above-described effects.
  • the acrylic resin modifier (B) is preferably obtained by polymerizing a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer. According to this configuration, a polymer having an epoxy group can be easily obtained as the acrylic resin modifier (B).
  • the acrylic resin modifier (B) is preferably produced by a continuous stirred tank polymerization method set to a temperature of 130 to 350 ° C. According to this configuration, it is possible to efficiently produce an acrylic resin-based modifier (B) having a target molecular weight.
  • the value of ( ⁇ / ⁇ ) is preferably from 1.1 to 1.8. According to this configuration, acrylic resin By adding the system modifier (B), the melt viscosity can be increased, and the molding processability can be further improved.
  • Rate of change with Swell (DS) when no fat modifier (B) is added A DS (DS /
  • the value of DS is preferably between 1.05 and 1.3. According to this configuration, the acrylic resin-based modified
  • the melt viscosity can be increased, and the molding strength can be further improved.
  • the acrylic resin modifier (B) preferably polymerizes a monomer mixture containing an epoxy group-containing acrylic monomer, a styrene monomer, and other vinyl monomers. Obtained. According to this configuration, it is possible to adjust the number of epoxy groups possessed by the acrylic resin modifier, and at the same time, vinyl monomers other than epoxy group-containing acrylic monomers and styrene monomers can be used. Function can be expressed.
  • a molded product obtained by melt molding the above aliphatic polyester resin composition. According to this configuration, it is possible to improve the molding processability at the time of molding and to exhibit excellent thermal stability.
  • the aliphatic polyester resin composition of the present embodiment (hereinafter simply referred to as the polyester resin composition) is 100 parts by mass of the aliphatic polyester resin (A) (hereinafter simply referred to as the polyester resin (A)).
  • the acrylic resin modifier (B) is contained in a proportion of 0.15 to 1 part by mass.
  • the polyester resin (A) is mainly composed of a polymer having lactic acid units (hereinafter referred to as polylactic acid).
  • the polyester resin (A) is a main component of the polyester resin composition, and has a basic function of a molded article obtained by molding the polyester resin composition.
  • the polyester resin (A) mainly composed of polylactic acid is a polyester resin containing 50% by mass or more of a polylactic acid component. That is, if the polyester resin (A) contains 50% by mass or more of a polylactic acid component, the polylactic acid may be homopolylactic acid or other aliphatic polyester unit. Co-polymerized with lactic acid. Further, when the polyester resin (A) contains 50% by mass or more of a polylactic acid component, the polyester resin (A) is a mixture of polylactic acid and another aliphatic polyester not containing the polylactic acid. There may be.
  • Polylactic acid is a ring-opening polymerization of lacti K [CH CH (COO) CHCH] or lactic acid [CH CH (COO) CHCH] or lactic acid [CH CH (COO) CHCH] or lactic acid [CH CH (COO) CHCH] or lactic acid [CH CH (COO) CHCH]
  • polylactic acid As this polylactic acid, one synthesized by a conventionally known method can be used. That is, polylactic acid can be produced by direct dehydration condensation from lactic acid described in JP-A-7-33861, JP-A-59-96123, and Polymer Proceedings Proceedings No. 44, pages 3198-3199, or It is synthesized by ring-opening polymerization of lactic acid cyclic dimer lactide.
  • any one of L monolactic acid, D-lactic acid, DL-lactic acid, and a mixture thereof may be used.
  • any one of L-latatide, D-latactide, DL-lactide, meso-lactide, and a mixture thereof may be used.
  • the synthesis, purification and polymerization operations of lactide are described, for example, in U.S. Pat. No. 4,057,537, published European Patent Application No. 261572, Polymer Bulletin, 1, 4, 491-495 (1985), and Macromol. Chem., 187, 1611—1628 (1986).
  • the catalyst used in this polymerization reaction is not particularly limited, and examples thereof include known lactic acid polymerization catalysts, such as tin compounds, powdered tin, tin oxide, zinc powder, halogenated zinc, Zinc oxide, organic zinc compounds, titanium compounds (eg, tetrapropyl titanate), zirconium compounds (eg, zirconium isopropoxide), antimony compounds (eg, antimony trioxide), bismuth compounds (eg, bismuth oxide ( ⁇ ))) And aluminum-based compounds.
  • known lactic acid polymerization catalysts such as tin compounds, powdered tin, tin oxide, zinc powder, halogenated zinc, Zinc oxide, organic zinc compounds, titanium compounds (eg, tetrapropyl titanate), zirconium compounds (eg, zirconium isopropoxide), antimony compounds (eg, antimony trioxide), bismuth compounds (eg, bismuth oxide ( ⁇ ))
  • tin-based compounds include tin lactate, tin tartrate, dicaprylate, dilaurate, dipalmitate, distearate, dioleate, tin naphthoate, / 3-naphthoate, and An example is tin octoate.
  • the aluminum compound include aluminum oxide and aluminum isopropoxide.
  • a catalyst made of tin or a tin compound is particularly preferable because it has excellent activity.
  • the amount of these catalysts used is 0.001 to 5% by mass with respect to lactide.
  • Polymerization reaction The reaction is usually performed at a temperature of 100 to 220 ° C. in the presence of the catalyst, although it varies depending on the type of catalyst. It is also preferable that the two-stage polymerization described in JP-A-7-247345 is performed.
  • Examples of components other than polylactic acid in the polyester resin (A) include ring-opening polyaddition aliphatic polyesters and polycondensation reaction aliphatic polyesters.
  • Examples of the ring-opening polyaddition aliphatic polyesters include polydaricholic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (4-hydroxyvaleric acid), and polystrength prolatatone.
  • polycondensation reaction type aliphatic polyester examples include polyester carbonate, polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polyethylene oxalate, poly Examples include butylene oxalate, polyhexamethylene oxalate, polyethylene sebacate, and polybutylene sebacate.
  • the mass (weight) average molecular weight of the polyester resin (A) containing polylactic acid as a main component is a force S of 100,000 or more, preferably S, a force of 120,000 or more, more preferably S, 150, 000 More preferably, it is more preferably 180,000 or more.
  • the mass average molecular weight of the polyester resin (A) is preferably 400,000 or less because the melt viscosity and melt tension of the polyester resin composition at the time of molding are high.
  • the polyester resin (A) containing polylactic acid as a main component contains a small amount of unreacted lactide or lactic acid.
  • lactide or lactic acid reacts with the epoxy group of the acrylic resin modifier (B) to inhibit the crosslinking reaction of the polyester resin (A) by the acrylic resin modifier (B). Therefore, the content of lactide or lactic acid in the polyester resin (A) is less than 0.2% by mass, preferably less than 0.15% by mass, and more preferably less than 0.1% by mass. It is particularly preferably less than 0.05% by mass.
  • the acrylic resin modifier (B) is added to the polyester resin (A) even if the acrylic resin modifier (B) is added.
  • the epoxy group in It is consumed by reacting with lactic acid or lactic acid, and the thickening effect that should be originally obtained is not fully exhibited. For this reason, an excessive amount of the acrylic resin modifier (B) is required, which not only impairs the biodegradability of the polyester resin composition but also increases the production cost.
  • the ring-opening lactide which is an acid component, works as a reaction aid for the acrylic resin modifier (B), and if the amount is large, the reaction proceeds locally to generate a crosslinked product.
  • the thickening effect cannot be obtained uniformly, there arises a problem that desired physical properties cannot be obtained.
  • the constituent molar ratio L / D of L_lactic acid units and D_lactic acid units in polylactic acid may be any of 100/0 to 0/100.
  • polylactic acid preferably contains at least 96 mol% of L-lactic acid and D_lactic acid in order to obtain a high melting point. More preferably, it contains 98 mol% or more of any unit of D-lactic acid.
  • the polylactic acid may be a copolymer obtained by copolymerizing lactic acid (monomer) or lattide and other components copolymerizable therewith.
  • Examples of other copolymerizable components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, ratatones, and various polyesters composed of these various components. Examples include various polyethers and various polycarbonates.
  • Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
  • Examples of the polyhydric alcohol include aromatic polyhydric alcohols (for example, those obtained by adding ethylene oxide to bisphenol, for example), aliphatic polyhydric alcohols, and ether glycols.
  • Examples of the aliphatic polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sonolebitan, trimethylololepropane, and neopentyldaricol.
  • Examples of ether glycols include diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol.
  • Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and those described in JP-A-6-184417.
  • Examples of Lataton include glycolide, ⁇ -force prolataton glycolide, ⁇ -force prolataton, ⁇ -propiolata Ton, ⁇ -Buchiguchi Rataton, ⁇ -Buchiguchi Rataton, ⁇ -Buchiguchi Rataton, Pivalo Rataton, and S-Valerolatataton.
  • the arrangement pattern of the copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer.
  • the acrylic resin modifier ( ⁇ ⁇ ) has a function of improving the molding processability and thermal stability of the polyester resin ( ⁇ ) containing polylactic acid as a main component.
  • acrylic and methacryl are collectively referred to as (meth) acrylic and clay.
  • the glass transition temperature of the acrylic resin modifier ( ⁇ ⁇ ) is 0 ° C or higher, preferably 30 ° C or higher, and preferably S is 50 ° C or higher.
  • the acrylic resin modifier (B) cannot sufficiently exert the thickening effect on the polyester resin (A) during molding of the polyester resin composition, and molding is not possible. It may not be possible to improve workability.
  • the upper limit of this glass transition temperature is usually 100 ° C.
  • Acrylic resin modifier (B) The average number of epoxy groups per molecule is 3 to 30, 3.
  • the power is preferably 5 to 20, and more preferably 4.0 to 10.
  • the average number of epoxy groups is less than 3, the moldability with a small thickening effect on the polyester resin (A) cannot be sufficiently improved.
  • the average number of epoxy groups exceeds 30, excessive epoxy groups cause excessive crosslinking reaction with the carboxyl groups or hydroxyl groups of the polyester resin (A), and the molding cacheability deteriorates.
  • Acrylic resin modifier (B) The average number of epoxy groups per molecule (hereinafter referred to as Fn) is calculated by the following formula (1).
  • a, b and c are defined as follows.
  • a represents the ratio (% by mass) of the epoxy group-containing acrylic monomer unit contained in the acrylic resin modifier (B).
  • b represents the number average molecular weight of the acrylic resin modifier (B).
  • c represents the molecular weight of the epoxy group-containing acrylic monomer.
  • the weight average molecular weight of the acrylic resin modifier (B) is 1,000 to 30,000, preferably 1,500 to 20,000, and preferably 2,000 to 15,000. Even more preferred. If this mass average molecular weight is less than 1,000, the acrylic resin modifier (B) Since the average number of poxy groups decreases, the thickening effect on the polyester resin (A) becomes insufficient. If the weight average molecular weight exceeds 30,000, the average number of epoxy groups per molecule of the acrylic resin modifier (B) increases, and the polyester resin (A) undergoes an excessive crosslinking reaction, resulting in moldability. Getting worse.
  • the molecular weight distribution (mass average molecular weight / number average molecular weight) of the acrylic resin modifier (B) is preferably 1.5 to 5.0, more preferably 1.6 to 4.5. Mashi 1. It is more preferable that it is 7 to 4.0.
  • the acrylic resin modifier (B) is obtained by polymerization of a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer.
  • the acrylic resin modifier (B) can also be obtained by polymerization of a monomer mixture containing an epoxy group-containing acrylic monomer, a styrene monomer, and other vinyl monomers.
  • the epoxy group-containing acryl-based monomers include (meth) acrylic acid glycidyl or (meth) acrylic acid ester having a cyclohexenoxide structure, and (meth) acrylic glycidinoreether.
  • a preferable epoxy group-containing acrylic monomer is (meth) acrylic acid glycidinole having high reactivity.
  • the styrenic monomer has the same properties as the polylactic acid, and thus has an affinity for polylactic acid.
  • the styrene monomer include styrene and ⁇ -methylstyrene.
  • butyl monomers other than epoxy group-containing acrylic monomers and styrene monomers include methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid Pill, (meth) butyl acrylate, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid cyclohexyl, stearyl (meth) acrylate, alkyl group having carbon number:!
  • (Meth) acrylic acid alkyl ester for example, (meth) acrylic acid methoxyethyl), (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester , (Meth) acrylic acid hydroxyalkyl esters, (meth) acrylic acid dialkylaminoalkyl esters, (meth) acrylic esters
  • acrylic acid alkyl ester for example, (meth) acrylic acid methoxyethyl), (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester , (Meth) acrylic acid hydroxyalkyl esters, (meth) acrylic acid dialkylaminoalkyl esters, (meth) acrylic esters
  • Examples include benzyl laurate, phenoxyalkyl (meth) acrylate, isobornyl (meth) acrylate, and alkoxysilylalkyl (meth) acrylate.
  • (meth) atalinoleamide, (meth) acrylic dialkylamide, buleste can be used as bulur monomers other than epoxy group-containing acrylic monomers and styrene monomers.
  • Aromatic monomers such as butyl acetate, butyl ethers, (meth) aryl ethers, and ⁇ -olefin monomers may also be used.
  • ⁇ -olefin monomers include ethylene and propylene. These may be used alone or in combination of two or more.
  • the acrylic resin modifier ( ⁇ ⁇ ) preferably contains 10 to 40% by mass of an epoxy group-containing acrylic monomer unit and 90 to 20% by mass of a styrene monomer unit. Les. It is more preferable that the acrylic resin modifier ( ⁇ ) contains 15 to 35% by mass of an epoxy group-containing acrylic monomer unit and 85 to 25% by mass of a styrene monomer unit. Les. It is more preferable that the acrylic resin modifier ( ⁇ ) contains 20 to 30% by mass of an epoxy group-containing acrylic monomer unit and 80 to 30% by mass of a styrene monomer unit. ,.
  • the acrylic resin modifier ( ⁇ ⁇ ) does not contain a bull monomer unit other than the epoxy group-containing acrylic monomer unit and the styrene monomer unit, or the acrylic resin modifier.
  • the balance in the agent (ii) is a vinyl monomer unit other than the epoxy group-containing acrylic monomer unit and styrene monomer unit.
  • a crosslinked product is formed, and a molded product having a desired shape cannot be obtained.
  • the styrenic monomer unit and the epoxy monomer-containing acrylic monomer unit and the vinyl monomer unit other than the styrenic monomer unit are the above after the ratio of the acrylic monomer unit is set. Within this range, it is set as appropriate in consideration of the mechanical strength of the molded product.
  • the acrylic resin modifier (i) can be produced by any method such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method.
  • the preferred polymerization method is a continuous stirred tank polymerization method, more preferred.
  • a new polymerization method is a high temperature continuous stirred tank polymerization method.
  • the polymerization temperature is preferably from 130 to 350 ° C, more preferably from 150 to 330 ° C, even more preferably from 170 to 270 ° C.
  • a polymer having a desired molecular weight can be efficiently obtained by using a radical polymerization initiator and a chain transfer agent, or by using a very small amount.
  • the polymerization temperature is less than 130 ° C, a large amount of radical polymerization initiator and chain transfer agent are required to obtain a polymer having the desired molecular weight. Therefore, impurities are present in the obtained polymer. Many are easy to include. For this reason, problems such as coloring and off-flavor may occur in the polyester resin composition and the molded body.
  • the polymerization temperature exceeds 350 ° C, the polymer may be thermally decomposed and the target polymer may not be obtained.
  • Such a high-temperature continuous stirring tank polymerization method is, for example, a known polymerization method disclosed in JP-T-57-502171, JP-A-59-6207, and JP-A-60-215007. It is done by. For example, after a pressurizable reactor is set to a predetermined temperature under pressure, each of the bull monomers and, if necessary, a vinyl monomer mixture composed of a polymerization solvent is added to the reactor at a constant supply rate. A method is adopted in which a polymerization reaction liquid is supplied from the reactor in an amount commensurate with the supply amount of the bull monomer mixture. Moreover, a polymerization initiator may be mix
  • the blending amount of the polymerization initiator is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the vinyl monomer mixture.
  • the pressure depends on the reaction temperature and the boiling point of the butyl monomer used and the polymerization solvent, and does not affect the reaction. Therefore, the pressure should be sufficient to maintain the reaction temperature. Good.
  • the residence time of the monomer mixture in the reactor is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not sufficiently react, and if the residence time exceeds 60 minutes, productivity tends to decrease.
  • the preferred residence time is 2 to 40 minutes.
  • Such a high-temperature continuous stirring tank polymerization method can maintain the composition in the polymerization tank in a uniform state as compared with the batch polymerization method and the semi-batch polymerization method. Distribution is uniform. Therefore, the acrylic resin modifier (B) has a more uniform number of epoxy groups per molecule and molecular weight distribution, and is suitable for the purpose. In addition, high temperature The continuous polymerization method has an advantage that a desired acrylic resin modifier (B) can be obtained by a short polymerization operation, and is economical and hardly causes gelation by a crosslinking reaction.
  • the acrylic resin modifier (B) is a temperature measured according to the flow test method for thermoplastics specified in ISO 1133 (International Standard 3-1 ⁇ 7 210). : It is preferable that the MFR value at 210 ° C and load: 21.2N (2.16kgf) shows the specified value. That is, the change between the MFR value (MFR) after 5 minutes and the MFR value (MFR) after 15 minutes.
  • the conversion rate deviation (a MFR: (MFR -MFR) / MFR) should be _0.35 to 0.1
  • the change rate deviation of the MFR value is less than 0, it means that the viscosity of the sample increases with time. That is, the reaction between the resin and the acrylic resin modifier (B) was not completed during the mixing and kneading, and the reaction further progressed during the subsequent molding cage.
  • the change rate deviation of the MFR value is less than -0.35
  • the reaction between the polyester resin (A) and the acrylic resin modifier (B) proceeds excessively during the molding process, increasing more than necessary. Because of stickiness, fish eyes and disappearance may occur on the surface of the resulting molded article, which may reduce the design.
  • the deviation rate deviation of the MFR value exceeds 0.1, it means that the viscosity of the sample decreases with time. In this case, the viscosity of the resin is greatly reduced due to a long stay during the molding process, and drawdown occurs, making it difficult to obtain a molded body having a desired shape.
  • the epoxy equivalent (hereinafter referred to as EV) of the acrylic resin-based modified homogeneous IJ (B) has a power of 0.70 to 3.00 meq / g.
  • S is preferably 1.06 to 2.46 meq / g.
  • the power of g is more preferable than S, and more preferably 1.40 to 2. l lmeq / g.
  • this epoxy equivalent is less than 0.70 meq / g, a large amount of acrylic resin modifier (B) is added to the polyester resin (A) in order to sufficiently obtain the moldability and thermal stability of the polyester resin composition. It is necessary to add. As a result, there arises a problem that the mechanical strength of the molded product obtained from the polyester resin composition is lowered.
  • the polyester resin composition becomes, for example, due to excessive crosslinking reaction between the carboxyl group or hydroxyl group of the polyester resin (A) and the epoxy group of the acrylic resin modifier (B).
  • An excessive cross-linked state is caused in the molding machine, and a molded product having a desired shape cannot be obtained by surging or the like. There is a case.
  • the addition amount of the acrylic resin modifier (B) is 0.11 to 1 part by mass, and 0.2 to 0.8 part by mass with respect to 100 parts by mass of the polyester resin (A). Is more preferably 0.3 to 0.6 parts by mass.
  • the amount of the acrylic resin-based modifier (B) added is less than 0.15 parts by mass, the excellent thermal stability and molding cacheability of the polyester resin composition which is poor in the modification effect cannot be obtained.
  • the amount of the acrylic resin modifier (B) exceeds 1 part by mass, the polyester resin composition is excellent in thermal stability, but the crosslinking reaction proceeds during the molding process, leading to an excessive crosslinking state. Therefore, molding becomes difficult.
  • the method of mixing the acrylic resin-based modifier (B) into the polyester resin (A) and blending various additives may be carried out by a conventionally known method without particular limitations.
  • powder or pellets of polyester resin (A) and each component of the additive may be mixed by dry blending, or a part of the additive may be preblended and other components may be dry blended later. Good.
  • each component is mixed using a mill roll, a Banbury mixer, or a super mixer, and then kneaded using a single screw or twin screw extruder. This mixing and kneading is usually performed at a temperature of 120 to 220 ° C.
  • the mixing temperature of the polyester resin (A) and the acrylic resin modifier (B) is preferably 180 to 230 ° C.
  • the mixing temperature is less than 180 ° C, the reaction between the polyester resin (A) and the allyl resin modifier (B) proceeds slowly, so that the reaction takes time, and productivity and equipment are limited.
  • the mixing temperature exceeds 230 ° C, depolymerization of the polyester resin (A) occurs at the same time, and the viscosity of the polyester resin (A) component in the final polyester resin composition becomes shorter and the viscosity decreases. happenss.
  • the residence time is 2 minutes or more 3 to: 15 minutes.
  • 3 to 10 minutes is more preferable. If the residence time is less than 2 minutes, sufficient reaction time cannot be secured, and unreacted substances remain and the reaction proceeds during the molding process. If the residence time exceeds 15 minutes, there is a concern that the polyester resin (A) will suffer heat degradation and depolymerization if the productivity decreases. Furthermore, an additive may be added in the polymerization step for obtaining the polyester resin (A). In addition, for example, a master batch containing a high concentration of additives is produced. A method in which this is added to the polyester resin (A) can also be employed.
  • polyester resin composition conventionally known plasticizers, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, various fillers, antistatic agents, release agents, if necessary.
  • additives such as agents, fragrances, lubricants, flame retardants, foaming agents, fillers, antibacterial agents'antifungal agents, and other nucleating agents may be blended.
  • an aliphatic amide compound, an aromatic amide compound, talc or the like, which is a known crystal nucleating agent is blended.
  • the polyester resin composition is a rheometer equipped with a die having a diameter of 1 mm and a length of 10 mm, specifically a capillary rheometer (Capillograph 1C, manufactured by Toyo Seiki Co., Ltd.), temperature: 200 °.
  • a capillary rheometer Capillograph 1C, manufactured by Toyo Seiki Co., Ltd.
  • temperature 200 °.
  • the melt viscosity measured under the condition of C and shear rate: 121se C — 1 the following conditions are preferably satisfied. That is, the melt viscosity when the acrylic resin modifier (B) is added) and the melt viscosity when the acrylic resin modifier (B) is not added (add
  • the rate of change ⁇ ( ⁇ / ⁇ ) is preferably 1.1 to:! This strange
  • the rate of change A DS (DS / DS) with Swell (DS) at the time is 1 ⁇ 05 ⁇ : L 3
  • the change rate A DS is less than 1.05, sufficient processability cannot be exhibited, which is insufficient for thickening effect.
  • the rate of change A DS exceeds 1.3, the increase in viscosity during the molding process becomes excessively large, making it difficult to obtain a molded product having a desired shape. Therefore, it is particularly preferable that the conditions of the change rate ⁇ of the melt viscosity and the change rate ADS of the swell are both satisfied.
  • the molding method of the polyester resin composition is not limited to an extrusion molding method of a film, a sheet or the like, but in the same manner as a general plastic, an injection molding method, a blow molding method, a vacuum molding method, a compression molding method, etc.
  • a molding method may be employed.
  • various molded objects such as a film molded object, a sheet molded object, a fiber, a foam molded object, a blow molded object, are obtained.
  • Polyester resin set The composition is also suitable for molding foams and the like that require particularly high melt strength and melt tension.
  • the polyester resin composition is obtained by blending the acrylic resin modifier (B) at a ratio of 0.15 to 1 part by mass with respect to 100 parts by mass of the polyester resin (A) described above. It is done.
  • the polyester resin composition is heated and melted and molded according to a molding method such as an injection molding method to produce a molded body having a desired shape. Is done.
  • the epoxy group contained in the acrylic resin modifier (B) reacts with a carboxyl group or a hydroxyl group present at the terminal of polylactic acid which is the main component of the polyester resin (A).
  • the crosslinking reaction proceeds.
  • the epoxy group in the acrylic resin-based modifier (B) is a carboxynole of polylactic acid.
  • the average number of epoxy groups per molecule of the acrylic resin modifier (B) is limited to 3-30, and the mass average molecular weight is set in the range of 1,000-30,000. , Excessive progress of the crosslinking reaction is suppressed. Therefore, an appropriate thickening can be obtained during molding, and the molding can proceed smoothly to produce a molded product having good appearance and physical properties.
  • This embodiment has the following advantages.
  • the polyester resin composition of the present embodiment contains 0.1-15 parts by mass of the acrylic resin modifier (B) with respect to 100 parts by mass of the polyester resin (A).
  • Polyester resin (A) is mainly composed of polylactic acid, and the content of lactide or lactic acid is less than 0.2% by mass.
  • the glass transition temperature of the acrylic resin modifier (B) is 0 ° C or higher
  • the average number of epoxy groups per molecule of the acrylate resin modifier (B) is 3 to 30
  • the mass average molecular weight of the talyl resin modifier (B) is 1,000-30,000. For this reason, the epoxy group of the acrylic resin modifier (B) reacts with the carboxyl group or hydroxyl group of the polylactic acid terminal to form an appropriate crosslinked structure.
  • the polyester resin composition When the polyester resin composition is molded by heating, the viscosity increases due to the crosslinking reaction, and a viscosity suitable for molding is obtained. Therefore, while suppressing excessive cross-linking reaction, it is possible to improve the molding strength due to the thickening effect, and excellent thermal stability. Qualitative can be demonstrated.
  • polyester resin composition has a change rate deviation ( ⁇ MFR) value of ⁇ 0.35-0.
  • the amount of epoxy groups contained in the acrylic resin modifier (B) is set by setting the epoxy equivalent of the acrylic resin modifier ( ⁇ ) to 0.70-3.00 meq / g. But with molecular weight
  • the acrylic resin modifier (B) is obtained by polymerizing a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer, an acrylic resin-based modifier is obtained.
  • a polymer having an epoxy group can be easily obtained as the modifying agent (B).
  • the acrylic resin-based modifier (B) is produced by a continuous stirred tank polymerization method set at a temperature of 130 to 350 ° C, so that the acrylic resin-based modifier having a target molecular weight is modified. It is possible to manufacture the quality agent efficiently.
  • the value of the change rate ⁇ 77 (77 / ⁇ 7) of the melt viscosity (77) is set to 1 ⁇ 1 to:! ⁇ 8
  • the addition of the acrylic resin modifier (B) can increase the melt viscosity and can further improve the molding strength.
  • the temperature dependence of the melt viscosity of the polyester resin composition can be reduced, and the viscosity change can be maintained even during long-time residence at the molding processing temperature, which can only improve the molding processability. Can be kept within a certain range.
  • a molded article having an appearance and mechanical properties superior to conventional ones can be produced by melt-molding the polyester resin composition.
  • the pellet was immersed in acetonitrile for 12 hours, and the extracted measurement specimen was measured with a high-performance liquid chromatograph, and the obtained results were obtained using a lactide calibration curve or a lactic acid calibration curve prepared in advance.
  • the content of lactide or lactic acid was analyzed by calculation.
  • the weight average molecular weight (Mw) of the polymer is a polystyrene conversion value by gel permeation chromatography (GPC) analysis, and the glass transition temperature and melting point are determined by a scanning differential calorimeter (DSC) at a rate of temperature increase of 10 ° C. It is a value measured in / min.
  • the average number (Fn) of epoxy groups per molecule of the acrylic resin modifier (B) was calculated from the above-described formula (1).
  • the epoxy equivalent (EV) was measured according to ASTM D-1652-73.
  • the oil jacket temperature of a 1 liter pressurized stirred tank reactor equipped with an oil jacket was maintained at 200 ° C.
  • 74 parts by mass of styrene hereinafter referred to as St
  • 20 parts by mass of glycidyl methacrylate hereinafter referred to as GMA
  • 6 parts by mass of butyl acrylate hereinafter referred to as BA
  • 15 parts by mass of xylene and initiation of polymerization
  • a monomer mixture consisting of 0.5 parts by mass of ditertiary butyl peroxide (hereinafter referred to as DTBP) was charged into the raw material tank as an agent.
  • the monomer mixture is continuously supplied from the raw material tank to the reactor at a constant supply rate (48 g / min, residence time: 12 minutes), and the reaction liquid is kept constant at approximately 580 g. Was continuously extracted from the outlet of the reactor. At that time, the internal temperature of the reactor was kept at about 210 ° C.
  • MMA methyl metatalylate
  • a polymer 3 was produced by the same production method as that for the polymer 1 except that the composition of the raw material monomer was as shown in Table 1. (Production Examples 4-7, production of acrylic polymers 4-7)
  • Polymers 4 to 7 were produced by the same production method as that for polymer 1 except that the composition of the raw material monomers and the polymerization temperature were as shown in Table 1.
  • the following two types of polylactic acid resin were used. Each molecular weight shown below is a polystyrene conversion value by GPC method, and Tg is by DSC. The lactide content is a result measured by liquid chromatography according to the above method.
  • PLA1 Polylactic acid resin B_2 (hereinafter referred to as PLA1) manufactured by Toyota Motor Corporation
  • PLA2 Polylactic acid resin # 5000 (hereinafter referred to as PLA2) manufactured by Toyota Motor Corporation
  • each component is uniformly premixed with a Henschel mixer, It was melt kneaded at 200 ° C. in a parallel twin screw extruder (ST-40, manufactured by Plastics Engineering Laboratory).
  • Denacol EX-313 Polyglycidyl etherate manufactured by Nagase ChemteX Corporation
  • GS-Pla Aliphatic polyester resin (polybutylene succinate) “G” manufactured by Mitsubishi Chemical Corporation
  • AO-50 Phenolic antioxidant manufactured by Asahi Denka Kogyo Co., Ltd .: “ADK STAB A ⁇ -50”
  • WX-1 JI Ken Fine Chemical Co., Ltd.
  • Bisamide lubricant “WX_ 1”
  • LA-1 Nisshinbo Carpositimide Stabilizer: “LA_ 1”
  • the temperature was 210 ° C and the load was 21.2N (2.)
  • the load was 21.2N (2.)
  • the MFR value at 16 kgf was measured.
  • Example 1 -0.18 1.15 1.07 A ⁇ and DS are calculated based on the value of standard 1
  • Example 2 -0.26 1.37 1.15 ⁇ ⁇ and DS are calculated based on the value of standard 1
  • Example 3 -0.34 1.29 1.25 AV and DS are calculated based on the value of standard 1
  • Example 4 0.05 1.30 1.05 ⁇ ⁇
  • lDS is calculated based on the value of standard 1
  • lDS is standard
  • IDS is calculated based on the standard 3 value
  • DS is calculated based on the standard 3 value Comparative Example 1 0.39 1.00 1.00 Standard 1
  • Comparative Example 3 -0.53 1.77 1.54 ⁇ ⁇
  • lDS is calculated based on the value of Reference 1 Comparative Example 4 0.03 1.05 1.01 A ⁇
  • DS is calculated based on the value of Reference 1 Comparative Example 5 0.08 1.07 1.01 ⁇ ⁇
  • DS is calculated based on the value of standard 1.Comparative example 6 1 0.01 1.20 1.01 ⁇ ⁇
  • DS is based on the value of standard 1
  • Calculation Comparative Example 8 1.41 0.76 0.98 A ⁇
  • DS is calculated based on the value of Standard 1. Comparative Example 9 0.12 1.17 1.04 An.
  • DS is calculated based on the value of Standard 1.
  • Example 1 When the value of the change in melt viscosity of Example 1 was compared with the value of the change in melt viscosity of Comparative Example 11 in which a polylactic acid resin having a high lactide content was used, the addition of polymer 1 as an acrylic resin modifier was added. Despite the same amount and compounding conditions, the thickening effect of the viscosity change value of Example 1 was higher than that of Comparative Example 11.
  • Example 1 From the results of Example 1, Example 4 and Example 5, the appearance of the PLA compound was good and a sufficient thickening effect as a PLA resin was confirmed. However, the amount of the acrylic resin-based modifier added was small. In Comparative Example 9 with a small amount, a sufficient thickening effect was not confirmed based on the values of ⁇ and ADS. On the other hand, in Comparative Example 10 in which the acrylic resin modifier was excessively added, a crosslinking reaction occurred in the extruder, the melt reached gelation, and a stable extrusion could not be achieved. However, it was confirmed that the reaction proceeds excessively and the viscosity change of MFR measurement is large, so that the thermal stability during molding calorie is lacking.
  • a compound that reacts with the hydroxyl group or carboxynole group of polylactic acid may be added to the polyester resin composition.
  • this compound include acid anhydrides, alkoxy compounds, and amide group-containing compounds.
  • An aromatic polyester resin may be added to the polyester resin composition in order to improve the mechanical strength and heat resistance of the molded body.
  • an epoxy compound such as bisphenol A may be blended in the polyester resin composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Disclosed is an aliphatic polyester resin composition wherein an acrylic resin-based modifier (B) is contained in an amount of 0.15-1 part by mass per 100 parts by mass of an aliphatic polyester resin (A). The aliphatic polyester resin (A) mainly contains a polymer having a lactic acid unit, and the lactide or lactic acid content is less than 0.2% by mass. The acrylic resin-based modifier (B) has a glass transition temperature (Tg) of not less than 0˚C, an average number of epoxy groups per molecule of 3-30, and a mass average molecular weight of 1,000-30,000. For example, a copolymer of glycidyl methacrylate and styrene is used as the acrylic resin-based modifier (B).

Description

明 細 書  Specification
脂肪族ポリエステル樹脂組成物及び成形体  Aliphatic polyester resin composition and molded article
技術分野  Technical field
[0001] 本発明は、優れた熱安定性および成形加工性を有する脂肪族ポリエステル樹脂組 成物及びその成形体に関する。  The present invention relates to an aliphatic polyester resin composition having excellent thermal stability and molding processability, and a molded body thereof.
背景技術  Background art
[0002] 近年、 自然環境保護の見地から、 自然環境中で分解する生分解性ポリマー及びそ の成形体が求められており、脂肪族ポリエステル樹脂等の自然分解性樹脂の研究が 活発に行われている。 自然分解性樹脂の中でも特にポリ乳酸は、とうもろこし、サトウ キビ、サツマィモ等の植物由来の原料から得られることから、最近はバイオプラスチッ クとしても注目されている。これらの植物原料から得られる材料は、燃焼 (熱分解)又 は生分解により容易に水と炭酸ガスとになる。この炭酸ガスは本来、光合成により植 物中に蓄えられたものである。そのため、バイオプラスチックは、その燃焼又は生分 解の際に大気中の炭酸ガス濃度を増加させないことから、環境に優しいプラスチック である。  [0002] In recent years, from the viewpoint of protecting the natural environment, biodegradable polymers that can be decomposed in the natural environment and molded articles thereof have been demanded. ing. Among natural degradable resins, polylactic acid is recently gaining attention as a bioplastic because it is obtained from plant-derived raw materials such as corn, sugar cane, and sweet potato. Materials obtained from these plant raw materials are easily converted into water and carbon dioxide by combustion (pyrolysis) or biodegradation. This carbon dioxide is originally stored in the plant by photosynthesis. Therefore, bioplastics are environmentally friendly plastics because they do not increase the concentration of carbon dioxide in the atmosphere during combustion or biodegradation.
[0003] 数ある脂肪族ポリエステル樹脂の中でも特にポリ乳酸は、その融点が他の脂肪族ポ リエステル樹脂と比較して高くて耐熱性に優れているという特長を有している。しかし [0003] Among the many aliphatic polyester resins, polylactic acid has a feature that its melting point is higher than that of other aliphatic polyester resins and it has excellent heat resistance. However
、溶融状態のポリ乳酸は、その溶融粘度及び溶融張力が低いことから、例えばフィノレ ム、シートの成形時にネッキングを起こし、フィルムの厚さ及び幅が不安定になったり 、繊維の成形時に糸切れを引き起こしたりする。また、インフレーション成形のフロスト ラインが不安定になったり、ブロー成形のノ^ソンがドローダウンして、成形体に偏肉 が生じたりするといつた問題が起こりやすい。 Since the melted polylactic acid has a low melt viscosity and melt tension, it causes necking during molding of, for example, a finale or a sheet, resulting in unstable thickness and width of the film, and breakage of the yarn during fiber molding. Or cause Also, problems can easily occur when the frost line of inflation molding becomes unstable, or when the blow molding nozzle is drawn down and the molded product becomes uneven.
[0004] そこで従来、溶融粘度及び溶融張力を向上させる手段として、脂肪族ポリエステル 樹脂の重合過程において、多官能重合開始剤を用いて長鎖分岐ポリマーを生成す るようにした組成物が知られている。このような分岐鎖の導入により、溶融粘度及び溶 融張力は改善されるが、長い重合時間と煩雑な操作とに起因して、実用性に乏しい という問題があった。そこで、重合後の後工程における架橋構造及び分岐構造が導 入された樹脂組成物が提案されてレ、る。 [0004] Conventionally, as a means for improving the melt viscosity and melt tension, a composition in which a long-chain branched polymer is produced using a polyfunctional polymerization initiator in the polymerization process of an aliphatic polyester resin is known. ing. By introducing such a branched chain, the melt viscosity and the melt tension are improved, but due to the long polymerization time and complicated operation, there is a problem that the practicality is poor. Therefore, the crosslinked structure and branched structure in the post-process after polymerization are introduced. An introduced resin composition is proposed.
[0005] 例えば、特許文献 1には、生分解性ポリエステル樹脂と、生分解性脂肪族一芳香 族共重合ポリエステル樹脂と、 (メタ)アクリル酸エステル化合物とからなる生分解性ポ リエステル樹脂組成物が開示されている。特許文献 2には、生分解性樹脂に特定の エポキシィヒ合物が配合され、耐加水分解性に優れた生分解性樹脂製フィルム又は シートが開示されている。特許文献 3には、ポリ乳酸を含有する生分解性ポリエステ ル樹脂と層状珪酸塩とからなり、更にエポキシ基を有する反応性化合物を含有する 生分解性樹脂組成物が開示されている。  [0005] For example, Patent Document 1 discloses a biodegradable polyester resin composition comprising a biodegradable polyester resin, a biodegradable aliphatic monoaromatic copolymer polyester resin, and a (meth) acrylate compound. Is disclosed. Patent Document 2 discloses a biodegradable resin film or sheet in which a specific epoxy compound is blended with a biodegradable resin and has excellent hydrolysis resistance. Patent Document 3 discloses a biodegradable resin composition comprising a biodegradable polyester resin containing polylactic acid and a layered silicate, and further containing a reactive compound having an epoxy group.
[0006] 特許文献 4には、ポリ乳酸と、ポリ乳酸以外の脂肪族ポリエステルと、変性ォレフィン 化合物とからなるポリ乳酸系樹脂組成物が開示されている。変性ォレフィン化合物は 、エチレン—グリシジルメタタリレート共重合体を含有している。特許文献 5には、脂肪 族ポリエステル及び変性エラストマ一を含有する組成物のァニール処理による結晶 性の生分解性樹脂組成物が開示されている。脂肪族ポリエステルはポリ乳酸を含有 し、変性エラストマ一はアクリル系エラストマ一を含有してレ、る。  [0006] Patent Document 4 discloses a polylactic acid resin composition comprising polylactic acid, an aliphatic polyester other than polylactic acid, and a modified olefin compound. The modified olefin compound contains an ethylene-glycidyl metatalylate copolymer. Patent Document 5 discloses a crystalline biodegradable resin composition obtained by annealing a composition containing an aliphatic polyester and a modified elastomer. The aliphatic polyester contains polylactic acid, and the modified elastomer contains an acrylic elastomer.
[0007] ところが、特許文献 1に記載の生分解性ポリエステル樹脂組成物は、生分解性ポリ エステル樹脂、生分解性脂肪族一芳香族共重合ポリエステル樹脂及び (メタ)アタリ ル酸エステル化合物に過酸化物を加えて溶融混練することにより製造される。その場 合、グリシジノレ基等の官能基を有する(メタ)アクリル酸エステル化合物の使用により、 生分解性ポリエステル樹脂としてのポリ乳酸樹脂の水素引き抜き反応と架橋反応とが 起きて、部分的な架橋物が生成されるとともに、黄変等の着色が生じやすい。 [0007] However, the biodegradable polyester resin composition described in Patent Document 1 is not suitable for biodegradable polyester resins, biodegradable aliphatic monoaromatic polyester resins, and (meth) acrylate esters. It is manufactured by adding an oxide and melt-kneading. In that case, the use of a (meth) acrylic acid ester compound having a functional group such as a glycidinole group causes a hydrogen abstraction reaction and a crosslinking reaction of a polylactic acid resin as a biodegradable polyester resin, resulting in a partially crosslinked product. Is produced and coloration such as yellowing is likely to occur.
[0008] 特許文献 2及び特許文献 3の組成物では、ポリ乳酸分子末端の水酸基及びカルボ キシル基とエポキシ基含有重合体との反応により長鎖分岐ポリマーが生成されること から、成形カ卩ェ性の改良効果は認められる。しかし、 1分子当たりのエポキシ基の数 が多過ぎる(例えば、特許文献 2ではグリシジルメタタリレートのホモポリマーが使用さ れ、特許文献 3ではその実施例 3でグリシジルメタタリレート 50%とスチレン 50%の共 重合体が使用される)ことから、ポリ乳酸分子末端の水酸基及びカルボキシル基とェ ポキシ基との反応が局所的であり、その制御が困難である。その結果、成形機内で 架橋反応が過度に進行して樹脂組成物がゲル化状態に到り、吐出が不安定化して 得られる成形体の表面が不均一なものになるという不具合が発生する。つまり、樹脂 組成物は熱安定性に欠けるという問題があった。 [0008] In the compositions of Patent Document 2 and Patent Document 3, a long chain branched polymer is produced by the reaction of a hydroxyl group and a carboxyl group at the terminal of a polylactic acid molecule with an epoxy group-containing polymer. The effect of improving sex is recognized. However, the number of epoxy groups per molecule is too large (for example, Patent Document 2 uses a homopolymer of glycidyl metatalylate, and Patent Document 3 uses 50% glycidyl metatalylate and 50% styrene in Example 3). % Of the copolymer is used), the reaction of the hydroxyl group and carboxyl group at the polylactic acid molecule terminal with the epoxy group is local, and its control is difficult. As a result, the crosslinking reaction proceeds excessively in the molding machine, the resin composition reaches a gelled state, and the discharge becomes unstable. There arises a problem that the surface of the obtained molded body becomes non-uniform. That is, the resin composition has a problem of lacking thermal stability.
[0009] 特許文献 4に記載のポリ乳酸系樹脂組成物では、変性ォレフィン化合物の配合量 が脂肪族ポリエステルに対して 5重量%以上であり、特許文献 5に記載の生分解性 樹脂組成物では、アクリル系エラストマ一の配合量がポリ乳酸等の脂肪族ポリエステ ルに対して 10重量%以上である。このため、得られる樹脂組成物は強度、耐熱性等 の物性向上が認められるが、過剰な架橋反応が引き起こされるおそれがあり、成形 加工性に欠ける場合がある。  [0009] In the polylactic acid resin composition described in Patent Document 4, the amount of the modified olefin compound is 5% by weight or more based on the aliphatic polyester. In the biodegradable resin composition described in Patent Document 5, The blending amount of the acrylic elastomer is 10% by weight or more based on the aliphatic polyester such as polylactic acid. For this reason, although the obtained resin composition is improved in physical properties such as strength and heat resistance, it may cause an excessive crosslinking reaction and may lack molding processability.
特許文献 1 :特開 2004— 67894号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2004-67894
特許文献 2:特開 2004— 10693号公報  Patent Document 2: JP 2004-10693 A
特許文献 3 :特開 2003— 261756号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-261756
特許文献 4:特開 2001— 123055号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-123055
特許文献 5 :特開 2004— 35691号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004-35691
発明の開示  Disclosure of the invention
[0010] 本発明は上述の課題に鑑みてなされ、過剰な架橋反応を抑制しつつ、増粘効果に より成形加工性を向上させることができるとともに、優れた熱安定性を発揮することが できる脂肪族ポリエステル樹脂組成物を提供することを目的とする。  [0010] The present invention has been made in view of the above-mentioned problems, and while suppressing excessive crosslinking reaction, it is possible to improve molding processability by a thickening effect and to exhibit excellent thermal stability. An object is to provide an aliphatic polyester resin composition.
[0011] 本発明の一態様では、脂肪族ポリエステル樹脂組成物が提供される。その脂肪族 ポリエステル樹脂組成物は、乳酸単位を有する重合体を主成分とする脂肪族ポリエ ステル樹脂 (A) 100質量部に対してアクリル樹脂系改質剤 (B)を 0. 15〜1質量部の 割合で含有している。脂肪族ポリエステル樹脂 (A)におけるラクチド又は乳酸の含有 量は 0. 2質量%未満である。アクリル樹脂系改質剤(B)のガラス転移温度は 0°C以 上であり、 1分子当たりのエポキシ基の平均数は 3〜30であり、かつ質量平均分子量 は 1, 000〜30, 000である。  [0011] In one embodiment of the present invention, an aliphatic polyester resin composition is provided. The aliphatic polyester resin composition comprises 0.1 to 1 mass of an acrylic resin modifier (B) to 100 mass parts of an aliphatic polyester resin (A) whose main component is a polymer having a lactic acid unit. It is contained in the ratio of parts. The content of lactide or lactic acid in the aliphatic polyester resin (A) is less than 0.2% by mass. The glass transition temperature of the acrylic resin modifier (B) is 0 ° C or higher, the average number of epoxy groups per molecule is 3 to 30, and the mass average molecular weight is 1,000 to 30,000. It is.
[0012] この構成によれば、脂肪族ポリエステル樹脂 (A)とアクリル樹脂系改質剤(B)との 双方の特定要件の下に、アクリル樹脂系改質剤(B)のエポキシ基が脂肪族ポリエス テル樹脂 (A)の末端に存在するカルボキシノレ基又はヒドロキシノレ基と反応して適度 な架橋構造を形成することができる。 [0013] そして、脂肪族ポリエステル樹脂組成物を溶融して成形される場合には、アクリル 樹脂系改質剤 (B)中のエポキシ基が脂肪族ポリエステル樹脂 (A)末端のカルボキシ ル基又はヒドロキシノレ基と反応して架橋することにより粘度が上昇し、成形に好適な 粘性が発現される。従って、過剰な架橋反応を抑制しつつ、増粘効果により成形カロ ェ性を向上させることができるとともに、優れた熱安定性を発揮することができる。 [0012] According to this configuration, the epoxy group of the acrylic resin-based modifier (B) is a fatty acid under the specific requirements of both the aliphatic polyester resin (A) and the acrylic resin-based modifier (B). It can react with a carboxynole group or a hydroxynore group present at the terminal of the group polyester resin (A) to form an appropriate cross-linked structure. [0013] When the aliphatic polyester resin composition is melted and molded, the epoxy group in the acrylic resin modifier (B) is a carboxyl group or hydroxy group at the terminal of the aliphatic polyester resin (A). By reacting with a nore group and crosslinking, the viscosity increases, and a viscosity suitable for molding is developed. Therefore, while suppressing excessive crosslinking reaction, the molding calorie property can be improved by the thickening effect, and excellent thermal stability can be exhibited.
[0014] 脂肪族ポリエステル樹脂組成物において、国際規格の ISO 1133に規定された熱 可塑性プラスチックの流れ試験方法に準じて測定された温度: 210°C及び荷重: 21. 2N (2. 16kgf)での MFR値であって、樹脂投入から 5分後の MFR値(MFR )と 15  [0014] In an aliphatic polyester resin composition, measured at a temperature of 210 ° C and a load of 21.2 N (2. 16 kgf) in accordance with the thermoplastic flow test method specified in ISO 1133 of the international standard. MFR value (MFR) 5 minutes after the resin was added and 15
5 分後の MFR値(MFR )との変化率偏差 MFR: (MFR — MFR ) ZMFR )の  Change rate deviation with MFR value (MFR) after 5 minutes MFR: (MFR — MFR) ZMFR)
15 15 5 5 値は、好ましくは—0. 35〜0. 1である。この構成によれば、脂肪族ポリエステル樹脂 組成物の流動性の変化が少なぐ成形力卩ェ性を向上させることができる。  The value of 15 15 5 5 is preferably from −0.35 to 0.1. According to this configuration, it is possible to improve the molding force resistance with little change in fluidity of the aliphatic polyester resin composition.
[0015] アクリル樹脂系改質斉 lj (B)のエポキシ当量は、好ましくは 0. 70〜3. OOmeqZgで ある。この構成によれば、アクリル樹脂系改質剤(B)に含まれるエポキシ基の量が、 分子量と 1分子当たりのエポキシ基の平均数とを勘案して決定されている。従って、 架橋反応の程度を適切な範囲に容易に設定することができ、上述の効果を更に発揮 すること力 Sできる。 [0015] The epoxy equivalent of the acrylic resin-based modified homogeneous lj (B) is preferably 0.70 to 3. OOmeqZg. According to this configuration, the amount of the epoxy group contained in the acrylic resin modifier (B) is determined in consideration of the molecular weight and the average number of epoxy groups per molecule. Therefore, it is possible to easily set the degree of the crosslinking reaction within an appropriate range, and to further exert the above-described effects.
[0016] アクリル樹脂系改質剤(B)は、好ましくはエポキシ基含有アクリル系単量体及びス チレン系単量体を含有する単量体混合物を重合して得られる。この構成によれば、 アクリル樹脂系改質剤 (B)としてエポキシ基を有する重合体を容易に得ることができ る。  [0016] The acrylic resin modifier (B) is preferably obtained by polymerizing a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer. According to this configuration, a polymer having an epoxy group can be easily obtained as the acrylic resin modifier (B).
[0017] アクリル樹脂系改質剤(B)は、好ましくは 130〜350°Cの温度に設定された連続攪 拌槽重合法で製造される。この構成によれば、 目的とする分子量のアクリル樹脂系改 質剤 (B)を効率良く製造することができる。  [0017] The acrylic resin modifier (B) is preferably produced by a continuous stirred tank polymerization method set to a temperature of 130 to 350 ° C. According to this configuration, it is possible to efficiently produce an acrylic resin-based modifier (B) having a target molecular weight.
[0018] 脂肪族ポリエステル樹脂組成物において、直径: 1mm及び長さ: 10mmのダイを備 えたレオメータにて温度: 200°C及びせん断速度: 121sec— 1の条件で測定された溶 融粘度に関して、アクリル樹脂系改質剤 (B)が添加されたときの溶融粘度( 7] )と、 [0018] In the aliphatic polyester resin composition, with respect to the melt viscosity measured with a rheometer equipped with a die having a diameter of 1 mm and a length of 10 mm under the conditions of temperature: 200 ° C and shear rate: 121 sec- 1 Melt viscosity (7) when the acrylic resin modifier (B) is added,
aad アクリル樹脂系改質剤(B)が添加されていないときの溶融粘度( 7] )との変化率 Δ η  aad Rate of change from melt viscosity (7)) when acrylic resin modifier (B) is not added Δ η
0  0
( η / η )の値は、好ましくは 1. 1〜: 1. 8である。この構成によれば、アクリル樹脂 系改質剤 (B)の添加によって溶融粘度を上昇させることができ、成形加工性を一層 向上させることができる。 The value of (η / η) is preferably from 1.1 to 1.8. According to this configuration, acrylic resin By adding the system modifier (B), the melt viscosity can be increased, and the molding processability can be further improved.
[0019] 脂肪族ポリエステル樹脂組成物において、アクリル樹脂系改質剤(B)が添加された ときのスゥエル(=ダイ出口における樹脂の直径/ダイの直径)(DS )と、アクリル樹 add [0019] In the aliphatic polyester resin composition, the swell when the acrylic resin modifier (B) is added (= resin diameter at the die exit / diameter of the die) (DS) and acrylic tree add
脂系改質剤(B)が添加されていないときのスゥエル (DS )との変化率 A DS (DS /  Rate of change with Swell (DS) when no fat modifier (B) is added A DS (DS /
0 add 0 add
DS )の値は、好ましくは 1. 05〜: 1. 3である。この構成によれば、アクリル樹脂系改The value of DS) is preferably between 1.05 and 1.3. According to this configuration, the acrylic resin-based modified
0 0
質剤 (B)の添カ卩によって溶融粘度を上昇させることができ、成形力卩ェ性を一層向上 させること力できる。  By adding the material (B), the melt viscosity can be increased, and the molding strength can be further improved.
[0020] アクリル樹脂系改質剤(B)は、好ましくはエポキシ基含有アクリル系単量体、スチレ ン系単量体及びこれら以外のビニル系単量体を含有する単量体混合物を重合して 得られる。この構成によれば、アクリル樹脂系改質剤が有するエポキシ基の数を調整 すること力 Sできるとともに、エポキシ基含有アクリル系単量体及びスチレン系単量体以 外のビニル系単量体の機能を発現させることができる。  [0020] The acrylic resin modifier (B) preferably polymerizes a monomer mixture containing an epoxy group-containing acrylic monomer, a styrene monomer, and other vinyl monomers. Obtained. According to this configuration, it is possible to adjust the number of epoxy groups possessed by the acrylic resin modifier, and at the same time, vinyl monomers other than epoxy group-containing acrylic monomers and styrene monomers can be used. Function can be expressed.
[0021] 本発明の別の態様では、上記脂肪族ポリエステル樹脂組成物を溶融成形して得ら れる成形体が提供される。この構成によれば、成形時における成形加工性を向上さ せることができるとともに、優れた熱安定性を発揮することができる。  [0021] In another aspect of the present invention, there is provided a molded product obtained by melt molding the above aliphatic polyester resin composition. According to this configuration, it is possible to improve the molding processability at the time of molding and to exhibit excellent thermal stability.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
[0023] 本実施形態の脂肪族ポリエステル樹脂組成物(以下、単にポリエステル樹脂組成 物という)は、脂肪族ポリエステル樹脂 (A) (以下、単にポリエステル樹脂 (A)という) 1 00質量部に対して、アクリル樹脂系改質剤(B)を 0. 15〜1質量部の割合で含有し ている。ポリエステル樹脂 (A)は、乳酸単位を有する重合体 (以下、ポリ乳酸という)を 主成分としている。  [0023] The aliphatic polyester resin composition of the present embodiment (hereinafter simply referred to as the polyester resin composition) is 100 parts by mass of the aliphatic polyester resin (A) (hereinafter simply referred to as the polyester resin (A)). The acrylic resin modifier (B) is contained in a proportion of 0.15 to 1 part by mass. The polyester resin (A) is mainly composed of a polymer having lactic acid units (hereinafter referred to as polylactic acid).
[0024] ポリエステル樹脂 (A)はポリエステル樹脂組成物の主要成分であり、ポリエステル 樹脂組成物を成形加工して得られる成形体の基本的機能を担う。ポリ乳酸を主成分 とするポリエステル樹脂 (A)とは、 50質量%以上のポリ乳酸成分を含有するポリエス テル樹脂のことである。即ち、ポリエステル樹脂 (A)が 50質量%以上のポリ乳酸成分 を含有していればよぐポリ乳酸がホモポリ乳酸でもよいし他の脂肪族ポリエステル単 位との共重合ポリ乳酸でもよレ、。更に、ポリエステル樹脂 (A)が 50質量%以上のポリ 乳酸成分を含有している場合、ポリエステル樹脂 (A)は、ポリ乳酸と、該ポリ乳酸を含 まない他の脂肪族ポリエステルとの混合物であってもよい。 [0024] The polyester resin (A) is a main component of the polyester resin composition, and has a basic function of a molded article obtained by molding the polyester resin composition. The polyester resin (A) mainly composed of polylactic acid is a polyester resin containing 50% by mass or more of a polylactic acid component. That is, if the polyester resin (A) contains 50% by mass or more of a polylactic acid component, the polylactic acid may be homopolylactic acid or other aliphatic polyester unit. Co-polymerized with lactic acid. Further, when the polyester resin (A) contains 50% by mass or more of a polylactic acid component, the polyester resin (A) is a mixture of polylactic acid and another aliphatic polyester not containing the polylactic acid. There may be.
[0025] ポリ乳酸は、ラクチ K〔CH CH (COO) CHCH〕の開環重合又は乳酸〔CH CH ( [0025] Polylactic acid is a ring-opening polymerization of lacti K [CH CH (COO) CHCH] or lactic acid [CH CH (
3 2 3 3 3 2 3 3
OH) (C〇OH)〕の重縮合によって得られる。このポリ乳酸として、従来公知の方法で 合成されたものが用レ、られ得る。即ち、ポリ乳酸は、特開平 7— 33861号公報、特開 昭 59— 96123号公報、及び高分子討論会予稿集第 44卷、 3198— 3199頁に記載 された乳酸からの直接脱水縮合、又は乳酸環状二量体ラクチドの開環重合によって 合成される。 OH) (C0OH)]. As this polylactic acid, one synthesized by a conventionally known method can be used. That is, polylactic acid can be produced by direct dehydration condensation from lactic acid described in JP-A-7-33861, JP-A-59-96123, and Polymer Proceedings Proceedings No. 44, pages 3198-3199, or It is synthesized by ring-opening polymerization of lactic acid cyclic dimer lactide.
[0026] 直接脱水縮合の場合、 L一乳酸、 D—乳酸、 DL—乳酸、及びこれらの混合物のい ずれかの乳酸が用いられてもよい。また、開環重合の場合においても、 L—ラタチド、 D—ラタチド、 DL—ラクチド、 meso—ラクチド、及びこれら混合物のいずれかのラタ チドが用いられてもよい。ラクチドの合成、精製及び重合操作は、例えば米国特許 40 57537号明細書、公開欧州特許出願第 261572号明細書、 Polymer Bulletin, 1 4, 491— 495 (1985)、及び Macromol. Chem. , 187, 1611— 1628 (1986) に記載されている。  In the case of direct dehydration condensation, any one of L monolactic acid, D-lactic acid, DL-lactic acid, and a mixture thereof may be used. Also in the case of ring-opening polymerization, any one of L-latatide, D-latactide, DL-lactide, meso-lactide, and a mixture thereof may be used. The synthesis, purification and polymerization operations of lactide are described, for example, in U.S. Pat. No. 4,057,537, published European Patent Application No. 261572, Polymer Bulletin, 1, 4, 491-495 (1985), and Macromol. Chem., 187, 1611—1628 (1986).
[0027] この重合反応に用いられる触媒としては、特に限定されるものではないが、公知の 乳酸重合用触媒が挙げられ、例えばスズ系化合物、粉末スズ、酸化スズ、亜鉛末、 ハロゲンィ匕亜鉛、酸化亜鉛、有機亜鉛系化合物、チタン系化合物(例えばテトラプロ ピルチタネート)、ジルコニウム系化合物(例えばジルコニウムイソプロポキシド)、アン チモン系化合物(例えば三酸化アンチモン)、ビスマス系化合物(例えば酸化ビスマ ス (ΠΙ) )、及びアルミニウム系化合物が挙げられる。スズ系化合物としては、例えば乳 酸スズ、酒石酸スズ、ジカプリル酸スズ、ジラウリル酸スズ、ジパルミチン酸スズ、ジス テアリン酸スズ、ジォレイン酸スズ、 ひ一ナフトェ酸スズ、 /3—ナフトェ酸スズ、及びォ クチル酸スズが挙げられる。アルミニウム系化合物としては、例えば酸化アルミニウム 、及びアルミニウムイソプロポキシドが挙げられる。これらの中でも、スズ又はスズ化合 物からなる触媒が、優れた活性を有することから特に好ましい。これらの触媒の使用 量は、例えば開環重合の場合、ラクチドに対して 0. 001〜5質量%である。重合反 応は、上記触媒の存在下において、触媒の種類によって異なるが通常 100〜220°C の温度で行われる。また、特開平 7— 247345号公報に記載された 2段階重合が行 われることも好ましい。 [0027] The catalyst used in this polymerization reaction is not particularly limited, and examples thereof include known lactic acid polymerization catalysts, such as tin compounds, powdered tin, tin oxide, zinc powder, halogenated zinc, Zinc oxide, organic zinc compounds, titanium compounds (eg, tetrapropyl titanate), zirconium compounds (eg, zirconium isopropoxide), antimony compounds (eg, antimony trioxide), bismuth compounds (eg, bismuth oxide (ΠΙ ))) And aluminum-based compounds. Examples of tin-based compounds include tin lactate, tin tartrate, dicaprylate, dilaurate, dipalmitate, distearate, dioleate, tin naphthoate, / 3-naphthoate, and An example is tin octoate. Examples of the aluminum compound include aluminum oxide and aluminum isopropoxide. Among these, a catalyst made of tin or a tin compound is particularly preferable because it has excellent activity. For example, in the case of ring-opening polymerization, the amount of these catalysts used is 0.001 to 5% by mass with respect to lactide. Polymerization reaction The reaction is usually performed at a temperature of 100 to 220 ° C. in the presence of the catalyst, although it varies depending on the type of catalyst. It is also preferable that the two-stage polymerization described in JP-A-7-247345 is performed.
[0028] ポリエステル樹脂 (A)におレ、て、ポリ乳酸以外の成分としては、開環重付加系脂肪 族ポリエステル、及び重縮合反応系脂肪族ポリエステルが挙げられる。開環重付加 系脂肪族ポリエステルとしては、例えばポリダリコール酸、ポリ(3—ヒドロキシ酪酸)、 ポリ(4—ヒドロキシ酪酸)、ポリ(4—ヒドロキシ吉草酸)、及びポリ力プロラタトンが挙げ られる。重縮合反応系脂肪族ポリエステルとしては、例えばポリエステルカーボネート 、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリへキサメチレンサクシネー ト、ポリエチレンアジペート、ポリブチレンアジペート、ポリへキサメチレンアジペート、 ポリエチレンォキサレート、ポリブチレンォキサレート、ポリへキサメチレンォキサレート 、ポリエチレンセバケート、及びポリブチレンセバケートが挙げられる。  [0028] Examples of components other than polylactic acid in the polyester resin (A) include ring-opening polyaddition aliphatic polyesters and polycondensation reaction aliphatic polyesters. Examples of the ring-opening polyaddition aliphatic polyesters include polydaricholic acid, poly (3-hydroxybutyric acid), poly (4-hydroxybutyric acid), poly (4-hydroxyvaleric acid), and polystrength prolatatone. Examples of the polycondensation reaction type aliphatic polyester include polyester carbonate, polyethylene succinate, polybutylene succinate, polyhexamethylene succinate, polyethylene adipate, polybutylene adipate, polyhexamethylene adipate, polyethylene oxalate, poly Examples include butylene oxalate, polyhexamethylene oxalate, polyethylene sebacate, and polybutylene sebacate.
[0029] ポリ乳酸を主成分とするポリエステル樹脂 (A)の質量 (重量)平均分子量は、 100, 000以上であること力 S好ましく、 120, 000以上であること力 Sより好ましく、 150, 000以 上であることが更に好ましぐ 180, 000以上であることが特に好ましい。ポリエステノレ 樹脂の質量平均分子量が 100, 000未満では、得られる成形体の強度、弾性率等 の機械特性が不十分である。ポリエステル樹脂 (A)の質量平均分子量が高くなるほ ど、上述のような物性がより向上する。ポリエステル樹脂 (A)の質量平均分子量は、 成形時のポリエステル樹脂組成物の溶融粘度及び溶融張力が高いことから 400, 00 0以下であることが好ましい。  [0029] The mass (weight) average molecular weight of the polyester resin (A) containing polylactic acid as a main component is a force S of 100,000 or more, preferably S, a force of 120,000 or more, more preferably S, 150, 000 More preferably, it is more preferably 180,000 or more. When the polyester resin has a mass average molecular weight of less than 100,000, the resulting molded article has insufficient mechanical properties such as strength and elastic modulus. As the mass average molecular weight of the polyester resin (A) increases, the above-described physical properties are further improved. The mass average molecular weight of the polyester resin (A) is preferably 400,000 or less because the melt viscosity and melt tension of the polyester resin composition at the time of molding are high.
[0030] ポリ乳酸を主成分とするポリエステル樹脂 (A)は、未反応のラクチド又は乳酸を少 量含有している。そのようなラクチド又は乳酸は、アクリル樹脂系改質剤(B)のェポキ シ基と反応して、アクリル樹脂系改質剤 (B)によるポリエステル樹脂 (A)の架橋反応 を阻害する。そのため、ポリエステル樹脂 (A)におけるラクチド又は乳酸の含有量は 0. 2質量%未満であり、 0. 15質量%未満であることが好ましぐ 0. 1質量%未満で あることが更に好ましぐ 0. 05質量%未満であることが特に好ましい。ラクチド又は乳 酸の含有量が 0. 2質量%以上である場合には、ポリエステル樹脂 (A)にアクリル樹 脂系改質剤 (B)が添加されても、アクリル樹脂系改質剤 (B)中のエポキシ基がラクチ ド又は乳酸と反応して消費されてしまい、本来得られるべき増粘効果が十分に発揮さ れない。そのため、アクリル樹脂系改質剤(B)の過度な添加量が必要になり、ポリエ ステル樹脂組成物の生分解性が損なわれるだけでなく製造コストが嵩む。或いは、 酸成分である開環ラクチドがアクリル樹脂系改質剤 (B)の反応助剤として働き、その 量が多いと局所的に反応が進行して架橋物の発生が起きる。また、増粘効果が一様 に得られないことから、所望とする物性が得られないといった問題が発生する。 [0030] The polyester resin (A) containing polylactic acid as a main component contains a small amount of unreacted lactide or lactic acid. Such lactide or lactic acid reacts with the epoxy group of the acrylic resin modifier (B) to inhibit the crosslinking reaction of the polyester resin (A) by the acrylic resin modifier (B). Therefore, the content of lactide or lactic acid in the polyester resin (A) is less than 0.2% by mass, preferably less than 0.15% by mass, and more preferably less than 0.1% by mass. It is particularly preferably less than 0.05% by mass. When the content of lactide or lactic acid is 0.2% by mass or more, the acrylic resin modifier (B) is added to the polyester resin (A) even if the acrylic resin modifier (B) is added. The epoxy group in It is consumed by reacting with lactic acid or lactic acid, and the thickening effect that should be originally obtained is not fully exhibited. For this reason, an excessive amount of the acrylic resin modifier (B) is required, which not only impairs the biodegradability of the polyester resin composition but also increases the production cost. Alternatively, the ring-opening lactide, which is an acid component, works as a reaction aid for the acrylic resin modifier (B), and if the amount is large, the reaction proceeds locally to generate a crosslinked product. Moreover, since the thickening effect cannot be obtained uniformly, there arises a problem that desired physical properties cannot be obtained.
[0031] ポリ乳酸における L_乳酸単位及び D_乳酸単位の構成モル比 L/Dは、 100/0 〜0/100のいずれであってもよレ、。し力、し、ポリ乳酸は、高い融点を得るために L— 乳酸及び D_乳酸のいずれかの単位を 96モル%以上含有することが好ましぐ更に 高い融点を得るために L—乳酸及び D—乳酸のいずれかの単位を 98モル%以上含 有することがより好ましい。この場合、ポリ乳酸は、乳酸(単量体)又はラタチド、及び それらと共重合可能な他の成分が共重合された共重合体であってもよレ、。共重合可 能な他の成分としては、例えば 2個以上のエステル結合形成性の官能基を有するジ カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラタトン、及びこれら種々の構成 成分よりなる各種ポリエステル、各種ポリエーテル、各種ポリカーボネートが挙げられ る。 [0031] The constituent molar ratio L / D of L_lactic acid units and D_lactic acid units in polylactic acid may be any of 100/0 to 0/100. In order to obtain a high melting point, polylactic acid preferably contains at least 96 mol% of L-lactic acid and D_lactic acid in order to obtain a high melting point. More preferably, it contains 98 mol% or more of any unit of D-lactic acid. In this case, the polylactic acid may be a copolymer obtained by copolymerizing lactic acid (monomer) or lattide and other components copolymerizable therewith. Examples of other copolymerizable components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, ratatones, and various polyesters composed of these various components. Examples include various polyethers and various polycarbonates.
[0032] ジカルボン酸としては、例えばコハク酸、アジピン酸、ァゼライン酸、セバシン酸、テ レフタル酸、及びイソフタル酸が挙げられる。多価アルコールとしては、例えば芳香族 多価アルコール(例えば例えばビスフエノールにエチレンオキサイドが付加反応した もの)、脂肪族多価アルコール、及びエーテルグリコールが挙げられる。脂肪族多価 アルコールとしては、例えばエチレングリコール、プロピレングリコール、ブタンジォー ノレ、へキサンジォーノレ、オクタンジォーノレ、グリセリン、ソノレビタン、トリメチローノレプロ パン、及びネオペンチルダリコールが挙げられる。エーテルグリコールとしては、例え ばジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、及びポリプ ロピレンダリコールが挙げられる。  [0032] Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid. Examples of the polyhydric alcohol include aromatic polyhydric alcohols (for example, those obtained by adding ethylene oxide to bisphenol, for example), aliphatic polyhydric alcohols, and ether glycols. Examples of the aliphatic polyhydric alcohol include ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sonolebitan, trimethylololepropane, and neopentyldaricol. Examples of ether glycols include diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol.
[0033] ヒドロキシカルボン酸としては、例えばグリコール酸、ヒドロキシブチルカルボン酸、 及び特開平 6— 184417号公報に記載されているものが挙げられる。ラタトンとしては 、例えばグリコリド、 ε—力プロラタトングリコリド、 ε—力プロラタトン、 ε—プロピオラタ トン、 δ—ブチ口ラタトン、 β—ブチ口ラタトン、 γ—ブチ口ラタトン、ピバロラタトン、及 び S —バレロラタトンが挙げられる。前記共重合体の配列様式は、ランダム共重合体 、交互共重合体、ブロック共重合体、及びグラフト共重合体のいずれであってもよい。 [0033] Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and those described in JP-A-6-184417. Examples of Lataton include glycolide, ε-force prolataton glycolide, ε -force prolataton, ε-propiolata Ton, δ-Buchiguchi Rataton, β-Buchiguchi Rataton, γ-Buchiguchi Rataton, Pivalo Rataton, and S-Valerolatataton. The arrangement pattern of the copolymer may be any of a random copolymer, an alternating copolymer, a block copolymer, and a graft copolymer.
[0034] アクリル樹脂系改質剤(Β)は、ポリ乳酸を主成分とするポリエステル樹脂 (Α)の成 形加工性及び熱安定性を改善する機能を担う。本願では、アクリル及びメタクリルを 総称して (メタ)アクリルとレヽぅ。  [0034] The acrylic resin modifier (改 質) has a function of improving the molding processability and thermal stability of the polyester resin (Α) containing polylactic acid as a main component. In this application, acrylic and methacryl are collectively referred to as (meth) acrylic and clay.
[0035] アクリル樹脂系改質剤(Β)のガラス転移温度は 0°C以上であり、 30°C以上であるこ と力 S好ましく、 50°C以上であることが更に好ましい。ガラス転移温度が 0°C未満の場 合、ポリエステル樹脂組成物の成形時にアクリル樹脂系改質剤 (B)がポリエステル樹 脂 (A)に対する増粘効果を十分に発現することができず、成形加工性を改良するに 到らない場合がある。このガラス転移温度の上限は通常、 100°Cである。  [0035] The glass transition temperature of the acrylic resin modifier (改 質) is 0 ° C or higher, preferably 30 ° C or higher, and preferably S is 50 ° C or higher. When the glass transition temperature is less than 0 ° C, the acrylic resin modifier (B) cannot sufficiently exert the thickening effect on the polyester resin (A) during molding of the polyester resin composition, and molding is not possible. It may not be possible to improve workability. The upper limit of this glass transition temperature is usually 100 ° C.
[0036] アクリル樹脂系改質剤(B) 1分子当たりのエポキシ基の平均数は 3〜30であり、 3.  [0036] Acrylic resin modifier (B) The average number of epoxy groups per molecule is 3 to 30, 3.
5〜20であること力 S好ましく、 4. 0〜: 10であることが更に好ましい。このエポキシ基の 平均数が 3未満の場合、ポリエステル樹脂 (A)に対する増粘効果が小さぐ成形加工 性を十分に改良することができない。エポキシ基の平均数が 30を越えると、過剰なェ ポキシ基がポリエステル樹脂 (A)のカルボキシル基又はヒドロキシル基と過度の架橋 反応を起こし、成形カ卩ェ性が悪化する。  The power is preferably 5 to 20, and more preferably 4.0 to 10. When the average number of epoxy groups is less than 3, the moldability with a small thickening effect on the polyester resin (A) cannot be sufficiently improved. When the average number of epoxy groups exceeds 30, excessive epoxy groups cause excessive crosslinking reaction with the carboxyl groups or hydroxyl groups of the polyester resin (A), and the molding cacheability deteriorates.
[0037] アクリル樹脂系改質剤(B) 1分子当たりのエポキシ基の平均数(以下、 Fnとレ、う。) は、下記式(1)により算出される。  [0037] Acrylic resin modifier (B) The average number of epoxy groups per molecule (hereinafter referred to as Fn) is calculated by the following formula (1).
[0038] ェポキシ基の平均数^11) = & )/ (100 0)  [0038] Average number of epoxy groups ^ 11) = &) / (100 0)
式(1)において a、 b及び cはそれぞれ以下のように定義される。  In the formula (1), a, b and c are defined as follows.
[0039] aは、アクリル樹脂系改質剤(B)に含まれるエポキシ基含有アクリル系単量体単位 の割合 (質量%)を示す。  [0039] a represents the ratio (% by mass) of the epoxy group-containing acrylic monomer unit contained in the acrylic resin modifier (B).
[0040] bは、アクリル樹脂系改質剤(B)の数平均分子量を示す。  [0040] b represents the number average molecular weight of the acrylic resin modifier (B).
[0041] cは、エポキシ基含有アクリル系単量体の分子量を示す。  [0041] c represents the molecular weight of the epoxy group-containing acrylic monomer.
[0042] アクリル樹脂系改質剤(B)の質量平均分子量は 1 , 000〜30, 000であり、 1 , 500 〜20, 000であることカ好ましく、 2, 000〜15, 000であることカ更に好ましレヽ。この 質量平均分子量が 1, 000未満の場合、アクリル樹脂系改質剤(B) l分子当たりのェ ポキシ基の平均数が少なくなることから、ポリエステル樹脂 (A)に対する増粘効果が 不十分となる。質量平均分子量が 30, 000を越える場合、アクリル樹脂系改質剤 (B) 1分子当たりのエポキシ基の平均数が多くなり、ポリエステル樹脂 (A)が過剰な架橋 反応を起こして成形加工性が悪化する。アクリル樹脂系改質剤 (B)の分子量分布 ( 質量平均分子量/数平均分子量)は、 1. 5〜5. 0であることが好ましぐ 1. 6〜4. 5 であることがより好ましぐ 1. 7〜4. 0であることが更に好ましい。 [0042] The weight average molecular weight of the acrylic resin modifier (B) is 1,000 to 30,000, preferably 1,500 to 20,000, and preferably 2,000 to 15,000. Even more preferred. If this mass average molecular weight is less than 1,000, the acrylic resin modifier (B) Since the average number of poxy groups decreases, the thickening effect on the polyester resin (A) becomes insufficient. If the weight average molecular weight exceeds 30,000, the average number of epoxy groups per molecule of the acrylic resin modifier (B) increases, and the polyester resin (A) undergoes an excessive crosslinking reaction, resulting in moldability. Getting worse. The molecular weight distribution (mass average molecular weight / number average molecular weight) of the acrylic resin modifier (B) is preferably 1.5 to 5.0, more preferably 1.6 to 4.5. Mashi 1. It is more preferable that it is 7 to 4.0.
[0043] アクリル樹脂系改質剤(B)は、エポキシ基含有アクリル系単量体及びスチレン系単 量体を含有する単量体混合物の重合により得られる。また、アクリル樹脂系改質剤( B)は、エポキシ基含有アクリル系単量体、スチレン系単量体及びこれら以外のビニ ル系単量体を含有する単量体混合物の重合によっても得られる。エポキシ基含有ァ クリル系単量体として、例えば (メタ)アクリル酸グリシジル又はシクロへキセンォキシド 構造を有する(メタ)アクリル酸エステル、及び (メタ)アクリルグリシジノレエーテルが挙 げられる。エポキシ基含有アクリル系単量体として好ましいものは、反応性が高い (メ タ)アクリル酸グリシジノレである。スチレン系単量体は、その重合体が前記ポリ乳酸と 同様の性質を有し、従ってポリ乳酸に対して親和性を示す。スチレン系単量体として は、例えばスチレン及び α—メチルスチレンが挙げられる。 [0043] The acrylic resin modifier (B) is obtained by polymerization of a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer. The acrylic resin modifier (B) can also be obtained by polymerization of a monomer mixture containing an epoxy group-containing acrylic monomer, a styrene monomer, and other vinyl monomers. . Examples of the epoxy group-containing acryl-based monomers include (meth) acrylic acid glycidyl or (meth) acrylic acid ester having a cyclohexenoxide structure, and (meth) acrylic glycidinoreether. A preferable epoxy group-containing acrylic monomer is (meth) acrylic acid glycidinole having high reactivity. The styrenic monomer has the same properties as the polylactic acid, and thus has an affinity for polylactic acid. Examples of the styrene monomer include styrene and α-methylstyrene.
[0044] エポキシ基含有アクリル系単量体及びスチレン系単量体以外のビュル系単量体と しては、例えば (メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アクリル酸プロ ピル、 (メタ)アクリル酸ブチル、 (メタ)アクリル酸 2—ェチルへキシル、 (メタ)アクリル 酸シクロへキシル、(メタ)アクリル酸ステアリル、炭素数が:!〜 22であるアルキル基( アルキル基は直鎖、分岐鎖でもよレ、)を有する(メタ)アクリル酸アルキルエステル (例 えば (メタ)アクリル酸メトキシェチル)、(メタ)アクリル酸ポリアルキレングリコールエス テル、 (メタ)アクリル酸アルコキシアルキルエステル、 (メタ)アクリル酸ヒドロキシアル キルエステル、 (メタ)アクリル酸ジアルキルアミノアルキルエステル、 (メタ)アクリル酸 ベンジルエステル、 (メタ)アクリル酸フヱノキシアルキルエステル、 (メタ)アクリル酸ィ ソボルニルエステル、及び(メタ)アクリル酸アルコキシシリルアルキルエステルが挙げ られる。更に、エポキシ基含有アクリル系単量体及びスチレン系単量体以外のビュル 系単量体として、(メタ)アタリノレアミド、 (メタ)アクリルジアルキルアミド、ビュルエステ ル類(例えば酢酸ビュル)、ビュルエーテル類、(メタ)ァリルエーテル類の芳香族系 ビエル系単量体、及び αォレフィンモノマーも使用され得る。 αォレフィンモノマーと しては、例えばエチレン及びプロピレンが挙げられる。これらは単独で使用されてもよ いし、二種以上が組み合わされて使用されてもよい。 [0044] Examples of butyl monomers other than epoxy group-containing acrylic monomers and styrene monomers include methyl (meth) acrylate, ethyl (meth) acrylate, and (meth) acrylic acid Pill, (meth) butyl acrylate, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid cyclohexyl, stearyl (meth) acrylate, alkyl group having carbon number:! ~ 22 (alkyl group) (Meth) acrylic acid alkyl ester (for example, (meth) acrylic acid methoxyethyl), (meth) acrylic acid polyalkylene glycol ester, (meth) acrylic acid alkoxyalkyl ester , (Meth) acrylic acid hydroxyalkyl esters, (meth) acrylic acid dialkylaminoalkyl esters, (meth) acrylic esters Examples include benzyl laurate, phenoxyalkyl (meth) acrylate, isobornyl (meth) acrylate, and alkoxysilylalkyl (meth) acrylate. Further, (meth) atalinoleamide, (meth) acrylic dialkylamide, buleste can be used as bulur monomers other than epoxy group-containing acrylic monomers and styrene monomers. Aromatic monomers such as butyl acetate, butyl ethers, (meth) aryl ethers, and α-olefin monomers may also be used. Examples of α-olefin monomers include ethylene and propylene. These may be used alone or in combination of two or more.
[0045] アクリル樹脂系改質剤(Β)は、 10〜40質量%のエポキシ基含有アクリル系単量体 単位、及び 90〜 20質量%のスチレン系単量体単位を含有することが好ましレ、。ァク リル樹脂系改質剤(Β)は、 15〜35質量%のエポキシ基含有アクリル系単量体単位、 及び 85〜25質量%のスチレン系単量体単位を含有することがより好ましレ、。アクリル 樹脂系改質剤(Β)は、 20〜30質量%のエポキシ基含有アクリル系単量体単位、及 び 80〜30質量%のスチレン系単量体単位を含有することが更に好ましレ、。これらの 場合、アクリル樹脂系改質剤(Β)は、エポキシ基含有アクリル系単量体単位及びスチ レン系単量体単位以外のビュル系単量体単位を含有しない、又はアクリル樹脂系改 質剤 (Β)における残部がエポキシ基含有アクリル系単量体単位及びスチレン系単量 体単位以外のビニル系単量体単位である。 [0045] The acrylic resin modifier (改 質) preferably contains 10 to 40% by mass of an epoxy group-containing acrylic monomer unit and 90 to 20% by mass of a styrene monomer unit. Les. It is more preferable that the acrylic resin modifier (Β) contains 15 to 35% by mass of an epoxy group-containing acrylic monomer unit and 85 to 25% by mass of a styrene monomer unit. Les. It is more preferable that the acrylic resin modifier (含有) contains 20 to 30% by mass of an epoxy group-containing acrylic monomer unit and 80 to 30% by mass of a styrene monomer unit. ,. In these cases, the acrylic resin modifier (改 質) does not contain a bull monomer unit other than the epoxy group-containing acrylic monomer unit and the styrene monomer unit, or the acrylic resin modifier. The balance in the agent (ii) is a vinyl monomer unit other than the epoxy group-containing acrylic monomer unit and styrene monomer unit.
[0046] エポキシ基含有アクリル系単量体単位の割合が 10質量%未満である場合、アタリ ル榭脂系改質剤 (Β)の単位質量中のエポキシ基が乏しぐポリエステル樹脂組成物 の成形力卩ェ性及び熱安定性の改良効果を十分に得るためには、ポリエステル樹脂( Α)へアクリル樹脂系改質剤(Β)を多量に添加することが必要となる。その結果、ポリ エステル樹脂組成物より得られる成形体の機械的強度が低下するという問題が生じ る。エポキシ基含有アクリル系単量体単位の割合が 40質量%を越える場合、ポリエ ステル樹脂 (Α)とアクリル樹脂系改質剤(Β)との過剰な架橋反応により、ポリエステル 樹脂組成物が過度に架橋した架橋物が生成され、所望形状の成形体を得ることがで きない場合がある。スチレン系単量体単位と、エポキシ基含有アクリル系単量体単位 及びスチレン系単量体単位以外のビニル系単量体単位とは、アクリル系単量体単位 の割合が設定された後に、上記の範囲内において成形体の機械的強度等を勘案し て適宜設定される。  [0046] When the proportion of the epoxy group-containing acrylic monomer unit is less than 10% by mass, molding of the polyester resin composition in which the epoxy group in the unit mass of the talyl resin modifier (Β) is scarce In order to sufficiently obtain the effect of improving the strength and thermal stability, it is necessary to add a large amount of the acrylic resin modifier (Β) to the polyester resin (Α). As a result, there arises a problem that the mechanical strength of the molded product obtained from the polyester resin composition is lowered. When the proportion of the epoxy group-containing acrylic monomer unit exceeds 40% by mass, the polyester resin composition becomes excessive due to excessive crosslinking reaction between the polyester resin (Α) and the acrylic resin modifier (Β). In some cases, a crosslinked product is formed, and a molded product having a desired shape cannot be obtained. The styrenic monomer unit and the epoxy monomer-containing acrylic monomer unit and the vinyl monomer unit other than the styrenic monomer unit are the above after the ratio of the acrylic monomer unit is set. Within this range, it is set as appropriate in consideration of the mechanical strength of the molded product.
[0047] アクリル樹脂系改質剤 (Β)は、塊状重合法、溶液重合法、及び乳化重合法等の任 意の方法により製造され得る。好ましい重合法は連続攪拌槽重合法であり、より好ま しい重合方法は高温連続攪拌槽重合法である。この場合、重合温度は 130〜350 °Cであることが好ましぐ 150〜330°Cであることがより好ましぐ 170〜270°Cである ことが更に好ましい。上記重合温度においては、ラジカル重合開始剤及び連鎖移動 剤を使用しなレ、か、又は極めて少量の使用により、 目的とする分子量の重合体(共重 合体を含む)が効率的に得られる。重合温度が 130°C未満の場合、 目的とする分子 量の重合体を得るには、多量のラジカル重合開始剤及び連鎖移動剤を必要とするこ とから、得られた重合体中に不純物が多く含まれ易い。そのため、ポリエステル樹脂 組成物及び成形体に着色、異臭等の問題が発生する場合がある。重合温度が 350 °Cを越える場合、重合体の熱分解が起こり、 目的とする重合体を得ることができない おそれがある。 [0047] The acrylic resin modifier (i) can be produced by any method such as a bulk polymerization method, a solution polymerization method, and an emulsion polymerization method. The preferred polymerization method is a continuous stirred tank polymerization method, more preferred. A new polymerization method is a high temperature continuous stirred tank polymerization method. In this case, the polymerization temperature is preferably from 130 to 350 ° C, more preferably from 150 to 330 ° C, even more preferably from 170 to 270 ° C. At the above polymerization temperature, a polymer having a desired molecular weight (including a copolymer) can be efficiently obtained by using a radical polymerization initiator and a chain transfer agent, or by using a very small amount. When the polymerization temperature is less than 130 ° C, a large amount of radical polymerization initiator and chain transfer agent are required to obtain a polymer having the desired molecular weight. Therefore, impurities are present in the obtained polymer. Many are easy to include. For this reason, problems such as coloring and off-flavor may occur in the polyester resin composition and the molded body. When the polymerization temperature exceeds 350 ° C, the polymer may be thermally decomposed and the target polymer may not be obtained.
[0048] このような高温連続攪拌槽重合法は、例えば特表昭 57— 502171号公報、特開昭 59— 6207号公報、及び特開昭 60— 215007号公報に開示された公知の重合法に よって行われる。例えば、加圧可能な反応器が加圧下で所定温度に設定された後、 各ビュル系単量体、及び必要に応じて重合溶媒からなるビニル系単量体混合物が 一定の供給速度で反応器に供給され、ビュル系単量体混合物の供給量に見合う量 の重合反応液が反応器から取り出される方法が採用される。また、ビニル系単量体 混合物には、必要に応じて重合開始剤が配合され得る。重合開始剤の配合量は、ビ ニル系単量体混合物 100質量部に対して 0. 001〜 2質量部であることが好ましレ、。 圧力は、反応温度と使用されるビュル系単量体及び重合溶媒の沸点とに依存してお り、反応に影響を及ぼさないことから、前記反応温度を維持することができる圧力であ ればよい。単量体混合物の反応器内での滞留時間は 1〜60分であることが好ましい 。滞留時間が 1分未満の場合には単量体が十分に反応しないおそれがあり、滞留時 間が 60分を越える場合には生産性が低下する傾向がある。好ましい滞留時間は 2〜 40分である。  [0048] Such a high-temperature continuous stirring tank polymerization method is, for example, a known polymerization method disclosed in JP-T-57-502171, JP-A-59-6207, and JP-A-60-215007. It is done by. For example, after a pressurizable reactor is set to a predetermined temperature under pressure, each of the bull monomers and, if necessary, a vinyl monomer mixture composed of a polymerization solvent is added to the reactor at a constant supply rate. A method is adopted in which a polymerization reaction liquid is supplied from the reactor in an amount commensurate with the supply amount of the bull monomer mixture. Moreover, a polymerization initiator may be mix | blended with a vinyl-type monomer mixture as needed. The blending amount of the polymerization initiator is preferably 0.001 to 2 parts by mass with respect to 100 parts by mass of the vinyl monomer mixture. The pressure depends on the reaction temperature and the boiling point of the butyl monomer used and the polymerization solvent, and does not affect the reaction. Therefore, the pressure should be sufficient to maintain the reaction temperature. Good. The residence time of the monomer mixture in the reactor is preferably 1 to 60 minutes. If the residence time is less than 1 minute, the monomer may not sufficiently react, and if the residence time exceeds 60 minutes, productivity tends to decrease. The preferred residence time is 2 to 40 minutes.
[0049] このような高温連続攪拌槽重合法は、バッチ式重合法及びセミバッチ式重合法と比 較して重合槽内の組成を均一状態に保つことができることから、得られる重合体の組 成分布が均一となる。従って、アクリル樹脂系改質剤(B)は、より均一な 1分子当たり のエポキシ基の数及び分子量分布を有しており、 目的に適うものである。更に、高温 連続重合法は、短時間の重合操作で所望のアクリル樹脂系改質剤(B)を得ることが でき、経済的、かつ架橋反応によるゲル化が起こり難いという利点を有している。 [0049] Such a high-temperature continuous stirring tank polymerization method can maintain the composition in the polymerization tank in a uniform state as compared with the batch polymerization method and the semi-batch polymerization method. Distribution is uniform. Therefore, the acrylic resin modifier (B) has a more uniform number of epoxy groups per molecule and molecular weight distribution, and is suitable for the purpose. In addition, high temperature The continuous polymerization method has an advantage that a desired acrylic resin modifier (B) can be obtained by a short polymerization operation, and is economical and hardly causes gelation by a crosslinking reaction.
[0050] アクリル樹脂系改質剤(B)は、国際規格の ISO 1133 (日本ェ業規格の 3—1^7 210)に規定された熱可塑性プラスチックの流れ試験方法に準じて測定された温度: 210°C及び荷重: 21. 2N (2. 16kgf)での MFR値が所定値を示すことが好ましい。 即ち、樹脂投入から 5分後の MFR値(MFR )と 15分後の MFR値(MFR )との変 [0050] The acrylic resin modifier (B) is a temperature measured according to the flow test method for thermoplastics specified in ISO 1133 (International Standard 3-1 ^ 7 210). : It is preferable that the MFR value at 210 ° C and load: 21.2N (2.16kgf) shows the specified value. That is, the change between the MFR value (MFR) after 5 minutes and the MFR value (MFR) after 15 minutes.
5 15 化率偏差(a MFR: (MFR -MFR ) /MFR )の値は、 _0. 35〜0. 1であること  5 15 The conversion rate deviation (a MFR: (MFR -MFR) / MFR) should be _0.35 to 0.1
15 5 5  15 5 5
が好ましぐ -0. 2〜0. 05であることがより好ましい。  It is more preferable that -0.2 to 0.05.
[0051] この MFR値の変化率偏差の値が 0未満であるということは、時間の経過とともに試 料の粘度が上昇していることを意味する。即ち、樹脂及びアクリル樹脂系改質剤 (B) の反応が混合混練時に完了しておらず、その後の成形カ卩ェ時に更に反応が進んだ ことを示している。 MFR値の変化率偏差の値が— 0. 35未満である場合、成形加工 時に、ポリエステル樹脂 (A)とアクリル樹脂系改質剤(B)との反応が過度に進行して 必要以上に増粘することから、得られる成形体の表面にフィッシュアイ及び失艷が発 生して意匠性が低下する場合がある。 MFR値の変化率偏差の値が 0. 1を越えると レ、うことは、時間の経過とともに試料の粘度が低下することを意味する。この場合、成 形加工時の長時間滞留により樹脂の粘度が大幅に低下し、ドローダウンが発生して 所望の形状を有する成形体を得ることが難しくなる。  [0051] When the change rate deviation of the MFR value is less than 0, it means that the viscosity of the sample increases with time. That is, the reaction between the resin and the acrylic resin modifier (B) was not completed during the mixing and kneading, and the reaction further progressed during the subsequent molding cage. When the change rate deviation of the MFR value is less than -0.35, the reaction between the polyester resin (A) and the acrylic resin modifier (B) proceeds excessively during the molding process, increasing more than necessary. Because of stickiness, fish eyes and disappearance may occur on the surface of the resulting molded article, which may reduce the design. When the deviation rate deviation of the MFR value exceeds 0.1, it means that the viscosity of the sample decreases with time. In this case, the viscosity of the resin is greatly reduced due to a long stay during the molding process, and drawdown occurs, making it difficult to obtain a molded body having a desired shape.
[0052] アクリル樹脂系改質斉 IJ (B)のエポキシ当量(以下、 EVという。)は、 0. 70〜3. 00m eq/gであること力 S好ましく、 1. 06〜2. 46meq/gであること力 Sより好ましく、 1. 40 〜2. l lmeq/gであることが更に好ましレ、。このエポキシ当量が 0. 70meq/g未満 の場合、ポリエステル樹脂組成物の成形加工性及び熱安定性を十分に得るために、 ポリエステル樹脂 (A)へアクリル樹脂系改質剤 (B)を多量に添加する必要がある。そ の結果、ポリエステル樹脂組成物より得られる成形体の機械的強度が低下するという 問題が生じる。エポキシ当量が 3. 00meq/gを越える場合、ポリエステル樹脂 (A) のカルボキシル基又はヒドロキシル基とアクリル樹脂系改質剤(B)のエポキシ基との 過剰な架橋反応により、ポリエステル樹脂組成物が例えば成形機内で過度の架橋状 態を引き起こし、サージング等により所望の形状を有する成形体を得ることができな い場合がある。 [0052] The epoxy equivalent (hereinafter referred to as EV) of the acrylic resin-based modified homogeneous IJ (B) has a power of 0.70 to 3.00 meq / g. S is preferably 1.06 to 2.46 meq / g. The power of g is more preferable than S, and more preferably 1.40 to 2. l lmeq / g. When this epoxy equivalent is less than 0.70 meq / g, a large amount of acrylic resin modifier (B) is added to the polyester resin (A) in order to sufficiently obtain the moldability and thermal stability of the polyester resin composition. It is necessary to add. As a result, there arises a problem that the mechanical strength of the molded product obtained from the polyester resin composition is lowered. When the epoxy equivalent exceeds 3.00 meq / g, the polyester resin composition becomes, for example, due to excessive crosslinking reaction between the carboxyl group or hydroxyl group of the polyester resin (A) and the epoxy group of the acrylic resin modifier (B). An excessive cross-linked state is caused in the molding machine, and a molded product having a desired shape cannot be obtained by surging or the like. There is a case.
[0053] アクリル樹脂系改質剤(B)の添加量は、ポリエステル樹脂 (A) 100質量部に対して 0. 15〜1質量部であり、 0. 2〜0. 8質量部であることが好ましぐ 0. 3〜0. 6質量部 であることがより好ましい。アクリル樹脂系改質剤(B)の添カ卩量が 0. 15質量部未満 では改質効果に乏しぐポリエステル樹脂組成物の優れた熱安定性と成形カ卩ェ性と が得られない。アクリル樹脂系改質剤(B)の添加量が 1質量部を越える場合、ポリエ ステル樹脂組成物が熱安定性に優れるものの、成形加工中に架橋反応が進行する ことから過度の架橋状態に到り、成形が困難となる。  [0053] The addition amount of the acrylic resin modifier (B) is 0.11 to 1 part by mass, and 0.2 to 0.8 part by mass with respect to 100 parts by mass of the polyester resin (A). Is more preferably 0.3 to 0.6 parts by mass. When the amount of the acrylic resin-based modifier (B) added is less than 0.15 parts by mass, the excellent thermal stability and molding cacheability of the polyester resin composition which is poor in the modification effect cannot be obtained. When the amount of the acrylic resin modifier (B) exceeds 1 part by mass, the polyester resin composition is excellent in thermal stability, but the crosslinking reaction proceeds during the molding process, leading to an excessive crosslinking state. Therefore, molding becomes difficult.
[0054] ポリエステル樹脂 (A)へのアクリル樹脂系改質剤(B)の混合、及び各種添加剤の 配合の方法は、特に制限されるものではなぐ従来公知の方法によって行われ得る。 例えば、ポリエステル樹脂 (A)の粉末又はペレットと添加剤各成分とがそれぞれドラ ィブレンドで混合されてもよぐ添加剤の一部がプリブレンドされて他の成分が後でド ライブレンドされてもよい。例えば、各成分がミルロール、バンバリ一ミキサー、又はス 一パーミキサーを用いて混合され、次いで単軸又は二軸押出機等を用いて混練され る。この混合及び混練は通常、 120〜220°Cの温度で行われる。  [0054] The method of mixing the acrylic resin-based modifier (B) into the polyester resin (A) and blending various additives may be carried out by a conventionally known method without particular limitations. For example, powder or pellets of polyester resin (A) and each component of the additive may be mixed by dry blending, or a part of the additive may be preblended and other components may be dry blended later. Good. For example, each component is mixed using a mill roll, a Banbury mixer, or a super mixer, and then kneaded using a single screw or twin screw extruder. This mixing and kneading is usually performed at a temperature of 120 to 220 ° C.
[0055] ポリエステル樹脂 (A)とアクリル樹脂系改質剤(B)との混合温度は、 180〜230°C であることが好ましい。混合温度が 180°C未満の場合、ポリエステル樹脂 (A)とアタリ ル樹脂系改質剤 (B)との反応が緩やかに進行することから反応に時間を要し、生産 性及び装置が制限される。混合温度が 230°Cを越える場合、ポリエステル樹脂 (A) の解重合が同時に発生し、最終的に得られるポリエステル樹脂組成物中のポリエス テル樹脂 (A)成分の鎖長が短くなつて粘度低下が起きる。この温度条件下でポリェ ステル樹脂 (A)とアクリル樹脂系改質剤(B)とが混合されるときには、それらの滞留 時間は 2分以上であることが好ましぐ 3〜: 15分であることがより好ましぐ 3〜: 10分で あることが更に好ましい。滞留時間が 2分未満の場合、十分な反応時間が確保され ず、未反応物が残留して成形加工時に反応が進行してしまう。滞留時間が 15分を越 える場合、生産性が低下するば力 でなぐポリエステル樹脂 (A)の熱劣化及び解重 合が懸念される。更に、ポリエステル樹脂 (A)を得るための重合段階で、添加剤が添 加されてもよい。また、例えば添加剤を高濃度で含有するマスターバッチが作製され 、これがポリエステル樹脂 (A)に添加される方法も採用され得る。 [0055] The mixing temperature of the polyester resin (A) and the acrylic resin modifier (B) is preferably 180 to 230 ° C. When the mixing temperature is less than 180 ° C, the reaction between the polyester resin (A) and the allyl resin modifier (B) proceeds slowly, so that the reaction takes time, and productivity and equipment are limited. The When the mixing temperature exceeds 230 ° C, depolymerization of the polyester resin (A) occurs at the same time, and the viscosity of the polyester resin (A) component in the final polyester resin composition becomes shorter and the viscosity decreases. Happens. When the polyester resin (A) and the acrylic resin-based modifier (B) are mixed under this temperature condition, it is preferable that the residence time is 2 minutes or more 3 to: 15 minutes. 3 to 10 minutes is more preferable. If the residence time is less than 2 minutes, sufficient reaction time cannot be secured, and unreacted substances remain and the reaction proceeds during the molding process. If the residence time exceeds 15 minutes, there is a concern that the polyester resin (A) will suffer heat degradation and depolymerization if the productivity decreases. Furthermore, an additive may be added in the polymerization step for obtaining the polyester resin (A). In addition, for example, a master batch containing a high concentration of additives is produced. A method in which this is added to the polyester resin (A) can also be employed.
[0056] ポリエステル樹脂組成物には、必要に応じて従来公知の可塑剤、酸化防止剤、熱 安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、各種フィラー、帯電防止剤、離型 剤、香料、滑剤、難燃剤、発泡剤、充填剤、抗菌剤'抗カビ剤、他の核形成剤等の各 種添加剤が配合されてもよい。特に、成形加工性を改善するために、公知の結晶核 剤である脂肪族アミド系化合物、芳香族アミド系化合物、タルク等が配合されることが 好ましい。 [0056] For the polyester resin composition, conventionally known plasticizers, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, various fillers, antistatic agents, release agents, if necessary. Various additives such as agents, fragrances, lubricants, flame retardants, foaming agents, fillers, antibacterial agents'antifungal agents, and other nucleating agents may be blended. In particular, in order to improve the molding processability, it is preferable that an aliphatic amide compound, an aromatic amide compound, talc or the like, which is a known crystal nucleating agent, is blended.
[0057] ポリエステル樹脂組成物は、直径: 1mm及び長さ: 10mmのダイを備えたレオメー タ、具体的にはキヤピラリーレオメータ(東洋精機 (株)製 キヤピログラフ 1C)にて、温 度: 200°C及びせん断速度: 121seC1の条件で測定された溶融粘度に関し、次のよう な条件を満たすことが好ましい。即ち、アクリル樹脂系改質剤(B)が添加されたときの 溶融粘度 )と、アクリル樹脂系改質剤 (B)が添加されていないときの溶融粘度( add [0057] The polyester resin composition is a rheometer equipped with a die having a diameter of 1 mm and a length of 10 mm, specifically a capillary rheometer (Capillograph 1C, manufactured by Toyo Seiki Co., Ltd.), temperature: 200 °. Regarding the melt viscosity measured under the condition of C and shear rate: 121se C1 , the following conditions are preferably satisfied. That is, the melt viscosity when the acrylic resin modifier (B) is added) and the melt viscosity when the acrylic resin modifier (B) is not added (add
77 )との変化率 Δ η ( η / η )の値は、 1. 1〜: ! · 8であることが好ましい。この変 77) The rate of change Δη (η / η) is preferably 1.1 to:! This strange
0 add 0 0 add 0
化率 Δ 77が 1. 1より小さい場合、増粘効果が小さぐ 目的とする成形カ卩ェ性の改善 効果が不十分である。一方、変化率 Δ が 1. 8を越える場合、成形加工時に粘度が 過剰に上昇し、所望とする成形体を得ることが難しくなる。  When the conversion rate Δ 77 is less than 1.1, the thickening effect is small. The effect of improving the desired molding cacheability is insufficient. On the other hand, if the rate of change Δ exceeds 1.8, the viscosity will increase excessively during the molding process, making it difficult to obtain the desired molded product.
[0058] また、アクリル樹脂系改質剤 (Β)が添加されたときのスゥエル(=ダイ出口における 樹脂の直径/ダイの直径)(DS )と、アクリル樹脂系改質剤 (Β)が添加されていな add [0058] In addition, when the acrylic resin modifier (Β) is added, the swell (= resin diameter / die diameter at the die outlet) (DS) and the acrylic resin modifier (Β) are added. Not add
いときのスゥエル(DS )との変化率 A DS (DS /DS )の値は、 1 · 05〜: L 3である  The rate of change A DS (DS / DS) with Swell (DS) at the time is 1 · 05〜: L 3
0 add 0  0 add 0
ことが好ましい。この変化率 A DSが 1. 05より小さい場合、増粘効果が乏しぐ十分 な成形加工性を発揮することができない。一方、変化率 A DSが 1. 3を越える場合、 成形加工時における粘度上昇が過剰に大きくなり、所望形状の成形体を得ることが 難しくなる。従って、上記の溶融粘度の変化率 Δ ηとスゥエルの変化率 A DSとの条 件がともに満たされることが特に好ましい。  It is preferable. When the change rate A DS is less than 1.05, sufficient processability cannot be exhibited, which is insufficient for thickening effect. On the other hand, when the rate of change A DS exceeds 1.3, the increase in viscosity during the molding process becomes excessively large, making it difficult to obtain a molded product having a desired shape. Therefore, it is particularly preferable that the conditions of the change rate Δη of the melt viscosity and the change rate ADS of the swell are both satisfied.
[0059] ポリエステル樹脂組成物の成形方法としては、フィルム、シート等の押出成形法に 限らず、一般のプラスチックと同様に、射出成形法、ブロー成形法、真空成形法、圧 縮成形法等の成形法が採用され得る。そして、フィルム成形体、シート成形体、繊維 、発泡成形体、ブロー成形体等の各種成形体が得られる。また、ポリエステル樹脂組 成物は、その増粘特性力 溶融張力が特に必要な発泡体等の成形にも適している。 [0059] The molding method of the polyester resin composition is not limited to an extrusion molding method of a film, a sheet or the like, but in the same manner as a general plastic, an injection molding method, a blow molding method, a vacuum molding method, a compression molding method, etc. A molding method may be employed. And various molded objects, such as a film molded object, a sheet molded object, a fiber, a foam molded object, a blow molded object, are obtained. Polyester resin set The composition is also suitable for molding foams and the like that require particularly high melt strength and melt tension.
[0060] さて、ポリエステル樹脂組成物は、前述したポリエステル樹脂 (A) 100質量部に対 してアクリル樹脂系改質剤(B)を 0· 15〜1質量部の割合で配合することによって得 られる。得られたポリエステル樹脂組成物を用いて成形体を製造する場合には、ポリ エステル樹脂組成物が加熱及び溶融され、射出成形法等の成形法に従って成形さ れることにより所望形状の成形体が製造される。  [0060] The polyester resin composition is obtained by blending the acrylic resin modifier (B) at a ratio of 0.15 to 1 part by mass with respect to 100 parts by mass of the polyester resin (A) described above. It is done. In the case of producing a molded body using the obtained polyester resin composition, the polyester resin composition is heated and melted and molded according to a molding method such as an injection molding method to produce a molded body having a desired shape. Is done.
[0061] この成形過程で、アクリル樹脂系改質剤(B)中に含まれるエポキシ基がポリエステ ル樹脂 (A)の主成分であるポリ乳酸の末端に存在するカルボキシル基又はヒドロキ シノレ基と反応して架橋反応が進行する。このとき、ポリエステル樹脂 (A)中のラタチド 又は乳酸の含有量が 0. 2質量%未満に制限されていることから、アクリル樹脂系改 質剤 (B)中のエポキシ基がポリ乳酸のカルボキシノレ基又はヒドロキシル基と有効に反 応すること力 Sできる。同時に、アクリル樹脂系改質剤(B)の 1分子当たりのエポキシ基 の平均数が 3〜30に制限され、かつ質量平均分子量が 1 , 000〜30, 000の範囲に 設定されていることから、架橋反応の過度の進行が抑えられる。従って、成形時には 適度な増粘性が得られ、成形が円滑に進行して良好な外観と物性を有する成形体を 製造すること力 Sできる。  [0061] In this molding process, the epoxy group contained in the acrylic resin modifier (B) reacts with a carboxyl group or a hydroxyl group present at the terminal of polylactic acid which is the main component of the polyester resin (A). As a result, the crosslinking reaction proceeds. At this time, since the content of latatin or lactic acid in the polyester resin (A) is limited to less than 0.2% by mass, the epoxy group in the acrylic resin-based modifier (B) is a carboxynole of polylactic acid. Can react effectively with groups or hydroxyl groups. At the same time, the average number of epoxy groups per molecule of the acrylic resin modifier (B) is limited to 3-30, and the mass average molecular weight is set in the range of 1,000-30,000. , Excessive progress of the crosslinking reaction is suppressed. Therefore, an appropriate thickening can be obtained during molding, and the molding can proceed smoothly to produce a molded product having good appearance and physical properties.
[0062] 本実施形態は以下の利点を有する。  [0062] This embodiment has the following advantages.
[0063] 本実施形態のポリエステル樹脂組成物は、ポリエステル樹脂 (A) 100質量部に対 してアクリル樹脂系改質剤(B)を 0. 15〜1質量部の割合で含有している。ポリエステ ル樹脂 (A)はポリ乳酸を主成分とし、ラクチド又は乳酸の含有量は 0. 2質量%未満 である。一方、アクリル樹脂系改質剤(B)のガラス転移温度は 0°C以上であり、アタリ ル樹脂系改質剤(B) 1分子当たりのエポキシ基の平均数は 3〜30であり、かつアタリ ル樹脂系改質剤(B)の質量平均分子量は 1, 000-30, 000である。このため、ァク リル樹脂系改質剤(B)のエポキシ基がポリ乳酸末端のカルボキシル基又はヒドロキシ ル基と反応して適度な架橋構造が形成される。  [0063] The polyester resin composition of the present embodiment contains 0.1-15 parts by mass of the acrylic resin modifier (B) with respect to 100 parts by mass of the polyester resin (A). Polyester resin (A) is mainly composed of polylactic acid, and the content of lactide or lactic acid is less than 0.2% by mass. On the other hand, the glass transition temperature of the acrylic resin modifier (B) is 0 ° C or higher, the average number of epoxy groups per molecule of the acrylate resin modifier (B) is 3 to 30, and The mass average molecular weight of the talyl resin modifier (B) is 1,000-30,000. For this reason, the epoxy group of the acrylic resin modifier (B) reacts with the carboxyl group or hydroxyl group of the polylactic acid terminal to form an appropriate crosslinked structure.
[0064] そして、ポリエステル樹脂組成物が加熱されて成形される場合には、前記の架橋反 応により粘度が上昇し、成形に好適な粘性が得られる。従って、過剰な架橋反応を抑 制しつつ、増粘効果により成形力卩ェ性を向上させることができるとともに、優れた熱安 定性を発揮することができる。 [0064] When the polyester resin composition is molded by heating, the viscosity increases due to the crosslinking reaction, and a viscosity suitable for molding is obtained. Therefore, while suppressing excessive cross-linking reaction, it is possible to improve the molding strength due to the thickening effect, and excellent thermal stability. Qualitative can be demonstrated.
[0065] また、ポリエステル樹脂組成物は、その変化率偏差( σ MFR)の値が—0. 35-0. Further, the polyester resin composition has a change rate deviation (σ MFR) value of −0.35-0.
1に設定されることにより、加熱滞留時間が長くても流動性の変化が少なぐ成形加工 性を向上させることができる。  By setting it to 1, it is possible to improve the molding processability with little change in fluidity even when the heating residence time is long.
[0066] 更に、アクリル樹脂系改質剤(Β)のエポキシ当量が 0. 70-3. 00meq/gに設定 されることにより、アクリル樹脂系改質剤(B)に含まれるエポキシ基の量が、分子量と[0066] Furthermore, the amount of epoxy groups contained in the acrylic resin modifier (B) is set by setting the epoxy equivalent of the acrylic resin modifier (Β) to 0.70-3.00 meq / g. But with molecular weight
1分子当たりのエポキシ基の平均数とを勘案して決定されている。従って、架橋反応 の程度を適切な範囲に抑制することができる。 Determined by taking into account the average number of epoxy groups per molecule. Therefore, the degree of the crosslinking reaction can be suppressed within an appropriate range.
[0067] また、アクリル樹脂系改質剤 (B)が、エポキシ基含有アクリル系単量体及びスチレ ン系単量体を含有する単量体混合物を重合して得られることから、アクリル樹脂系改 質剤 (B)としてエポキシ基を有する重合体を容易に得ることができる。 [0067] Further, since the acrylic resin modifier (B) is obtained by polymerizing a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer, an acrylic resin-based modifier is obtained. A polymer having an epoxy group can be easily obtained as the modifying agent (B).
[0068] その上、アクリル樹脂系改質剤 (B)が、 130〜350°Cの温度に設定された連続攪 拌槽重合法で製造されることにより、 目的とする分子量のアクリル樹脂系改質剤を効 率良く製造することができる。 [0068] In addition, the acrylic resin-based modifier (B) is produced by a continuous stirred tank polymerization method set at a temperature of 130 to 350 ° C, so that the acrylic resin-based modifier having a target molecular weight is modified. It is possible to manufacture the quality agent efficiently.
[0069] 加えて、前記溶融粘度(77 )の変化率 Δ 77 ( 77 / τ7 )の値が 1 · 1〜: ! · 8に設定 [0069] In addition, the value of the change rate Δ 77 (77 / τ 7) of the melt viscosity (77) is set to 1 · 1 to:! · 8
0 add 0  0 add 0
され、力っスゥエル(DS )の変化率 A DS (DS /DS )の値が 1 · 05〜: L 3に設定  And the change rate of force swell (DS) A DS (DS / DS) is set to 1 · 05 ~: L 3
0 add 0  0 add 0
され得る。このため、アクリル樹脂系改質剤(B)の添加によって溶融粘度を上昇させ ることができ、成形力卩ェ性を一層向上させることができる。  Can be done. For this reason, the addition of the acrylic resin modifier (B) can increase the melt viscosity and can further improve the molding strength.
[0070] 以上のように、ポリエステル樹脂組成物の溶融粘度の温度依存性を小さくすること ができ、成形加工性を改善することができるだけでなぐ成形加工温度における長時 間の滞留においても粘度変化を一定範囲に抑えることが可能となる。その結果、ポリ エステル樹脂組成物を溶融成形することで、従来よりも優れた外観や機械的物性を 備えた成形体を製造することができる。 [0070] As described above, the temperature dependence of the melt viscosity of the polyester resin composition can be reduced, and the viscosity change can be maintained even during long-time residence at the molding processing temperature, which can only improve the molding processability. Can be kept within a certain range. As a result, a molded article having an appearance and mechanical properties superior to conventional ones can be produced by melt-molding the polyester resin composition.
実施例  Example
[0071] 以下に、製造例及び実施例を挙げて前記実施形態を更に具体的に説明するが、 本発明はそれらの実施例に限定されるものではなレ、。以下の各実施例において、ぺ レットをァセトニトリルに 12時間浸漬し、抽出された測定検体を高速液体クロマトダラ フィにて測定し、得られた結果を予め作成したラクチド検量線又は乳酸検量線により 算出することによりラクチド又は乳酸の含有量を分析した。重合体の質量平均分子量 (Mw)は、ゲルパーミエーシヨンクロマトグラフ(GPC)分析によるポリスチレン換算値 であり、ガラス転移温度及び融点は、走査型示差熱量計 (DSC)により昇温速度 10 °C/minで測定した値である。 [0071] The embodiment will be described more specifically with reference to production examples and examples. However, the present invention is not limited to these examples. In each of the following examples, the pellet was immersed in acetonitrile for 12 hours, and the extracted measurement specimen was measured with a high-performance liquid chromatograph, and the obtained results were obtained using a lactide calibration curve or a lactic acid calibration curve prepared in advance. The content of lactide or lactic acid was analyzed by calculation. The weight average molecular weight (Mw) of the polymer is a polystyrene conversion value by gel permeation chromatography (GPC) analysis, and the glass transition temperature and melting point are determined by a scanning differential calorimeter (DSC) at a rate of temperature increase of 10 ° C. It is a value measured in / min.
[0072] アクリル樹脂系改質剤(B)の 1分子当たりのエポキシ基の平均数 (Fn)は、前述した 式(1)より算出した。エポキシ当量(EV)の測定は、 ASTM D— 1652— 73に準じ て行った。 [0072] The average number (Fn) of epoxy groups per molecule of the acrylic resin modifier (B) was calculated from the above-described formula (1). The epoxy equivalent (EV) was measured according to ASTM D-1652-73.
[0073] 各種アクリル樹脂系改質剤は、下記に示す方法にて予め製造した。  [0073] Various acrylic resin-based modifiers were produced in advance by the following method.
(製造例 1、アクリル系重合体 1の製造)  (Production Example 1, production of acrylic polymer 1)
オイルジャケットを備えた容量 1リットルの加圧式攪拌槽型反応器のオイルジャケット 温度を 200°Cに保った。一方、スチレン(以下、 Stという。) 74質量部、グリシジルメタ タリレート(以下、 GMAという。) 20質量部、アクリル酸ブチル(以下、 BAという。)6質 量部、キシレン 15質量部及び重合開始剤としてジターシャリーブチルパーオキサイド (以下、 DTBPという。)0· 5質量部からなる単量体混合液を原料タンクに仕込んだ。 一定の供給速度 (48g/分、滞留時間: 12分)で原料タンクから反応器に単量体混 合液を連続供給し、反応器の内容液質量が約 580gで一定になるように反応液を反 応器の出口から連続的に抜き出した。その時の反応器内温を約 210°Cに保った。  The oil jacket temperature of a 1 liter pressurized stirred tank reactor equipped with an oil jacket was maintained at 200 ° C. On the other hand, 74 parts by mass of styrene (hereinafter referred to as St), 20 parts by mass of glycidyl methacrylate (hereinafter referred to as GMA), 6 parts by mass of butyl acrylate (hereinafter referred to as BA), 15 parts by mass of xylene, and initiation of polymerization A monomer mixture consisting of 0.5 parts by mass of ditertiary butyl peroxide (hereinafter referred to as DTBP) was charged into the raw material tank as an agent. The monomer mixture is continuously supplied from the raw material tank to the reactor at a constant supply rate (48 g / min, residence time: 12 minutes), and the reaction liquid is kept constant at approximately 580 g. Was continuously extracted from the outlet of the reactor. At that time, the internal temperature of the reactor was kept at about 210 ° C.
[0074] 反応器内部の温度が安定してから 36分経過した後、抜き出した反応液を減圧度 3 OkPa、温度 250°Cに保った薄膜蒸発機により連続的に揮発成分除去処理して、揮 発成分をほとんど含まない重合体 1を回収した。 180分かけて約 7kgの重合体 1を回 収した。  [0074] After 36 minutes had passed since the temperature inside the reactor was stabilized, the extracted reaction solution was continuously subjected to volatile component removal treatment by a thin film evaporator maintained at a reduced pressure of 3 OkPa and a temperature of 250 ° C. Polymer 1 containing almost no volatile component was recovered. About 7 kg of Polymer 1 was collected over 180 minutes.
(製造例 2、アクリル系重合体 2の製造)  (Production Example 2, production of acrylic polymer 2)
St38質量部、 BA8質量部、 GMA25質量部、メチルメタタリレート(以下、 MMAと いう。)29質量部、キシレン 15質量部、及び DTBP0. 3質量部からなる単量体混合 液を用いた以外は、重合体 1の製造と同じ方法にて重合体 2を製造した。  Other than using a monomer mixture consisting of St 38 parts by mass, BA 8 parts by mass, GMA 25 parts by mass, methyl metatalylate (hereinafter referred to as MMA) 29 parts by mass, xylene 15 parts by mass, and DTBP 0.3 parts by mass Produced polymer 2 in the same manner as polymer 1 was produced.
(製造例 3、アクリル系重合体 3の製造)  (Production Example 3, production of acrylic polymer 3)
原料の単量体の組成を表 1に示すとおりとした以外は、重合体 1の製造と同じ製造 方法にて重合体 3を製造した。 (製造例 4〜7、アクリル系重合体 4〜7の製造) A polymer 3 was produced by the same production method as that for the polymer 1 except that the composition of the raw material monomer was as shown in Table 1. (Production Examples 4-7, production of acrylic polymers 4-7)
原料の単量体の組成と重合温度とを表 1に示すとおりとした以外は、重合体 1の製 造と同じ製造方法にて重合体 4〜7を製造した。  Polymers 4 to 7 were produced by the same production method as that for polymer 1 except that the composition of the raw material monomers and the polymerization temperature were as shown in Table 1.
[表 1] [table 1]
Figure imgf000021_0001
Figure imgf000021_0001
ポリ乳酸樹脂としては以下に挙げる 2種類を使用した。以下に示す各分子量は GP C法によるポリスチレン換算値を示し、 Tgは DSCによる。ラクチド含有率は、上記手 法による液体クロマトグラフィにより測定した結果である。 The following two types of polylactic acid resin were used. Each molecular weight shown below is a polystyrene conversion value by GPC method, and Tg is by DSC. The lactide content is a result measured by liquid chromatography according to the above method.
[0076] トヨタ自動車 (株)製ポリ乳酸樹脂 B_ 2 (以下、 PLA1という) [0076] Polylactic acid resin B_2 (hereinafter referred to as PLA1) manufactured by Toyota Motor Corporation
Mw= 123, 000、 Mn = 56, 400、 Mw/Mn= 2. 18、  Mw = 123, 000, Mn = 56, 400, Mw / Mn = 2.18,
Tg = 59. 7°C、ラクチド含有率 = 970ppm (0. 097質量%)  Tg = 59.7 ° C, lactide content = 970ppm (0.097 mass%)
トヨタ自動車 (株)製ポリ乳酸樹脂 # 5000 (以下、 PLA2とレ、う)  Polylactic acid resin # 5000 (hereinafter referred to as PLA2) manufactured by Toyota Motor Corporation
Mw = 224, 000、Mn = 98, 700, Mw/Mn= 2. 27、  Mw = 224, 000, Mn = 98, 700, Mw / Mn = 2.27,
Tg = 60. 7°C、ラクチド、含有率 = 2, 500ppm (0. 25質量0 /0) Tg = 60. 7 ° C, lactide, content = 2, 500ppm (0. 25 mass 0/0)
(実施例 1〜 7及び比較例:!〜 12、コンパウンド及び成形性試験)  (Examples 1-7 and comparative examples:! -12, compound and moldability test)
各種ポリ乳酸樹脂と混合脂肪族ポリエステル樹脂とに、表 2に示す添加量になるよ うアクリル樹脂系改質剤 (B)を配合し、ヘンシェルミキサーにて各成分を均一に予備 混合した後、同方向平行 2軸押出機 (プラスチック工学研究所製 ST— 40)にて 20 0°Cで溶融混練した。  After blending various polylactic acid resins and mixed aliphatic polyester resins with the acrylic resin modifier (B) so as to have the addition amounts shown in Table 2, each component is uniformly premixed with a Henschel mixer, It was melt kneaded at 200 ° C. in a parallel twin screw extruder (ST-40, manufactured by Plastics Engineering Laboratory).
[0077] [表 2] [0077] [Table 2]
Figure imgf000023_0001
Figure imgf000023_0001
※エポキシィヒ大豆油:旭電化工業 (株)製アデ力サイザ一 O-130P * Epoxy soy bean oil: Asahi Denka Kogyo Co., Ltd. Ade force sizer O-130P
デナコール EX-313:ナガセケムテック(株)製ポリグリシジルエーテノレ  Denacol EX-313: Polyglycidyl etherate manufactured by Nagase ChemteX Corporation
GS-Pla:三菱化学 (株)製脂肪族ポリエステル樹脂(ポリブチレンサクシネート)「G GS-Pla: Aliphatic polyester resin (polybutylene succinate) “G” manufactured by Mitsubishi Chemical Corporation
S-pla AZ71T」 S-pla AZ71T "
AO-50:旭電化工業 (株)製フヱノール系酸化防止剤:「アデカスタブ A〇 - 50」 MA— P6:日本タルク(株)製微粉末タルク:「MICR〇 ACE P_6」  AO-50: Phenolic antioxidant manufactured by Asahi Denka Kogyo Co., Ltd .: “ADK STAB A〇-50” MA— P6: Fine talc manufactured by Nippon Talc Co., Ltd .: “MICR〇 ACE P_6”
WX-1:JI I研ファインケミカル (株)製ビスアミド系滑剤:「WX_ 1」  WX-1: JI Ken Fine Chemical Co., Ltd. Bisamide lubricant: “WX_ 1”
LA- 1:日清紡製カルポジイミド系安定剤:「LA_ 1」  LA-1: Nisshinbo Carpositimide Stabilizer: “LA_ 1”
(コンパゥンドの粘度変化及び増粘効果評価)  (Compound viscosity change and thickening effect evaluation)
次に、得られたコンパウンドについて、国際規格の ISO 1133 (日本工業規格の JI S-K7210)の熱可塑性プラスチックの流れ試験方法に準じて、温度: 210°C及び 荷重: 21. 2N(2. 16kgf)での MFR値を測定した。樹脂投入から 5分後の MFR値( MFR )、 15分後の MFR値 (MFR )を測定した。  Next, for the obtained compound, the temperature was 210 ° C and the load was 21.2N (2.) In accordance with the flow test method for thermoplastics of ISO 1133 (JIS Industrial Standard JIS-K7210). The MFR value at 16 kgf) was measured. The MFR value (MFR) at 5 minutes after the resin was added and the MFR value (MFR) at 15 minutes were measured.
5 15  5 15
[0078] 更に、直径: 1mm及び長さ: 10mmのダイを備えたキヤピラリーレオメータ(東洋精 機 (株)製 キヤピログラフ 1C)を用い、温度: 200°C及びせん断測度: 121sec— 1にて 溶融粘度を測定した。キヤピラリーレオメータのダイより吐出した各サンプルの直径を 測定し、ダイの直径との比較からスゥエルを測定した(スゥエル =吐出サンプルの直 径 (mm)/ダイの直径 (mm)より算出した)。その結果を、表 3に示す。 [0078] Further, using a capillary rheometer (Capillograph 1C manufactured by Toyo Seiki Co., Ltd.) equipped with a die having a diameter of 1 mm and a length of 10 mm, melting at a temperature of 200 ° C and a shearing measure of 121 sec- 1 The viscosity was measured. The diameter of each sample discharged from the capillary rheometer die was measured, and the swell was measured by comparison with the die diameter (calculated from swell = diameter of discharge sample (mm) / die diameter (mm)). The results are shown in Table 3.
[0079] [表 3] [0079] [Table 3]
MFR5 MFR15 溶融粘度 η スゥエル DS MFR 5 MFR 15 Melt viscosity η Swell DS
試験 外観  Appearance
(g/10分) (g/10分) (Pa - s) (一)  (g / 10 min) (g / 10 min) (Pa-s) (1)
実施例 1 良好 8.2 6.7 1070 1.22 実施例 2 良好 6.7 5.0 1270 1.31 実施例 3 良好 5.0 3.3 1200 1.42 実施例 4 良好 9.7 10.2 1205 1.20 実施例 5 良好 7.5 5.8 1 170 1.24 実施例 6 良好 13.1 11.4 622 1.58 実施例 7 良好 7.3 7.5 722 170 比較例 1 良好 1 1.4 15.8 929 1.14 比較例 2 良好 2.9 10.1 1943 1.49 比較例 3 ゲル化 3.2 1.5 1640 1 J6 比較例 4 良好 10.7 1 1.0 974 1.15 比較例 5 良好 1 1.0 1 1.8 996 1.15 比較例 6 良好 10.4 10.3 1 1 10 1.15 比較例 7 良好 15.0 26.5 795 1.15 比較例 8 良好 15.2 36.7 709 1.12 比較例 9 良好 10.4 1 1.6 1090 1.18 比較例 10 ゲル化 6.7 4.3 1318 1.25 比較例 1 1 良好 1.0 1.3 2440 1.56 比較例 12 良好 17.1 21.3 417 1.39  Example 1 Good 8.2 6.7 1070 1.22 Example 2 Good 6.7 5.0 1270 1.31 Example 3 Good 5.0 3.3 1200 1.42 Example 4 Good 9.7 10.2 1205 1.20 Example 5 Good 7.5 5.8 1 170 1.24 Example 6 Good 13.1 11.4 622 1.58 Example Example 7 Good 7.3 7.5 722 170 Comparative Example 1 Good 1 1.4 15.8 929 1.14 Comparative Example 2 Good 2.9 10.1 1943 1.49 Comparative Example 3 Gelation 3.2 1.5 1640 1 J6 Comparative Example 4 Good 10.7 1 1.0 974 1.15 Comparative Example 5 Good 1 1.0 1 1.8 996 1.15 Comparative Example 6 Good 10.4 10.3 1 1 10 1.15 Comparative Example 7 Good 15.0 26.5 795 1.15 Comparative Example 8 Good 15.2 36.7 709 1.12 Comparative Example 9 Good 10.4 1 1.6 1090 1.18 Comparative Example 10 Gelation 6.7 4.3 1318 1.25 Comparative Example 1 1 Good 1.0 1.3 2440 1.56 Comparative Example 12 Good 17.1 21.3 417 1.39
表 3の実施例 1〜5に示されるように、重合体 1〜3が加えられた各種 PLAコンパゥ ンドの外観は良好であり、かつそれらの PLAコンパウンドでは比較例 1の PLA樹脂と 比較して十分な増粘効果が確認された。更に、 2種類の脂肪族ポリエステルが混合さ れた実施例 6及び 7は、比較例 12に比べてアクリル樹脂系改質剤(B)の添加による 増粘効果が十分に確認され、また各種添加剤が含まれた場合でも増粘効果が阻害 されることはなかった。 As shown in Examples 1 to 5 in Table 3, the appearance of various PLA compounds to which polymers 1 to 3 were added was good, and those PLA compounds were compared with the PLA resin of Comparative Example 1. A sufficient thickening effect was confirmed. Furthermore, in Examples 6 and 7 in which two types of aliphatic polyesters were mixed, the thickening effect due to the addition of the acrylic resin modifier (B) was sufficiently confirmed as compared with Comparative Example 12, and various additions were made. Even when the agent was included, the thickening effect was not inhibited.
[0080] 表 3の結果をもとに、変化率偏差 MFR: (MFR _MFR ) ZMFR )の値、溶  [0080] Based on the results in Table 3, change rate deviation MFR: (MFR _MFR) ZMFR)
15 5 5 融粘度の測定結果より溶融粘度の変化率 Δ ηの値、及びスゥエルの測定結果よりス ゥエル変化率 Δ DSの値を夫々算出した。それらの結果を表 4に示す。  15 5 5 The melt viscosity change rate Δη was calculated from the melt viscosity measurement result, and the swell change rate ΔDS value was calculated from the swell measurement result. Table 4 shows the results.
[0081] [表 4] 試験 a MFR η 備考 実施例 1 -0.18 1.15 1.07 A η、 DSは基準 1の値をもとに算出 実施例 2 -0.26 1.37 1.15 Δ η、 DSは基準 1の値をもとに算出 実施例 3 -0.34 1.29 1.25 A V、 DSは基準 1の値をもとに算出 実施例 4 0.05 1.30 1.05 Δ η、 lDSは基準 1の値をもとに算出 実施例 5 -0.23 1.26 1.09 Δ Ό、 lDSは基準 1の値をもとに算出 実施例 6 -0.13 1.49 1.14 A η、 IDSは基準 3の値をもとに算出 実施例 7 0.04 1.70 1.19 Δ 7}、 DSは基準 3の値をもとに算出 比較例 1 0.39 1.00 1.00 基準 1 [0081] [Table 4] Test a MFR η Remarks Example 1 -0.18 1.15 1.07 A η and DS are calculated based on the value of standard 1 Example 2 -0.26 1.37 1.15 Δ η and DS are calculated based on the value of standard 1 Example 3 -0.34 1.29 1.25 AV and DS are calculated based on the value of standard 1 Example 4 0.05 1.30 1.05 Δ η, lDS is calculated based on the value of standard 1 Example 5 -0.23 1.26 1.09 Δ Ό, lDS is standard Example 6 -0.13 1.49 1.14 A η, IDS is calculated based on the standard 3 value Example 7 0.04 1.70 1.19 Δ 7}, DS is calculated based on the standard 3 value Comparative Example 1 0.39 1.00 1.00 Standard 1
比較例 2 2.51 1.00 1.00 基準 2  Comparative Example 2 2.51 1.00 1.00 Standard 2
比較例 3 -0.53 1.77 1.54 Δ η、 lDSは基準 1の値をもとに算出 比較例 4 0.03 1.05 1.01 A η、 DSは基準 1の値をもとに算出 比較例 5 0.08 1.07 1.01 Δ η、 DSは基準 1の値をもとに算出 比較例 6 一 0.01 1.20 1.01 Δ Π、 は基準 1の値をもとに算出 比較例 7 0.77 0.86 1.01 A η、 DSは基準 1の値をもとに算出 比較例 8 1.41 0.76 0.98 A η、 DSは基準 1の値をもとに算出 比較例 9 0.12 1.17 1.04 A n . DSは基準1の値をもとに算出 比較例 10 -0.36 1.42 1.10 Δ η、 DSは基準 1の値をもとに算出 比較例 11 0.36 1.26 1.05 A η、 lDSは基準 2の値をもとに算出 比較例 12 0.25 1 ,00 1.00 基準 3 Comparative Example 3 -0.53 1.77 1.54 Δ η, lDS is calculated based on the value of Reference 1 Comparative Example 4 0.03 1.05 1.01 A η, DS is calculated based on the value of Reference 1 Comparative Example 5 0.08 1.07 1.01 Δ η, DS is calculated based on the value of standard 1.Comparative example 6 1 0.01 1.20 1.01 Δ Π, is calculated based on the value of standard 1 Comparative example 7 0.77 0.86 1.01 A η, DS is based on the value of standard 1 Calculation Comparative Example 8 1.41 0.76 0.98 A η, DS is calculated based on the value of Standard 1. Comparative Example 9 0.12 1.17 1.04 An. DS is calculated based on the value of Standard 1. Comparative Example 10 -0.36 1.42 1.10 Δ η , DS is calculated based on the value of Standard 1 Comparative Example 11 0.36 1.26 1.05 A η, lDS is calculated based on the value of Standard 2 Comparative Example 12 0.25 1, 00 1.00 Standard 3
(ポリ乳酸樹脂中のラクチド含有量による効果) (Effects of lactide content in polylactic acid resin)
実施例 1の溶融粘度変化の値と、ラクチド含有量の多いポリ乳酸樹脂が用いられた 比較例 11の溶融粘度変化の値とを比較すると、アクリル樹脂系改質剤である重合体 1の添加量、及びコンパウンド条件が同一であるにもかかわらず、実施例 1の粘度変 化値の増粘効果が、比較例 11の増粘効果に比べて高かった。  When the value of the change in melt viscosity of Example 1 was compared with the value of the change in melt viscosity of Comparative Example 11 in which a polylactic acid resin having a high lactide content was used, the addition of polymer 1 as an acrylic resin modifier was added. Despite the same amount and compounding conditions, the thickening effect of the viscosity change value of Example 1 was higher than that of Comparative Example 11.
(アクリル樹脂系改質剤種による効果)  (Effects of acrylic resin modifiers)
比較例 3より、エポキシ基当量が大きい重合体 4が用いられた場合、押出機内で架 橋反応が起こり、溶融物はゲル化に至ったため、安定した押出成形ができな力つた。 更に、比較例 4〜6より、 0°C以下の Tgを有する重合体 5〜7が用いられると、押出成 形性、及び MFR測定による粘度変化は良好であつたが、溶融粘度変化率 Δ η、及 びスゥエル変化率 A DSの結果より、十分な增粘が認められなかった。エポキシ化大 豆油とポリグリシジルエーテルが添加された比較例 7及び 8の結果では、反応性が不 十分なことから MFR測定による粘度変化の改良効果が低ぐ溶融粘度測定力 も増 粘が認められなかった。 From Comparative Example 3, when Polymer 4 having a large epoxy group equivalent was used, a bridge reaction occurred in the extruder, and the melt was gelled, so that stable extrusion could not be achieved. Furthermore, from Comparative Examples 4 to 6, when polymers 5 to 7 having a Tg of 0 ° C. or lower were used, the extrusion moldability and the viscosity change by MFR measurement were good, but the melt viscosity change rate Δ From the results of η and swell change rate ADS, sufficient thickening was not recognized. In the results of Comparative Examples 7 and 8 where epoxidized soybean oil and polyglycidyl ether were added, the reactivity was poor. As it was sufficient, the effect of improving the viscosity change by MFR measurement was low, and no increase in melt viscosity was observed.
(アクリル樹脂系改質剤添加量による効果)  (Effects of added amount of acrylic resin modifier)
実施例 1、実施例 4及び実施例 5の結果より、 PLAコンパウンドの外観は良好であり 、かつ PLA樹脂として十分な増粘効果が確認されたが、アクリル樹脂系改質剤の添 加量が少ない比較例 9では、 Δ 及び A DSの値から判断して十分な増粘効果が確 認されなかった。一方、アクリル樹脂系改質剤が過剰に添加された比較例 10では、 押出機内で架橋反応が起こり、溶融物はゲル化に到り、安定した押出成形ができな 力、つた。し力、も、反応が過剰に進行し、 MFR測定の粘度変化が大きくなつて成形カロ ェ時の熱安定性に欠けることが確認された。  From the results of Example 1, Example 4 and Example 5, the appearance of the PLA compound was good and a sufficient thickening effect as a PLA resin was confirmed. However, the amount of the acrylic resin-based modifier added was small. In Comparative Example 9 with a small amount, a sufficient thickening effect was not confirmed based on the values of Δ and ADS. On the other hand, in Comparative Example 10 in which the acrylic resin modifier was excessively added, a crosslinking reaction occurred in the extruder, the melt reached gelation, and a stable extrusion could not be achieved. However, it was confirmed that the reaction proceeds excessively and the viscosity change of MFR measurement is large, so that the thermal stability during molding calorie is lacking.
[0082] 前記実施形態は、次のように変更して具体化され得る。 [0082] The embodiment described above can be embodied with the following modifications.
[0083] アクリル樹脂系改質剤(B)に加えて、ポリ乳酸のヒドロキシル基又はカルボキシノレ基 と反応する化合物がポリエステル樹脂組成物に配合されてもよい。この化合物として は、例えば酸無水物、アルコキシ化合物、及びアミド基含有化合物が挙げられる。  [0083] In addition to the acrylic resin-based modifier (B), a compound that reacts with the hydroxyl group or carboxynole group of polylactic acid may be added to the polyester resin composition. Examples of this compound include acid anhydrides, alkoxy compounds, and amide group-containing compounds.
[0084] 成形体の機械的強度及び耐熱性を向上させるために、ポリエステル樹脂組成物に 芳香族ポリエステル樹脂が配合されてもょレ、。  [0084] An aromatic polyester resin may be added to the polyester resin composition in order to improve the mechanical strength and heat resistance of the molded body.
[0085] ポリエステル樹脂組成物の架橋反応を促進するために、ポリエステル樹脂組成物 に、ビスフエノール A等のエポキシィ匕合物が少量配合されてもょレ、。  [0085] In order to accelerate the crosslinking reaction of the polyester resin composition, a small amount of an epoxy compound such as bisphenol A may be blended in the polyester resin composition.

Claims

請求の範囲 The scope of the claims
[1] 乳酸単位を有する重合体を主成分とし、かつラクチド又は乳酸の含有量が 0. 2質 量%未満である脂肪族ポリエステル樹脂 (A) 100質量部に対して、ガラス転移温度 力 ¾°C以上であり、 1分子当たりのエポキシ基の平均数が 3〜30であり、かつ質量平 均分子量が 1, 000-30, 000であるアクリル樹脂系改質剤(B)を 0. 15〜:!質量部 の割合で含有することを特徴とする脂肪族ポリエステル樹脂組成物。  [1] Aliphatic polyester resin (A) comprising a polymer having a lactic acid unit as a main component and a lactide or lactic acid content of less than 0.2% by mass (A) with respect to 100 parts by mass, Acrylic resin-based modifier (B) having an average number of epoxy groups per molecule of 3 to 30 and a mass average molecular weight of 1,000 to 30,000 is 0.15 ° C. ~ :! An aliphatic polyester resin composition characterized by containing at a ratio of parts by mass.
[2] 国際規格の ISO 1133に規定された熱可塑性プラスチックの流れ試験方法に準じ て測定された温度: 210°C及び荷重: 21. 2N (2. 16kgf)での MFR値であって、樹 脂投入から 5分後の MFR値(MFR )と 15分後の MFR値(MFR )との変化率偏差  [2] MFR value at a temperature of 210 ° C and a load of 21.2 N (2. 16 kgf) measured according to the thermoplastic flow test method specified in ISO 1133 of the international standard. Deviation in the rate of change between the MFR value (MFR) after 5 minutes and the MFR value (MFR) after 15 minutes
5 15  5 15
( a MFR: (MFR —MFR ) /MFR )の値が 0· 35〜0. 1であることを特徴とす  (a MFR: (MFR —MFR) / MFR) is a value between 0 · 35 and 0.1.
15 5 5  15 5 5
る請求項 1に記載の脂肪族ポリエステル樹脂組成物。  The aliphatic polyester resin composition according to claim 1.
[3] アクリル樹脂系改質剤(Β)のエポキシ当量が 0· 70-3. 00meq/gであることを特 徴とする請求項 1又は請求項 2に記載の脂肪族ポリエステル樹脂組成物。 [3] The aliphatic polyester resin composition according to claim 1 or 2, wherein an epoxy equivalent of the acrylic resin-based modifier (で あ) is 0 · 70-3.00 meq / g.
[4] アクリル樹脂系改質剤(B)が、エポキシ基含有アクリル系単量体及びスチレン系単 量体を含有する単量体混合物を重合して得られることを特徴とする請求項 1から請求 項 3のいずれか一項に記載の脂肪族ポリエステル樹脂組成物。 [4] The acrylic resin modifier (B) is obtained by polymerizing a monomer mixture containing an epoxy group-containing acrylic monomer and a styrene monomer. The aliphatic polyester resin composition according to claim 3.
[5] アクリル樹脂系改質剤(B) 、 130〜350°Cの温度に設定された連続攪拌槽重合 法で製造されることを特徴とする請求項 1から請求項 4のいずれか一項に記載の脂肪 族ポリエステル樹脂組成物。 [5] The acrylic resin-based modifier (B) is produced by a continuous stirred tank polymerization method set at a temperature of 130 to 350 ° C. The aliphatic polyester resin composition described in 1.
[6] 直径: lmm及び長さ: 10mmのダイを備えたレオメータにて温度: 200°C及びせん 断速度:121SeC1の条件で測定された溶融粘度に関して、アクリル樹脂系改質剤 (B )が添加されたときの溶融粘度( )と、アクリル樹脂系改質剤(B)が添加されてレ、 add [6] Acrylic resin modifier for melt viscosity measured with a rheometer equipped with a die of diameter: lmm and length: 10mm, temperature: 200 ° C and shear rate: 121 SeC1 ( When B) is added, the melt viscosity () and acrylic resin modifier (B) are added.
ないときの溶融粘度( )との変化率 Δ η ( η / η )の値が 1.:!〜 1. 8であること  The rate of change from the melt viscosity () when there is no Δ η (η / η) is 1.:!~1.8
0 add 0  0 add 0
を特徴とする請求項 1から請求項 5のいずれか一項に記載の脂肪族ポリエステル樹 脂組成物。  The aliphatic polyester resin composition according to any one of claims 1 to 5, wherein:
[7] アクリル樹脂系改質剤(B)が添加されたときのスゥエル(=ダイ出口における樹脂の 直径/ダイの直径)(DS )と、アクリル樹脂系改質剤(B)が添加されてレ、ないときの add  [7] Swell when the acrylic resin modifier (B) is added (= resin diameter / die diameter at the die exit) (DS) and acrylic resin modifier (B) Add
スウエノレ(DS )との変化率 A DS (DS /DS )の値が 1 · 05〜: 1. 3であることを特徴 とする請求項 1から請求項 5のいずれか一項に記載の脂肪族ポリエステル樹脂組成 物。 Rate of change with Sueñore (DS) A DS (DS / DS) has a value of 1 · 05〜: 1. 3 The aliphatic polyester resin composition according to any one of claims 1 to 5.
[8] アクリル樹脂系改質剤(B) 、エポキシ基含有アクリル系単量体、スチレン系単量 体及びこれら以外のビニル系単量体を含有する単量体混合物を重合して得られるこ とを特徴とする請求項 4から請求項 7のいずれか一項に記載の脂肪族ポリエステル樹 脂組成物。  [8] It is obtained by polymerizing a monomer mixture containing an acrylic resin modifier (B), an epoxy group-containing acrylic monomer, a styrene monomer, and other vinyl monomers. The aliphatic polyester resin composition according to any one of claims 4 to 7, characterized by:
[9] 請求項 1から請求項 8のいずれか 1項に記載の脂肪族ポリエステル樹脂組成物を 溶融成形して得られることを特徴とする成形体。  [9] A molded article obtained by melt-molding the aliphatic polyester resin composition according to any one of claims 1 to 8.
PCT/JP2006/305547 2005-03-24 2006-03-20 Aliphatic polyester resin composition and molded body WO2006101076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800019251A CN101103072B (en) 2005-03-24 2006-03-20 Aliphatic polyester resin composition and molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-086395 2005-03-24
JP2005086395A JP4672409B2 (en) 2005-03-24 2005-03-24 Aliphatic polyester resin composition

Publications (1)

Publication Number Publication Date
WO2006101076A1 true WO2006101076A1 (en) 2006-09-28

Family

ID=37023737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305547 WO2006101076A1 (en) 2005-03-24 2006-03-20 Aliphatic polyester resin composition and molded body

Country Status (3)

Country Link
JP (1) JP4672409B2 (en)
CN (1) CN101103072B (en)
WO (1) WO2006101076A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2995448A1 (en) * 2014-09-10 2016-03-16 Clariant International Ltd. Snap ability modifier for biodegradable polyesters
JP2016221310A (en) * 2011-12-14 2016-12-28 株式会社シーエンジ mattress
TWI647002B (en) * 2018-04-25 2019-01-11 統一企業股份有限公司 Food quality evaluation device and method
WO2020229857A1 (en) 2019-05-15 2020-11-19 Ecole Polytechnique Federale De Lausanne (Epfl) Composition and method for the preparation of sheets, films, fibers, and molded parts

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143988A (en) * 2006-12-07 2008-06-26 Kisco Ltd Thermoplastic resin composition for extrusion molding comprising recycled pet and molded product
JP2009079124A (en) * 2007-09-26 2009-04-16 Unitika Ltd Biodegradable polyester resin composition and molded body formed of it
JP2009197079A (en) * 2008-02-20 2009-09-03 Nippon A&L Inc Thermoplastic resin composition
JP2010168505A (en) * 2009-01-26 2010-08-05 Teijin Ltd Polylactic acid composition and molding comprising the same
JP2013163757A (en) * 2012-02-10 2013-08-22 Sharp Corp Thermoplastic resin composition and molded article
WO2014129293A1 (en) * 2013-02-19 2014-08-28 東レ株式会社 Polylactic resin composition, molded product, and method for producing polylactic resin composition
JP6465641B2 (en) * 2014-12-16 2019-02-06 花王株式会社 Method for producing polylactic acid resin composition
EP3357944B1 (en) * 2015-09-28 2020-07-15 Soken Chemical & Engineering Co., Ltd. Plasticizer for polylactic acid resins, polylactic acid resin composition using said plasticizer and polylactic acid resin molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371201A (en) * 2001-04-13 2002-12-26 Mitsui Chemicals Inc Biodegradable resin composition
JP2003286401A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Polylactic acid-containing resin composition, molding and film or sheet therefrom
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article
JP2005344075A (en) * 2004-06-07 2005-12-15 Mitsubishi Rayon Co Ltd Polylactic acid-based thermoplastic resin composition
JP2005343970A (en) * 2004-06-01 2005-12-15 Okura Ind Co Ltd Polylactic acid-based resin composition
JP2006117768A (en) * 2004-10-20 2006-05-11 Toray Ind Inc Resin composition and molded article comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2397898T3 (en) * 2004-06-23 2013-03-12 Natureworks Llc Branched lactic acid polymers and methods for preparing them

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002371201A (en) * 2001-04-13 2002-12-26 Mitsui Chemicals Inc Biodegradable resin composition
JP2003286401A (en) * 2002-03-28 2003-10-10 Toray Ind Inc Polylactic acid-containing resin composition, molding and film or sheet therefrom
JP2005248160A (en) * 2004-02-06 2005-09-15 Osaka Gas Co Ltd Biodegradable plastic material and molded article
JP2005343970A (en) * 2004-06-01 2005-12-15 Okura Ind Co Ltd Polylactic acid-based resin composition
JP2005344075A (en) * 2004-06-07 2005-12-15 Mitsubishi Rayon Co Ltd Polylactic acid-based thermoplastic resin composition
JP2006117768A (en) * 2004-10-20 2006-05-11 Toray Ind Inc Resin composition and molded article comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016221310A (en) * 2011-12-14 2016-12-28 株式会社シーエンジ mattress
EP2995448A1 (en) * 2014-09-10 2016-03-16 Clariant International Ltd. Snap ability modifier for biodegradable polyesters
WO2016037918A1 (en) * 2014-09-10 2016-03-17 Clariant International Ltd Snap ability modifier for biodegradable polyesters
TWI647002B (en) * 2018-04-25 2019-01-11 統一企業股份有限公司 Food quality evaluation device and method
WO2020229857A1 (en) 2019-05-15 2020-11-19 Ecole Polytechnique Federale De Lausanne (Epfl) Composition and method for the preparation of sheets, films, fibers, and molded parts
WO2020229594A1 (en) 2019-05-15 2020-11-19 École Polytechnique Fédérale De Lausanne (Epfl) Composition and method for the preparation of sheets, films, fibers, and molded parts

Also Published As

Publication number Publication date
JP4672409B2 (en) 2011-04-20
CN101103072B (en) 2010-10-27
JP2006265399A (en) 2006-10-05
CN101103072A (en) 2008-01-09

Similar Documents

Publication Publication Date Title
WO2006101076A1 (en) Aliphatic polyester resin composition and molded body
JP5847938B2 (en) Process for producing biodegradable aliphatic / aromatic copolymer polyesters
EP2480589B1 (en) Biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
EP2607428B1 (en) Resin composition
JP5680095B2 (en) Continuous production of polyester blends
EP3186310B1 (en) Modification of engineering plastics using olefin-maleic anhydride copolymers
Spinella et al. Polylactide/poly (ω-hydroxytetradecanoic acid) reactive blending: A green renewable approach to improving polylactide properties
EP1674528B1 (en) Aliphatic polyester composition and moulded article
Mahata et al. Poly (butylene adipate-co-terephthalate) polyester synthesis process and product development
Augé et al. Recent advances on reactive extrusion of poly (lactic acid)
WO2023093336A1 (en) Biodegradable material, and film product and application thereof
WO2011043187A1 (en) Eyeglasses molded article, process for production of same, and eyeglasses
KR100875253B1 (en) Modifier for polyester resin and manufacturing method of molded article using same
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JP2000017153A (en) Resin composition and its molded product
JP2009209226A (en) Polyester resin composition
AU2010200315A1 (en) Biodegradable resin composition, method for production thereof and biodegradable film therefrom
JP2008063582A (en) Lactic acid resin composition, peroxide-modified lactic acid resin composition and their molded products
KR20230161428A (en) Methods and related products for branched polyester for foaming
JP4821952B2 (en) POLYESTER RESIN MODIFICATOR AND METHOD FOR PRODUCING MOLDED ARTICLE USING THE SAME
JP2006232975A (en) Modifier for polyester resin and method for producing molded article using the same
JP2005239932A (en) Polylactic acid resin composition and molded article using the same
JP4596125B2 (en) Polylactic acid resin composition and molded article using the same
JP2009249428A (en) Aliphatic polyester resin composition
JP2008069218A (en) Crystallization promoter, method for producing the same and polylactic acid resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680001925.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729515

Country of ref document: EP

Kind code of ref document: A1