WO2014129293A1 - Polylactic resin composition, molded product, and method for producing polylactic resin composition - Google Patents

Polylactic resin composition, molded product, and method for producing polylactic resin composition Download PDF

Info

Publication number
WO2014129293A1
WO2014129293A1 PCT/JP2014/052384 JP2014052384W WO2014129293A1 WO 2014129293 A1 WO2014129293 A1 WO 2014129293A1 JP 2014052384 W JP2014052384 W JP 2014052384W WO 2014129293 A1 WO2014129293 A1 WO 2014129293A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
poly
polylactic acid
acid
resin composition
Prior art date
Application number
PCT/JP2014/052384
Other languages
French (fr)
Japanese (ja)
Inventor
高橋佳丈
直塚拓磨
大目裕千
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015501382A priority Critical patent/JPWO2014129293A1/en
Publication of WO2014129293A1 publication Critical patent/WO2014129293A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention provides a polylactic acid resin composition, a molded article, and a polylactic acid resin composition that have improved molding processability, mechanical properties, durability, and stability during heating, and also excellent heat resistance and crystallization characteristics. It relates to a manufacturing method.
  • Polylactic acid is a polymer that can be melt-molded practically and has characteristics of biodegradability, so it is developed as a biodegradable plastic that is decomposed in the natural environment and released as carbon dioxide or water after use. Has been promoted.
  • polylactic acid itself is made from renewable resources (biomass) originating from carbon dioxide and water, so carbon that does not increase or decrease in the global environment even if carbon dioxide is released after use. Neutral properties have attracted attention and are expected to be used as environmentally friendly materials.
  • lactic acid which is a monomer of polylactic acid, is being produced at low cost by fermentation using microorganisms, and has been studied as an alternative material for general-purpose polymers made of petroleum-based plastics.
  • seat is performed by melt-kneading the unsaturated carboxylic acid alkylester polymer which uses acrylic acid ester as a raw material monomer with respect to polylactic acid resin. Yes.
  • a molded body can be obtained without bleeding out during the molding process of the polylactic acid resin composition, and the obtained molded body has characteristics of excellent flexibility and transparency.
  • Patent Document 2 the moldability of polylactic acid resin is improved by melt-kneading an acrylic resin-based modifier containing an epoxy group with respect to polylactic acid resin.
  • the epoxy group of the acrylic resin-based modifier reacts with the carboxyl group or hydroxyl group present at the end of the polylactic acid resin to form an appropriate cross-linked structure, thereby increasing the viscosity, which is suitable for molding. Is expressed.
  • Patent Document 3 describes that impact resistance of a polylactic acid resin composition can be improved by blending an acrylic resin with a polylactic acid resin composition composed of a polylactic acid resin and an ABS resin. Also in this technology, a reactive compound containing an epoxy group is exemplified as an acrylic resin, and the melt viscosity increases due to the reaction between the acrylic resin and the polylactic acid resin composition, in addition to impact resistance, thermal stability. Will also improve.
  • Patent Document 4 discloses that a polylactic acid stereocomplex composed of poly-L-lactic acid and poly-D-lactic acid is melt-kneaded with an acrylic resin containing an epoxy group to suppress a change in melt viscosity, and is stable against moisture and heat.
  • a polylactic acid resin composition excellent in properties and color tone is obtained.
  • polylactic acid composed of poly-L-lactic acid and poly-D-lactic acid is used as the polylactic acid resin, and therefore it has a stereocomplex crystal phase, so that it has higher heat resistance than poly-L-lactic acid alone.
  • polylactic acid has lower heat resistance and durability than petroleum-based plastics, and its crystallization speed is low, so it is inferior in productivity, and the range of practical use is greatly limited. .
  • polylactic acid stereocomplex is expected as a means to solve the disadvantages of polylactic acid.
  • the polylactic acid stereocomplex is formed by mixing optically active poly-L-lactic acid and poly-D-lactic acid.
  • the melting point of the polylactic acid stereocomplex reaches 220 ° C., which is 50 ° C. higher than the melting point 170 ° C. of the polylactic acid homopolymer.
  • a polylactic acid stereocomplex is formed by mixing poly-L-lactic acid and poly-D-lactic acid in a solution state or by heating and melt-mixing poly-L-lactic acid and poly-D-lactic acid.
  • a polylactic acid block copolymer is attracting attention as a new method for forming a polylactic acid stereocomplex.
  • This polylactic acid block copolymer is obtained by covalently bonding a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component. Even so, since the stereocomplex crystal formability is excellent and the melting point derived from the stereocomplex crystal is observed, it is possible to obtain a material having excellent thermal properties such as heat resistance and crystallization characteristics. For this reason, the application as a high melting point and highly crystalline fiber, film, and resin molded article is tried.
  • the molding process of polylactic acid In the molding process of polylactic acid, it is heated and melted above the melting point of the polymer and then shaped into the desired shape. However, when melted and retained at high temperatures, the melt viscosity generally decreases greatly, so for example in sheet film extrusion molding The thickness and width are not uniform, which may cause perforation of the sheet and poor stretching of the film. In thermoforming and blow molding, it tends to draw down during heating, so that the dimensional stability of the molded body is poor. Therefore, in the melt molding process of polylactic acid or stereocomplex, the molding conditions such as lowering the heating temperature are controlled to obtain a melt viscosity suitable for molding, but the molding temperature range is narrow and the molding processability is low. There's a problem.
  • Patent Documents 1 to 3 although the processability at the time of melting of the polylactic acid resin is improved, the crystallization speed of the polylactic acid is so slow that it does not show the temperature-falling crystallization temperature. However, productivity remains a problem. Furthermore, since the melting point of homopolylactic acid is around 170 ° C., there remains a problem in heat resistance in actual use.
  • the polylactic acid stereocomplex prepared by melt-mixing poly-L-lactic acid and poly-D-lactic acid in Patent Document 4 has a high melting point, but the crystallization speed is insufficient, so that it is the same as Patent Documents 1 to 3.
  • productivity remains a problem.
  • an organophosphate metal salt or the like is added, so that a large amount of gas is generated at the time of heating and melting, such as having moldability, heat resistance, and crystallization characteristics. None is available at present.
  • the present invention has been made in view of the above, and has improved mechanical properties, durability, retention stability during heating, and further forms polylactic acid stereocomplex having excellent heat resistance and crystallization characteristics. It is providing the manufacturing method of a resin composition, a molded object, and a polylactic acid resin composition.
  • the polylactic acid resin composed of a polylactic acid block copolymer is thickened with a polymer having a plurality of reactive groups per molecule, the crystallization characteristics do not deteriorate, and the molding processability, heat resistance, and crystallization characteristics The purpose is to achieve both.
  • the polylactic acid resin composition of the present invention has the following configuration. That is, (A) 100 parts by weight of a polylactic acid block copolymer composed of a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component (B ) A polylactic acid resin composition comprising 0.05 to 2 parts by weight of a polymer having a plurality of reactive groups per molecule, and (B) a weight average of the polymers having a plurality of reactive groups per molecule Crystallization when the molecular weight is 1,000 to 15,000 and the polylactic acid resin composition is heated to 250 ° C. and kept at a constant temperature for 3 minutes and then cooled at a cooling rate of 20 ° C./min in DSC measurement. A polylactic acid resin composition having a calorific value of 10 J / g or more.
  • the polymer having a plurality of reactive groups per molecule is preferably an epoxy group-containing acrylic resin-based reactive compound.
  • the polylactic acid resin composition of the present invention preferably has 2 to 30 epoxy groups per molecule of the epoxy group-containing acrylic resin reactive compound.
  • the polylactic acid resin composition of the present invention preferably has a stereocomplex formation rate (Sc) satisfying the following formula (1).
  • ⁇ Hh Amount of heat (J / g) based on the stereocomplex crystal when the polylactic acid resin composition is heated at a rate of temperature increase of 20 ° C./min in the DSC measurement.
  • the polylactic acid resin composition of the present invention is a ratio of the melt flow rate after 10 minutes (MFR10) to the melt flow rate after 20 minutes (MFR20) at 230 ° C. and 21.2 N load conditions of the polylactic acid resin composition. It is preferable that (MFR10 / MFR20) is 0.5 or more and 2 or less.
  • the polylactic acid resin composition of the present invention is a polylactic acid obtained when the polylactic acid resin composition is heated to 250 ° C. and kept at a constant temperature for 3 minutes in DSC measurement, and then cooled at a cooling rate of 20 ° C./min. It is preferable that the temperature-falling crystallization temperature of a resin composition is 130 degreeC or more.
  • the (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following combination 1 and / or the following combination 2.
  • a mixture satisfying the following formula (2) having a weight average molecular weight of 90,000 or more and a stereocomplex formation rate (Sc) is obtained, and then obtained by solid phase polymerization at a temperature lower than the melting point of the mixture. It is preferable.
  • the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 to 300,000, and the other weight average molecular weight is 10,000 to 100,000 (Combination 2).
  • the (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following
  • a mixture satisfying the following formula (2) having a weight average molecular weight of 90,000 or more and a stereocomplex formation rate (Sc) is obtained, and then obtained by solid phase polymerization at a temperature lower than the melting point of the mixture. It is preferable.
  • the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 120,000 to 300,000, and the other weight average molecular weight is 30,000 to 100,000
  • the ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30.
  • the polylactic acid resin composition preferably has a weight average molecular weight of 100,000 to 500,000.
  • the polylactic acid resin composition of the present invention preferably further comprises (b) poly-L-lactic acid and / or (c) poly-D-lactic acid, relative to the polylactic acid resin composition. .
  • the molded object of this invention has the following structure. That is, It is the molded object which consists of the said polylactic acid resin composition.
  • the relative crystallinity of the molded article is preferably 90% or more, and the haze value of the molded article having a thickness of 1 mm is preferably 10% or less.
  • the method for producing a polylactic acid resin composition of the present invention has any one of the following configurations (I) to (III).
  • this polylactic acid resin contains a polylactic acid block copolymer as a constituent component, not only the molding processability of the polylactic acid resin composition and the retention stability during heating are improved, but also the crystallization characteristics are excellent. .
  • a polylactic acid block copolymer composed of a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component is an L-lactic acid unit.
  • a polylactic acid block copolymer in which a segment comprising D-lactic acid units is covalently bonded is an L-lactic acid unit.
  • the segment composed of L-lactic acid units is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units.
  • the content is more preferably 80 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
  • the segment composed of D-lactic acid units is a polymer containing D-lactic acid as a main component, and means a polymer containing 70 mol% or more of D-lactic acid units.
  • the content is more preferably 80 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
  • the segment composed of L-lactic acid or D-lactic acid unit contains other components as long as the performance of the polylactic acid block copolymer and the polylactic acid resin composition containing the polylactic acid block copolymer is not impaired. Units may be included. Examples of component units other than L-lactic acid or D-lactic acid units include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones.
  • succinic acid adipic acid, sebacic acid
  • Polycarboxylic acids such as fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid or their derivatives, ethylene glycol, propylene glycol, butane Ethylene oxide or propylene oxide was added to diol, pentanediol, hexanediol, octanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, trimethylolpropane or pentaerythritol
  • Polyhydric alcohols aromatic polyhydric alcohols obtained by addition reaction of ethylene oxide with bisphenol, polyhydric alcohols such as diethylene glycol, triethylene glycol, polyethylene glycol
  • the polylactic acid block copolymer has a melting point based on a stereocomplex crystal in the range of 190 to 230 ° C. due to the formation of a stereocomplex, and therefore has excellent heat resistance as compared with a polylactic acid homopolymer.
  • a preferable range of the melting point derived from the stereocomplex crystal is 200 ° C. to 230 ° C., a temperature range of 205 ° C. to 230 ° C. is more preferable, and a temperature range of 210 ° C. to 230 ° C. is particularly preferable. Further, it may have a small melting peak based on a poly-L-lactic acid single crystal and / or a poly-D-lactic acid single crystal in the range of 150 ° C. to 185 ° C.
  • the polylactic acid block copolymer obtained in the present invention preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, the crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when the temperature is increased from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min with a differential scanning calorimeter (DSC). It is possible to calculate by the following formula (4), where ⁇ H1 is the amount of heat based on and ⁇ Hh is the amount of heat based on crystal melting of the stereocomplex crystal.
  • the polylactic acid block copolymer preferably further satisfies the following formula (5).
  • Tm is a melting point when a polylactic acid block copolymer is heated from 30 ° C. to 250 ° C. at a temperature rising rate of 40 ° C./min by a differential scanning calorimeter (DSC)
  • Tms is a polylactic acid block
  • Tme is the differential scanning calorimeter of the polylactic acid block copolymer (DSC) shows the melting end temperature when the temperature is raised from 30 ° C.
  • a preferable range is 1 ⁇ (Tm ⁇ Tms) / (Tme ⁇ Tm) ⁇ 1.6, and a range of 1 ⁇ (Tm ⁇ Tms) / (Tme ⁇ Tm) ⁇ 1.4 is more preferable.
  • the polylactic acid block copolymer preferably has a temperature-falling crystallization temperature (Tc) of 130 ° C. or higher in terms of excellent moldability and heat resistance.
  • Tc temperature drop crystallization temperature
  • the temperature drop crystallization temperature (Tc) of the compact is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min by a differential scanning calorimeter (DSC). Is a crystallization temperature derived from polylactic acid crystals measured when the temperature is lowered at a cooling rate of 20 ° C./min.
  • the crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
  • the weight average molecular weight of the polylactic acid block copolymer of the present invention is not particularly limited, but is preferably 100,000 or more and less than 300,000 from the viewpoint of mechanical properties. More preferably, it is 120,000 or more and less than 280,000, more preferably 130,000 or more and less than 270,000, particularly preferably 140,000 or more and less than 260,000 from the viewpoint of moldability and mechanical properties.
  • the dispersion degree of the polylactic acid block copolymer is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties.
  • the range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable in terms of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • the average chain length of the polylactic acid block copolymer is preferably 20 or more. More preferably, it is 25 or more, and 30 or more is particularly preferable from the viewpoint of mechanical properties of the molded article.
  • the average chain length of the polylactic acid block copolymer was determined by 13 C-NMR measurement, and the integrated value of the peak existing in the vicinity of 170.1 to 170.3 ppm of the carbon peak attributed to carbonyl carbon is (a). , 169.8 to 170.0 ppm, where (b) is the integrated value of the peak, it can be calculated by the following equation (6).
  • the total number of segments consisting of L-lactic acid units and segments consisting of D-lactic acid units contained in one molecule of the polylactic acid block copolymer is 3 or more. It is preferable in that a polylactic acid block copolymer that easily forms can be obtained. More preferably, it is 5 or more, and it is especially preferable that it is 7 or more.
  • the total weight ratio of the segment composed of L-lactic acid units and the segment composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 60:40 or 40:60 to 25:75.
  • the total weight ratio of the segment consisting of L-lactic acid units and the segment consisting of D-lactic acid units is within the above preferred range, a polylactic acid stereocomplex can be easily formed. As a result, the melting point of the polylactic acid block copolymer The rise of is sufficiently large.
  • the method for preparing the polylactic acid block copolymer is not particularly limited, and a general method for preparing polylactic acid can be used. Specifically, ring-opening polymerization is performed in the presence of a catalyst on either a cyclic dimer L-lactide or D-lactide produced from lactic acid as a raw material, and lactide which is an optical isomer of the polylactic acid is further obtained.
  • a lactide method in which a polylactic acid block copolymer is obtained by addition and ring-opening polymerization (preparation method 1 of a polylactic acid block copolymer), and the raw material is polymerized directly or by ring-opening polymerization via lactide.
  • the segment of the L-lactic acid unit is obtained by subjecting poly-L-lactic acid and poly-D-lactic acid to melt-kneading for a long time at a temperature higher than the melting end temperature of the component having the higher melting point.
  • D-lactic acid unit A method of obtaining a polylactic acid block copolymer obtained by transesterification with a polymentine (preparation method 3 of a polylactic acid block copolymer), and mixing a polyfunctional compound with poly-L-lactic acid and poly-D-lactic acid.
  • Any method may be used as a preparation method, but a method of solid-phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid is included in one molecule of polylactic acid block copolymer.
  • the total number of segments consisting of lactic acid units and segments consisting of D-lactic acid units is 3 or more, which is preferable in that a polylactic acid block copolymer having heat resistance, crystallinity and mechanical properties can be obtained.
  • poly-L-lactic acid is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units. It is preferable to contain 80 mol% or more, more preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • Poly-D-lactic acid is a polymer containing D-lactic acid as a main component, and means a polymer containing 70 mol% or more of D-lactic acid units. It is preferable to contain 80 mol% or more, more preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • Preparation Method 1 As a method for preparing a polylactic acid block copolymer by ring-opening polymerization (Preparation Method 1), for example, either L-lactide or D-lactide is subjected to ring-opening polymerization in the presence of a catalyst, and then the other optical An example is a method of obtaining a polylactic acid block copolymer by carrying out ring-opening polymerization by adding lactide which is an isomer.
  • the ratio of the weight average molecular weight of the segment consisting of L-lactic acid units and the weight average molecular weight of the segment consisting of D-lactic acid units contained in one molecule of the polylactic acid block copolymer obtained by ring-opening polymerization is as follows. From the viewpoint of transparency, it is preferably 2 or more and less than 30. More preferably, it is 3 or more and less than 20, and particularly preferably 5 or more and less than 15.
  • the ratio of the weight average molecular weight of the segment consisting of L-lactic acid units to the weight average molecular weight of the segments consisting of D-lactic acid units is such that L-lactide and D-lactide used for polymerizing the polylactic acid block copolymer The weight ratio can be controlled.
  • the total number of segments composed of L-lactic acid units and segments composed of D-lactic acid units contained in one molecule of the polylactic acid block copolymer obtained by ring-opening polymerization is 3 or more, and the heat resistance and crystallinity are It is preferable in terms of improvement. More preferably, it is 5 or more, and it is especially preferable that it is 7 or more.
  • the weight average molecular weight per segment is preferably 2,000 to 50,000. More preferably, it is 4,000 to 45,000, and particularly preferably 5,000 to 40,000.
  • the optical purity of L-lactide and D-lactide used in the ring-opening polymerization method is preferably 90% ee or more from the viewpoint of improving the crystallinity and melting point of the polylactic acid block copolymer. More preferably, it is 95% ee or more, and it is especially preferable that it is 98% ee or more.
  • the water content in the reaction system is 4 mol% or less with respect to the total amount of L-lactide and D-lactide from the viewpoint of obtaining a high molecular weight product.
  • the water content is a value measured by a coulometric titration method using the Karl Fischer method.
  • Examples of the polymerization catalyst for preparing the polylactic acid block copolymer by the ring-opening polymerization method include a metal catalyst and an acid catalyst.
  • Examples of the metal catalyst include tin catalysts, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds.
  • As the kind of the compound metal alkoxide, metal halogen compound, organic carboxylate, carbonate, sulfate, oxide and the like are preferable.
  • tin powder tin (II) chloride, tin (IV) chloride, tin (II) bromide, tin (IV) bromide, ethoxy tin (II), t-butoxy tin (IV), isopropoxy Tin (IV), tin (II) acetate, tin (IV) acetate, tin (II) octylate, tin (II) laurate, tin (II) myristate, tin (II) palmitate, tin stearate (II) ), Tin (II) oleate, tin (II) linoleate, tin (II) acetylacetone, tin (II) oxalate, tin (II) lactate, tin (II) tartrate, tin (II) pyrophosphate, p- Phenol sulfon
  • the acid catalyst may be a Bronsted acid as a proton donor, a Lewis acid as an electron pair acceptor, or an organic acid or an inorganic acid.
  • monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, heptanoic acid, octanoic acid, octylic acid, nonanoic acid, isononanoic acid, trifluoroacetic acid and trichloroacetic acid, oxalic acid, succinic acid, maleic acid, tartaric acid
  • dicarboxylic acid compounds such as malonic acid, tricarboxylic acid compounds such as citric acid and tricarivallic acid, benzenesulfonic acid, n-butylbenzenesulfonic acid, n-octylbenzenesulfonic acid, n-dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid 2,5
  • the shape of the acid catalyst is not particularly limited, and any of a solid acid catalyst and a liquid acid catalyst may be used.
  • the solid acid catalyst acidic clay, kaolinite, bentonite, montmorillonite, talc, zirconium silicate and Natural minerals such as zeolite, oxides such as silica, alumina, titania and zirconia or oxide composites such as silica alumina, silica magnesia, silica boria, alumina boria, silica titania and silica zirconia, chlorinated alumina, fluorinated alumina, positive Examples thereof include ion exchange resins.
  • a metal catalyst is preferable as the polymerization catalyst of the ring-opening polymerization method, among which a tin compound, a titanium compound, an antimony compound, and a rare earth compound are more preferable.
  • tin compounds and titanium compounds are more preferable.
  • a tin-based organic carboxylate or a tin-based halogen compound is preferable, and in particular, tin (II) acetate, tin (II) octylate, And tin (II) chloride is more preferred.
  • the addition amount of the polymerization catalyst in the ring-opening polymerization method is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.). More preferred is 1 part by weight or more.
  • the catalyst amount is within the above preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the catalyst after heating and dissolving the lactide from the viewpoint of uniformly dispersing the catalyst in the system and increasing the polymerization activity.
  • Preparation Method 2 a method for preparing a polylactic acid block copolymer by solid phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid (Preparation Method 2) will be described.
  • Preparation Method 2 any of a ring-opening polymerization method and a direct polymerization method can be used.
  • poly-L-lactic acid and poly-D-lactic acid When a polylactic acid block copolymer is prepared by solid phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid, the weight average molecular weight and stereocomplex formation rate after solid phase polymerization are increased.
  • One of poly-L-lactic acid and poly-D-lactic acid has a weight average molecular weight of 60,000 to 300,000 or less, and the other has a weight average molecular weight of 10,000 to 100,000 or less. It is preferable. More preferably, one weight average molecular weight is 100,000 to 270,000 and the other weight average molecular weight is 15,000 to 80,000. Particularly preferably, one weight average molecular weight is 150,000 to 240,000 and the other weight average molecular weight is 20,000 to 50,000.
  • the combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
  • the weight average molecular weight of the poly-L-lactic acid component and the poly-D-lactic acid component is such that the weight average molecular weight of either one of poly-L-lactic acid or poly-D-lactic acid is 120,000 or more. It is also a preferred embodiment that the weight average molecular weight is 300,000 or less and the other weight average molecular weight is 30,000 or more and 100,000 or less. More preferably, one weight average molecular weight is 100,000 or more and 270,000 or less, and the other weight average molecular weight is 35,000 or more and 80,000 or less. More preferably, it is 125,000 or more and 255,000 or less, and the other weight average molecular weight is 25,000 or more and 50,000 or less.
  • the ratio of the higher weight average molecular weight to the lower weight average molecular weight is preferably 2 or more and less than 30. More preferably, it is 3 or more and less than 20, and most preferably 5 or more and less than 15.
  • the combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
  • the poly-L-lactic acid and poly-D-lactic acid used in the present invention have a weight average molecular weight of each of the poly-L-lactic acid component and the poly-D-lactic acid component within the above range, It is preferable that both the ratio of the weight average molecular weight of the L-lactic acid component and the poly-D-lactic acid component is 2 or more and less than 30.
  • the weight average molecular weight is a value in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • the amount of lactide and oligomer contained in poly-L-lactic acid or poly-D-lactic acid is preferably 5% or less, respectively. More preferably, it is 3% or less, and particularly preferably 1% or less.
  • the amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, and particularly preferably 0.5% or less.
  • the acid value of poly-L-lactic acid or poly-D-lactic acid to be mixed is preferably 100 eq / ton or less for either one of poly-L-lactic acid or poly-D-lactic acid. More preferably, it is 50 eq / ton or less, More preferably, it is 30 eq / ton or less, Most preferably, it is 15 eq / ton or less.
  • the other acid value of the poly-L-lactic acid or poly-D-lactic acid to be mixed is preferably 600 eq / ton or less. More preferably, it is 300 eq / ton or less, More preferably, it is 150 eq / ton or less, Especially preferably, it is 100 eq / ton or less.
  • the water content in the reaction system is the sum of L-lactide and D-lactide from the viewpoint of obtaining a high molecular weight product. It is preferable that it is 4 mol% or less with respect to quantity. More preferably, it is 2 mol% or less, and 0.5 mol% or less is particularly preferable.
  • the water content is a value measured by a coulometric titration method using the Karl Fischer method.
  • the same metal catalyst and acid catalyst as in Preparation Method 1 can be mentioned.
  • the addition amount of the polymerization catalyst in the ring-opening polymerization method is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material used (L-lactic acid, D-lactic acid, etc.). More preferred is 0.001 part by weight or more and 1 part by weight or less.
  • the catalyst amount is within the above preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the catalyst after heating and dissolving the lactide from the viewpoint of uniformly dispersing the catalyst in the system and increasing the polymerization activity.
  • examples of the polymerization catalyst for polymerizing poly-L-lactic acid or poly-D-lactic acid by using a direct polymerization method include metal catalysts and acid catalysts.
  • the metal catalyst include tin catalysts, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds.
  • the kind of the compound metal alkoxide, metal halogen compound, organic carboxylate, carbonate, sulfate, oxide and the like are preferable.
  • the metal compound described in the preparation method 1 as a metal catalyst, and the acid compound described in the preparation method 1 as an acid catalyst are mentioned.
  • tin compounds, titanium compounds, antimony compounds, rare earth compounds, and acid catalysts are preferred, and when considering the melting point of the produced polylactic acid, Tin compounds, titanium compounds, and sulfonic acid compounds are more preferred.
  • a tin-based organic carboxylate or a tin-based halogen compound is preferable, and in particular, tin (II) acetate, tin octylate (II ), And tin (II) chloride, and in the case of acid catalysts, mono and disulfonic acid compounds are preferred, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid, and 2-amino More preferred is ethanesulfonic acid.
  • one type of catalyst may be used, or two or more types may be used in combination. However, in view of increasing the polymerization activity, it is preferable to use two or more types in combination, and it is possible to suppress coloring. In addition, it is preferable to use one or more selected from tin compounds and / or one or more selected from sulfonic acid compounds. Further, in terms of excellent productivity, tin (II) acetate and / or tin octylate ( II) and methanesulfonic acid, ethanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid and 2-aminoethanesulfonic acid are more preferably used in combination.
  • the addition amount of the polymerization catalyst is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.). More preferred are parts by weight or less.
  • the catalyst amount is within this preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer can be sufficiently increased.
  • the total addition amount is preferably within the above range, and one or more types selected from tin compounds and / or one or more types selected from sulfonic acid compounds are used in combination.
  • the weight ratio of the tin compound and the sulfonic acid compound is 1: 1 to 1:30 in that the high polymerization activity can be maintained and coloring can be suppressed. It is more preferable that the ratio is 1: 2 to 1:15.
  • the acid catalyst is added before the raw material or the raw material is dehydrated in terms of excellent productivity.
  • the addition of the raw material after dehydration is preferable from the viewpoint of increasing the polymerization activity.
  • the stereocomplex formation rate (Sc) is preferably in the range exceeding 60% immediately before the solid phase polymerization. More preferably, it is in the range of 70 to 99%, and particularly preferably in the range of 80 to 95%. That is, based on the above formula (4), the stereo complex formation rate (Sc) preferably satisfies the following formula (2).
  • ⁇ Hh calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
  • ⁇ Hl Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
  • the presence or absence of crystallization of poly-L-lactic acid and poly-D-lactic acid used for mixing is not particularly limited, and the crystallized poly-L-lactic acid and poly-D-lactic acid may be mixed.
  • molten poly-L-lactic acid and poly-D-lactic acid can be mixed.
  • a method of holding at a crystallization temperature in a gas phase or a liquid phase and a poly-L in a molten state A method of retaining lactic acid and poly-D-lactic acid in a melting machine having a melting point of ⁇ 50 ° C. to a melting point of + 20 ° C. while applying shear, and melting poly-L-lactic acid and poly-D-lactic acid with a melting point of ⁇ 50 ° C. For example, a method of staying while applying pressure in a melting point + 20 ° C. melting machine may be used.
  • the crystallization treatment temperature here is higher than the glass transition temperature and is lower than the melting point of polylactic acid having a low melting point among the poly-L-lactic acid or poly-D-lactic acid mixed above.
  • the temperature is within the range of the temperature rising crystallization temperature and the temperature falling crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • any condition of reduced pressure, normal pressure or increased pressure may be used.
  • the time for crystallization in the gas phase or liquid phase is not particularly limited, but it is sufficiently crystallized within 3 hours, and preferably within 2 hours.
  • the melting machine is not limited as long as it can apply shear or pressure, and the polymerization can ,
  • a kneader, a Banbury mixer, a single screw extruder, a twin screw extruder, an injection molding machine, etc. can be used, and a single screw extruder and a twin screw extruder are preferred.
  • the crystallization temperature is from ⁇ 50 ° C. to melting point + 20 ° C. relative to the melting point of poly-L-lactic acid and poly-D-lactic acid to be mixed.
  • a range is preferred.
  • a more preferable range of the crystallization temperature is a melting point of ⁇ 40 ° C. to a melting point, and a particularly preferable temperature range is a melting point of ⁇ 30 ° C. to a melting point of ⁇ 5 ° C.
  • the temperature of the melting machine is usually set to a melting point + 20 ° C. or higher so that the resin melts and exhibits good fluidity. If the temperature of the melting machine is within the above preferred range, the crystallizing while maintaining appropriate fluidity.
  • the generated crystals are difficult to remelt.
  • the melting point is the crystal melting temperature when the temperature is raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 20 ° C./min using differential thermal scanning measurement.
  • the crystallization treatment time is preferably 0.1 to 10 minutes, more preferably 0.3 to 5 minutes, and particularly preferably 0.5 to 3 minutes.
  • crystallization treatment time is within the above preferred range, crystallization occurs sufficiently, while thermal decomposition hardly occurs.
  • the shear rate at this time is preferably in the range of 10 to 400 (/ second). When the shear rate is within the above preferred range, the crystallization rate becomes sufficiently high, while thermal decomposition due to shear heat generation hardly occurs.
  • the mixing method of poly-L-lactic acid and poly-D-lactic acid is not particularly limited, and for example, the melting end temperature of the component having the higher melting point among poly-L-lactic acid and poly-D-lactic acid.
  • the method of melt kneading, the method of removing the solvent after mixing in the solvent, or at least one of the molten poly-L-lactic acid and poly-D-lactic acid is a temperature range from -50 ° C to 20 ° C in advance.
  • a method of mixing so that crystals of a mixture composed of poly-L-lactic acid and poly-D-lactic acid remain after being retained while applying shear in a melting machine.
  • the melting point refers to the temperature at the peak top of the polylactic acid single crystal melting peak measured by (DSC) with a differential scanning calorimeter, and the melting end temperature is determined with a differential scanning calorimeter (DSC). It means the peak end temperature in the polylactic acid single crystal melting peak measured by the above.
  • Examples of the method of melt-kneading at a temperature higher than the melting end temperature include a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method.
  • Examples thereof include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a decompression device.
  • a single screw extruder or a twin screw extruder may be used. preferable.
  • the temperature condition at the time of melting and kneading at a temperature higher than the melting end temperature it is preferable to carry out at a temperature higher than the melting end temperature of the higher melting point component of poly-L-lactic acid and poly-D-lactic acid.
  • the range is preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and particularly preferably 180 ° C to 210 ° C.
  • mixing temperature is within the above-mentioned preferable range, mixing can be performed in a molten state, and the molecular weight of the mixture is hardly lowered during mixing. Furthermore, the fluidity of the mixture can be kept constant, and a significant decrease in fluidity hardly occurs.
  • the mixing time condition is preferably in the range of 0.1 minute to 10 minutes, more preferably in the range of 0.3 minute to 5 minutes, and particularly preferably in the range of 0.5 minute to 3 minutes.
  • the mixing time is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed, while thermal decomposition due to mixing hardly occurs.
  • the pressure condition for mixing at the melting end temperature or higher is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
  • a specific method for mixing poly-L-lactic acid and poly-D-lactic acid crystallized by applying shear or pressure in a melting machine includes a batch method or a continuous method.
  • the melted poly-L-lactic acid and poly-D-lactic acid may be mixed into the melting point of polylactic acid having a lower melting point of poly-L-lactic acid and poly-D-lactic acid.
  • a method of staying while applying shear in a melting machine of ⁇ 50 ° C. to melting point + 20 ° C., or a poly-L-lactic acid and poly-D-lactic acid in a molten state are mixed with poly-L-lactic acid and poly-D-lactic acid.
  • the mixture of poly-L-lactic acid and poly-D-lactic acid is mixed by a method of staying while applying pressure in a melting machine having a melting point of ⁇ 50 ° C. to melting point + 20 ° C.
  • Stereo complex formation rate (Sc) It can be controlled.
  • the stereo complex formation rate (Sc) can be calculated by the above formula (4).
  • the mixing temperature condition is preferably in the range of -50 ° C. to melting point + 20 ° C. with respect to the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid.
  • a more preferable range of the mixing temperature is a melting point of ⁇ 40 ° C. to a melting point, and a particularly preferable range is a melting point of ⁇ 30 ° C. to a melting point of ⁇ 5 ° C.
  • the temperature of the melting machine is usually preferably set to a melting point + 20 ° C. or higher in order for the resin to melt and express good fluidity, but with such a preferred mixing temperature, the fluidity does not decrease too much, On the other hand, the generated crystals are difficult to remelt.
  • the melting point refers to the crystal melting temperature when the temperature is raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 20 ° C./min using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the shear rate when mixing poly-L-lactic acid and poly-D-lactic acid crystallized by applying shear or pressure in the melting machine is preferably in the range of 10 to 400 (/ sec).
  • shear rate is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed while maintaining fluidity and crystallinity, while heat is generated by shearing heat generated during mixing. It is difficult to cause decomposition.
  • the pressure applied during mixing is preferably in the range of 0.05 to 10 (MPa).
  • MPa 0.05 to 10
  • the method of supplying polylactic acid is not particularly limited, and a method of supplying poly-L-lactic acid and poly-D-lactic acid from a resin supply port in a lump or side supply as required.
  • a method of supplying poly-L-lactic acid and poly-D-lactic acid separately to the resin supply port and the side supply port by using the mouth is possible.
  • the supply of polylactic acid to the kneader can also be performed in a molten state directly from the polylactic acid production process.
  • the screw element in the extruder is preferably provided with a kneading element in the mixing part so that poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed to form a stereo complex.
  • the mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 60:40 or 40:60 to 25:75.
  • a polylactic acid stereocomplex can be easily formed.
  • a polylactic acid block copolymer is formed. The rise in the melting point of is sufficiently large.
  • the mixing weight ratio of poly-L-lactic acid and poly-D-lactic acid is other than 50:50, a larger amount of poly-L-lactic acid or poly-D-lactic acid having a larger weight average molecular weight may be blended. preferable.
  • the catalyst may be a residual amount of the catalyst in producing poly-L-lactic acid and / or poly-D-lactic acid, or one or more selected from the above catalysts may be added in the mixing step. it can.
  • the content of the catalyst for efficiently proceeding with the solid-phase polymerization is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the mixture of poly-L-lactic acid and poly-D-lactic acid. More preferred is 0.001 part by weight or more and 0.5 part by weight or less.
  • the catalyst amount is within the above preferred range, the effect of shortening the reaction time of solid phase polymerization can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the weight average molecular weight (Mw) of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing is preferably 90,000 or more and less than 300,000 from the viewpoint of mechanical properties of the mixture. More preferably, it is 120,000 or more and less than 300,000, and it is especially preferable that it is 140,000 or more and less than 300,000.
  • the degree of dispersion of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing is preferably in the range of 1.5 to 4.0. A more preferred range is 2.0 to 3.7, and a particularly preferred range is 2.5 to 3.5.
  • the degree of dispersion means the ratio of the weight average molecular weight to the number average molecular weight of the mixture.
  • the standard polydispersity by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol or chloroform as a solvent It is a value in terms of methyl methacrylate.
  • the amount of lactide and oligomer contained in poly-L-lactic acid or poly-D-lactic acid is preferably 5% or less, respectively. More preferably, it is 3% or less, and particularly preferably 1% or less.
  • the amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, and particularly preferably 0.5% or less.
  • the shape of the mixture of poly-L-lactic acid and poly-D-lactic acid is not particularly limited and may be any of agglomerates, films, pellets, and powders. From the viewpoint of efficiently proceeding the polymerization, it is preferable to use pellets or powder.
  • the method of pelletizing a mixture of poly-L-lactic acid and poly-D-lactic acid include a method of extruding the mixture into a strand and pelletizing, and a method of extruding the mixture into water and pelletizing with an underwater cutter. It is done.
  • examples of a method for making a mixture of poly-L-lactic acid and poly-D-lactic acid into powder include a method of pulverizing using a pulverizer such as a mixer, blender, ball mill, and hammer mill.
  • the method for carrying out this solid phase polymerization step is not particularly limited, and may be a batch method or a continuous method.
  • the reaction vessel may be a stirred tank reactor, a mixer reactor, a tower reactor, or the like. These reactors can be used in combination of two or more.
  • a mixture of poly-L-lactic acid and poly-D-lactic acid is crystallized.
  • the poly-L-lactic acid and poly-D are used in the solid phase polymerization step. -Crystallization of the mixture of lactic acid is not necessarily required, but the efficiency of solid phase polymerization can be further increased by crystallization.
  • the method for crystallization is not particularly limited, and a known method can be used.
  • a method of holding at a crystallization treatment temperature in a gas phase or a liquid phase or a method of cooling and solidifying a molten mixture of poly-L-lactic acid and poly-D-lactic acid while performing stretching or shearing operations.
  • a method of holding at the crystallization temperature in the gas phase or in the liquid phase is preferable.
  • the crystallization treatment temperature here is particularly limited as long as it is higher than the glass transition temperature and lower than the melting point of polylactic acid having a low melting point among the mixed poly-L-lactic acid and poly-D-lactic acid. Although it is not performed, it is more preferable that the temperature is within the range of the temperature-rise crystallization temperature and the temperature-fall crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • any of reduced pressure, normal pressure, and increased pressure may be used.
  • the time for crystallization is not particularly limited, but it is sufficiently crystallized within 3 hours, and within 2 hours is preferable.
  • the temperature condition for carrying out this solid phase polymerization step is preferably a temperature not higher than the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid.
  • the mixture of poly-L-lactic acid and poly-D-lactic acid has a melting point based on stereocomplex crystals in the range of 190 ° C. to 230 ° C. due to stereocomplex formation, and also has a poly-L in the range of 150 ° C. to 185 ° C. Since it has melting points based on -lactic acid single crystals and poly-D-lactic acid single crystals, it is preferable to carry out solid phase polymerization below these melting points. Specifically, it is preferably 100 ° C. or higher and 220 ° C.
  • the temperature conditions when the temperature is raised stepwise during the solid phase polymerization are as follows.
  • the first stage is 120 ° C. to 145 ° C. for 1 to 15 hours
  • the second stage is 135 ° C. to 160 ° C. for 1 to 15 hours
  • the third stage It is preferable that the temperature is raised from 150 ° C. to 175 ° C. for 10 to 30 hours, further, the first stage is from 130 ° C. to 145 ° C. for 2 to 12 hours, and the second stage is from 140 ° C. to 160 ° C. for 2 to 12 hours.
  • the temperature condition for continuous temperature increase during solid-phase polymerization is that the temperature is continuously increased from 150 ° C. to 175 ° C. at a rate of 1 to 5 (° C./min) from the initial temperature of 130 ° C. to 150 ° C. Is preferred. Further, combining stepwise temperature rise and continuous temperature rise is also preferable from the viewpoint of efficiently proceeding with solid phase polymerization.
  • this solid phase polymerization step is preferably carried out under a vacuum or an inert gas stream such as dry nitrogen.
  • the degree of vacuum when performing solid-phase polymerization under vacuum is preferably 150 Pa or less, more preferably 75 Pa or less, and particularly preferably 20 Pa or less.
  • the flow rate when solid-phase polymerization is performed under an inert gas stream is preferably in the range of 0.1 to 2,000 (mL / min), and 0.5 to 1,000 (mL / min) with respect to 1 g of the mixture. Is more preferable, and a range of 1.0 to 500 (mL / min) is particularly preferable.
  • the yield (Y) of the polymer after solid phase polymerization is preferably 90% or more. More preferably, it is 93% or more, and particularly preferably 95% or more.
  • the polymer yield (Y) here is the ratio of the weight of the polylactic acid block copolymer after solid phase polymerization to the weight of the mixture before solid phase polymerization. Specifically, when the weight of the mixture before solid phase polymerization is Wp and the weight of the polymer after solid phase polymerization is Ws, the yield (Y) of the polymer can be calculated by the following formula (7).
  • the degree of dispersion of the mixture is small.
  • the dispersion degree of the mixture before the solid phase polymerization is in the range of 1.5 to 4.0, and the dispersion degree of the polylactic acid block copolymer is in the range of 1.5 to 2.7 after the solid phase polymerization. It is preferable to become. More preferably, the dispersion degree of the mixture before the solid phase polymerization is in the range of 2.0 to 3.7, and the dispersion degree of the polylactic acid block copolymer is reduced to the range of 1.8 to 2.6 after the solid phase polymerization. Particularly preferably, the dispersion degree of the polylactic acid block copolymer is 2.0 to 2.5 after the solid phase polymerization from the range of the dispersion degree of the mixture 2.5 to 3.5 before the solid phase polymerization. It is to be in the range.
  • poly-L-lactic acid and poly-D-lactic acid are melt kneaded for a long time at a temperature equal to or higher than the melting end temperature of the component having the higher melting point, so that the L-lactic acid unit segment and the D-lactic acid unit segment
  • a method (Preparation Method 3) for obtaining a polylactic acid block copolymer obtained by transesterifying the lactic acid block copolymer will be described. Also in this preparation method, for the polymerization of poly-L-lactic acid and poly-D-lactic acid, any of the above-described ring-opening polymerization method and direct polymerization method can be used.
  • the weight average molecular weight of either one of poly-L-lactic acid and poly-D-lactic acid is high in that the stereocomplex formation rate becomes high after melt-kneading.
  • the weight average molecular weight is 60,000 to 300,000 or less, and the other weight average molecular weight is 10,000 to 100,000 or less. More preferably, one weight average molecular weight is 100,000 to 270,000 and the other weight average molecular weight is 15,000 to 80,000. Particularly preferably, one weight average molecular weight is 150,000 to 240,000 and the other weight average molecular weight is 20,000 to 50,000.
  • the combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more. Further, in the present invention, the weight average molecular weight of the poly-L-lactic acid component and the poly-D-lactic acid component is such that the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 or more. It is also a preferred embodiment that the weight average molecular weight is 300,000 or less and the other weight average molecular weight is 30,000 or more and 100,000 or less.
  • one weight average molecular weight is 100,000 or more and 270,000 or less, and the other weight average molecular weight is 20,000 or more and 80,000 or less. More preferably, it is 125,000 or more and 255,000 or less, and the other weight average molecular weight is 25,000 or more and 50,000 or less.
  • a method of melt kneading for a long time at a temperature higher than the melting end temperature a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method may be mentioned, and any method may be used.
  • the kneading apparatus include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a pressure reducing device. From the viewpoint of uniform and sufficient kneading, a single screw extruder and a twin screw extruder are used. It is preferable to use it.
  • the mixing temperature condition it is important that the mixing is performed at a temperature higher than the melting end temperature of the component having a higher melting point among poly-L-lactic acid and poly-D-lactic acid.
  • the range is preferably 140 ° C. to 280 ° C., more preferably 160 ° C. to 270 ° C., and particularly preferably 180 ° C. to 260 ° C.
  • the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
  • the mixing time condition is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes.
  • the mixing time is within the above preferable range, the mixing of poly-L-lactic acid and poly-D-lactic acid becomes uniform, while thermal decomposition is hardly caused by mixing.
  • the pressure condition for mixing is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably from 80:20 to 20:80, and from 75:25 to The ratio is more preferably 25:75, further preferably 70:30 to 30:70, and particularly preferably 60:40 to 40:60.
  • the weight ratio of poly-L-lactic acid composed of L-lactic acid units is within the above preferred range, a polylactic acid stereocomplex is easily formed, and as a result, the resulting polylactic acid block copolymer has a sufficient melting point. growing.
  • the mixing step it is preferable to contain a catalyst in the mixture in order to promote transesterification of the L-lactic acid unit segment and the D-lactic acid unit segment efficiently.
  • the catalyst may be a residual amount of the catalyst when producing poly-L-lactic acid and / or poly-D-lactic acid, or a catalyst may be further added in the mixing step.
  • the catalyst content is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the mixture of poly-L-lactic acid and poly-D-lactic acid. More preferred are parts by weight or less.
  • the catalyst amount is in the above preferred range, the frequency of transesterification of the mixture is sufficiently high, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the weight-average molecular weight of poly-L-lactic acid and poly-D-lactic acid used to obtain a polylactic acid block copolymer by this method is such that the formation rate of stereocomplexes is high. It is preferable that the weight average molecular weight of any one of -D-lactic acid is 30,000 to 100,000 or less and the other weight average molecular weight is 10,000 to 30,000 or less. More preferably, one weight average molecular weight is 35,000 to 90,000 and the other weight average molecular weight is 10,000 to 25,000. Particularly preferably, one weight average molecular weight is 40,000 to 80,000, and the other weight average molecular weight is 10,000 to 20,000.
  • the ratio of the weight average molecular weight of poly-L-lactic acid used in the above mixing to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 10 from the viewpoint of increasing the stereocomplex formation rate. Is preferred. More preferably, it is 3 or more and less than 10, and particularly preferably 4 or more and less than 10.
  • polyfunctional compound used here examples include polyvalent carboxylic acid anhydrides, polyvalent carboxylic acid halides, polyvalent carboxylic acids, polyvalent isocyanates, polyvalent amines, polyhydric alcohols, and polyvalent epoxy compounds. Specifically, 1,2-cyclohexanedicarboxylic acid anhydride, succinic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, pyromellitic acid anhydride, etc.
  • Polycarboxylic acid anhydrides isophthalic acid chloride, terephthalic acid chloride, polyvalent carboxylic acid halides such as 2,6-naphthalenedicarboxylic acid chloride, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 , 6-Polycarboxylic acids such as naphthalenedicarboxylic acid, hexamethylene diisocyanate, 4,4 ′ Polyvalent isocyanates such as diphenylmethane diisocyanate, toluene-2,4-diisocyanate, polyvalent amines such as ethylenediamine, hexanediamine, diethylenetriamine, ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, pentaerythritol, etc.
  • Polyhydric alcohol terephthalic acid diglycidyl ester, naphthalene dicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, pyromellitic acid tetraglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, cyclohexane dimethanol diglycidyl ether , Glycerol triglycidyl ether, trimethylol B pan triglycidyl ether, polyvalent epoxy compounds such as pentaerythritol polyglycidyl ether and the like.
  • polyvalent carboxylic acid anhydrides polyvalent isocyanates, polyhydric alcohols and polyvalent epoxy compounds are preferred, and polyvalent carboxylic acid anhydrides, polyvalent isocyanates and polyvalent epoxy compounds are particularly preferred.
  • these can be used combining 1 type (s) or 2 or more types.
  • the mixing amount of the polyfunctional compound is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.1 parts by weight, with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. More preferably, it is 10 parts by weight or less.
  • the addition amount of the polyfunctional compound is within the above preferable range, the effect of causing a covalent bond can be sufficiently exhibited.
  • a reaction catalyst may be added in order to promote the reaction between poly-L-lactic acid and poly-D-lactic acid and the polyfunctional compound.
  • the reaction catalyst include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, stearin.
  • Organic acids and Lewis acids such as boron trifluoride, aluminum tetrachloride, titanium tetrachloride, tin tetrachloride Etc. are exemplified, and these may be used in combination of one or two or more.
  • the amount of the catalyst added is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid.
  • the catalyst amount is in the above preferred range, the reaction promoting effect is sufficient, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
  • the method for reacting poly-L-lactic acid or poly-D-lactic acid with a polyfunctional compound is not particularly limited.
  • poly-L-lactic acid and poly-D-lactic acid the one having the higher melting point.
  • the method include melt kneading at a temperature higher than the melting end temperature of the components.
  • Examples of the method of melt-kneading at a temperature higher than the melting end temperature include a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method.
  • Examples include a single-screw extruder, a twin-screw extruder, a plastmill, a kneader, and a stirred tank reactor equipped with a decompression device.
  • a single-screw extruder or a twin-screw extruder should be used. Is preferred.
  • the temperature condition for melting and kneading it is preferable to carry out at a temperature higher than the melting end temperature of the component having a higher melting point among poly-L-lactic acid and poly-D-lactic acid.
  • the range is preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and particularly preferably 180 ° C to 210 ° C.
  • the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
  • the time condition for melt kneading is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes.
  • the mixing time is within the above preferable range, the mixing of poly-L-lactic acid and poly-D-lactic acid becomes uniform, while thermal decomposition is hardly caused by mixing.
  • the pressure condition for melt kneading is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
  • the mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably from 90:10 to 10:90, and from 80:20 to More preferably, it is 20:80. Particularly preferred is 75:25 to 60:40 or 40:60 to 25:75.
  • the weight ratio of poly-L-lactic acid composed of L-lactic acid units is within the above preferred range, a polylactic acid stereocomplex is easily formed, and as a result, the melting point of the polylactic acid block copolymer finally obtained is increased. Become big enough.
  • a polylactic acid block copolymer obtained by mixing a polyfunctional compound with poly-L-lactic acid and poly-D-lactic acid is a polyfunctional compound in which poly-L-lactic acid and poly-D-lactic acid are covalently bonded. Therefore, it is possible to carry out solid phase polymerization by the method described above after mixing.
  • the polymer having a plurality of reactive groups per molecule is a polymer having a reactive group that undergoes an addition reaction with respect to the carboxyl group or hydroxyl group terminal of the polylactic acid resin composition.
  • the viscosity of the polylactic acid resin composition is improved, and as a result, molding processability, mechanical properties, durability, and stability during heating are improved.
  • a polymer having a plurality of reactive groups per molecule may be included when preparing a polylactic acid block copolymer in addition to the above-mentioned polylactic acid resin composition.
  • a polymer having a plurality of reactive groups per molecule may be included in advance with respect to poly-L-lactic acid or poly-D-lactic acid to be mixed.
  • the content of the polymer having a plurality of reactive groups per molecule will be described later.
  • the basic structure is a thermoplastic resin, and the weight average molecular weight (Mw) of the polymer is 1,000 to 15,000.
  • Mw weight average molecular weight
  • the compatibility in the polylactic acid resin composition can be increased.
  • the weight average molecular weight (Mw) of the polymer is 2,000 to 10,000, the compatibility in the polylactic acid resin composition is higher, and the polylactic acid resin composition has molding processability, mechanical properties, Durability and stability during heating are improved.
  • the weight average molecular weight (Mw) here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
  • the reactive group that undergoes an addition reaction include a carbodiimide group, an epoxy group, an oxazoline group, an oxazine group, an aziridine group, and an isocyanate group.
  • an epoxy group is preferable from the viewpoint of reactivity.
  • the number of reactive groups contained in one molecule as a polymer having a plurality of reactive groups per molecule is preferably 2-30, more preferably 3-20, and even more preferably 4-10. .
  • the acrylic resin reactive compound when used as a polymer having a plurality of reactive groups in one molecule, is a polymer of a mixture of an epoxy group-containing acrylic monomer and a styrene monomer, Or it is preferable that it is a polymer of 3 types of mixtures of an epoxy-group containing acrylic monomer, a styrene monomer, and another vinyl monomer.
  • this acrylic resin-based reactive compound in the polylactic acid resin composition of the present invention, the viscosity of the polylactic acid resin composition is improved. As a result, molding processability, mechanical properties, durability, and stability during heating are stabilized. Will improve.
  • epoxy group-containing acrylic monomer constituting the acrylic resin-based reactive compound examples include (meth) acrylic acid glycidyl, cyclohexene oxide structure (meth) acrylic acid ester, and (meth) acrylic acid glycidyl ether.
  • glycidyl acrylate is preferably used in terms of radical polymerizability. These can be used alone or in combination of two or more.
  • styrene monomer constituting the acrylic resin reactive compound examples include styrene, ⁇ -methyl styrene, vinyl toluene, p-methyl styrene, t-butyl styrene, o-chlorostyrene, vinyl pyridine and the like. Of these, one or more of styrene and ⁇ -methylstyrene are preferably used from the viewpoint of affinity with the polylactic acid block copolymer.
  • vinyl monomers constituting the acrylic resin reactive compound include (meth) acrylic acid, (meth) methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) Butyl acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, Stearyl (meth) acrylate, hydroxylethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylate ester of polyethylene glycol or polypropylene glycol, trimethoxysilylpropyl (meth) acrylate, (meth) acrylonitrile , N, N-dia
  • Examples include raw material monomers for forming
  • Acrylic acid methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth) Preferred are 2-ethylhexyl acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and (meth) acrylonitrile.
  • the acrylic resin-based reactive compound preferably contains 2 to 30 average epoxy groups per molecule, more preferably 3 to 20, and still more preferably 4 to 10.
  • the average number of epoxy groups is within this preferred range, the polylactic acid resin composition has an excellent thickening effect, and the moldability, mechanical properties, durability, and stability during heating are sufficiently improved, while excess epoxy is used.
  • the group does not cause an excessive crosslinking reaction with the carboxyl group or hydroxyl group of the polylactic acid resin composition, and the moldability is not impaired.
  • the epoxy equivalent of the acrylic resin-based reactive compound containing an epoxy group is preferably 50 to 800 g / mol, more preferably 100 to 700 g / mol, and most preferably 150 from the viewpoint of reactivity and moldability. ⁇ 600 g / mol.
  • the epoxy equivalent and the carbodiimide equivalent represent the gram number of a polymer containing 1 equivalent of an epoxy group and the gram number of a polymer containing 1 equivalent of a carbodiimide group.
  • the weight average molecular weight (Mw) of the acrylic resin-based reactive compound containing an epoxy group is preferably 1,000 to 15,000, more preferably 2, from the viewpoint of reactivity and compatibility with the resin. 000 to 10,000.
  • the weight average molecular weight (Mw) here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
  • the acrylic resin-based reactive compound can be produced and used by a known technique, but a commercially available product can also be used.
  • a commercially available product Sumitomo Chemical Co., Ltd. "Bond First" (registered trademark) series, "Marproof” (registered trademark) series manufactured by NOF Corporation, "RESEDA” (registered trademark) series and “ARUFON” (registered trademark) series manufactured by Toagosei Co., Ltd. “JONCRYL” (registered trademark) series manufactured by BASF Japan Ltd. can be used preferably, but from the viewpoint of reactivity, “ARUFON” (registered trademark) series manufactured by Toagosei Co., Ltd.
  • the polylactic acid resin composition of the present invention comprises a polylactic acid block copolymer 100 comprising a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component.
  • a polylactic acid block copolymer 100 comprising a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component.
  • 0.05 to 2 parts by weight of a polymer having a plurality of reactive groups per molecule is contained with respect to parts by weight.
  • the amount is preferably 0.1 to 1.5 parts by weight, more preferably 0.3 to 1.0 parts by weight.
  • the viscosity of the polylactic acid resin composition is improved.
  • molding processability, mechanical properties, durability, Stability during heating is improved.
  • gelation accompanying the increase in viscosity does not occur.
  • the polylactic acid resin composition obtained in the present invention preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%.
  • the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in the polylactic acid resin composition. Specifically, the crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when the temperature is increased from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min with a differential scanning calorimeter (DSC). It is possible to calculate by the following formula (8), where ⁇ H1 is the amount of heat based on and ⁇ Hh is the amount of heat based on crystal melting of the stereocomplex crystal.
  • the temperature-falling crystallization temperature (Tc) is 130 degreeC or more at the point that a polylactic acid resin composition is excellent in a moldability and heat resistance.
  • the temperature drop crystallization temperature (Tc) of the compact is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min by a differential scanning calorimeter (DSC). Is a crystallization temperature derived from polylactic acid crystals measured when the temperature is lowered at a cooling rate of 20 ° C./min.
  • the crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
  • the amount of crystallization when the polylactic acid resin composition is heated to 250 ° C. and kept constant for 3 minutes and then cooled at a cooling rate of 20 ° C./min in DSC measurement. Is 10 J / g or more. From the viewpoint of crystallization characteristics, molding cycle, and transparency of the molded body, it is preferably 10 J / g or more, more preferably 20 J / g or more, and particularly preferably 40 J / g or more.
  • the temperature-falling crystallization temperature is 130 ° C. or higher, and the amount of crystallization during temperature-falling crystallization is 10 J / Since it is as high as g or more, it has not only excellent mechanical properties, durability and stability during heating, but also excellent heat resistance and crystallization characteristics.
  • the weight average molecular weight of the polylactic acid resin composition of the present invention is preferably 100,000 or more and less than 500,000 from the viewpoint of mechanical properties. More preferably, it is 120,000 or more and less than 450,000, and 130,000 or more and less than 400,000 is particularly preferable from the viewpoints of moldability, mechanical properties, and stability during heating.
  • the dispersity of the polylactic acid resin composition is preferably in the range of 1.5 to 4.5 from the viewpoint of mechanical properties.
  • the range of the degree of dispersion is more preferably from 1.8 to 3.7, and particularly preferably from 2.0 to 3.4 from the viewpoint of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • thermogravimetry TGA
  • the heat loss when the polylactic acid resin composition is maintained at a constant temperature of 240 ° C. for 30 minutes under a nitrogen atmosphere may be 3% or less. preferable. More preferably, it is preferably 2% or less, particularly preferably less than 1%. A low heating loss is preferred because of excellent residence stability.
  • the ratio (MFR10 / MFR20) of the melt flow rate (MFR10) after 10 minutes to the melt flow rate (MFR20) after 20 minutes under the condition of 230 ° C. and 21.2N load of the polylactic acid resin composition is 0.
  • a range of 5 or more and 2 or less is preferable in terms of moldability, mechanical properties, impact resistance, and stability during heating. More preferably, it is the range of 0.7 or more and 1.8 or less, More preferably, it is the range of 0.85 or more and 1.5 or less.
  • the melt flow rate here is a value measured at 190 ° C. and 21.2 N load conditions according to JIS K 7210 using “Melt Indexer” manufactured by Toyo Seiki Seisakusho.
  • any one of the following three methods (I) to (III) by using a heat-melt kneading apparatus such as an extruder or a kneader. Can be manufactured.
  • Examples of the method (I) for producing a polylactic acid resin composition include a method of melt-kneading a polylactic acid block copolymer and a polymer having a plurality of reactive groups in one molecule.
  • a method of melt kneading either a batch method or a continuous method may be used.
  • the kneading apparatus include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a pressure reducing device. From the viewpoint of uniform and sufficient kneading, a single screw extruder and a twin screw extruder are used. It is preferable to use it.
  • the temperature condition for melt kneading it is preferable to carry out at 180 ° C to 250 ° C.
  • the range is more preferably 200 ° C. to 240 ° C., and further preferably 205 ° C. to 235 ° C.
  • the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
  • the time condition for melt kneading is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes.
  • the mixing time is within the above preferable range, the polylactic acid block copolymer and the polymer having a plurality of reactive groups per molecule are uniformly mixed, while thermal decomposition is hardly caused by mixing.
  • the pressure condition for melt kneading is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
  • poly-L-lactic acid and poly-D-lactic acid are mixed in advance, and then a polymer having a plurality of reactive groups per molecule is blended. And a method of subjecting the resulting mixture to solid phase polymerization at a temperature lower than the melting point of the mixture.
  • the method of melt kneading in this method may be a mixing method applied in the above-described method for producing a polylactic acid resin composition, and the above-mentioned polylactic acid resin composition is also used for the kneading apparatus, temperature conditions, time conditions, and pressure conditions during mixing. This is the same as described in the manufacturing method.
  • a method (III) for producing a polylactic acid resin composition three types of poly-L-lactic acid, poly-D-lactic acid and a polymer having a plurality of reactive groups in one molecule are mixed together and then mixed. And a method of solid-phase polymerization at a temperature lower than the melting point.
  • the method of melt kneading in this method may be a mixing method applied in the above-described method for producing a polylactic acid resin composition, and the above-mentioned polylactic acid resin composition is also used for the kneading apparatus, temperature conditions, time conditions, and pressure conditions during mixing. This is the same as described in the manufacturing method.
  • the polylactic acid resin composition of the present invention comprises a poly-L-lactic acid (segment consisting of L-lactic acid units) comprising L-lactic acid units of a polylactic acid resin finally obtained within a range not impairing the effects of the present invention,
  • a polyfunctional compound may be mixed.
  • the polyfunctional compound used here is not particularly limited, and polyvalent carboxylic acid anhydride, polyvalent carboxylic acid halide, polyvalent carboxylic acid, polyvalent isocyanate, polyvalent amine, polyhydric alcohol and Polyepoxy compounds and the like.
  • 1,2-cyclohexanedicarboxylic acid anhydride succinic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, Polycarboxylic acid anhydrides such as pyromellitic acid anhydride, polycarboxylic acid halides such as isophthalic acid chloride, terephthalic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, succinic acid, adipic acid, sebacic acid, fumaric acid , Terephthalic acid, isophthalic acid, polyvalent carboxylic acids such as 2,6-naphthalenedicarboxylic acid, hexamethyle Polyisocyanates such as diisocyanate, 4,4'-diphenylmethane diisocyanate, toluene-2,4-diisocyanate, polyvalent amines such as ethylenediamine, hexanediamine
  • polyvalent carboxylic acid anhydrides polyvalent isocyanates, polyhydric alcohols and polyvalent epoxy compounds are preferred, and polyvalent carboxylic acid anhydrides, polyvalent isocyanates and polyvalent epoxy compounds are particularly preferred. These may be used alone or in combination of two or more.
  • the mixing amount of the polyfunctional compound is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.1 parts by weight, with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. More preferably, it is 10 parts by weight or less.
  • the effect which uses a polyfunctional compound can be exhibited as the addition amount of a polyfunctional compound is the said preferable range.
  • a reaction catalyst may be added in order to promote the reaction between poly-L-lactic acid and poly-D-lactic acid and the polyfunctional compound.
  • the reaction catalyst include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, stearin.
  • the amount of the reaction catalyst added is preferably 0.001 part by weight or more and 0.5 part by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid.
  • the catalyst amount is in the above preferred range, an effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid resin can be increased.
  • polylactic acid resin composition of the present invention conventional additives such as a catalyst deactivator (hindered phenol compound, thioether compound, vitamin compound, triazole compound) are used as long as the object of the present invention is not impaired.
  • a catalyst deactivator hindered phenol compound, thioether compound, vitamin compound, triazole compound
  • Polyamine-based compounds, hydrazine derivative-based compounds, phosphorus-based compounds, etc. which may be used in combination, including at least one phosphorous-based compound, phosphate-based compound, phosphite-based More preferably, it is a compound or a metal phosphate inorganic compound.
  • the catalyst deactivator composed of a phosphorus compound examples include “ADEKA STAB” (registered trademark) AX-71 (dioftademil phosphate), PEP-8 (distearyl pentaerythritol diphosphite) manufactured by ADEKA, PEP -36 (cyclic neopentatetraylbis (2,6-t-butyl-4-methylphenyl) phosphite) or the like, or sodium dihydrogen phosphate, potassium dihydrogen phosphate, phosphoric acid Lithium dihydrogen, calcium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, calcium hydrogen phosphate, sodium hydrogen phosphite, potassium phosphite, calcium hydrogen phosphite, sodium hypophosphite, At least one gold phosphate selected from potassium hypophosphite and calcium hypophosphite Salts inorganic compounds.
  • plasticizer for example, polyalkylene glycol plasticizer, polyester plasticizer, polycarboxylic acid ester plasticizer, glycerin plasticizer, phosphate ester plasticizer, epoxy
  • plasticizers include plasticizers, fatty acid amides such as stearic acid amide and ethylenebisstearic acid amide, pentaerythritol, various sorbitols, polyacrylic acid esters, silicone oils and paraffins.
  • polyethylene glycol Polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, propylene of bisphenols
  • Polyalkylene glycols such as xoxide addition polymers, tetrahydrofuran addition polymers of bisphenols, or terminal end-capping compounds such as terminal epoxy-modified compounds, terminal ester-modified compounds, and terminal ether-modified compounds
  • polyalkylene glycol plasticizers bis ( Butyl diglycol) adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, acetyl tributyl citrate, methoxycarbonylmethyl dibutyl citrate, ethoxycarbonylmethyl dibutyl citrate, etc.
  • butadiene-based or acrylic core-shell elastomers examples include “Metablene” (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd., “Kaneace” (registered trademark) manufactured by Kaneka Co., Ltd., and “Paralloid” manufactured by Rohm & Haas Japan Co., Ltd.
  • fillers fibrous, plate-like, powdery, granular, etc.
  • glass fiber PAN-based or pitch-based carbon fiber
  • Stainless steel fiber metal fiber such as aluminum fiber and brass fiber
  • organic fiber such as aromatic polyamide fiber, gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber
  • silica fiber titanium oxide fiber, silicon carbide fiber, rock wool , Potassium titanate whisker, barium titanate whisker, aluminum borate whisker, nitride nitride Fibrous, whisker-like filler, kaolin, silica, calcium carbonate, glass beads, glass flake, glass microballoon, molybdenum disulfide, wollastonite, montmorillonite, titanium oxide, zinc oxide, calcium polyphosphate, graphite, sulfuric acid Flame retardants (red phosphorus, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, magnesium
  • the polylactic acid resin composition used in the present invention may further contain poly-L-lactic acid and / or poly-D-lactic acid in addition to the above-mentioned polylactic acid block copolymer, as long as the object of the present invention is not impaired. it can.
  • poly-L-lactic acid is a polymer containing L-lactic acid as a main component, preferably containing 70 mol% or more of L-lactic acid units, and containing 90 mol% or more. Is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • Poly-D-lactic acid is a polymer containing D-lactic acid as a main component, and preferably contains 70 mol% or more of D-lactic acid units, more preferably 90 mol% or more. More preferably, it is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
  • poly-L-lactic acid and poly-D-lactic acid may contain other component units as long as the performance of the resulting polylactic acid resin composition is not impaired.
  • Component units other than the L-lactic acid or D-lactic acid unit are included for the segment containing L-lactic acid as the main component or the segment containing D-lactic acid as the main component that constitutes the polylactic acid block copolymer.
  • Examples of other component units that may be used include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones.
  • the weight average molecular weight of poly-L-lactic acid or poly-D-lactic acid used in the present invention is not particularly limited, but is preferably 100,000 or more from the viewpoint of mechanical properties. 120,000 or more is more preferable, and 140,000 or more is particularly preferable in terms of moldability and mechanical properties.
  • the dispersity of poly-L-lactic acid or poly-D-lactic acid is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties.
  • the range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable in terms of moldability and mechanical properties.
  • the weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
  • poly-L-lactic acid and / or poly-D-lactic acid with respect to the polylactic acid resin composition is not particularly limited, and poly-L-lactic acid and / or poly with respect to the polylactic acid resin composition is not limited.
  • -D-lactic acid may be mixed, or poly-L-lactic acid and / or poly-D-lactic acid is mixed in advance to form a polylactic acid block copolymer and a polymer having a plurality of reactive groups in one molecule. You may mix.
  • the amount of poly-L-lactic acid and / or poly-D-lactic acid contained in the polylactic acid resin composition is preferably 10 parts by weight or more and 900 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin composition. 30 to 400 parts by weight is preferable.
  • the poly-L-lactic acid and / or poly-D-lactic acid in the polylactic acid resin composition is in the above preferred range, the stereocomplex forming property can be improved, which is preferable.
  • the polylactic acid resin composition of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, polystyrene, acrylic resin, acrylonitrile / butadiene / styrene copolymer, polyamide, and the like within a range not to impair the purpose of the present invention).
  • thermoplastic resins for example, polyethylene, polypropylene, polystyrene, acrylic resin, acrylonitrile / butadiene / styrene copolymer, polyamide, and the like within a range not to impair the purpose of the present invention.
  • thermosetting resin eg, phenol resin, melamine resin, polyester resin, silicone
  • Resin epoxy resin, etc.
  • soft thermoplastic resin for example, ethylene / glycidyl methacrylate copolymer, polyester elastomer, polyamide elastomer, ethylene / B pyrene
  • an acrylic resin having an alkyl (meth) acrylate unit having an alkyl group having 1 to 4 carbon atoms as a main component is preferably mentioned.
  • an alkyl (meth) acrylate having an alkyl group having 1 to 4 carbon atoms may be copolymerized with another alkyl acrylate having an alkyl group having 1 to 4 carbon atoms or an aromatic vinyl compound such as styrene. Good.
  • alkyl (meth) acrylate having the above alkyl group examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl acrylate and cyclohexyl methacrylate. Can be mentioned.
  • polymethyl methacrylate composed of methyl methacrylate is particularly preferable.
  • the polylactic acid resin composition of the present invention has a characteristic that, when it is processed into a molded product as a molded body, it is easy to form a high melting point polylactic acid stereocomplex even after it is once melted by heat and solidified.
  • the molded product of the present invention preferably has a relative crystallinity of 90% or more and a molded product having a thickness of 1 mm has a haze value of 10% or less.
  • the relative crystallinity can be calculated by the following formula (9), where ⁇ Hm is the crystal melting enthalpy of the molded body and ⁇ Hc is the crystallization enthalpy at the time of temperature rising of the molded body.
  • Relative crystallinity [( ⁇ Hm ⁇ Hc) / ⁇ Hm] ⁇ 100 (9)
  • the relative crystallinity is preferably 90% or more, more preferably 92% or more, and particularly preferably 94% or more.
  • ⁇ Hc is the crystallization enthalpy of the molded body measured by a differential scanning calorimeter (DSC) at a heating rate of 20 ° C./min
  • ⁇ Hm is measured by DSC at a heating rate of 20 ° C./min. This is the crystal melting enthalpy of the molded body. After the temperature was increased from 30 ° C. to 250 ° C.
  • the temperature was cooled to 30 ° C. at a temperature decrease rate of 20 ° C./min. Furthermore, when the temperature is increased from 30 ° C. to 250 ° C. at a rate of temperature increase of 20 ° C./min in the second measurement (2nd RUN), it is preferably the crystal melting enthalpy measured at 2 nd RUN.
  • the haze value is a value obtained by measuring a 1 mm-thick molded body in accordance with JIS K 7105.
  • the haze value is preferably 10% or less, and more preferably 7% or less. preferable. Although a minimum is not specifically limited, If it is 0.1% or more, it can be used practically without a problem. Moreover, even if the molded object of this invention does not contain the crystal nucleating agent used in order to improve transparency, it can make haze value 10% or less by thickness 1mm or more.
  • Examples of the method for producing the molded product of the present invention include known molding methods such as injection molding, extrusion molding, blow molding, vacuum molding, and press molding. In terms of transparency and heat resistance, injection molding and blow molding are possible. Vacuum molding and press molding are preferred.
  • the mold temperature is a temperature range from the glass transition temperature of the polylactic acid resin composition to the melting point and below the melting point, preferably 60 in terms of transparency and heat resistance.
  • blow molding is performed as a method for producing a molded article of the present invention, for example, a polylactic acid resin composition is molded into a bottomed tubular product (parison) by injection molding using the above method, and then a polylactic acid resin is formed.
  • a polylactic acid resin composition is molded into a bottomed tubular product (parison) by injection molding using the above method, and then a polylactic acid resin is formed.
  • For blow molding set to a temperature range of not less than the glass transition point of the composition and a glass transition point of + 80 ° C. or less, preferably 60 ° C. or more and 140 ° C. or less, more preferably 70 ° C. or more and 130 ° C. or less.
  • There is a method of obtaining a molded body by moving to the mold and supplying compressed air from an air nozzle while stretching with a stretching rod.
  • the polylactic acid resin composition is heated at 60 to 150 ° C., preferably 65 to 120 ° C. with a heater such as a hot plate or hot air, in terms of transparency and heat resistance.
  • the sheet is heated at 70 ° C., more preferably 70 to 90 ° C., and the sheet is brought into close contact with the mold set at a mold temperature of 30 to 150 ° C., preferably 40 to 100 ° C., more preferably 50 to 90 ° C.
  • the polylactic acid resin composition is heated at 60 to 150 ° C., preferably 65 to 120 ° C. with a heater such as a hot plate or hot air, in terms of transparency and heat resistance.
  • a heater such as a hot plate or hot air
  • a mold comprising a male mold and a female mold, which is heated at 70 ° C., more preferably 70-90 ° C., and the sheet is set at a mold temperature of 30-150 ° C., preferably 40-100 ° C., more preferably 50-90 ° C.
  • pressure is applied in close contact with the mold and the mold is clamped.
  • the molded product made of the polylactic acid resin composition of the present invention is characterized by having transparency without being subjected to stretching treatment, it is not necessary to perform stretching treatment in order to impart transparency, but other necessity It is possible to perform a stretching process according to the above.
  • the shape of the formed body to be stretched is preferably a film or sheet shape.
  • the temperature range of the polylactic acid stereocomplex above the glass transition point and below the melting point preferably 60 ° C. or higher and 170 ° C. or lower, more preferably 70 ° C. or higher and 150 ° C. or lower. It is preferable to stretch in the temperature range.
  • the polylactic acid resin composition and the molded product containing the polylactic acid resin composition of the present invention include, for example, a film, a sheet, a fiber / cloth, a nonwoven fabric, an injection molded product, an extrusion molded product, a vacuum / pressure molded product, a blow molded product, and Can be used as a composite with other materials, such as agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, stationery, medical supplies, automotive parts, electrical / electronic parts, optical films or other It is useful as an application.
  • mobile terminals such as relay cases, coil bobbins, optical pickup chassis, motor cases, notebook computer housings or internal parts, CRT display housings or internal parts, printer housings or internal parts, mobile phones, mobile PCs, handheld mobiles, etc.
  • VTR parts TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, video cameras, video equipment parts such as projectors, "Laser Disk (registered trademark)", Compact Disc (CD), CD -ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, Blu-ray disc and other optical recording media substrates, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, Home and office electrical product parts represented by word processor parts can be listed.
  • projectors "Laser Disk (registered trademark)", Compact Disc (CD), CD -ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, Blu-ray disc and other optical recording media substrates
  • lighting parts refrigerator parts, air conditioner parts, typewriter parts, Home and office electrical product parts represented by word processor parts
  • typewriter parts home and office electrical product parts represented by word processor parts
  • Tableware hot fill containers, microwave cooking containers, transparent heat-resistant containers for foods, cosmetic containers, wraps, foam buffer, paper lami, shampoo Bottles, beverage bottles, cups, candy packaging, shrink labels, lid materials, envelopes with windows, fruit baskets, hand cut tape, easy peel packaging, egg packs, HDD packaging, compost bags, recording media packaging, shopping bags, electricity -Containers and packaging for wrapping films such as electronic parts, various apparel, interior goods, carrier tapes, print laminates, thermal stencil printing films, release films, porous films, container bags, credit cards, cash cards, ID cards , IC card, optical element, conductive embossed tape, IC tray, golf tee, garbage bag, plastic bag, various nets, toothbrush, stationery, clear file, bag, chair, table, cooler box, kumade, hose reel, planter, Hose nozzle, table, desk surface Useful as furniture panels, kitchen cabinets, pen caps, gas lighters, etc.
  • the weight average molecular weight and dispersity of a polylactic acid resin composition are the values of standard polymethylmethacrylate conversion measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • a differential refractometer WATERS410 manufactured by Nippon Waters Co., Ltd. is used as a detector, a MODEL510 manufactured by Nippon Waters Co., Ltd.
  • the melting point refers to the peak top temperature in the crystal melting peak
  • the melting end temperature refers to the peak end temperature in the crystal melting peak.
  • Tm-Tms melting point derived from the stereocomplex crystal of the polylactic acid resin composition (peak top temperature at the crystal melting peak)
  • Tms stereocomplex crystal melting start temperature of the polylactic acid resin composition
  • Tme poly The melting point end temperature derived from the stereocomplex crystal of the lactic acid resin composition is shown, and each value is measured using a differential scanning calorimeter (DSC) manufactured by PerkinElmer Japan Co., Ltd., in a 5 mg sample under a nitrogen atmosphere. Value. The measured value was raised from 30 ° C. to 250 ° C.
  • DSC differential scanning calorimeter
  • ⁇ Hl indicates the amount of heat based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal appearing at 150 ° C. or more and less than 190 ° C.
  • ⁇ Hh is a stereocomplex crystal appearing at 190 ° C. or more and less than 250 ° C. The amount of heat based on the crystal melting of is shown.
  • the stereocomplex formation rate (Sc) of the polylactic acid resin composition in this example is calculated from the crystal melting peak measured at the second temperature rise of the differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • the temperature-falling crystallization temperature of the polylactic acid resin composition was measured with a differential scanning calorimeter (DSC) manufactured by PerkinElmer Japan. Specifically, 5 mg of a sample was heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere with a differential scanning calorimeter (DSC), and then kept at a constant temperature at 250 ° C. for 3 minutes.
  • Crystallization enthalpy ( ⁇ Hc) The peak area of the crystallization peak of the polylactic acid resin composition measured by a differential scanning calorimeter (DSC) is calculated.
  • Loss on heating The loss on heating of the polylactic acid resin composition was measured with a thermogravimetric measuring device (TGA) manufactured by PerkinElmer Japan. Specifically, 3 mg of the sample was maintained in a constant temperature state at 240 ° C.
  • melt viscosity ratio (MFR10 / MFR20) The melt viscosity ratio (MFR10 / MFR20) of the polylactic acid resin composition is in accordance with JIS K 7210, the melt flow rate after 10 minutes (MFR10) and the melt flow rate after 20 minutes (MFR20) at 230 ° C. and 21.2 N load conditions. ) was measured with a melt indexer manufactured by Toyo Seiki Seisakusho, and the ratio (MFR10 / MFR20) was calculated from each value.
  • the haze value was measured as an index of the transparency of the molded body made of the polylactic acid resin composition. Using a Nippon Denshoku Industries Co., Ltd. haze meter NDH-300A, a haze value was measured according to JIS K 7105 for a sheet-like molded body having a thickness of 0.1 mm. (9) Storage elastic modulus at 130 ° C. The storage elastic modulus was measured as an index of the heat resistance of the molded body made of the polylactic acid resin composition.
  • a center part of a sheet-like molded body having a thickness of 1 mm is cut into 40 mm ⁇ 2 mm to form a strip-like sample, and a temperature rise rate in a nitrogen atmosphere using a dynamic viscoelasticity measuring apparatus (DMS6100 manufactured by Seiko Instruments Inc.). Dynamic viscoelasticity measurement was performed at 2 ° C / min and a frequency of 3.5 Hz, and the storage elastic modulus at 130 ° C was measured. It can be said that the higher the elastic modulus, the higher the heat resistance.
  • DMS6100 dynamic viscoelasticity measuring apparatus
  • the poly-L-lactic acid and poly-D-lactic acid used in the present examples are as follows.
  • PLA1 had a weight average molecular weight of 50,000, a dispersity of 1.5, and a melting point of 157 ° C.
  • PLA2 had a weight average molecular weight of 140,000, a dispersity of 1.6, and a melting point of 165 ° C.
  • Reference Example 3 In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% L-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water.
  • PLA3 had a weight average molecular weight of 200,000, a dispersity of 1.7, and a melting point of 170 ° C.
  • PDA1 poly-D-lactic acid
  • PDA1 had a weight average molecular weight of 40,000, a dispersity of 1.5, and a melting point of 156 ° C.
  • Reference Example 5 In a reaction vessel equipped with a stirrer and a reflux apparatus, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water.
  • poly-D-lactic acid was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa, 140 ° C. for 3 hours, 150 ° C. for 3 hours, and 160 ° C. for 9 hours.
  • Solid phase polymerization was carried out to obtain poly-D-lactic acid (PDA2).
  • PDA2 had a weight average molecular weight of 7 million, a dispersity of 1.5, and a melting point of 161 ° C.
  • PDA3 poly-D-lactic acid
  • PDA3 had a weight average molecular weight of 130,000, a dispersity of 1.6, and a melting point of 164 ° C.
  • Reference Example 7 In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was adjusted to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water.
  • poly-D-lactic acid was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 18 hours at 160 ° C. Solid phase polymerization was carried out to obtain poly-D-lactic acid (PDA4).
  • A) Polylactic acid resin A-1: Polylactic acid stereocomplex obtained in Reference Example 8 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw 110,000, dispersity 2.7)
  • A-2: Polylactic acid block copolymer obtained in Reference Example 9 (Mw 130,000, dispersity 2.4)
  • A-3: Polylactic acid stereocomplex obtained in Reference Example 10 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw 130,000, dispersity 2.6)
  • A-4: Polylactic acid block copolymer obtained in Reference Example 11 (Mw 160,000, dispersity 2.3)
  • A-5: Polylactic acid stereocomplex obtained in Reference Example 12 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw 40,000, dispersity 1.8)
  • polylactic acid stereocomplex (A-1) was melt-kneaded at a kneading temperature of 210 ° C. under reduced pressure to obtain polylactic acid stereocomplex (A-1).
  • the polylactic acid stereocomplex (A-1) had a weight average molecular weight of 110,000, a dispersity of 2.7, a melting point of 211 ° C., and a stereocomplex formation rate of 100%.
  • Reference Example 9 The polylactic acid stereocomplex (A-1) obtained in Reference Example 8 was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa at 140 ° C. for 3 hours and at 150 ° C. for 3 hours.
  • a polylactic acid block copolymer (A-2) had a weight average molecular weight of 130,000, a dispersity of 2.4, a melting point of 211 ° C., and a stereocomplex formation rate of 100%.
  • a polylactic acid stereocomplex (A-3) was obtained by melt kneading in the same manner as in Reference Example 8 except that 70 parts by weight of PLA3 and 30 parts by weight of PDA1 supplied to the twin screw extruder were used.
  • the polylactic acid stereocomplex (A-3) had a weight average molecular weight of 130,000, a dispersity of 2.6, melting points of 214 ° C and 151 ° C double peaks, and a stereocomplex formation rate of 95%.
  • the polylactic acid stereocomplex (A-3) obtained in Reference Example 10 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-4).
  • the polylactic acid block copolymer (A-4) had a weight average molecular weight of 160,000, a dispersity of 2.3, melting points of double peaks of 215 ° C. and 171 ° C., and a stereocomplex formation rate of 97%.
  • a polylactic acid stereocomplex (A-5) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-1 is the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA1 is the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-5) had a weight average molecular weight of 40,000, a dispersity of 1.8, a melting point of 215 ° C., and a stereocomplex formation rate of 100%.
  • the polylactic acid stereocomplex (A-5) obtained in Reference Example 12 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-6).
  • the polylactic acid block copolymer (A-6) had a weight average molecular weight of 60,000, a dispersity of 1.6, a melting point of 215 ° C., and a stereocomplex formation rate of 100%.
  • a polylactic acid stereocomplex (A-7) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-2 is used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA1 is used as the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-7) had a weight average molecular weight of 100,000, a degree of dispersion of 2.2, melting points of 213 ° C. and 152 ° C. double peaks, and a stereo complex formation rate of 96%.
  • the polylactic acid stereocomplex (A-7) obtained in Reference Example 14 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-8).
  • the polylactic acid block copolymer (A-8) had a weight average molecular weight of 120,000, a dispersity of 2.0, melting points of 212 ° C. and 170 ° C. double peaks, and a stereocomplex formation rate of 98%.
  • a polylactic acid stereocomplex (A-9) was prepared by melt kneading in the same manner as in Reference Example 10 except that PLA-2 was used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA2 was used as the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-9) had a weight average molecular weight of 120,000, a dispersity of 2.4, melting points of 212 ° C and 160 ° C double peaks, and a stereocomplex formation rate of 93%.
  • the polylactic acid stereocomplex (A-9) obtained in Reference Example 16 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-10).
  • the polylactic acid block copolymer (A-10) had a weight average molecular weight of 140,000, a degree of dispersion of 2.2, melting points of 212 ° C. and 171 ° C. double peaks, and a stereocomplex formation rate of 95%.
  • a polylactic acid stereocomplex (A-11) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-2 is used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA3 is used as the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-11) had a weight average molecular weight of 130,000, a dispersity of 2.5, melting points of 210 ° C and 165 ° C double peaks, and a stereocomplex formation rate of 55%.
  • a polylactic acid stereocomplex (A-13) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-3 is the poly-L-lactic acid to be melt-kneaded with a twin screw extruder and PDA2 is the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-13) had a weight average molecular weight of 150,000, a dispersity of 2.6, melting points of 211 ° C. and 161 ° C. double peaks, and a stereocomplex formation rate of 90%.
  • the polylactic acid stereocomplex (A-13) obtained in Reference Example 20 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-14).
  • the polylactic acid block copolymer (A-14) had a weight average molecular weight of 170,000, a degree of dispersion of 2.4, melting points of 212 ° C. and 171 ° C. double peaks, and a stereocomplex formation rate of 95%.
  • a polylactic acid stereocomplex (A-15) was prepared by melt kneading in the same manner as in Reference Example 10 except that PLA3 was used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA3 was used as the poly-D-lactic acid.
  • the polylactic acid stereocomplex (A-15) had a weight average molecular weight of 170,000, a dispersity of 2.4, melting points of 212 ° C. and 168 ° C. double peaks, and a stereocomplex formation rate of 60%.
  • PLA4 had a weight average molecular weight of 80,000, a dispersity of 1.6, and a melting point of 168 ° C.
  • the ratio of the weight average molecular weight of the segment consisting of L-lactic acid units constituting the polylactic acid block copolymer A-17 to the weight average molecular weight of the segment consisting of D-lactic acid units was 2.7.
  • PLA 3 obtained in Reference Example 3 and PDA 4 obtained in Reference Example 7 were melt kneaded in the same manner as in Reference Example 8 to obtain a polylactic acid stereocomplex (A-19).
  • the polylactic acid stereocomplex (A-19) had a weight average molecular weight of 170,000, a dispersity of 1.7, melting points of 220 ° C. and 169 ° C. double peaks, and a stereocomplex formation rate of 55%.
  • B Polymer having a plurality of reactive groups per molecule
  • B-1 Acrylic resin-based reactive compound: Epoxy group-containing styrene / acrylic acid ester copolymer ("JONCRYL” (registered trademark) manufactured by BASF Japan Ltd.) ADR-4368, Mw (PMMA equivalent) 8,000, epoxy equivalent 285 g / mol)
  • B-2 Polycarbodiimide (“Carbodilite” (registered trademark) HMV-8CA, manufactured by Nisshinbo Chemical Co., Ltd.), Mw (PMMA conversion) 3,000, carbodiimide equivalent 278 g / mol)
  • B-3 Polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd.
  • the pellet of the polylactic acid resin composition was heated at 240 ° C. for 2 minutes to melt, and then pressed at a press temperature of 80 ° C. to produce a 1 mm thick press sheet.
  • the press sheet was heat-treated at 110 ° C. for 30 minutes under a nitrogen atmosphere to obtain sheet-like molded bodies for various measurements.
  • the physical properties of the polylactic acid resin composition and the molded body obtained by melt kneading are as shown in Tables 1 and 2.
  • polylactic acid block copolymer A-2 was used as polylactic acid resin (A), and in Examples 5 to 8, polylactic acid block copolymer A-4 was used.
  • Acrylic resin-based reactive compounds (B-1) having different addition amounts were added as a polymer (B) having a plurality of reactive groups per molecule, and melt kneading was performed.
  • the amount of the acrylic resin-based reactive compound increased and the weight average molecular weight of the polylactic acid resin composition increased.
  • the polylactic acid resin composition had excellent crystallization characteristics with a temperature-falling crystallization temperature of 140 ° C.
  • melt viscosity ratio MFR10 / MFR20
  • Examples 9 to 14 the type of polylactic acid resin (A) was changed as shown in Table 1 to produce a polylactic acid resin composition.
  • any polylactic acid resin could be used as an acrylic resin.
  • the system reactive compound (B-1) the increase in molecular weight and the retention stability during heating were shown as in Examples 1-8.
  • thermophysical properties the temperature-falling crystallization temperature was 130 ° C. or higher, and it was found that the crystallization characteristics were excellent.
  • the haze value of the molded product was less than 10% and excellent in transparency, and showed good mechanical properties in terms of tensile strength and storage elastic modulus.
  • Example 15 a polylactic acid resin composition was prepared using polycarbodiimide (B-3) as a polymer (B) having a plurality of reactive groups per molecule, but by reaction with polycarbodiimide. Increased molecular weight and retention stability during heating were obtained.
  • polylactic acid was added to the polylactic acid resin (A-4) by adding crystal nucleating agents D-1 to D-3 in addition to the acrylic resin reactive compound (B-1).
  • Resin compositions were prepared, and any of the polylactic acid resin compositions showed an increase in molecular weight and a residence stability upon heating due to the reaction with the acrylic resin-based reactive compound (B-1). Further, in terms of thermophysical properties, since the temperature drop crystallization temperature was 130 ° C. or higher and the crystallization enthalpy ( ⁇ Hc) was 37 J / g or higher, it was found that heat resistance and crystallization characteristics were excellent.
  • haze value of the molded product was 12% or less and excellent transparency, and showed good mechanical properties in terms of tensile strength and storage elastic modulus.
  • a polylactic acid resin composition and a molded body pelletized by the same method as in Examples 1 to 18 were obtained.
  • the physical properties of the polylactic acid resin composition and the molded product obtained by melt kneading are as shown in Table 3 and Table 4.
  • Comparative Examples 1 to 4 the acrylic resin-based reactive compound (B-1) was added at 0.03 parts by weight and 2.5 parts by weight with respect to 100 parts by weight of the polylactic acid resin A-2 or A-4, respectively. Is. As a result, in Comparative Examples 1 and 3, the melt viscosity ratio (MFR10 / MFR20) was less than 0.5 even after the reaction with the acrylic resin-based reactive compound (B-1), compared with Examples 1 to 13. It was found that the residence stability during heating was low. On the other hand, in Comparative Examples 2 and 4, after the reaction with the acrylic resin-based reactive compound (B-1), the polylactic acid resin composition was gelled, and the melt viscosity ratio (MFR10 / MFR20) was 1 or more. . The polylactic acid resin compositions of Comparative Examples 2 and 4 could not be processed into molded articles due to gelation.
  • polylactic acid resin compositions were prepared using polylactic acid stereocomplexes or polylactic acid block copolymers shown in Tables 3 and 4 as polylactic acid resin (A).
  • polylactic acid resin (A) the weight average molecular weight increased due to the reaction with the acrylic resin-based reactive compound (B-1)
  • the melt viscosity ratio (MFR10 / MFR20) was 0.45 to 0,59, which was inferior in residence stability during heating as compared with the polylactic acid block copolymers shown in Examples 3, 7 and 9-11.
  • Comparative Examples 10 to 15 in any case, an increase in the weight average molecular weight is observed by adding the acrylic resin-based reactive compound (B-1) as the polymer (B) having a plurality of reactive groups in one molecule.
  • the crystallization enthalpy ⁇ Hc at the temperature-falling crystallization temperature was less than 10 J / g and the crystallization characteristics were poor.
  • the melt viscosity ratio (MFR10 / MFR20) is compared with the examples using the polylactic acid block copolymer. The result was low and the stability of the melt viscosity was poor.
  • the haze value of the molded products was 10% or more at any level of Comparative Examples 10 to 15, and the transparency was inferior to the Examples.
  • the polylactic acid stereocomplex A-19 was used for the polylactic acid resin (A), and in addition to the acrylic resin reactive compound (B-1), the crystal nucleating agent (D-1) to ( A polylactic acid resin composition was prepared by adding D-3).
  • the stereocomplex formation rate (Sc) of these polylactic acid resin compositions is less than 70%, the heat resistance is low compared to the examples, and the crystallization characteristics are also inferior as in the comparative examples 17-19.
  • the heat loss at 240 ° C. for 30 minutes was as high as 9% or more, and the residence stability was low.
  • the haze values of these molded products were also 10% or more, and the transparency was low as compared with the Examples.
  • the kneaded material kneaded as described above was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, followed by solid phase polymerization at 150 ° C. for 24 hours under a pressure of 60 Pa to obtain a polylactic acid resin composition. Obtained.
  • sheet-like molded bodies were produced in the same manner as in Examples 1 to 18.
  • Table 5 shows the physical properties of the polylactic acid resin composition and the molded body.
  • Example 21 The polylactic acid stereocomplex (A-3) obtained in Reference Example 10 and the acrylic resin-based reactive compound (B-1) were added from the resin supply port of the twin screw extruder and melt kneaded. The element configuration and temperature setting of the extruder are as described in Examples 19 and 20. Subsequently, the kneaded product after melt-kneading was subjected to solid phase polymerization by the method described in Examples 19 and 20. In addition, a sheet-like molded body was produced in the same manner as in Examples 1-18. Table 5 shows the physical properties of the polylactic acid resin composition and the molded body.
  • the resin supply port of the twin screw extruder was added in advance with the polylactic acid block copolymer (A-4) and the acrylic resin-based reactive compound (B-1) added in the amounts shown in Table 5.
  • the mixture was obtained by further adding and melt-kneading.
  • the polylactic acid resin composition was produced by adding the said mixture and PLA3 and PDA4 with the addition amount shown in Table 5 with respect to the resin supply port of a twin-screw extruder, and melt-kneading.
  • solid phase polymerization was not performed after kneading the polylactic acid resin composition.
  • sheet molded bodies were produced in the same manner as in Examples 1 to 18.
  • Table 5 shows the physical properties of the obtained polylactic acid resin composition and molded article.
  • a polylactic acid resin composition was prepared by preparing a kneaded material using a twin screw extruder in the same manner as in Examples 20 and 21. In Comparative Examples 24 and 25, the kneaded product was not subjected to solid phase polymerization.
  • sheet-like molded bodies were produced in the same manner as in Examples 1 to 19.
  • PLA3, PDA1 and the acrylic resin-based reactive compound (B-1) were solid-phase polymerized after melt kneading all together without preparing a polylactic acid block copolymer in advance as a polylactic acid resin.
  • the polylactic acid resin composition has a weight average molecular weight increased by reaction with the acrylic resin-based reactive compound (B-1), and the heat loss at 240 ° C. for 30 minutes is less than 1%, and the melt viscosity ratio (MFR10 / MFR20 ) was also less than 0.5 to 1 and was excellent in retention stability during heating.
  • the stereocomplex formation rate (Sc) was 90% or higher, and the heat resistance was high, and the temperature-falling crystallization temperature and crystallization enthalpy were also high, indicating that the crystallization characteristics were excellent.
  • the haze value of the molded product was also low, less than 10%, so that it was excellent in transparency and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
  • Example 21 unlike Examples 1 to 18, when the acrylic resin-based reactive compound (B-1) was added before solid-phase polymerization, the polylactic acid resin composition was acrylic as in Examples 1 to 18.
  • the temperature-falling crystallization temperature was 130 ° C. or higher and the crystallization enthalpy was as high as 35 J / g or more, so that it was found that the crystallization characteristics were excellent.
  • the haze value of the molded product was 9%, which was excellent in transparency, and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
  • the physical properties of the obtained polylactic acid resin compositions were increased by the reaction with the acrylic resin-based reactive compound (B-1) as in Examples 1 to 18, and the melt was melted.
  • the viscosity ratio (MFR10 / MFR20) was also 0.5 to less than 1, and the residence stability during heating was excellent.
  • the thermophysical properties the stereocomplex formation rate (Sc) was 90% or higher, and the heat resistance was high, and the temperature-falling crystallization temperature and crystallization enthalpy were also high, indicating that the crystallization characteristics were excellent.
  • the haze value of the molded product was also low, less than 10%, so that it was excellent in transparency and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
  • the polylactic acid resin composition of the present invention has improved mechanical properties, durability, stability during heating, and heat resistance due to the thickening effect of the polymer having a plurality of reactive groups in one molecule. Also, since it has excellent crystallization characteristics, it can be suitably used in fields that require heat resistance, crystallization characteristics, and retention stability during heating.

Abstract

Disclosed is a polylactic resin composition made by blending: a polylactic acid block copolymer that is constituted by poly-L-lactic acid segments including L-lactic acid as a main component, and poly-D-lactic acid segments including D-lactic acid as a main component; and a polymer that includes a plurality of reactive groups in a single molecule. Also disclosed is a method for producing said polylactic resin composition. The present invention provides: a polylactic resin composition that has improved mechanical properties, durability, and residence stability during heating, and that has excellent heat resistance and crystallization characteristics; a molded product; and a method for producing said polylactic resin composition.

Description

ポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法Polylactic acid resin composition, molded body, and method for producing polylactic acid resin composition
 本発明は、成形加工性、機械物性、耐久性、加熱時滞留安定性が向上し、さらには耐熱性、結晶化特性にも優れたポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法に関する。 The present invention provides a polylactic acid resin composition, a molded article, and a polylactic acid resin composition that have improved molding processability, mechanical properties, durability, and stability during heating, and also excellent heat resistance and crystallization characteristics. It relates to a manufacturing method.
 ポリ乳酸は、実用上溶融成形可能な高分子であり、生分解性の特徴を有することから使用した後は自然環境中で分解して炭酸ガスや水として放出される生分解性プラスチックとしての開発が進められてきた。一方、近年では、ポリ乳酸自身が二酸化炭素や水を起源とする再生可能資源(バイオマス)を原料としているため、使用後に二酸化炭素が放出されたとしても地球環境中における二酸化炭素は増減しないというカーボンニュートラルの性質が注目され、環境低負荷材料としての利用が期待されている。さらに、ポリ乳酸のモノマーである乳酸は微生物を利用した発酵法により安価に製造されつつあり、石油系プラスチック製の汎用ポリマーの代替素材としても検討されるようになってきた。 Polylactic acid is a polymer that can be melt-molded practically and has characteristics of biodegradability, so it is developed as a biodegradable plastic that is decomposed in the natural environment and released as carbon dioxide or water after use. Has been promoted. On the other hand, in recent years, polylactic acid itself is made from renewable resources (biomass) originating from carbon dioxide and water, so carbon that does not increase or decrease in the global environment even if carbon dioxide is released after use. Neutral properties have attracted attention and are expected to be used as environmentally friendly materials. Furthermore, lactic acid, which is a monomer of polylactic acid, is being produced at low cost by fermentation using microorganisms, and has been studied as an alternative material for general-purpose polymers made of petroleum-based plastics.
 特許文献1では、ポリ乳酸樹脂に対して、アクリル酸エステルを原料モノマーとする不飽和カルボン酸アルキルエステル系重合体を溶融混練することでフィルムやシートへの成形加工に適した物性改良を行っている。この技術では、ポリ乳酸樹脂組成物の成形加工時にブリードアウトを伴うことなく成形体を得ることができるほか、得られた成形体は柔軟性と透明性に優れた特徴を有する。 In patent document 1, the physical property improvement suitable for the shaping | molding process to a film or a sheet | seat is performed by melt-kneading the unsaturated carboxylic acid alkylester polymer which uses acrylic acid ester as a raw material monomer with respect to polylactic acid resin. Yes. In this technique, a molded body can be obtained without bleeding out during the molding process of the polylactic acid resin composition, and the obtained molded body has characteristics of excellent flexibility and transparency.
 特許文献2では、ポリ乳酸樹脂に対してエポキシ基を含有するアクリル樹脂系改質剤を溶融混練することでポリ乳酸樹脂の成形加工性を向上させている。この技術では、アクリル樹脂系改質剤のエポキシ基がポリ乳酸樹脂の末端に存在するカルボキシル基またはヒドロキシル基と反応して適度な架橋構造を形成することで粘度が上昇し、成形に好適な粘性を発現している。 In Patent Document 2, the moldability of polylactic acid resin is improved by melt-kneading an acrylic resin-based modifier containing an epoxy group with respect to polylactic acid resin. In this technology, the epoxy group of the acrylic resin-based modifier reacts with the carboxyl group or hydroxyl group present at the end of the polylactic acid resin to form an appropriate cross-linked structure, thereby increasing the viscosity, which is suitable for molding. Is expressed.
 特許文献3は、ポリ乳酸樹脂、ABS樹脂からなるポリ乳酸樹脂組成物に対してアクリル樹脂を配合することによりポリ乳酸樹脂組成物の耐衝撃性を向上することができることが記載されている。この技術においても、アクリル樹脂としてエポキシ基を含む反応性化合物が例示されており、このアクリル樹脂とポリ乳酸樹脂組成物が反応することで溶融粘度が上昇し、耐衝撃性に加えて熱安定性も向上する。 Patent Document 3 describes that impact resistance of a polylactic acid resin composition can be improved by blending an acrylic resin with a polylactic acid resin composition composed of a polylactic acid resin and an ABS resin. Also in this technology, a reactive compound containing an epoxy group is exemplified as an acrylic resin, and the melt viscosity increases due to the reaction between the acrylic resin and the polylactic acid resin composition, in addition to impact resistance, thermal stability. Will also improve.
 特許文献4には、ポリ-L-乳酸とポリ-D-乳酸からなるポリ乳酸ステレオコンプレックスに対して、エポキシ基を含有するアクリル樹脂を溶融混練することで溶融粘度変化を抑制し、耐湿熱安定性および色調に優れたポリ乳酸樹脂組成物を得ている。この技術ではポリ乳酸樹脂としてポリ-L-乳酸とポリ-D-乳酸からなるポリ乳酸を用いているため、ステレオコンプレックス結晶相を有していることからポリ-L-乳酸単独に比較すると、耐熱性に優れる。
特開2003-286401号公報 特開2006-265399号公報 国際公開2012-111587公報 特開2010-168505号公報
Patent Document 4 discloses that a polylactic acid stereocomplex composed of poly-L-lactic acid and poly-D-lactic acid is melt-kneaded with an acrylic resin containing an epoxy group to suppress a change in melt viscosity, and is stable against moisture and heat. A polylactic acid resin composition excellent in properties and color tone is obtained. In this technology, polylactic acid composed of poly-L-lactic acid and poly-D-lactic acid is used as the polylactic acid resin, and therefore it has a stereocomplex crystal phase, so that it has higher heat resistance than poly-L-lactic acid alone. Excellent in properties.
JP 2003-286401 A JP 2006-265399 A International Publication 2012-1111587 JP 2010-168505 A
 しかしながら、ポリ乳酸は、石油系プラスチックに比較すると耐熱性や耐久性が低く、結晶化速度が小さいため生産性にも劣っており、実用化の範囲は大幅に限定されているのが現状である。 However, polylactic acid has lower heat resistance and durability than petroleum-based plastics, and its crystallization speed is low, so it is inferior in productivity, and the range of practical use is greatly limited. .
 このポリ乳酸の欠点を解決する手段として、ポリ乳酸ステレオコンプレックスの利用が期待されている。ポリ乳酸ステレオコンプレックスは、光学活性なポリ-L-乳酸と、ポリ-D-乳酸とを混合することにより形成される。ポリ乳酸ステレオコンプレックスの融点は、ポリ乳酸ホモポリマーの融点170℃に比較して50℃高い220℃に達する。通常、ポリ乳酸ステレオコンプレックスはポリ-L-乳酸とポリ-D-乳酸とを溶液状態で混合するか、ポリ-L-乳酸とポリ-D-乳酸とを加熱溶融混合させることで形成されるが、高分子量のポリ-L-乳酸と高分子量のポリ-D-乳酸とを加熱溶融混合した場合には、混合組成比が50:50であってもポリ乳酸ホモポリマーの融点ピークが多く存在するため、耐熱性と耐久性とを兼ね備えた材料は得られないのが現状である。 The use of polylactic acid stereocomplex is expected as a means to solve the disadvantages of polylactic acid. The polylactic acid stereocomplex is formed by mixing optically active poly-L-lactic acid and poly-D-lactic acid. The melting point of the polylactic acid stereocomplex reaches 220 ° C., which is 50 ° C. higher than the melting point 170 ° C. of the polylactic acid homopolymer. Usually, a polylactic acid stereocomplex is formed by mixing poly-L-lactic acid and poly-D-lactic acid in a solution state or by heating and melt-mixing poly-L-lactic acid and poly-D-lactic acid. When a high molecular weight poly-L-lactic acid and a high molecular weight poly-D-lactic acid are heat-melted and mixed, there are many melting points of polylactic acid homopolymer even when the mixing composition ratio is 50:50. Therefore, at present, a material having both heat resistance and durability cannot be obtained.
 一方、ポリ乳酸ステレオコンプレックスの新たな形成法としてポリ乳酸ブロック共重合体が注目されつつある。このポリ乳酸ブロック共重合体は、L-乳酸を主成分とするポリ-L-乳酸セグメントと、D-乳酸を主成分とするポリ-D-乳酸セグメントとが共有結合したものであり、高分子量であってもステレオコンプレックス結晶形成性に優れ、ステレオコンプレックス結晶由来の融点が観測されるため、耐熱性、結晶化特性など熱物性に優れた材料を得ることが可能である。このため、高融点および高結晶性の繊維、フィルムおよび樹脂成形品としての適用が試みられている。 On the other hand, a polylactic acid block copolymer is attracting attention as a new method for forming a polylactic acid stereocomplex. This polylactic acid block copolymer is obtained by covalently bonding a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component. Even so, since the stereocomplex crystal formability is excellent and the melting point derived from the stereocomplex crystal is observed, it is possible to obtain a material having excellent thermal properties such as heat resistance and crystallization characteristics. For this reason, the application as a high melting point and highly crystalline fiber, film, and resin molded article is tried.
 ポリ乳酸の成形加工では、ポリマーの融点以上に加熱溶融させた後、希望形状に賦形を行うが、高温で溶融滞留させると一般に溶融粘度の低下が大きいため、例えば、シートフィルムの押出成形では厚さや幅が不均一となり、シートの穴あきやフィルムの延伸不良を引き起こす場合がある。また、熱成形やブロー成形においては加熱時にドローダウンしやすくなるため、成形体の寸法安定性が乏しい。このためポリ乳酸やステレオコンプレックスの溶融成形加工においては、成形に適した溶融粘度を得るために加熱温度を低くするなどの成形条件の制御を行うが、成形温度領域が狭くて成形加工性が低い問題がある。そこで、ポリ乳酸の加熱溶融時の粘度低下を抑制し、成形加工性を向上させる方法の一つとして、ポリ乳酸やステレオコンプレックスに対してアクリル樹脂系反応性化合物を溶融混合して加熱時の溶融粘度を向上することが試みられている。また、ポリ乳酸やステレオコンプレックスの溶融成形加工後の成形体については剛性が高くて脆い性質があるため、柔軟性を必要とされる用途においては、上記同様にアクリル樹脂系反応性化合物を溶融混合して物性改善を試みている(例えば、特許文献1~4を参照)。 In the molding process of polylactic acid, it is heated and melted above the melting point of the polymer and then shaped into the desired shape. However, when melted and retained at high temperatures, the melt viscosity generally decreases greatly, so for example in sheet film extrusion molding The thickness and width are not uniform, which may cause perforation of the sheet and poor stretching of the film. In thermoforming and blow molding, it tends to draw down during heating, so that the dimensional stability of the molded body is poor. Therefore, in the melt molding process of polylactic acid or stereocomplex, the molding conditions such as lowering the heating temperature are controlled to obtain a melt viscosity suitable for molding, but the molding temperature range is narrow and the molding processability is low. There's a problem. Therefore, as one of the methods to suppress the decrease in viscosity when polylactic acid is heated and melted and improve molding processability, melt and mix acrylic resin-based reactive compounds with polylactic acid and stereocomplex. Attempts have been made to improve the viscosity. In addition, since the molded product after melt molding of polylactic acid or stereocomplex has high rigidity and brittleness, in applications where flexibility is required, acrylic resin reactive compounds are melt-mixed in the same way as above. Thus, attempts are being made to improve physical properties (see, for example, Patent Documents 1 to 4).
 しかしながら、特許文献1~3については、ポリ乳酸樹脂の溶融時成形加工性は向上するものの、ポリ乳酸の結晶化速度に関して、例えば降温結晶化温度を示さないほど結晶化速度が遅いため、成形サイクルが長く、生産性には課題が残る。さらに、ホモポリ乳酸では融点が170℃付近であるため実使用には耐熱性にも課題が残る。 However, in Patent Documents 1 to 3, although the processability at the time of melting of the polylactic acid resin is improved, the crystallization speed of the polylactic acid is so slow that it does not show the temperature-falling crystallization temperature. However, productivity remains a problem. Furthermore, since the melting point of homopolylactic acid is around 170 ° C., there remains a problem in heat resistance in actual use.
 また、特許文献4におけるポリ-L-乳酸とポリ-D-乳酸の溶融混合によるポリ乳酸ステレオコンプレックスについては、融点は高いものの、結晶化速度は不十分であるため、特許文献1~3と同様に生産性に課題が残る。また、ステレオコンプレックス相を形成させるため、有機リン酸エステル金属塩などを添加しているが、そのため加熱溶融時のガス発生が多いなど、成形加工性、耐熱性、結晶化特性を兼備するようなものは得られていないのが現状である。 In addition, the polylactic acid stereocomplex prepared by melt-mixing poly-L-lactic acid and poly-D-lactic acid in Patent Document 4 has a high melting point, but the crystallization speed is insufficient, so that it is the same as Patent Documents 1 to 3. However, productivity remains a problem. In addition, in order to form a stereocomplex phase, an organophosphate metal salt or the like is added, so that a large amount of gas is generated at the time of heating and melting, such as having moldability, heat resistance, and crystallization characteristics. Nothing is available at present.
 本発明は、上記に鑑みてなされたものであり、機械物性、耐久性、加熱時滞留安定性が向上し、さらには耐熱性、結晶化特性にも優れたポリ乳酸ステレオコンプレックスを形成するポリ乳酸樹脂組成物、成形体およびポリ乳酸樹脂組成物の製造方法を提供することにある。特に、ポリ乳酸ブロック共重合体からなるポリ乳酸樹脂を1分子に複数の反応基を有する重合体で増粘した後も結晶化特性が低下せずに、成形加工性、耐熱性、結晶化特性を両立することを目的とする。 The present invention has been made in view of the above, and has improved mechanical properties, durability, retention stability during heating, and further forms polylactic acid stereocomplex having excellent heat resistance and crystallization characteristics. It is providing the manufacturing method of a resin composition, a molded object, and a polylactic acid resin composition. In particular, after the polylactic acid resin composed of a polylactic acid block copolymer is thickened with a polymer having a plurality of reactive groups per molecule, the crystallization characteristics do not deteriorate, and the molding processability, heat resistance, and crystallization characteristics The purpose is to achieve both.
 上述した課題を解決するために、本発明のポリ乳酸樹脂組成物は、次の構成を有する。すなわち、
(A)L-乳酸を主成分とするポリ-L-乳酸セグメントとD-乳酸を主成分とするポリ-D-乳酸セグメントから構成されるポリ乳酸ブロック共重合体100重量部に対して(B)1分子に複数の反応基を有する重合体を0.05~2重量部配合してなるポリ乳酸樹脂組成物であって、(B)1分子に複数の反応基を有する重合体の重量平均分子量が1,000~15,000であり、DSC測定において、ポリ乳酸樹脂組成物を250℃まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の結晶化熱量が10J/g以上であるポリ乳酸樹脂組成物、である。
In order to solve the above-described problems, the polylactic acid resin composition of the present invention has the following configuration. That is,
(A) 100 parts by weight of a polylactic acid block copolymer composed of a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component (B ) A polylactic acid resin composition comprising 0.05 to 2 parts by weight of a polymer having a plurality of reactive groups per molecule, and (B) a weight average of the polymers having a plurality of reactive groups per molecule Crystallization when the molecular weight is 1,000 to 15,000 and the polylactic acid resin composition is heated to 250 ° C. and kept at a constant temperature for 3 minutes and then cooled at a cooling rate of 20 ° C./min in DSC measurement. A polylactic acid resin composition having a calorific value of 10 J / g or more.
 また、本発明のポリ乳酸樹脂組成物は、(B)1分子に複数の反応基を有する重合体がエポキシ基含有アクリル樹脂系反応性化合物であることが好ましい。 In the polylactic acid resin composition of the present invention, (B) the polymer having a plurality of reactive groups per molecule is preferably an epoxy group-containing acrylic resin-based reactive compound.
 また、本発明のポリ乳酸樹脂組成物は、前記エポキシ基含有アクリル樹脂系反応性化合物の1分子あたりのエポキシ基の数が2~30個であることが好ましい。 The polylactic acid resin composition of the present invention preferably has 2 to 30 epoxy groups per molecule of the epoxy group-containing acrylic resin reactive compound.
 また、本発明のポリ乳酸樹脂組成物は、ステレオコンプレックス形成率(Sc)が、下記式(1)を満たすことが好ましい。 The polylactic acid resin composition of the present invention preferably has a stereocomplex formation rate (Sc) satisfying the following formula (1).
 Sc=ΔHh/(ΔHl+ΔHh)×100≧80   (1)
 ここで、
 ΔHh:ポリ乳酸樹脂組成物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
 ΔHl:ポリ乳酸樹脂組成物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
 また、本発明のポリ乳酸樹脂組成物は、ポリ乳酸樹脂組成物の230℃、21.2N荷重条件における10分後のメルトフローレート(MFR10)と20分後のメルトフローレート(MFR20)の比(MFR10/MFR20)が0.5以上2以下であることが好ましい。
Sc = ΔHh / (ΔHl + ΔHh) × 100 ≧ 80 (1)
here,
ΔHh: Amount of heat (J / g) based on the stereocomplex crystal when the polylactic acid resin composition is heated at a rate of temperature increase of 20 ° C./min in the DSC measurement.
ΔHl: Calorie (J / g) based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of polylactic acid resin composition
Further, the polylactic acid resin composition of the present invention is a ratio of the melt flow rate after 10 minutes (MFR10) to the melt flow rate after 20 minutes (MFR20) at 230 ° C. and 21.2 N load conditions of the polylactic acid resin composition. It is preferable that (MFR10 / MFR20) is 0.5 or more and 2 or less.
 また、本発明のポリ乳酸樹脂組成物は、DSC測定において、ポリ乳酸樹脂組成物を250℃まで昇温して3分間恒温状態にした後、冷却速度20℃/分で降温した際のポリ乳酸樹脂組成物の降温結晶化温度が130℃以上であることが好ましい。 Further, the polylactic acid resin composition of the present invention is a polylactic acid obtained when the polylactic acid resin composition is heated to 250 ° C. and kept at a constant temperature for 3 minutes in DSC measurement, and then cooled at a cooling rate of 20 ° C./min. It is preferable that the temperature-falling crystallization temperature of a resin composition is 130 degreeC or more.
 また、本発明のポリ乳酸樹脂組成物は、前記(A)ポリ乳酸ブロック共重合体が、ポリ-L-乳酸またはポリ-D-乳酸を下記組合せ1および/または下記組合せ2の条件で混合し、重量平均分子量90,000以上、かつステレオコンプレックス形成率(Sc)が下記式(2)を満たす混合物を得た後、該混合物の融点より低い温度で固相重合することにより得られるものであることが好ましい。
(組合せ1)ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万である
(組合せ2)ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満である
 Sc=ΔHh/(ΔHl+ΔHh)×100>60   (2)
 ここで、
 ΔHh:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
 ΔHl:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
 また、本発明のポリ乳酸樹脂組成物は、前記(A)ポリ乳酸ブロック共重合体が、ポリ-L-乳酸またはポリ-D-乳酸を下記組合せ3および/または下記組合せ4の条件で混合し、重量平均分子量90,000以上、かつステレオコンプレックス形成率(Sc)が下記式(2)を満たす混合物を得た後、該混合物の融点より低い温度で固相重合することにより得られるものであることが好ましい。
(組合せ3)ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が12万~30万であり、もう一方の重量平均分子量が3万~10万である
(組合せ4)ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満である。
In the polylactic acid resin composition of the present invention, the (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following combination 1 and / or the following combination 2. In addition, a mixture satisfying the following formula (2) having a weight average molecular weight of 90,000 or more and a stereocomplex formation rate (Sc) is obtained, and then obtained by solid phase polymerization at a temperature lower than the melting point of the mixture. It is preferable.
(Combination 1) The weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 to 300,000, and the other weight average molecular weight is 10,000 to 100,000 (Combination 2). The ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30 Sc = ΔHh / (ΔHl + ΔHh) × 100> 60 (2)
here,
ΔHh: calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
ΔHl: Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
In the polylactic acid resin composition of the present invention, the (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following combination 3 and / or the following combination 4. In addition, a mixture satisfying the following formula (2) having a weight average molecular weight of 90,000 or more and a stereocomplex formation rate (Sc) is obtained, and then obtained by solid phase polymerization at a temperature lower than the melting point of the mixture. It is preferable.
(Combination 3) The weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 120,000 to 300,000, and the other weight average molecular weight is 30,000 to 100,000 (Combination 4) The ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30.
 Sc=ΔHh/(ΔHl+ΔHh)×100>60   (2)
 ここで、
 ΔHh:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
 ΔHl:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
 また、本発明のポリ乳酸樹脂組成物は、上記の発明において、前記ポリ乳酸樹脂組成物の重量平均分子量が100,000~500,000であることが好ましい。
Sc = ΔHh / (ΔHl + ΔHh) × 100> 60 (2)
here,
ΔHh: calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
ΔHl: Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
In the polylactic acid resin composition of the present invention, in the above invention, the polylactic acid resin composition preferably has a weight average molecular weight of 100,000 to 500,000.
 また、本発明のポリ乳酸樹脂組成物は、上記発明において、ポリ乳酸樹脂組成物に対してさらに、(b)ポリ-L-乳酸および/または(c)ポリ-D-乳酸を含むことが好ましい。 In the above invention, the polylactic acid resin composition of the present invention preferably further comprises (b) poly-L-lactic acid and / or (c) poly-D-lactic acid, relative to the polylactic acid resin composition. .
 また、上記課題を解決するため、本発明の成形体は、次の構成を有する。すなわち、
上記ポリ乳酸樹脂組成物からなる成形体、である。
Moreover, in order to solve the said subject, the molded object of this invention has the following structure. That is,
It is the molded object which consists of the said polylactic acid resin composition.
 また、本発明の成形体は、前記成形体の相対結晶化度が90%以上であり、かつ厚さ1mmの成形体のヘイズ値が10%以下であることが好ましい。 Further, in the molded article of the present invention, the relative crystallinity of the molded article is preferably 90% or more, and the haze value of the molded article having a thickness of 1 mm is preferably 10% or less.
 相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100   (3)
 ここで、
 ΔHm:成形体の結晶融解エンタルピー(J/g)
 ΔHc:成形体の昇温時結晶化エンタルピー(J/g)
 また、上記課題を解決するため、本発明のポリ乳酸樹脂組成物の製造方法は、次の(I)~(III)のいずれかの構成を有する。すなわち、
(I)ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合し、該混合物の融点より低い温度で固相重合をした後、
前記(B)1分子に複数の反応基を有する重合体を配合するポリ乳酸樹脂組成物の製造方法、
または、
(II)ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合した後、
前記(B)1分子に複数の反応基を有する重合体を配合し、
該混合物の融点より低い温度で固相重合するポリ乳酸樹脂組成物の製造方法、
または、
(III)ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸ならびに前記(B)1分子に複数の反応基を有する重合体とを混合し、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸ならびに前記(B)1分子に複数の反応基を有する重合体を混合し、
該混合物の融点より低い温度で固相重合するポリ乳酸樹脂組成物の製造方法、である。
Relative crystallinity = [(ΔHm−ΔHc) / ΔHm] × 100 (3)
here,
ΔHm: Crystal melting enthalpy of compact (J / g)
ΔHc: Crystallization enthalpy at elevated temperature of the compact (J / g)
In order to solve the above problems, the method for producing a polylactic acid resin composition of the present invention has any one of the following configurations (I) to (III). That is,
(I) Poly-L-lactic acid in which the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 to 300,000 and the other weight average molecular weight is 10,000 to 100,000 And poly-D-lactic acid, or poly-L-lactic acid and poly-D-lactic acid in which the ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30 And after solid phase polymerization at a temperature lower than the melting point of the mixture,
(B) A method for producing a polylactic acid resin composition comprising blending a polymer having a plurality of reactive groups in one molecule,
Or
(II) Poly-L-lactic acid in which the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 to 300,000 and the other weight average molecular weight is 10,000 to 100,000 And poly-D-lactic acid, or poly-L-lactic acid and poly-D-lactic acid in which the ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30 After
(B) blending a polymer having a plurality of reactive groups in one molecule,
A method for producing a polylactic acid resin composition, which is solid-phase polymerized at a temperature lower than the melting point of the mixture;
Or
(III) Poly-L-lactic acid in which one of poly-L-lactic acid and poly-D-lactic acid has a weight average molecular weight of 60,000 to 300,000 and the other has a weight average molecular weight of 10,000 to 100,000 And poly-D-lactic acid and (B) a polymer having a plurality of reactive groups in one molecule, or the ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid A poly-L-lactic acid and a poly-D-lactic acid having a molecular weight of 2 or more and less than 30, and (B) a polymer having a plurality of reactive groups in one molecule,
A method for producing a polylactic acid resin composition, which undergoes solid phase polymerization at a temperature lower than the melting point of the mixture.
 本発明によれば、機械物性、耐久性、加熱時滞留安定性が向上し、さらには耐熱性、結晶化特性にも優れたポリ乳酸樹脂組成物を提供することができる。このポリ乳酸樹脂はポリ乳酸ブロック共重合体を構成成分としているため、ポリ乳酸樹脂組成物の成形加工性、加熱時滞留安定性が向上するだけでなく、結晶化特性が優れることを特徴とする。 According to the present invention, it is possible to provide a polylactic acid resin composition having improved mechanical properties, durability, and stability during heating, and also excellent heat resistance and crystallization characteristics. Since this polylactic acid resin contains a polylactic acid block copolymer as a constituent component, not only the molding processability of the polylactic acid resin composition and the retention stability during heating are improved, but also the crystallization characteristics are excellent. .
 以下、本発明を実施するための形態を詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。 Hereinafter, embodiments for carrying out the present invention will be described in detail. In addition, this invention is not limited by the following embodiment.
 以下、本発明について詳細に説明する。
<ポリ乳酸ブロック共重合体>
 本発明において、L-乳酸を主成分とするポリ-L-乳酸セグメントとD-乳酸を主成分とするポリ-D-乳酸セグメントから構成されるポリ乳酸ブロック共重合体とは、L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントが共有結合したポリ乳酸ブロック共重合体である。
Hereinafter, the present invention will be described in detail.
<Polylactic acid block copolymer>
In the present invention, a polylactic acid block copolymer composed of a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component is an L-lactic acid unit. And a polylactic acid block copolymer in which a segment comprising D-lactic acid units is covalently bonded.
 ここで、L-乳酸単位からなるセグメントとは、L-乳酸を主成分とする重合体であり、L-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。 Here, the segment composed of L-lactic acid units is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units. The content is more preferably 80 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
 また、D-乳酸単位からなるセグメントとは、D-乳酸を主成分とする重合体であり、D-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることがより好ましく、90mol%以上含有していることがさらに好ましく、95mol%以上含有していることが特に好ましく、98mol%以上含有していることが最も好ましい。 The segment composed of D-lactic acid units is a polymer containing D-lactic acid as a main component, and means a polymer containing 70 mol% or more of D-lactic acid units. The content is more preferably 80 mol% or more, further preferably 90 mol% or more, particularly preferably 95 mol% or more, and most preferably 98 mol% or more.
 本発明において、L-乳酸またはD-乳酸単位からなるセグメントは、得られるポリ乳酸ブロック共重合体およびポリ乳酸ブロック共重合体を含むポリ乳酸樹脂組成物の性能を損なわない範囲で、他の成分単位を含んでいてもよい。L-乳酸またはD-乳酸単位以外の他の成分単位としては、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられ、具体的には、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムスルホイソフタル酸などの多価カルボン酸類またはそれらの誘導体、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ネオペンチルグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、トリメチロールプロパンまたはペンタエリスリトールにエチレンオキシドまたはプロピレンオキシドを付加した多価アルコール、ビスフェノールにエチレンオキシドを付加反応させた芳香族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコールなどの多価アルコール類またはそれらの誘導体、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などのヒドロキシカルボン酸類、およびグリコリド、ε-カプロラクトングリコリド、ε-カプロラクトン、β-プロピオラクトン、δ-ブチロラクトン、β-またはγ-ブチロラクトン、ピバロラクトン、δ-バレロラクトンなどのラクトン類などが挙げられる。 In the present invention, the segment composed of L-lactic acid or D-lactic acid unit contains other components as long as the performance of the polylactic acid block copolymer and the polylactic acid resin composition containing the polylactic acid block copolymer is not impaired. Units may be included. Examples of component units other than L-lactic acid or D-lactic acid units include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones. Specific examples include succinic acid, adipic acid, sebacic acid, Polycarboxylic acids such as fumaric acid, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 5-tetrabutylphosphonium sulfoisophthalic acid or their derivatives, ethylene glycol, propylene glycol, butane Ethylene oxide or propylene oxide was added to diol, pentanediol, hexanediol, octanediol, neopentyl glycol, glycerin, trimethylolpropane, pentaerythritol, trimethylolpropane or pentaerythritol Polyhydric alcohols, aromatic polyhydric alcohols obtained by addition reaction of ethylene oxide with bisphenol, polyhydric alcohols such as diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol or their derivatives, glycolic acid, 3-hydroxybutyric acid, 4-hydroxy Hydroxycarboxylic acids such as butyric acid, 4-hydroxyvaleric acid, 6-hydroxycaproic acid, and glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, and lactones such as δ-valerolactone.
 本発明においてポリ乳酸ブロック共重合体は、ステレオコンプレックス形成によりステレオコンプレックス結晶に基づく融点を190~230℃の範囲で有するため、ポリ乳酸ホモポリマーに比較して耐熱性に優れる。ステレオコンプレックス結晶由来の融点の好ましい範囲は200℃~230℃であり、205℃~230℃の温度範囲がさらに好ましく、210℃~230℃の温度範囲が特に好ましい。また、150℃~185℃の範囲でポリ-L-乳酸単独結晶および/またはポリ-D-乳酸単独結晶に基づく小さな融解ピークを有する場合もある。 In the present invention, the polylactic acid block copolymer has a melting point based on a stereocomplex crystal in the range of 190 to 230 ° C. due to the formation of a stereocomplex, and therefore has excellent heat resistance as compared with a polylactic acid homopolymer. A preferable range of the melting point derived from the stereocomplex crystal is 200 ° C. to 230 ° C., a temperature range of 205 ° C. to 230 ° C. is more preferable, and a temperature range of 210 ° C. to 230 ° C. is particularly preferable. Further, it may have a small melting peak based on a poly-L-lactic acid single crystal and / or a poly-D-lactic acid single crystal in the range of 150 ° C. to 185 ° C.
 また、本発明で得られるポリ乳酸ブロック共重合体は、耐熱性の観点からステレオコンプレックス形成率(Sc)が80~100%の範囲であることが好ましい。さらに好ましくは85~100%の範囲であり、90~100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(4)で算出することができる。 The polylactic acid block copolymer obtained in the present invention preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%. Here, the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in polylactic acid. Specifically, the crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when the temperature is increased from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min with a differential scanning calorimeter (DSC). It is possible to calculate by the following formula (4), where ΔH1 is the amount of heat based on and ΔHh is the amount of heat based on crystal melting of the stereocomplex crystal.
 Sc=ΔHh/(ΔHl+ΔHh)×100   (4)
 また、本発明において、ポリ乳酸ブロック共重合体はさらに下記式(5)を満たすことが好ましい。
Sc = ΔHh / (ΔHl + ΔHh) × 100 (4)
In the present invention, the polylactic acid block copolymer preferably further satisfies the following formula (5).
 1<(Tm-Tms)/(Tme-Tm)<1.8   (5)
 ここで、Tmとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融点、Tmsとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融解開始温度、Tmeとは、ポリ乳酸ブロック共重合体を示差走査熱量計(DSC)により昇温速度40℃/minで30℃から250℃まで昇温した際の融解終了温度を示す。好ましい範囲は1<(Tm-Tms)/(Tme-Tm)<1.6であり、1<(Tm-Tms)/(Tme-Tm)<1.4の範囲がさらに好ましい。
1 <(Tm−Tms) / (Tme−Tm) <1.8 (5)
Here, Tm is a melting point when a polylactic acid block copolymer is heated from 30 ° C. to 250 ° C. at a temperature rising rate of 40 ° C./min by a differential scanning calorimeter (DSC), and Tms is a polylactic acid block The melting start temperature when the copolymer is heated from 30 ° C. to 250 ° C. at a rate of temperature increase of 40 ° C./min by a differential scanning calorimeter (DSC), Tme is the differential scanning calorimeter of the polylactic acid block copolymer (DSC) shows the melting end temperature when the temperature is raised from 30 ° C. to 250 ° C. at a temperature raising rate of 40 ° C./min. A preferable range is 1 <(Tm−Tms) / (Tme−Tm) <1.6, and a range of 1 <(Tm−Tms) / (Tme−Tm) <1.4 is more preferable.
 本発明において、ポリ乳酸ブロック共重合体は成形性および耐熱性に優れるという点で、降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成形体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。 In the present invention, the polylactic acid block copolymer preferably has a temperature-falling crystallization temperature (Tc) of 130 ° C. or higher in terms of excellent moldability and heat resistance. Here, the temperature drop crystallization temperature (Tc) of the compact is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min by a differential scanning calorimeter (DSC). Is a crystallization temperature derived from polylactic acid crystals measured when the temperature is lowered at a cooling rate of 20 ° C./min. The crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
 本発明のポリ乳酸ブロック共重合体の重量平均分子量は、特に限定されるものではないが、10万以上30万未満であることが、機械物性の点で好ましい。より好ましくは12万以上28万未満であり、さらに好ましくは13万以上27万未満であり、14万以上26万未満であることが成形性および機械物性の点で特に好ましい。 The weight average molecular weight of the polylactic acid block copolymer of the present invention is not particularly limited, but is preferably 100,000 or more and less than 300,000 from the viewpoint of mechanical properties. More preferably, it is 120,000 or more and less than 280,000, more preferably 130,000 or more and less than 270,000, particularly preferably 140,000 or more and less than 260,000 from the viewpoint of moldability and mechanical properties.
 また、ポリ乳酸ブロック共重合体の分散度は、1.5~3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8~2.7であることがさらに好ましく、2.0~2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。 The dispersion degree of the polylactic acid block copolymer is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties. The range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable in terms of moldability and mechanical properties. The weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
 本発明において、ポリ乳酸ブロック共重合体の平均連鎖長は20以上が好ましい。さらに好ましくは25以上であり、30以上であることが成形体の機械物性の点で特に好ましい。なお、ポリ乳酸ブロック共重合体の平均連鎖長は13C-NMR測定により、カルボニル炭素に帰属する炭素のピークのうち、170.1~170.3ppm付近に存在するピークの積分値を(a)、169.8~170.0ppm付近に存在するピークの積分値を(b)としたとき、下記式(6)で算出することができる。 In the present invention, the average chain length of the polylactic acid block copolymer is preferably 20 or more. More preferably, it is 25 or more, and 30 or more is particularly preferable from the viewpoint of mechanical properties of the molded article. The average chain length of the polylactic acid block copolymer was determined by 13 C-NMR measurement, and the integrated value of the peak existing in the vicinity of 170.1 to 170.3 ppm of the carbon peak attributed to carbonyl carbon is (a). , 169.8 to 170.0 ppm, where (b) is the integrated value of the peak, it can be calculated by the following equation (6).
 平均連鎖長=(a)/(b)   (6)
 本発明においては、ポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数が3以上であることが、高融点のポリ乳酸ステレオコンプレックスを形成しやすいポリ乳酸ブロック共重合体が得られる点で好ましい。さらに好ましくは5以上であり、7以上であることが特に好ましい。
Average chain length = (a) / (b) (6)
In the present invention, the total number of segments consisting of L-lactic acid units and segments consisting of D-lactic acid units contained in one molecule of the polylactic acid block copolymer is 3 or more. It is preferable in that a polylactic acid block copolymer that easily forms can be obtained. More preferably, it is 5 or more, and it is especially preferable that it is 7 or more.
 本発明において、L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントのそれぞれの合計の重量比は、90:10~10:90であることが好ましい。さらに好ましくは80:20~20:80であり、特に好ましくは75:25~60:40あるいは40:60~25:75である。L-乳酸単位からなるセグメントとD-乳酸単位からなるセグメントのそれぞれの合計の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、ポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。
<ポリ乳酸ブロック共重合体の調製法>
 ポリ乳酸ブロック共重合体の調製法については、特に限定されるものではなく、一般のポリ乳酸調製法を利用することができる。具体的には、原料の乳酸から生成した環状2量体のL-ラクチドまたはD-ラクチドのいずれか一方を触媒存在下で開環重合を行い、さらに該ポリ乳酸の光学異性体であるラクチドを添加して開環重合することでポリ乳酸ブロック共重合体を得るラクチド法(ポリ乳酸ブロック共重合体の調製法1)、当該原料を直接重合またはラクチドを経由した開環重合によりポリ-L-乳酸とポリ-D-乳酸とをそれぞれ重合し、次いで、得られたポリ-L-乳酸およびポリ-D-乳酸を混合後、固相重合によりポリ乳酸ブロック共重合体を得る方法(ポリ乳酸ブロック共重合体の調製法2)、ポリ-L-乳酸とポリ-D-乳酸とを、融点の高い方の成分の融解終了温度以上で長時間溶融混練を行うことで、L-乳酸単位のセグメントとD-乳酸単位のセグメントとをエステル交換反応させたポリ乳酸ブロック共重合体を得る方法(ポリ乳酸ブロック共重合体の調製法3)、多官能性化合物をポリ-L-乳酸およびポリ-D-乳酸に混合して反応することで、ポリ-L-乳酸とポリ-D-乳酸とを多官能性化合物で共有結合させポリ乳酸ブロック共重合体を得る方法(ポリ乳酸ブロック共重合体の調製法4)などがある。調製法についてはいずれの方法を利用してもよいが、ポリ-L-乳酸およびポリ-D-乳酸を混合後、固相重合する方法が、ポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数が3以上となり、結果的に耐熱性、結晶性および機械物性を兼ね備えたポリ乳酸ブロック共重合体を得られるという点において好ましい。
In the present invention, the total weight ratio of the segment composed of L-lactic acid units and the segment composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 60:40 or 40:60 to 25:75. When the total weight ratio of the segment consisting of L-lactic acid units and the segment consisting of D-lactic acid units is within the above preferred range, a polylactic acid stereocomplex can be easily formed. As a result, the melting point of the polylactic acid block copolymer The rise of is sufficiently large.
<Preparation method of polylactic acid block copolymer>
The method for preparing the polylactic acid block copolymer is not particularly limited, and a general method for preparing polylactic acid can be used. Specifically, ring-opening polymerization is performed in the presence of a catalyst on either a cyclic dimer L-lactide or D-lactide produced from lactic acid as a raw material, and lactide which is an optical isomer of the polylactic acid is further obtained. A lactide method in which a polylactic acid block copolymer is obtained by addition and ring-opening polymerization (preparation method 1 of a polylactic acid block copolymer), and the raw material is polymerized directly or by ring-opening polymerization via lactide. A method of polymerizing lactic acid and poly-D-lactic acid, and then mixing the obtained poly-L-lactic acid and poly-D-lactic acid and then obtaining a polylactic acid block copolymer by solid phase polymerization (polylactic acid block) Copolymer preparation method 2) The segment of the L-lactic acid unit is obtained by subjecting poly-L-lactic acid and poly-D-lactic acid to melt-kneading for a long time at a temperature higher than the melting end temperature of the component having the higher melting point. And D-lactic acid unit A method of obtaining a polylactic acid block copolymer obtained by transesterification with a polymentine (preparation method 3 of a polylactic acid block copolymer), and mixing a polyfunctional compound with poly-L-lactic acid and poly-D-lactic acid. There is a method in which poly-L-lactic acid and poly-D-lactic acid are covalently bonded with a polyfunctional compound to obtain a polylactic acid block copolymer by the reaction (preparation method 4 of polylactic acid block copolymer). . Any method may be used as a preparation method, but a method of solid-phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid is included in one molecule of polylactic acid block copolymer. -The total number of segments consisting of lactic acid units and segments consisting of D-lactic acid units is 3 or more, which is preferable in that a polylactic acid block copolymer having heat resistance, crystallinity and mechanical properties can be obtained.
 ここで、ポリ-L-乳酸とは、L-乳酸を主成分とする重合体であり、L-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることが好ましく、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。 Here, poly-L-lactic acid is a polymer containing L-lactic acid as a main component, and means a polymer containing 70 mol% or more of L-lactic acid units. It is preferable to contain 80 mol% or more, more preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
 また、ポリ-D-乳酸とは、D-乳酸を主成分とする重合体であり、D-乳酸単位を70mol%以上含有している重合体をいう。80mol%以上含有していることが好ましく、90mol%以上含有していることがより好ましく、95mol%以上含有していることがさらに好ましく、98mol%以上含有していることが特に好ましい。 Poly-D-lactic acid is a polymer containing D-lactic acid as a main component, and means a polymer containing 70 mol% or more of D-lactic acid units. It is preferable to contain 80 mol% or more, more preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
 次に、各種ポリ乳酸ブロック共重合体の調製法について詳細に説明する。 Next, a method for preparing various polylactic acid block copolymers will be described in detail.
 開環重合にてポリ乳酸ブロック共重合体を得る方法(調製法1)としては、例えば、L-ラクチドまたはD-ラクチドのいずれか一方を触媒存在下で開環重合を行い、次いで他方の光学異性体であるラクチドを添加して開環重合を行うことでポリ乳酸ブロック共重合体を得る方法を挙げることができる。 As a method for preparing a polylactic acid block copolymer by ring-opening polymerization (Preparation Method 1), for example, either L-lactide or D-lactide is subjected to ring-opening polymerization in the presence of a catalyst, and then the other optical An example is a method of obtaining a polylactic acid block copolymer by carrying out ring-opening polymerization by adding lactide which is an isomer.
 開環重合で得られるポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントの重量平均分子量とD-乳酸単位からなるセグメントの重量平均分子量の比は、耐熱性および成形体の透明性の観点から、2以上30未満であることが好ましい。さらに好ましくは3以上20未満であり、5以上15未満であることが特に好ましい。ここで、L-乳酸単位からなるセグメントの重量平均分子量とD-乳酸単位からなるセグメント重量平均分子量との比は、ポリ乳酸ブロック共重合体を重合する際に用いるL-ラクチドとD-ラクチドとの重量比で制御することができる。 The ratio of the weight average molecular weight of the segment consisting of L-lactic acid units and the weight average molecular weight of the segment consisting of D-lactic acid units contained in one molecule of the polylactic acid block copolymer obtained by ring-opening polymerization is as follows. From the viewpoint of transparency, it is preferably 2 or more and less than 30. More preferably, it is 3 or more and less than 20, and particularly preferably 5 or more and less than 15. Here, the ratio of the weight average molecular weight of the segment consisting of L-lactic acid units to the weight average molecular weight of the segments consisting of D-lactic acid units is such that L-lactide and D-lactide used for polymerizing the polylactic acid block copolymer The weight ratio can be controlled.
 開環重合で得られるポリ乳酸ブロック共重合体一分子あたりに含まれるL-乳酸単位からなるセグメントおよびD-乳酸単位からなるセグメントの合計数は3以上であることが、耐熱性および結晶性が向上する点で好ましい。さらに好ましくは5以上であり、7以上であることが特に好ましい。また、1セグメントあたりの重量平均分子量は2,000~50,000であることが好ましい。さらに好ましくは4,000~45,000であり、5,000~40,000であることが特に好ましい。 The total number of segments composed of L-lactic acid units and segments composed of D-lactic acid units contained in one molecule of the polylactic acid block copolymer obtained by ring-opening polymerization is 3 or more, and the heat resistance and crystallinity are It is preferable in terms of improvement. More preferably, it is 5 or more, and it is especially preferable that it is 7 or more. The weight average molecular weight per segment is preferably 2,000 to 50,000. More preferably, it is 4,000 to 45,000, and particularly preferably 5,000 to 40,000.
 開環重合法で用いるL-ラクチドおよびD-ラクチドの光学純度は90%ee以上であることがポリ乳酸ブロック共重合体の結晶性および融点を向上できる点で好ましい。さらに好ましくは95%ee以上であり、98%ee以上であることが特に好ましい。 The optical purity of L-lactide and D-lactide used in the ring-opening polymerization method is preferably 90% ee or more from the viewpoint of improving the crystallinity and melting point of the polylactic acid block copolymer. More preferably, it is 95% ee or more, and it is especially preferable that it is 98% ee or more.
 開環重合法でポリ乳酸ブロック共重合体を得る場合、高分子量体を得るという観点から反応系内の水分量はL-ラクチドおよびD-ラクチドの合計量に対して4mol%以下であることが好ましい。さらに好ましくは2mol%以下であり、0.5mol%以下が特に好ましい。なお、水分量とはカールフィッシャー法を用いて電量滴定法により測定した値である。 When obtaining a polylactic acid block copolymer by the ring-opening polymerization method, the water content in the reaction system is 4 mol% or less with respect to the total amount of L-lactide and D-lactide from the viewpoint of obtaining a high molecular weight product. preferable. More preferably, it is 2 mol% or less, and 0.5 mol% or less is particularly preferable. The water content is a value measured by a coulometric titration method using the Karl Fischer method.
 開環重合法によりポリ乳酸ブロック共重合体を調製する際の重合触媒としては、金属触媒と酸触媒が挙げられる。金属触媒としては錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物などの金属触媒が挙げられる。化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、錫粉末、塩化錫(II)、塩化錫(IV)、臭化錫(II)、臭化錫(IV)、エトキシ錫(II)、t-ブトキシ錫(IV)、イソプロポキシ錫(IV)、酢酸錫(II)、酢酸錫(IV)、オクチル酸錫(II)、ラウリン酸錫(II)、ミリスチン酸錫(II)、パルミチン酸錫(II)、ステアリン酸錫(II)、オレイン酸錫(II)、リノール酸錫(II)、アセチルアセトン錫(II)、シュウ酸錫(II)、乳酸錫(II)、酒石酸錫(II)、ピロリン酸錫(II)、p-フェノールスルホン酸錫(II)、ビス(メタンスルホン酸)錫(II)、硫酸錫(II)、酸化錫(II)、酸化錫(IV)、硫化錫(II)、硫化錫(IV)、酸化ジメチル錫(IV)、酸化メチルフェニル錫(IV)、酸化ジブチル錫(IV)、酸化ジオクチル錫(IV)、酸化ジフェニル錫(IV)、酸化トリブチル錫、水酸化トリエチル錫(IV)、水酸化トリフェニル錫(IV)、水素化トリブチル錫、モノブチル錫(IV)オキシド、テトラメチル錫(IV)、テトラエチル錫(IV)、テトラブチル錫(IV)、ジブチルジフェニル錫(IV)、テトラフェニル錫(IV)、酢酸トリブチル錫(IV)、酢酸トリイソブチル錫(IV)、酢酸トリフェニル錫(IV)、二酢酸ジブチル錫、ジオクタン酸ジブチル錫、ジラウリン酸ジブチル錫(IV)、マレイン酸ジブチル錫(IV)、ジブチル錫ビス(アセチルアセトナート)、塩化トリブチル錫(IV)、二塩化ジブチル錫、三塩化モノブチル錫、二塩化ジオクチル錫、塩化トリフェニル錫(IV)、硫化トリブチル錫、硫酸トリブチル錫、メタンスルホン酸錫(II)、エタンスルホン酸錫(II)、トリフルオロメタンスルホン酸錫(II)、ヘキサクロロ錫(IV)酸アンモニウム、ジブチル錫スルフィド、ジフェニル錫スルフィドおよび硫酸トリエチル錫、フタロシアニン錫(II)等の錫化合物が挙げられる。また、チタニウムメトキシド、チタニウムプロポキシド、チタニウムイソプロポキシド、チタニウムブトキシド、チタニウムイソブトキシド、チタニウムシクロヘキシド、チタニウムフェノキシド、塩化チタン、二酢酸チタン、三酢酸チタン、四酢酸チタン、酸化チタン(IV)等のチタン化合物、ジイソプロポキシ鉛(II)、一塩化鉛、酢酸鉛、オクチル酸鉛(II)、イソオクタン酸鉛(II)、イソノナン酸鉛(II)、ラウリン酸鉛(II)、オレイン酸鉛(II)、リノール酸鉛(II)、ナフテン酸鉛、ネオデカン酸鉛(II)、酸化鉛、硫酸鉛(II)等の鉛化合物、亜鉛粉末、メチルプロポキシ亜鉛、塩化亜鉛、酢酸亜鉛、オクチル酸亜鉛(II)、ナフテン酸亜鉛、炭酸亜鉛、酸化亜鉛、硫酸亜鉛等の亜鉛化合物、塩化コバルト、酢酸コバルト、オクチル酸コバルト(II)、イソオクタン酸コバルト(II)、イソノナン酸コバルト(II)、ラウリン酸コバルト(II)、オレイン酸コバルト(II)、リノール酸コバルト(II)、ナフテン酸コバルト、ネオデカン酸コバルト(II)、炭酸第一コバルト、硫酸第一コバルト、酸化コバルト(II)等のコバルト化合物、塩化鉄(II)、酢酸鉄(II)、オクチル酸鉄(II)、ナフテン酸鉄、炭酸鉄(II)、硫酸鉄(II)、酸化鉄(II)等の鉄化合物、プロポキシリチウム、塩化リチウム、酢酸リチウム、オクチル酸リチウム、ナフテン酸リチウム、炭酸リチウム、硫酸ジリチウム、酸化リチウム等のリチウム化合物、トリイソプロポキシユウロピウム(III)、トリイソプロポキシネオジム(III)、トリイソプロポキシランタン、トリイソプロポキシサマリウム(III)、トリイソプロポキシイットリウム、イソプロポキシイットリウム、塩化ジスプロシウム、塩化ユウロピウム、塩化ランタン、塩化ネオジム、塩化サマリウム、塩化イットリウム、三酢酸ジスプロシウム(III)、三酢酸ユウロピウム(III)、酢酸ランタン、三酢酸ネオジム、酢酸サマリウム、三酢酸イットリウム、炭酸ジスプロシウム(III)、炭酸ジスプロシウム(IV)、炭酸ユウロピウム(II)、炭酸ランタン、炭酸ネオジム、炭酸サマリウム(II)、炭酸サマリウム(III)、炭酸イットリウム、硫酸ジスプロシウム、硫酸ユウロピウム(II)、硫酸ランタン、硫酸ネオジム、硫酸サマリウム、硫酸イットリウム、二酸化ユウロピウム、酸化ランタン、酸化ネオジム、酸化サマリウム(III)、酸化イットリウム等の希土類化合物が挙げられる。その他にも、カリウムイソプロポキシド、塩化カリウム、酢酸カリウム、オクチル酸カリウム、ナフテン酸カリウム、炭酸t-ブチルカリウム、硫酸カリウム、酸化カリウム等のカリウム化合物、銅(II)ジイソプロポキシド、塩化銅(II)、酢酸銅(II)、オクチル酸銅、ナフテン酸銅、硫酸銅(II)、炭酸二銅等の銅化合物、塩化ニッケル、酢酸ニッケル、オクチル酸ニッケル、炭酸ニッケル、硫酸ニッケル(II)、酸化ニッケル等のニッケル化合物、テトライソプロポキシジルコニウム(IV)、三塩化ジルコニウム、酢酸ジルコニウム、オクチル酸ジルコニウム、ナフテン酸ジルコニウム、炭酸ジルコニウム(II)、炭酸ジルコニウム(IV)、硫酸ジルコニウム、酸化ジルコニウム(II)等のジルコニウム化合物、トリイソプロポキシアンチモン、フッ化アンチモン(III)、フッ化アンチモン(V)、酢酸アンチモン、酸化アンチモン(III)等のアンチモン化合物、マグネシウム、マグネシウムジイソプロポキシド、塩化マグネシウム、酢酸マグネシウム、乳酸マグネシウム、炭酸マグネシウム、硫酸マグネシウム、酸化マグネシウム等のマグネシウム化合物、ジイソプロポキシカルシウム、塩化カルシウム、酢酸カルシウム、オクチル酸カルシウム、ナフテン酸カルシウム、乳酸カルシウム、硫酸カルシウム等のカルシウム化合物、アルミニウム、アルミニウムイソプロポキシド、塩化アルミニウム、酢酸アルミニウム、オクチル酸アルミニウム、硫酸アルミニウム、酸化アルミニウム等のアルミニウム化合物、ゲルマニウム、テトライソプロポキシゲルマン、酸化ゲルマニウム(IV)等のゲルマニウム化合物、トリイソプロポキシマンガン(III)、三塩化マンガン、酢酸マンガン、オクチル酸マンガン(II)、ナフテン酸マンガン(II)、硫酸第一マンガン等のマンガン化合物、塩化ビスマス(III)、ビスマス粉末、酸化ビスマス(III)、酢酸ビスマス、オクチル酸ビスマス、ネオデカン酸ビスマス等のビスマス化合物なども挙げることができる。また、錫酸ナトリウム、錫酸マグネシウム、錫酸カリウム、錫酸カルシウム、錫酸マンガン、錫酸ビスマス、錫酸バリウム、錫酸ストロンチウム、チタン酸ナトリウム、チタン酸マグネシウム、チタン酸アルミニウム、チタン酸カリウム、チタン酸カルシウム、チタン酸コバルト、チタン酸亜鉛、チタン酸マンガン、チタン酸ジルコニウム、チタン酸ビスマス、チタン酸バリウム、チタン酸ストロンチウムなどの二種以上の金属元素からなる化合物なども好ましい。 Examples of the polymerization catalyst for preparing the polylactic acid block copolymer by the ring-opening polymerization method include a metal catalyst and an acid catalyst. Examples of the metal catalyst include tin catalysts, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds. As the kind of the compound, metal alkoxide, metal halogen compound, organic carboxylate, carbonate, sulfate, oxide and the like are preferable. Specifically, tin powder, tin (II) chloride, tin (IV) chloride, tin (II) bromide, tin (IV) bromide, ethoxy tin (II), t-butoxy tin (IV), isopropoxy Tin (IV), tin (II) acetate, tin (IV) acetate, tin (II) octylate, tin (II) laurate, tin (II) myristate, tin (II) palmitate, tin stearate (II) ), Tin (II) oleate, tin (II) linoleate, tin (II) acetylacetone, tin (II) oxalate, tin (II) lactate, tin (II) tartrate, tin (II) pyrophosphate, p- Phenol sulfonate tin (II), bis (methane sulfonate) tin (II), tin sulfate (II), tin oxide (II), tin oxide (IV), tin sulfide (II), tin sulfide (IV), oxidation Dimethyltin (IV), methylphenyltin (IV) oxide, dibuty oxide Tin (IV), dioctyl tin (IV) oxide, diphenyl tin (IV) oxide, tributyl tin oxide, triethyl tin hydroxide (IV), triphenyl tin hydroxide (IV), tributyl tin hydride, monobutyl tin (IV) Oxide, tetramethyltin (IV), tetraethyltin (IV), tetrabutyltin (IV), dibutyldiphenyltin (IV), tetraphenyltin (IV), tributyltin (IV) acetate, triisobutyltin (IV) acetate, Triphenyltin acetate (IV), dibutyltin diacetate, dibutyltin dioctanoate, dibutyltin (IV) dilaurate, dibutyltin (IV) maleate, dibutyltin bis (acetylacetonate), tributyltin chloride (IV), Dibutyltin dichloride, monobutyltin trichloride, dioctyltin dichloride, triphenyltin (IV) chloride, sulfide Butyltin, tributyltin sulfate, tin (II) methanesulfonate, tin (II) ethanesulfonate, tin (II) trifluoromethanesulfonate, ammonium hexachlorotin (IV), dibutyltin sulfide, diphenyltin sulfide and triethyl sulfate Examples thereof include tin compounds such as tin and phthalocyanine tin (II). Also, titanium methoxide, titanium propoxide, titanium isopropoxide, titanium butoxide, titanium isobutoxide, titanium cyclohexyl, titanium phenoxide, titanium chloride, titanium diacetate, titanium triacetate, titanium tetraacetate, titanium (IV) oxide, etc. Titanium compounds, lead diisopropoxy (II), lead monochloride, lead acetate, lead (II) octylate, lead (II) isooctanoate, lead (II) isononanoate, lead (II) laurate, lead oleate (II), lead compounds such as lead (II) linoleate, lead naphthenate, lead (II) neodecanoate, lead oxide, lead (II) sulfate, zinc powder, methyl propoxy zinc, zinc chloride, zinc acetate, octylic acid Zinc (II), zinc naphthenate, zinc carbonate, zinc oxide, zinc sulfate and other zinc compounds, chloride Baltic, cobalt acetate, cobalt (II) octylate, cobalt (II) isooctanoate, cobalt (II) isononanoate, cobalt (II) laurate, cobalt (II) oleate, cobalt (II) linoleate, cobalt naphthenate , Cobalt compounds such as cobalt (II) neodecanoate, cobaltous carbonate, cobaltous sulfate, cobalt (II) oxide, iron (II) chloride, iron (II) acetate, iron (II) octylate, iron naphthenate Iron compounds such as iron carbonate (II), iron sulfate (II), iron oxide (II), propoxy lithium, lithium chloride, lithium acetate, lithium octylate, lithium naphthenate, lithium carbonate, dilithium sulfate, lithium oxide, etc. Lithium compounds, triisopropoxy europium (III), triisopropoxy neo (III), triisopropoxylantan, triisopropoxy samarium (III), triisopropoxy yttrium, isopropoxy yttrium, dysprosium chloride, europium chloride, lanthanum chloride, neodymium chloride, samarium chloride, yttrium chloride, dysprosium triacetate (III ), Europium triacetate (III), lanthanum acetate, neodymium triacetate, samarium acetate, yttrium triacetate, dysprosium carbonate (III), dysprosium carbonate (IV), europium carbonate (II), lanthanum carbonate, neodymium carbonate, samarium carbonate ( II), samarium carbonate (III), yttrium carbonate, dysprosium sulfate, europium (II) sulfate, lanthanum sulfate, neodymium sulfate, samarium sulfate, yttrium sulfate, yttrium dioxide Examples include rare earth compounds such as europium, lanthanum oxide, neodymium oxide, samarium (III) oxide, and yttrium oxide. In addition, potassium isopropoxide, potassium chloride, potassium acetate, potassium octylate, potassium naphthenate, potassium compounds such as t-butyl potassium carbonate, potassium sulfate, potassium oxide, copper (II) diisopropoxide, copper chloride (II), copper acetate (II), copper octylate, copper naphthenate, copper sulfate (II), copper compounds such as dicopper carbonate, nickel chloride, nickel acetate, nickel octylate, nickel carbonate, nickel sulfate (II) , Nickel compounds such as nickel oxide, tetraisopropoxyzirconium (IV), zirconium trichloride, zirconium acetate, zirconium octylate, zirconium naphthenate, zirconium carbonate (II), zirconium carbonate (IV), zirconium sulfate, zirconium oxide (II Zirconium compounds such as Antimony compounds such as lysopropoxyantimony, antimony fluoride (III), antimony fluoride (V), antimony acetate, antimony (III) oxide, magnesium, magnesium diisopropoxide, magnesium chloride, magnesium acetate, magnesium lactate, carbonic acid Magnesium compounds such as magnesium, magnesium sulfate, magnesium oxide, diisopropoxy calcium, calcium chloride, calcium acetate, calcium octylate, calcium naphthenate, calcium lactate, calcium sulfate, etc., aluminum, aluminum isopropoxide, aluminum chloride , Aluminum acetate, aluminum octylate, aluminum sulfate, aluminum oxide and other aluminum compounds, germanium, tetraisopropyl Germanium compounds such as xygermane, germanium oxide (IV), triisopropoxy manganese (III), manganese trichloride, manganese acetate, manganese octylate (II), manganese naphthenate (II), manganese compounds such as manganese sulfate, Examples thereof include bismuth chloride (III), bismuth powder, bismuth oxide (III), bismuth acetate, bismuth octylate, bismuth neodecanoate, and the like. Also, sodium stannate, magnesium stannate, potassium stannate, calcium stannate, manganese stannate, bismuth stannate, barium stannate, strontium stannate, sodium titanate, magnesium titanate, aluminum titanate, potassium titanate, Also preferred are compounds composed of two or more metal elements such as calcium titanate, cobalt titanate, zinc titanate, manganese titanate, zirconium titanate, bismuth titanate, barium titanate, strontium titanate.
 また、酸触媒としては、プロトン供与体のブレンステッド酸でもよく、電子対受容体であるルイス酸でもよく、有機酸および無機酸のいずれでもよい。具体的には、ギ酸、酢酸、プロピオン酸、ヘプタン酸、オクタン酸、オクチル酸、ノナン酸、イソノナン酸、トリフルオロ酢酸およびトリクロロ酢酸などのモノカルボン酸化合物、シュウ酸、コハク酸、マレイン酸、酒石酸およびマロン酸などのジカルボン酸化合物、クエン酸およびトリカリバリル酸などのトリカルボン酸化合物、ベンゼンスルホン酸、n-ブチルベンゼンスルホン酸、n-オクチルベンゼンスルホン酸、n-ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5-ジメチルベンゼンスルホン酸、2,5-ジブチルベンゼンスルホン酸、o-アミノベンゼンスルホン酸、m-アミノベンゼンスルホン酸、p-アミノベンゼンスルホン酸、3-アミノ-4-ヒドロキシベンゼンスルホン酸、5-アミノ-2-メチルベンゼンスルホン酸、3,5-ジアミノ-2,4,6-トリメチルベンゼンスルホン酸、2,4-ジニトロベンゼンスルホン酸、p-クロルベンゼンスルホン酸、 2,5-ジクロロベンゼンスルホン酸、p-フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o-クレゾールスルホン酸、m-クレゾールスルホン酸、p-クレゾールスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸、1-ナフタレンスルホン酸、イソプロピルナフタレンスルホン酸、ドデシルナフタレンスルホン酸、ジノニルナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、1,5-ナフタレンジスルホン酸、2,7-ナフタレンジスルホン酸、4,4-ビフェニルジスルホン酸、アントラキノン-2-スルホン酸、m-ベンゼンジスルホン酸、2,5-ジアミノ-1,3-ベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アントラキノン-1,5-ジスルホン酸、ポリスチレンスルホン酸などの芳香族スルホン酸、メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、n-オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、アミノメタンスルホン酸、2-アミノエタンスルホン酸などの脂肪族スルホン酸、シクロペンタンスルホン酸、シクロヘキサンスルホン酸およびカンファースルホン酸、3-シクロヘキシルアミノプロパンスルホン酸などの脂環式スルホン酸などのスルホン酸化合物、アスパラギン酸やグルタミン酸などの酸性アミノ酸、アスコルビン酸、レチノイン酸、リン酸、メタリン酸、亜リン酸、次亜リン酸、ポリリン酸、リン酸モノドデシルおよびリン酸モノオクタデシルなどのリン酸モノエステル、リン酸ジドデシルおよびリン酸ジオクタデシルなどのリン酸ジエステル、亜リン酸モノエステルおよび亜リン酸ジエステルなどのリン酸化合物、ホウ酸、塩酸、硫酸なども挙げられる。また、酸触媒としては、形状は特に限定されず、固体酸触媒および液体酸触媒のいずれでもよく、例えば、固体酸触媒としては、酸性白土、カオリナイト、ベントナイト、モンモリロナイト、タルク、ケイ酸ジルコニウムおよびゼオライトなどの天然鉱物、シリカ、アルミナ、チタニアおよびジルコニアなどの酸化物またはシリカアルミナ、シリカマグネシア、シリカボリア、アルミナボリア、シリカチタニアおよびシリカジルコニアなどの酸化物複合体、塩素化アルミナ、フッ素化アルミナ、陽イオン交換樹脂などが挙げられる。 The acid catalyst may be a Bronsted acid as a proton donor, a Lewis acid as an electron pair acceptor, or an organic acid or an inorganic acid. Specifically, monocarboxylic acid compounds such as formic acid, acetic acid, propionic acid, heptanoic acid, octanoic acid, octylic acid, nonanoic acid, isononanoic acid, trifluoroacetic acid and trichloroacetic acid, oxalic acid, succinic acid, maleic acid, tartaric acid And dicarboxylic acid compounds such as malonic acid, tricarboxylic acid compounds such as citric acid and tricarivallic acid, benzenesulfonic acid, n-butylbenzenesulfonic acid, n-octylbenzenesulfonic acid, n-dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid 2,5-dimethylbenzenesulfonic acid, 2,5-dibutylbenzenesulfonic acid, o-aminobenzenesulfonic acid, m-aminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 3-amino-4-hydroxybenzenesulfonic acid , 5-amino-2 Methylbenzenesulfonic acid, 3,5-diamino-2,4,6-trimethylbenzenesulfonic acid, 2,4-dinitrobenzenesulfonic acid, p-chlorobenzenesulfonic acid, 2,5-dichlorobenzenesulfonic acid, p-phenol Sulfonic acid, cumene sulfonic acid, xylene sulfonic acid, o-cresol sulfonic acid, m-cresol sulfonic acid, p-cresol sulfonic acid, p-toluene sulfonic acid, 2-naphthalene sulfonic acid, 1-naphthalene sulfonic acid, isopropyl naphthalene sulfone Acid, dodecylnaphthalenesulfonic acid, dinonylnaphthalenesulfonic acid, dinonylnaphthalenedisulfonic acid, 1,5-naphthalenedisulfonic acid, 2,7-naphthalenedisulfonic acid, 4,4-biphenyldisulfonic acid, anthraquinone-2-sulfonic acid, m- Benzene disulfonic acid, 2,5-diamino-1,3-benzenedisulfonic acid, aniline-2,4-disulfonic acid, anthraquinone-1,5-disulfonic acid, aromatic sulfonic acid such as polystyrene sulfonic acid, methanesulfonic acid, Ethanesulfonic acid, 1-propanesulfonic acid, n-octylsulfonic acid, pentadecylsulfonic acid, trifluoromethanesulfonic acid, trichloromethanesulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, aminomethanesulfone Acids, aliphatic sulfonic acids such as 2-aminoethanesulfonic acid, sulfonic acid compounds such as cyclopentanesulfonic acid, cyclohexanesulfonic acid and camphorsulfonic acid, alicyclic sulfonic acids such as 3-cyclohexylaminopropanesulfonic acid, aspartic acid And Acidic amino acids such as glutamic acid, phosphoric acid monoesters such as ascorbic acid, retinoic acid, phosphoric acid, metaphosphoric acid, phosphorous acid, hypophosphorous acid, polyphosphoric acid, monododecyl phosphate and monooctadecyl phosphate, didodecyl phosphate And phosphoric acid diesters such as dioctadecyl phosphate, phosphoric acid compounds such as phosphorous acid monoester and phosphite diester, boric acid, hydrochloric acid, sulfuric acid and the like. Further, the shape of the acid catalyst is not particularly limited, and any of a solid acid catalyst and a liquid acid catalyst may be used. For example, as the solid acid catalyst, acidic clay, kaolinite, bentonite, montmorillonite, talc, zirconium silicate and Natural minerals such as zeolite, oxides such as silica, alumina, titania and zirconia or oxide composites such as silica alumina, silica magnesia, silica boria, alumina boria, silica titania and silica zirconia, chlorinated alumina, fluorinated alumina, positive Examples thereof include ion exchange resins.
 本発明において、開環重合法で生成するポリ乳酸の分子量を考慮した場合、開環重合法の重合触媒としては金属触媒が好ましく、中でも錫化合物、チタン化合物、アンチモン化合物、希土類化合物がより好ましく、開環重合法で生成するポリ乳酸の融点を考慮した場合には、錫化合物およびチタン化合物がより好ましい。さらに、開環重合法で生成するポリ乳酸の熱安定性を考慮した場合、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましい。 In the present invention, when considering the molecular weight of polylactic acid produced by the ring-opening polymerization method, a metal catalyst is preferable as the polymerization catalyst of the ring-opening polymerization method, among which a tin compound, a titanium compound, an antimony compound, and a rare earth compound are more preferable. In consideration of the melting point of polylactic acid produced by the ring-opening polymerization method, tin compounds and titanium compounds are more preferable. Furthermore, in consideration of the thermal stability of polylactic acid produced by the ring-opening polymerization method, a tin-based organic carboxylate or a tin-based halogen compound is preferable, and in particular, tin (II) acetate, tin (II) octylate, And tin (II) chloride is more preferred.
 開環重合法の重合触媒の添加量については、使用する原料(L-乳酸、D-乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を二種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。 The addition amount of the polymerization catalyst in the ring-opening polymerization method is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.). More preferred is 1 part by weight or more. When the catalyst amount is within the above preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase. Moreover, when using 2 or more types of catalysts together, it is preferable that a total addition amount exists in said range.
 開環重合法の重合触媒の添加時期については、ラクチドを加熱溶解後、触媒を添加することが触媒を系内に均一分散し、重合活性を高める点で好ましい。 Regarding the addition timing of the polymerization catalyst in the ring-opening polymerization method, it is preferable to add the catalyst after heating and dissolving the lactide from the viewpoint of uniformly dispersing the catalyst in the system and increasing the polymerization activity.
 次に、ポリ-L-乳酸とポリ-D-乳酸とを混合後、固相重合によりポリ乳酸ブロック共重合体を得る方法(調製法2)について説明する。本調製法においてポリ-L-乳酸とポリ-D-乳酸の重合については、開環重合法および直接重合法のいずれの方法も用いることができる。 Next, a method for preparing a polylactic acid block copolymer by solid phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid (Preparation Method 2) will be described. For the polymerization of poly-L-lactic acid and poly-D-lactic acid in this preparation method, any of a ring-opening polymerization method and a direct polymerization method can be used.
 ポリ-L-乳酸およびポリ-D-乳酸を混合後、固相重合によりポリ乳酸ブロック共重合体を調製する場合には、固相重合後の重量平均分子量およびステレオコンプレックス形成率が高くなる点で、ポリ-L-乳酸またはポリ-D-乳酸のうちいずれか一方の重量平均分子量が60,000~300,000以下であり、もう一方の重量平均分子量が10,000~100,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が100,000~270,000、もう一方の重量平均分子量が15,000~80,000である。特に好ましくは、一方の重量平均分子量が150,000~240,000、もう一方の重量平均分子量が20,000~50,000である。また、ポリ-L-乳酸とポリ-D-乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が90,000以上となるよう、適宜選択することが好ましい。 When a polylactic acid block copolymer is prepared by solid phase polymerization after mixing poly-L-lactic acid and poly-D-lactic acid, the weight average molecular weight and stereocomplex formation rate after solid phase polymerization are increased. One of poly-L-lactic acid and poly-D-lactic acid has a weight average molecular weight of 60,000 to 300,000 or less, and the other has a weight average molecular weight of 10,000 to 100,000 or less. It is preferable. More preferably, one weight average molecular weight is 100,000 to 270,000 and the other weight average molecular weight is 15,000 to 80,000. Particularly preferably, one weight average molecular weight is 150,000 to 240,000 and the other weight average molecular weight is 20,000 to 50,000. The combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
 さらに、本発明でポリ-L-乳酸成分とポリ-D-乳酸成分との重量平均分子量は、ポリ-L-乳酸またはポリ-D-乳酸のうちいずれか一方の重量平均分子量が120,000以上300,000以下であり、もう一方の重量平均分子量が30,000以上100,000以下であることも好ましい態様である。より好ましくは、一方の重量平均分子量が100,000以上270,000以下、もう一方の重量平均分子量が35,000以上80,000以下である。さらに好ましくは、125,000以上255,000以下、もう一方の重量平均分子量が25,000以上50,000以下である。 Further, in the present invention, the weight average molecular weight of the poly-L-lactic acid component and the poly-D-lactic acid component is such that the weight average molecular weight of either one of poly-L-lactic acid or poly-D-lactic acid is 120,000 or more. It is also a preferred embodiment that the weight average molecular weight is 300,000 or less and the other weight average molecular weight is 30,000 or more and 100,000 or less. More preferably, one weight average molecular weight is 100,000 or more and 270,000 or less, and the other weight average molecular weight is 35,000 or more and 80,000 or less. More preferably, it is 125,000 or more and 255,000 or less, and the other weight average molecular weight is 25,000 or more and 50,000 or less.
 また、本発明で使用するポリ-L-乳酸およびポリ-D-乳酸は、重量平均分子量の高い方と重量平均分子量の低い方とのそれぞれの比が、2以上30未満であることが好ましい。さらに好ましくは、3以上20未満であり、5以上15未満であることが最も好ましい。また、ポリ-L-乳酸とポリ-D-乳酸との重量平均分子量の組み合わせとしては混合後の重量平均分子量が90,000以上となるよう、適宜選択することが好ましい。 In the poly-L-lactic acid and poly-D-lactic acid used in the present invention, the ratio of the higher weight average molecular weight to the lower weight average molecular weight is preferably 2 or more and less than 30. More preferably, it is 3 or more and less than 20, and most preferably 5 or more and less than 15. The combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
 また、本発明で使用するポリ-L-乳酸およびポリ-D-乳酸は、ポリ-L-乳酸成分とポリ-D-乳酸成分のそれぞれの重量平均分子量が上記の範囲であることと、ポリ-L-乳酸成分とポリ-D-乳酸成分の重量平均分子量の比率が2以上30未満であることとの両方を満たすことが好ましい。 The poly-L-lactic acid and poly-D-lactic acid used in the present invention have a weight average molecular weight of each of the poly-L-lactic acid component and the poly-D-lactic acid component within the above range, It is preferable that both the ratio of the weight average molecular weight of the L-lactic acid component and the poly-D-lactic acid component is 2 or more and less than 30.
 ここで、重量平均分子量は、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。 Here, the weight average molecular weight is a value in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
 ポリ-L-乳酸またはポリ-D-乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ-L-乳酸またはポリ-D-乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。 The amount of lactide and oligomer contained in poly-L-lactic acid or poly-D-lactic acid is preferably 5% or less, respectively. More preferably, it is 3% or less, and particularly preferably 1% or less. The amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, and particularly preferably 0.5% or less.
 混合するポリ-L-乳酸またはポリ-D-乳酸の酸価は、ポリ-L-乳酸またはポリ-D-乳酸の内、いずれか一方の酸価が100eq/ton以下であることが好ましい。より好ましくは50eq/ton以下であり、さらに好ましくは30eq/ton以下であり、特に好ましくは15eq/ton以下である。また、混合するポリ-L-乳酸またはポリ-D-乳酸の内、もう一方の酸価は600eq/ton以下であることが好ましい。より好ましくは300eq/ton以下であり、さらに好ましくは150eq/ton以下であり、特に好ましくは100eq/ton以下である。 The acid value of poly-L-lactic acid or poly-D-lactic acid to be mixed is preferably 100 eq / ton or less for either one of poly-L-lactic acid or poly-D-lactic acid. More preferably, it is 50 eq / ton or less, More preferably, it is 30 eq / ton or less, Most preferably, it is 15 eq / ton or less. The other acid value of the poly-L-lactic acid or poly-D-lactic acid to be mixed is preferably 600 eq / ton or less. More preferably, it is 300 eq / ton or less, More preferably, it is 150 eq / ton or less, Especially preferably, it is 100 eq / ton or less.
 開環重合法を利用してポリ-L-乳酸またはポリ-D-乳酸を重合する方法については、高分子量体を得るという観点から反応系内の水分量はL-ラクチドおよびD-ラクチドの合計量に対して4mol%以下であることが好ましい。さらに好ましくは2mol%以下であり、0.5mol%以下が特に好ましい。なお、水分量とはカールフィッシャー法を用いて電量滴定法により測定した値である。 Regarding the method of polymerizing poly-L-lactic acid or poly-D-lactic acid using the ring-opening polymerization method, the water content in the reaction system is the sum of L-lactide and D-lactide from the viewpoint of obtaining a high molecular weight product. It is preferable that it is 4 mol% or less with respect to quantity. More preferably, it is 2 mol% or less, and 0.5 mol% or less is particularly preferable. The water content is a value measured by a coulometric titration method using the Karl Fischer method.
 また、開環重合法によりポリ-L-乳酸またはポリ-D-乳酸を重合する際の重合触媒としては、調製法1と同様の金属触媒と酸触媒が挙げられる。 As the polymerization catalyst for polymerizing poly-L-lactic acid or poly-D-lactic acid by the ring-opening polymerization method, the same metal catalyst and acid catalyst as in Preparation Method 1 can be mentioned.
 さらに、開環重合法の重合触媒の添加量については、使用する原料(L-乳酸、D-乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。また、触媒を2種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましい。 Further, the addition amount of the polymerization catalyst in the ring-opening polymerization method is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material used (L-lactic acid, D-lactic acid, etc.). More preferred is 0.001 part by weight or more and 1 part by weight or less. When the catalyst amount is within the above preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase. Moreover, when using 2 or more types of catalysts together, it is preferable that a total addition amount exists in said range.
 開環重合法の重合触媒の添加時期については、ラクチドを加熱溶解後、触媒を添加することが触媒を系内に均一分散し、重合活性を高める点で好ましい。 Regarding the addition timing of the polymerization catalyst in the ring-opening polymerization method, it is preferable to add the catalyst after heating and dissolving the lactide from the viewpoint of uniformly dispersing the catalyst in the system and increasing the polymerization activity.
 また、直接重合法を利用してポリ-L-乳酸またはポリ-D-乳酸を重合する際の重合触媒としては、金属触媒および酸触媒が挙げられる。金属触媒としては錫化合物、チタン化合物、鉛化合物、亜鉛化合物、コバルト化合物、鉄化合物、リチウム化合物、希土類化合物などの金属触媒が挙げられる。化合物の種類としては、金属アルコキシド、金属ハロゲン化合物、有機カルボン酸塩、炭酸塩、硫酸塩、酸化物などが好ましい。具体的には、金属触媒として前記調製法1において記載した金属化合物が、また、酸触媒として前記調製法1において記載した酸化合物が挙げられる。 Also, examples of the polymerization catalyst for polymerizing poly-L-lactic acid or poly-D-lactic acid by using a direct polymerization method include metal catalysts and acid catalysts. Examples of the metal catalyst include tin catalysts, titanium compounds, lead compounds, zinc compounds, cobalt compounds, iron compounds, lithium compounds, and rare earth compounds. As the kind of the compound, metal alkoxide, metal halogen compound, organic carboxylate, carbonate, sulfate, oxide and the like are preferable. Specifically, the metal compound described in the preparation method 1 as a metal catalyst, and the acid compound described in the preparation method 1 as an acid catalyst are mentioned.
 直接重合法を利用して生成されるポリ乳酸の分子量を考慮した場合、錫化合物、チタン化合物、アンチモン化合物、希土類化合物、および酸触媒が好ましく、生成されるポリ乳酸の融点を考慮した場合に、錫化合物、チタン化合物、およびスルホン酸化合物がより好ましい。さらに、生成されるポリ乳酸の熱安定性を考慮した場合、金属触媒の場合は、錫系の有機カルボン酸塩あるいは錫系のハロゲン化合物が好ましく、特に酢酸錫(II)、オクチル酸錫(II)、および塩化錫(II)がより好ましく、酸触媒の場合は、モノおよびジスルホン酸化合物が好ましく、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、および2-アミノエタンスルホン酸がより好ましい。また、触媒は一種類でもよく、二種類以上併用してもよいが、重合活性を高める点から考えて、二種類以上を併用することが好ましく、着色も抑制することが可能となるという点で、錫化合物から選択される一種類以上および/またはスルホン酸化合物から選択される一種類以上を用いることが好ましく、さらに生産性に優れるという点で、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、ナフタレンジスルホン酸、2-アミノエタンスルホン酸のいずれか一種類以上との併用がより好ましく、酢酸錫(II)および/またはオクチル酸錫(II)と、メタンスルホン酸、エタンスルホン酸、プロパンジスルホン酸、2-アミノエタンスルホン酸のいずれか一種との併用がさらに好ましい。 When considering the molecular weight of polylactic acid produced using a direct polymerization method, tin compounds, titanium compounds, antimony compounds, rare earth compounds, and acid catalysts are preferred, and when considering the melting point of the produced polylactic acid, Tin compounds, titanium compounds, and sulfonic acid compounds are more preferred. Furthermore, in consideration of the thermal stability of the polylactic acid produced, in the case of a metal catalyst, a tin-based organic carboxylate or a tin-based halogen compound is preferable, and in particular, tin (II) acetate, tin octylate (II ), And tin (II) chloride, and in the case of acid catalysts, mono and disulfonic acid compounds are preferred, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid, and 2-amino More preferred is ethanesulfonic acid. In addition, one type of catalyst may be used, or two or more types may be used in combination. However, in view of increasing the polymerization activity, it is preferable to use two or more types in combination, and it is possible to suppress coloring. In addition, it is preferable to use one or more selected from tin compounds and / or one or more selected from sulfonic acid compounds. Further, in terms of excellent productivity, tin (II) acetate and / or tin octylate ( II) and methanesulfonic acid, ethanesulfonic acid, propanedisulfonic acid, naphthalene disulfonic acid and 2-aminoethanesulfonic acid are more preferably used in combination. Tin (II) acetate and / or tin octylate (II) combined with any one of methanesulfonic acid, ethanesulfonic acid, propanedisulfonic acid, and 2-aminoethanesulfonic acid But more preferable.
 重合触媒の添加量については、使用する原料(L-乳酸、D-乳酸など)100重量部に対して0.001重量部以上、2重量部以下が好ましく、とくに0.001重量部以上、1重量部以下がより好ましい。触媒量がこの好ましい範囲であると、重合時間を短縮する効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量も十分に大きくできる。また、触媒を二種類以上併用する場合は、合計添加量が上記の範囲内であることが好ましく、錫化合物から選択される一種類以上および/またはスルホン酸化合物から選択される一種類以上を併用する場合は、高い重合活性を維持し、かつ着色を抑制することが可能であるという点で、錫化合物とスルホン酸化合物の重量比が1:1~1:30であることが好ましく、生産性に優れるという点で、1:2~1:15であることがより好ましい。 The addition amount of the polymerization catalyst is preferably 0.001 part by weight or more and 2 parts by weight or less with respect to 100 parts by weight of the raw material to be used (L-lactic acid, D-lactic acid, etc.). More preferred are parts by weight or less. When the catalyst amount is within this preferred range, the effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer can be sufficiently increased. When two or more types of catalysts are used in combination, the total addition amount is preferably within the above range, and one or more types selected from tin compounds and / or one or more types selected from sulfonic acid compounds are used in combination. In that case, it is preferable that the weight ratio of the tin compound and the sulfonic acid compound is 1: 1 to 1:30 in that the high polymerization activity can be maintained and coloring can be suppressed. It is more preferable that the ratio is 1: 2 to 1:15.
 重合触媒の添加時期については、特に直接重合法でポリ乳酸を重合する場合においては、酸触媒を原料または原料を脱水する前に添加することが生産性に優れるという点で好ましく、金属触媒については原料を脱水した後に添加することが重合活性を高める点から考えて好ましい。 Regarding the addition timing of the polymerization catalyst, particularly when polylactic acid is polymerized by the direct polymerization method, it is preferable that the acid catalyst is added before the raw material or the raw material is dehydrated in terms of excellent productivity. The addition of the raw material after dehydration is preferable from the viewpoint of increasing the polymerization activity.
 本発明において、ポリ-L-乳酸およびポリ-D-乳酸を混合し、混合物を固相重合してポリ乳酸ブロック共重合体を得る場合、ポリ-L-乳酸とポリ-D-乳酸との混合により、ステレオコンプレックス形成率(Sc)が固相重合直前において60%を越える範囲であることが好ましい。さらに好ましくは70~99%の範囲であり、80~95%の範囲が特に好ましい。すなわち、上記式(4)に基づき、ステレオコンプレックス形成率(Sc)は下記式(2)を満たすことが好ましい。 In the present invention, when poly-L-lactic acid and poly-D-lactic acid are mixed and the mixture is solid-phase polymerized to obtain a polylactic acid block copolymer, the mixture of poly-L-lactic acid and poly-D-lactic acid is mixed. Therefore, the stereocomplex formation rate (Sc) is preferably in the range exceeding 60% immediately before the solid phase polymerization. More preferably, it is in the range of 70 to 99%, and particularly preferably in the range of 80 to 95%. That is, based on the above formula (4), the stereo complex formation rate (Sc) preferably satisfies the following formula (2).
 Sc=ΔHh/(ΔHl+ΔHh)×100>60   (2)
ここで、
 ΔHh:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
 ΔHl:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
 また、混合に用いるポリ-L-乳酸とポリ-D-乳酸との結晶化の有無については、特に限定されず、結晶化したポリ-L-乳酸とポリ-D-乳酸とを混合してもよいし、溶融状態のポリ-L-乳酸とポリ-D-乳酸とを混合することもできる。混合に用いるポリ-L-乳酸とポリ-D-乳酸との結晶化を行う場合、具体的な方法として気相中または液相中において結晶化処理温度で保持する方法および溶融状態のポリ-L-乳酸とポリ-D-乳酸を融点-50℃~融点+20℃の溶融機内でせん断を付与しながら滞留する方法および溶融状態のポリ-L-乳酸とポリ-D-乳酸を融点-50℃~融点+20℃の溶融機内で圧力を付与しながら滞留する方法などが挙げられる。
Sc = ΔHh / (ΔHl + ΔHh) × 100> 60 (2)
here,
ΔHh: calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
ΔHl: Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
In addition, the presence or absence of crystallization of poly-L-lactic acid and poly-D-lactic acid used for mixing is not particularly limited, and the crystallized poly-L-lactic acid and poly-D-lactic acid may be mixed. Alternatively, molten poly-L-lactic acid and poly-D-lactic acid can be mixed. In the case of crystallization of poly-L-lactic acid and poly-D-lactic acid used for mixing, as a specific method, a method of holding at a crystallization temperature in a gas phase or a liquid phase and a poly-L in a molten state A method of retaining lactic acid and poly-D-lactic acid in a melting machine having a melting point of −50 ° C. to a melting point of + 20 ° C. while applying shear, and melting poly-L-lactic acid and poly-D-lactic acid with a melting point of −50 ° C. For example, a method of staying while applying pressure in a melting point + 20 ° C. melting machine may be used.
 ここでいう結晶化処理温度とは、ガラス転移温度より高く、前記で混合したポリ-L-乳酸またはポリ-D-乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。 The crystallization treatment temperature here is higher than the glass transition temperature and is lower than the melting point of polylactic acid having a low melting point among the poly-L-lactic acid or poly-D-lactic acid mixed above. Although not particularly limited, it is more preferable that the temperature is within the range of the temperature rising crystallization temperature and the temperature falling crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
 気相中または液相中において結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。 When crystallization is performed in the gas phase or in the liquid phase, any condition of reduced pressure, normal pressure or increased pressure may be used.
 また、気相中または液相中において結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。 In addition, the time for crystallization in the gas phase or liquid phase is not particularly limited, but it is sufficiently crystallized within 3 hours, and preferably within 2 hours.
 上述した溶融機内でせん断または圧力を付与することでポリ-L-乳酸とポリ-D-乳酸とを結晶化する方法において、溶融機はせん断あるいは圧力を付与することができれば限定されず、重合缶、ニーダー、バンバリーミキサー、単軸押出機、二軸押出機、射出成形機などを用いることができ、好ましくは単軸押出機、二軸押出機である。 In the above-described method for crystallizing poly-L-lactic acid and poly-D-lactic acid by applying shear or pressure in the melting machine, the melting machine is not limited as long as it can apply shear or pressure, and the polymerization can , A kneader, a Banbury mixer, a single screw extruder, a twin screw extruder, an injection molding machine, etc. can be used, and a single screw extruder and a twin screw extruder are preferred.
 溶融機内でせん断または圧力を付与することで結晶化する方法において、結晶化処理温度は、混合するポリ-L-乳酸およびポリ-D-乳酸の融点に対し、融点-50℃~融点+20℃の範囲が好ましい。結晶化温度のより好ましい範囲は、融点-40℃~融点であり、特に好ましくは融点-30℃~融点-5℃の温度範囲である。溶融機の温度は通常、樹脂が溶融して良好な流動性を発現するために融点+20℃以上を設定するが、溶融機の温度を上記好ましい範囲とすると、適度な流動性を維持しながら結晶化し、一方、生成した結晶が再融解しにくい。ここで、融点とは、示差熱走査型測定を用いて、昇温速度20℃/minで30℃から250℃まで昇温した際の結晶融解温度のことである。 In the method of crystallizing by applying shear or pressure in the melting machine, the crystallization temperature is from −50 ° C. to melting point + 20 ° C. relative to the melting point of poly-L-lactic acid and poly-D-lactic acid to be mixed. A range is preferred. A more preferable range of the crystallization temperature is a melting point of −40 ° C. to a melting point, and a particularly preferable temperature range is a melting point of −30 ° C. to a melting point of −5 ° C. The temperature of the melting machine is usually set to a melting point + 20 ° C. or higher so that the resin melts and exhibits good fluidity. If the temperature of the melting machine is within the above preferred range, the crystallizing while maintaining appropriate fluidity. On the other hand, the generated crystals are difficult to remelt. Here, the melting point is the crystal melting temperature when the temperature is raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 20 ° C./min using differential thermal scanning measurement.
 また、結晶化処理時間は0.1分~10分であることが好ましく、より好ましくは0.3~5分、特に好ましくは0.5分~3分の範囲である。結晶化処理時間が上記好ましい範囲であると、結晶化が十分に起こり、一方、熱分解を生じにくい。 The crystallization treatment time is preferably 0.1 to 10 minutes, more preferably 0.3 to 5 minutes, and particularly preferably 0.5 to 3 minutes. When the crystallization treatment time is within the above preferred range, crystallization occurs sufficiently, while thermal decomposition hardly occurs.
 溶融機内でせん断を付与することで溶融樹脂の分子が配向する傾向があり、その結果、著しく結晶化速度を大きくすることができる。このときのせん断速度は10~400(/秒)の範囲が好ましい。せん断速度が上記好ましい範囲であると、結晶化速度が十分に大きくなり、一方、せん断発熱による熱分解を生じにくい。 By applying shear in the melting machine, the molecules of the molten resin tend to be oriented, and as a result, the crystallization speed can be remarkably increased. The shear rate at this time is preferably in the range of 10 to 400 (/ second). When the shear rate is within the above preferred range, the crystallization rate becomes sufficiently high, while thermal decomposition due to shear heat generation hardly occurs.
 圧力を付与した場合においても結晶化が促進する傾向が見られ、特に0.05~10(MPa)の範囲のときに良好な流動性と結晶性を併せ持つ結晶化ポリ乳酸を得ることができるため好ましい。圧力が上記好ましい範囲であると、結晶化速度が十分に大きくなる。 Even when pressure is applied, crystallization tends to be promoted, and crystallized polylactic acid having both good fluidity and crystallinity can be obtained particularly in the range of 0.05 to 10 (MPa). preferable. When the pressure is within the above preferred range, the crystallization rate becomes sufficiently large.
 さらにせん断速度10~400(/秒)のせん断と0.05~10(MPa)の圧力を同時に付与して処理した場合には結晶化速度がより大きくなるため特に好ましい。 Further, it is particularly preferable to perform treatment by simultaneously applying a shearing rate of 10 to 400 (/ sec) and a pressure of 0.05 to 10 (MPa) because the crystallization rate becomes higher.
 ポリ-L-乳酸とポリ-D-乳酸との混合方法としては特に限定されるものではなく、例えばポリ-L-乳酸およびポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で溶融混練する方法、溶媒中で混合した後に溶媒を除く方法、あるいは溶融状態のポリ-L-乳酸およびポリ-D-乳酸の少なくとも一方を、あらかじめ融点-50℃~融点+20℃の温度範囲内で溶融機内にてせん断を付与しながら滞留させた後、ポリ-L-乳酸とポリ-D-乳酸からなる混合物の結晶が残存するように混合する方法などが挙げられる。 The mixing method of poly-L-lactic acid and poly-D-lactic acid is not particularly limited, and for example, the melting end temperature of the component having the higher melting point among poly-L-lactic acid and poly-D-lactic acid. The method of melt kneading, the method of removing the solvent after mixing in the solvent, or at least one of the molten poly-L-lactic acid and poly-D-lactic acid is a temperature range from -50 ° C to 20 ° C in advance. And a method of mixing so that crystals of a mixture composed of poly-L-lactic acid and poly-D-lactic acid remain after being retained while applying shear in a melting machine.
 ここで、融点とは、示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは示差走査型熱量計で(DSC)により測定したポリ乳酸単独結晶融解ピークにおけるピーク終了温度のことを指す。 Here, the melting point refers to the temperature at the peak top of the polylactic acid single crystal melting peak measured by (DSC) with a differential scanning calorimeter, and the melting end temperature is determined with a differential scanning calorimeter (DSC). It means the peak end temperature in the polylactic acid single crystal melting peak measured by the above.
 融解終了温度以上で溶融混練する方法としては、ポリ-L-乳酸およびポリ-D-乳酸を回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。 Examples of the method of melt-kneading at a temperature higher than the melting end temperature include a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method. Examples thereof include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a decompression device. In terms of uniform and sufficient kneading, a single screw extruder or a twin screw extruder may be used. preferable.
 融解終了温度以上で溶融混練する際の温度条件については、ポリ-L-乳酸およびポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが好ましい。好ましくは140℃~250℃の範囲であり、さらに好ましくは160℃~230℃であり、特に好ましくは180℃~210℃である。混合温度が上記の好ましい範囲であると、溶融状態で混合が可能であり、混合時における混合物の分子量低下も起きにくい。さらに、混合物の流動性を一定に保持することが可能であり、著しい流動性低下が起きにくい。 Regarding the temperature condition at the time of melting and kneading at a temperature higher than the melting end temperature, it is preferable to carry out at a temperature higher than the melting end temperature of the higher melting point component of poly-L-lactic acid and poly-D-lactic acid. The range is preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and particularly preferably 180 ° C to 210 ° C. When the mixing temperature is within the above-mentioned preferable range, mixing can be performed in a molten state, and the molecular weight of the mixture is hardly lowered during mixing. Furthermore, the fluidity of the mixture can be kept constant, and a significant decrease in fluidity hardly occurs.
 また、混合する時間条件については、0.1分~10分の範囲が好ましく、0.3分~5分がより好ましく、0.5分~3分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ-L-乳酸とポリ-D-乳酸を均一に混合することが可能であり、一方、混合による熱分解を生じにくい。 The mixing time condition is preferably in the range of 0.1 minute to 10 minutes, more preferably in the range of 0.3 minute to 5 minutes, and particularly preferably in the range of 0.5 minute to 3 minutes. When the mixing time is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed, while thermal decomposition due to mixing hardly occurs.
 融解終了温度以上で混合する際の圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。 The pressure condition for mixing at the melting end temperature or higher is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
 溶融機内でせん断または圧力を付与することで結晶化したポリ-L-乳酸とポリ-D-乳酸とを混合する具体的な方法としては、回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよいが、溶融状態のポリ-L-乳酸とポリ-D-乳酸とを、ポリ-L-乳酸およびポリ-D-乳酸のうち、融点の低い方のポリ乳酸の融点-50℃~融点+20℃の溶融機内でせん断を付与しながら滞留する方法、または溶融状態のポリ-L-乳酸とポリ-D-乳酸とを、ポリ-L-乳酸およびポリ-D-乳酸のうち、融点の低い方のポリ乳酸の融点-50℃~融点+20℃の溶融機内で圧力を付与しながら滞留する方法により、混合後におけるポリ-L-乳酸とポリ-D-乳酸との混合物のステレオコンプレックス形成率(Sc)を制御できる。なお、ステレオコンプレックス形成率(Sc)は、上記式(4)により算出することができる。 A specific method for mixing poly-L-lactic acid and poly-D-lactic acid crystallized by applying shear or pressure in a melting machine includes a batch method or a continuous method. The melted poly-L-lactic acid and poly-D-lactic acid may be mixed into the melting point of polylactic acid having a lower melting point of poly-L-lactic acid and poly-D-lactic acid. A method of staying while applying shear in a melting machine of −50 ° C. to melting point + 20 ° C., or a poly-L-lactic acid and poly-D-lactic acid in a molten state are mixed with poly-L-lactic acid and poly-D-lactic acid. Of the polylactic acid having a lower melting point, the mixture of poly-L-lactic acid and poly-D-lactic acid is mixed by a method of staying while applying pressure in a melting machine having a melting point of −50 ° C. to melting point + 20 ° C. Stereo complex formation rate (Sc) It can be controlled. The stereo complex formation rate (Sc) can be calculated by the above formula (4).
 混合する温度条件については、ポリ-L-乳酸とポリ-D-乳酸との混合物の融点に対し、融点-50℃~融点+20℃の範囲が好ましい。混合温度のより好ましい範囲は、融点-40℃~融点であり、特に好ましくは融点-30℃~融点-5℃の温度範囲である。溶融機の温度は通常、樹脂が溶融して良好な流動性を発現するために融点+20℃以上を設定するのが好ましいが、かかる好ましい混合温度とすると、流動性が低下しすぎることはなく、一方、生成した結晶が再融解しにくい。ここで融点は、示差走査型熱量計(DSC)を用いて昇温速度20℃/minで30℃から250℃まで昇温した際の、結晶融解温度のことを指す。 The mixing temperature condition is preferably in the range of -50 ° C. to melting point + 20 ° C. with respect to the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid. A more preferable range of the mixing temperature is a melting point of −40 ° C. to a melting point, and a particularly preferable range is a melting point of −30 ° C. to a melting point of −5 ° C. The temperature of the melting machine is usually preferably set to a melting point + 20 ° C. or higher in order for the resin to melt and express good fluidity, but with such a preferred mixing temperature, the fluidity does not decrease too much, On the other hand, the generated crystals are difficult to remelt. Here, the melting point refers to the crystal melting temperature when the temperature is raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 20 ° C./min using a differential scanning calorimeter (DSC).
 溶融機内でせん断または圧力を付与することで結晶化したポリ-L-乳酸とポリ-D-乳酸とを混合する際のせん断速度は10~400(/秒)の範囲が好ましい。せん断速度が上記の好ましい範囲であると、流動性と結晶性を維持しながらポリ-L-乳酸とポリ-D-乳酸とを均一に混合することができ、一方、混合時のせん断発熱により熱分解を生じにくい。 The shear rate when mixing poly-L-lactic acid and poly-D-lactic acid crystallized by applying shear or pressure in the melting machine is preferably in the range of 10 to 400 (/ sec). When the shear rate is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed while maintaining fluidity and crystallinity, while heat is generated by shearing heat generated during mixing. It is difficult to cause decomposition.
 また、混合の際に加える圧力は、0.05~10(MPa)の範囲が好ましい。圧力が上記の好ましい範囲であると、流動性と結晶性を維持しながらポリ-L-乳酸とポリ-D-乳酸とを均一に混合することができる。 The pressure applied during mixing is preferably in the range of 0.05 to 10 (MPa). When the pressure is in the above preferred range, poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed while maintaining fluidity and crystallinity.
 押出機を用いた混練において、ポリ乳酸の供給方法は特に限定されず、樹脂供給口からポリ-L-乳酸とポリ-D-乳酸とを一括して供給する方法や、必要に応じてサイド供給口を利用し、ポリ-L-乳酸とポリ-D-乳酸とを樹脂供給口とサイド供給口にそれぞれ分けて供給する方法が可能である。また、混練機へのポリ乳酸の供給は、ポリ乳酸製造工程から直接溶融状態で行うことも可能である。 In kneading using an extruder, the method of supplying polylactic acid is not particularly limited, and a method of supplying poly-L-lactic acid and poly-D-lactic acid from a resin supply port in a lump or side supply as required. A method of supplying poly-L-lactic acid and poly-D-lactic acid separately to the resin supply port and the side supply port by using the mouth is possible. The supply of polylactic acid to the kneader can also be performed in a molten state directly from the polylactic acid production process.
 押出機におけるスクリューエレメントは、ポリ-L-乳酸とポリ-D-乳酸とが均一に混合してステレオコンプレックス形成できるように、混合部にニーディングエレメントを備えるのが好ましい。 The screw element in the extruder is preferably provided with a kneading element in the mixing part so that poly-L-lactic acid and poly-D-lactic acid can be uniformly mixed to form a stereo complex.
 混合工程において、L-乳酸単位からなるポリ-L-乳酸と、D-乳酸単位からなるポリ-D-乳酸との混合重量比は、90:10~10:90であることが好ましい。さらに好ましくは80:20~20:80であり、特に好ましくは75:25~60:40あるいは40:60~25:75である。L-乳酸単位からなるセグメントと、D-乳酸単位からなるセグメントとのそれぞれの合計の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、ポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。ポリ-L-乳酸とポリ-D-乳酸との混合重量比を50:50以外にする場合は、重量平均分子量の大きい方のポリ-L-乳酸またはポリ-D-乳酸を多く配合することが好ましい。 In the mixing step, the mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably 90:10 to 10:90. More preferably, it is 80:20 to 20:80, and particularly preferably 75:25 to 60:40 or 40:60 to 25:75. When the total weight ratio of the segment consisting of the L-lactic acid unit and the segment consisting of the D-lactic acid unit is within the above preferred range, a polylactic acid stereocomplex can be easily formed. As a result, a polylactic acid block copolymer is formed. The rise in the melting point of is sufficiently large. When the mixing weight ratio of poly-L-lactic acid and poly-D-lactic acid is other than 50:50, a larger amount of poly-L-lactic acid or poly-D-lactic acid having a larger weight average molecular weight may be blended. preferable.
 この混合工程において、次の固相重合を効率的に進めるために、混合物に、触媒を含有させることが好ましい。このとき触媒は、ポリ-L-乳酸および/またはポリ-D-乳酸を製造する際の触媒の残留分であってもよいし、混合工程においてさらに前記触媒から選ばれる一種以上を添加することもできる。 In this mixing step, it is preferable to contain a catalyst in the mixture in order to efficiently advance the next solid phase polymerization. At this time, the catalyst may be a residual amount of the catalyst in producing poly-L-lactic acid and / or poly-D-lactic acid, or one or more selected from the above catalysts may be added in the mixing step. it can.
 固相重合を効率的に進めるための触媒の含有量は、ポリ-L-乳酸およびポリ-D-乳酸の混合物100重量部に対して0.001重量部以上、1重量部以下が好ましく、とくに0.001重量部以上、0.5重量部以下がより好ましい。触媒量が上記好ましい範囲であると、固相重合の反応時間短縮効果が得られ、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。 The content of the catalyst for efficiently proceeding with the solid-phase polymerization is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the mixture of poly-L-lactic acid and poly-D-lactic acid. More preferred is 0.001 part by weight or more and 0.5 part by weight or less. When the catalyst amount is within the above preferred range, the effect of shortening the reaction time of solid phase polymerization can be obtained, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
 混合後におけるポリ-L-乳酸およびポリ-D-乳酸の混合物の重量平均分子量(Mw)は、混合物の機械物性の点から90,000以上300,000未満であることが好ましい。さらに好ましくは120,000以上300,000未満であり、140,000以上300,000未満であることが特に好ましい。 The weight average molecular weight (Mw) of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing is preferably 90,000 or more and less than 300,000 from the viewpoint of mechanical properties of the mixture. More preferably, it is 120,000 or more and less than 300,000, and it is especially preferable that it is 140,000 or more and less than 300,000.
 また、混合後におけるポリ-L-乳酸およびポリ-D-乳酸の混合物の分散度は1.5~4.0の範囲が好ましい。さらに好ましくは2.0~3.7の範囲であり、特に好ましくは2.5~3.5の範囲である。ここで、分散度とは、混合物の数平均分子量に対する重量平均分子量の割合のことをいい、具体的には溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。 Further, the degree of dispersion of the mixture of poly-L-lactic acid and poly-D-lactic acid after mixing is preferably in the range of 1.5 to 4.0. A more preferred range is 2.0 to 3.7, and a particularly preferred range is 2.5 to 3.5. Here, the degree of dispersion means the ratio of the weight average molecular weight to the number average molecular weight of the mixture. Specifically, the standard polydispersity by gel permeation chromatography (GPC) measurement using hexafluoroisopropanol or chloroform as a solvent. It is a value in terms of methyl methacrylate.
 ポリ-L-乳酸またはポリ-D-乳酸に含有するラクチド量およびオリゴマー量は、それぞれ5%以下であることが好ましい。さらに好ましくは3%以下であり、特に好ましくは1%以下である。また、ポリ-L-乳酸またはポリ-D-乳酸に含有する乳酸量は、2%以下であることが好ましい。さらに好ましくは1%以下であり、特に好ましくは0.5%以下である。 The amount of lactide and oligomer contained in poly-L-lactic acid or poly-D-lactic acid is preferably 5% or less, respectively. More preferably, it is 3% or less, and particularly preferably 1% or less. The amount of lactic acid contained in poly-L-lactic acid or poly-D-lactic acid is preferably 2% or less. More preferably, it is 1% or less, and particularly preferably 0.5% or less.
 混合物を固相重合する際には、ポリ-L-乳酸およびポリ-D-乳酸の混合物の形状は、特に限定されるものではなく、塊状、フィルム、ペレットおよび粉末などいずれでもよいが、固相重合を効率的に進めるという観点においては、ペレットまたは粉末を用いることが好ましい。ポリ-L-乳酸およびポリ-D-乳酸の混合物をペレットにする方法としては、混合物をストランド状に押出し、ペレタイズする方法、混合物を水中に押出し、アンダーウォーターカッターを用いてペレット化する方法が挙げられる。また、ポリ-L-乳酸およびポリ-D-乳酸の混合物を粉末にする方法としては、ミキサー、ブレンダー、ボールミルおよびハンマーミルなどの粉砕機を用いて粉砕する方法が挙げられる。この固相重合工程を実施する方法については特に限定されるものではなく、回分法でも連続法でもよく、また、反応容器は、撹拌槽型反応器、ミキサー型反応器および塔型反応器などを用いることができ、これらの反応器は2種以上組み合わせて使用することができる。 When the mixture is subjected to solid phase polymerization, the shape of the mixture of poly-L-lactic acid and poly-D-lactic acid is not particularly limited and may be any of agglomerates, films, pellets, and powders. From the viewpoint of efficiently proceeding the polymerization, it is preferable to use pellets or powder. Examples of the method of pelletizing a mixture of poly-L-lactic acid and poly-D-lactic acid include a method of extruding the mixture into a strand and pelletizing, and a method of extruding the mixture into water and pelletizing with an underwater cutter. It is done. In addition, examples of a method for making a mixture of poly-L-lactic acid and poly-D-lactic acid into powder include a method of pulverizing using a pulverizer such as a mixer, blender, ball mill, and hammer mill. The method for carrying out this solid phase polymerization step is not particularly limited, and may be a batch method or a continuous method. The reaction vessel may be a stirred tank reactor, a mixer reactor, a tower reactor, or the like. These reactors can be used in combination of two or more.
 この固相重合工程を実施する際には、ポリ-L-乳酸およびポリ-D-乳酸の混合物が結晶化していることが好ましい。本発明において、ポリ-L-乳酸およびポリ-D-乳酸の混合工程で得られた混合物が結晶化状態である場合は、固相重合工程を実施する際にポリ-L-乳酸およびポリ-D-乳酸の混合物の結晶化は必ずしも必要ないが、結晶化を行うことで固相重合の効率をさらに高めることもできる。 When performing this solid phase polymerization step, it is preferable that a mixture of poly-L-lactic acid and poly-D-lactic acid is crystallized. In the present invention, when the mixture obtained in the mixing step of poly-L-lactic acid and poly-D-lactic acid is in a crystallized state, the poly-L-lactic acid and poly-D are used in the solid phase polymerization step. -Crystallization of the mixture of lactic acid is not necessarily required, but the efficiency of solid phase polymerization can be further increased by crystallization.
 結晶化させる方法については特に限定されるものではなく、公知の方法を利用することができる。例えば、気相中または液相中において結晶化処理温度で保持する方法、またはポリ-L-乳酸およびポリ-D-乳酸の溶融混合物を延伸または剪断の操作を行いながら冷却固化させる方法などが挙げられ、操作が簡便であるという観点においては、気相中または液相中において結晶化処理温度で保持する方法が好ましい。 The method for crystallization is not particularly limited, and a known method can be used. For example, a method of holding at a crystallization treatment temperature in a gas phase or a liquid phase, or a method of cooling and solidifying a molten mixture of poly-L-lactic acid and poly-D-lactic acid while performing stretching or shearing operations. From the viewpoint that the operation is simple, a method of holding at the crystallization temperature in the gas phase or in the liquid phase is preferable.
 ここでいう結晶化処理温度とは、ガラス転移温度より高く、混合したポリ-L-乳酸およびポリ-D-乳酸のうち、低い融点を有するポリ乳酸の融点よりも低い温度範囲であれば特に限定されるものではないが、予め示差走査型熱量計(DSC)により測定した昇温結晶化温度および降温結晶化温度の範囲内であることがより好ましい。 The crystallization treatment temperature here is particularly limited as long as it is higher than the glass transition temperature and lower than the melting point of polylactic acid having a low melting point among the mixed poly-L-lactic acid and poly-D-lactic acid. Although it is not performed, it is more preferable that the temperature is within the range of the temperature-rise crystallization temperature and the temperature-fall crystallization temperature measured in advance by a differential scanning calorimeter (DSC).
 結晶化させる際には、減圧、常圧または加圧のいずれの条件でもよい。 When crystallization is performed, any of reduced pressure, normal pressure, and increased pressure may be used.
 また、結晶化させる際の時間については特に限定されるものではないが、3時間以内であれば十分に結晶化されており、2時間以内でも好ましい。 Further, the time for crystallization is not particularly limited, but it is sufficiently crystallized within 3 hours, and within 2 hours is preferable.
 この固相重合工程を実施する際の温度条件としては、ポリ-L-乳酸およびポリ-D-乳酸の混合物の融点以下の温度が好ましい。ポリ-L-乳酸およびポリ-D-乳酸の混合物は、ステレオコンプレックス形成によりステレオコンプレックス結晶に基づく融点を190℃~230℃の範囲で有し、また、150℃~185℃の範囲でポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶に基づく融点を有するため、これらの融点以下で固相重合することが好ましい。具体的には、100℃以上220℃以下が好ましく、さらに固相重合を効率的に進めるという観点においては、110℃以上200℃以下であることがより好ましく、120℃以上180℃以下であることがさらに好ましく、130℃以上170℃以下であることが特に好ましい。 The temperature condition for carrying out this solid phase polymerization step is preferably a temperature not higher than the melting point of the mixture of poly-L-lactic acid and poly-D-lactic acid. The mixture of poly-L-lactic acid and poly-D-lactic acid has a melting point based on stereocomplex crystals in the range of 190 ° C. to 230 ° C. due to stereocomplex formation, and also has a poly-L in the range of 150 ° C. to 185 ° C. Since it has melting points based on -lactic acid single crystals and poly-D-lactic acid single crystals, it is preferable to carry out solid phase polymerization below these melting points. Specifically, it is preferably 100 ° C. or higher and 220 ° C. or lower, and more preferably 110 ° C. or higher and 200 ° C. or lower, more preferably 120 ° C. or higher and 180 ° C. or lower, from the viewpoint of efficiently proceeding solid phase polymerization. Is more preferable, and it is particularly preferably 130 ° C. or higher and 170 ° C. or lower.
 また、固相重合の反応時間を短縮するために、反応の進行とともに温度を段階的に上げるかあるいは連続的に上げることが好ましい。固相重合時に段階的に昇温するときの温度条件としては、第一段階として120℃~145℃で1~15時間、第二段階として135℃~160℃で1~15時間、第三段階として150℃~175℃で10~30時間と昇温するのが好ましく、さらには第一段階として130℃~145℃で2~12時間、第二段階として140℃~160℃で2~12時間、第三段階として155℃~175℃で10~25時間と昇温するのがより好ましい。固相重合時に連続的に昇温するときの温度条件としては、130℃~150℃の初期温度より1~5(℃/min)の速度で150℃~175℃まで連続的に昇温するのが好ましい。また、段階的な昇温と連続的な昇温を組み合わせることも固相重合を効率的に進行する観点から好ましい。 In order to shorten the reaction time of solid phase polymerization, it is preferable to raise the temperature stepwise or continuously as the reaction proceeds. The temperature conditions when the temperature is raised stepwise during the solid phase polymerization are as follows. The first stage is 120 ° C. to 145 ° C. for 1 to 15 hours, the second stage is 135 ° C. to 160 ° C. for 1 to 15 hours, and the third stage It is preferable that the temperature is raised from 150 ° C. to 175 ° C. for 10 to 30 hours, further, the first stage is from 130 ° C. to 145 ° C. for 2 to 12 hours, and the second stage is from 140 ° C. to 160 ° C. for 2 to 12 hours. In the third stage, it is more preferable to raise the temperature at 155 ° C. to 175 ° C. for 10 to 25 hours. The temperature condition for continuous temperature increase during solid-phase polymerization is that the temperature is continuously increased from 150 ° C. to 175 ° C. at a rate of 1 to 5 (° C./min) from the initial temperature of 130 ° C. to 150 ° C. Is preferred. Further, combining stepwise temperature rise and continuous temperature rise is also preferable from the viewpoint of efficiently proceeding with solid phase polymerization.
 また、この固相重合工程を実施する際には、真空下または乾燥窒素などの不活性気体気流下で行うことが好ましい。真空下で固相重合を行う際の真空度は、150Pa以下であることが好ましく、75Pa以下であることがさらに好ましく、20Pa以下であることが特に好ましい。不活性気体気流下で固相重合を行う際の流量は、混合物1gに対して0.1~2,000(mL/min)の範囲が好ましく、0.5~1,000(mL/min)の範囲がさらに好ましく、1.0~500(mL/min)の範囲が特に好ましい。 Further, when this solid phase polymerization step is carried out, it is preferably carried out under a vacuum or an inert gas stream such as dry nitrogen. The degree of vacuum when performing solid-phase polymerization under vacuum is preferably 150 Pa or less, more preferably 75 Pa or less, and particularly preferably 20 Pa or less. The flow rate when solid-phase polymerization is performed under an inert gas stream is preferably in the range of 0.1 to 2,000 (mL / min), and 0.5 to 1,000 (mL / min) with respect to 1 g of the mixture. Is more preferable, and a range of 1.0 to 500 (mL / min) is particularly preferable.
 固相重合後におけるポリマーの収率(Y)は、90%以上であることが好ましい。さらに好ましくは93%以上であり、特に好ましくは95%以上である。ここでいうポリマーの収率(Y)とは、固相重合前の混合物重量に対する固相重合後のポリ乳酸ブロック共重合体の重量の割合である。具体的には、固相重合前の混合物重量をWp、固相重合後のポリマーの重量をWsとすると、ポリマーの収率(Y)は下記式(7)で算出することができる。 The yield (Y) of the polymer after solid phase polymerization is preferably 90% or more. More preferably, it is 93% or more, and particularly preferably 95% or more. The polymer yield (Y) here is the ratio of the weight of the polylactic acid block copolymer after solid phase polymerization to the weight of the mixture before solid phase polymerization. Specifically, when the weight of the mixture before solid phase polymerization is Wp and the weight of the polymer after solid phase polymerization is Ws, the yield (Y) of the polymer can be calculated by the following formula (7).
 Y=Ws/Wp×100   (7)
 固相重合工程においては、混合物の分散度が小さくなることが好ましい。具体的には、固相重合前における混合物の分散度が1.5~4.0の範囲から、固相重合後にはポリ乳酸ブロック共重合体の分散度が1.5~2.7の範囲になることが好ましい。さらに好ましくは固相重合前における混合物の分散度が2.0~3.7の範囲が固相重合後にはポリ乳酸ブロック共重合体の分散度が1.8~2.6の範囲に小さくなることであり、特に好ましくは、固相重合前における混合物の分散度が2.5~3.5の範囲から固相重合後にはポリ乳酸ブロック共重合体の分散度が2.0~2.5の範囲になることである。
Y = Ws / Wp × 100 (7)
In the solid phase polymerization step, it is preferable that the degree of dispersion of the mixture is small. Specifically, the dispersion degree of the mixture before the solid phase polymerization is in the range of 1.5 to 4.0, and the dispersion degree of the polylactic acid block copolymer is in the range of 1.5 to 2.7 after the solid phase polymerization. It is preferable to become. More preferably, the dispersion degree of the mixture before the solid phase polymerization is in the range of 2.0 to 3.7, and the dispersion degree of the polylactic acid block copolymer is reduced to the range of 1.8 to 2.6 after the solid phase polymerization. Particularly preferably, the dispersion degree of the polylactic acid block copolymer is 2.0 to 2.5 after the solid phase polymerization from the range of the dispersion degree of the mixture 2.5 to 3.5 before the solid phase polymerization. It is to be in the range.
 次に、ポリ-L-乳酸およびポリ-D-乳酸を、融点の高い方の成分の融解終了温度以上で長時間溶融混練を行うことで、L-乳酸単位のセグメントとD-乳酸単位のセグメントとをエステル交換反応させたポリ乳酸ブロック共重合体を得る方法(調製法3)について説明する。本調製法においても、ポリ-L-乳酸およびポリ-D-乳酸の重合については、上述した開環重合法および直接重合法のいずれの方法も用いることができる。 Next, poly-L-lactic acid and poly-D-lactic acid are melt kneaded for a long time at a temperature equal to or higher than the melting end temperature of the component having the higher melting point, so that the L-lactic acid unit segment and the D-lactic acid unit segment A method (Preparation Method 3) for obtaining a polylactic acid block copolymer obtained by transesterifying the lactic acid block copolymer will be described. Also in this preparation method, for the polymerization of poly-L-lactic acid and poly-D-lactic acid, any of the above-described ring-opening polymerization method and direct polymerization method can be used.
 本方法にてポリ乳酸ブロック共重合体を得るためには、溶融混練後にステレオコンプレックス形成率が高くなる点で、ポリ-L-乳酸およびポリ-D-乳酸のうちいずれか一方の重量平均分子量が60,000~300,000以下であり、もう一方の重量平均分子量が10,000~100,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が100,000~270,000、もう一方の重量平均分子量が15,000~80,000である。特に好ましくは、一方の重量平均分子量が150,000~240,000、もう一方の重量平均分子量が20,000~50,000である。また、ポリ-L-乳酸とポリ-D-乳酸の重量平均分子量の組み合わせとしては混合後の重量平均分子量が90,000以上となるよう、適宜選択することが好ましい。
さらに、本発明でポリ-L-乳酸成分とポリ-D-乳酸成分との重量平均分子量は、ポリ-L-乳酸またはポリ-D-乳酸のうちいずれか一方の重量平均分子量が60,000以上300,000以下であり、もう一方の重量平均分子量が30,000以上100,000以下であることも好ましい態様である。より好ましくは、一方の重量平均分子量が100,000以上270,000以下、もう一方の重量平均分子量が20,000以上80,000以下である。さらに好ましくは、125,000以上255,000以下、もう一方の重量平均分子量が25,000以上50,000以下である。
In order to obtain a polylactic acid block copolymer by this method, the weight average molecular weight of either one of poly-L-lactic acid and poly-D-lactic acid is high in that the stereocomplex formation rate becomes high after melt-kneading. Preferably, the weight average molecular weight is 60,000 to 300,000 or less, and the other weight average molecular weight is 10,000 to 100,000 or less. More preferably, one weight average molecular weight is 100,000 to 270,000 and the other weight average molecular weight is 15,000 to 80,000. Particularly preferably, one weight average molecular weight is 150,000 to 240,000 and the other weight average molecular weight is 20,000 to 50,000. The combination of the weight average molecular weights of poly-L-lactic acid and poly-D-lactic acid is preferably selected as appropriate so that the weight average molecular weight after mixing is 90,000 or more.
Further, in the present invention, the weight average molecular weight of the poly-L-lactic acid component and the poly-D-lactic acid component is such that the weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 or more. It is also a preferred embodiment that the weight average molecular weight is 300,000 or less and the other weight average molecular weight is 30,000 or more and 100,000 or less. More preferably, one weight average molecular weight is 100,000 or more and 270,000 or less, and the other weight average molecular weight is 20,000 or more and 80,000 or less. More preferably, it is 125,000 or more and 255,000 or less, and the other weight average molecular weight is 25,000 or more and 50,000 or less.
 融解終了温度以上で長時間溶融混練する方法としては、ポリ-L-乳酸とポリ-D-乳酸とを回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよい。混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。 As a method of melt kneading for a long time at a temperature higher than the melting end temperature, a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method may be mentioned, and any method may be used. Examples of the kneading apparatus include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a pressure reducing device. From the viewpoint of uniform and sufficient kneading, a single screw extruder and a twin screw extruder are used. It is preferable to use it.
 混合する温度条件については、ポリ-L-乳酸およびポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが重要である。好ましくは140℃~280℃の範囲であり、さらに好ましくは160℃~270℃であり、特に好ましくは180℃~260℃である。混合温度が上記好ましい範囲であると、流動性が低下しすぎず、一方、混合物の分子量低下が起きにくい。 Regarding the mixing temperature condition, it is important that the mixing is performed at a temperature higher than the melting end temperature of the component having a higher melting point among poly-L-lactic acid and poly-D-lactic acid. The range is preferably 140 ° C. to 280 ° C., more preferably 160 ° C. to 270 ° C., and particularly preferably 180 ° C. to 260 ° C. When the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
 混合する時間条件については、0.1分~30分の範囲が好ましく、0.3分~20分がより好ましく、0.5分~10分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ-L-乳酸とポリ-D-乳酸との混合が均一となり、一方、混合により熱分解を生じにくい。 The mixing time condition is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes. When the mixing time is within the above preferable range, the mixing of poly-L-lactic acid and poly-D-lactic acid becomes uniform, while thermal decomposition is hardly caused by mixing.
 混合する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。 The pressure condition for mixing is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
 混合するL-乳酸単位からなるポリ-L-乳酸と、D-乳酸単位からなるポリ-D-乳酸との混合重量比は、80:20~20:80であることが好ましく、75:25~25:75であることがより好ましく、さらに70:30~30:70であることが好ましく、特に60:40~40:60であることが好ましい。L-乳酸単位からなるポリ-L-乳酸の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、最終的に得られるポリ乳酸ブロック共重合体の融点が十分に大きくなる。 The mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably from 80:20 to 20:80, and from 75:25 to The ratio is more preferably 25:75, further preferably 70:30 to 30:70, and particularly preferably 60:40 to 40:60. When the weight ratio of poly-L-lactic acid composed of L-lactic acid units is within the above preferred range, a polylactic acid stereocomplex is easily formed, and as a result, the resulting polylactic acid block copolymer has a sufficient melting point. growing.
 この混合工程において、L-乳酸単位のセグメントとD-乳酸単位のセグメントとのエステル交換を効率的に進めるために、混合物に、触媒を含有させることが好ましい。このとき触媒は、ポリ-L-乳酸および/またはポリ-D-乳酸を製造する際の触媒の残留分であってもよいし、混合工程においてさらに触媒を添加することもできる。 In this mixing step, it is preferable to contain a catalyst in the mixture in order to promote transesterification of the L-lactic acid unit segment and the D-lactic acid unit segment efficiently. At this time, the catalyst may be a residual amount of the catalyst when producing poly-L-lactic acid and / or poly-D-lactic acid, or a catalyst may be further added in the mixing step.
 触媒の含有量は、ポリ-L-乳酸およびポリ-D-乳酸の混合物100重量部に対して0.001重量部以上、1重量部以下が好ましく、特に0.001重量部以上、0.5重量部以下がより好ましい。触媒量が上記好ましい範囲であると、混合物のエステル交換の頻度が十分に高く、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。 The catalyst content is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the mixture of poly-L-lactic acid and poly-D-lactic acid. More preferred are parts by weight or less. When the catalyst amount is in the above preferred range, the frequency of transesterification of the mixture is sufficiently high, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
 次に、多官能性化合物をポリ-L-乳酸およびポリ-D-乳酸に混合することで、ポリ-L-乳酸とポリ-D-乳酸とを多官能性化合物で共有結合させポリ乳酸ブロック共重合体を得る方法(調製法4)について説明する。本調製法で用いるポリ-L-乳酸とポリ-D-乳酸の重合においては、上述した開環重合法および直接重合法のいずれの方法も用いることができる。 Next, by mixing the polyfunctional compound with poly-L-lactic acid and poly-D-lactic acid, the poly-L-lactic acid and poly-D-lactic acid are covalently bonded with the polyfunctional compound, and the polylactic acid block co-polymer is combined. A method for obtaining a polymer (Preparation Method 4) will be described. In polymerization of poly-L-lactic acid and poly-D-lactic acid used in this preparation method, any of the above-described ring-opening polymerization method and direct polymerization method can be used.
 本方法にてポリ乳酸ブロック共重合体を得るために用いるポリ-L-乳酸とポリ-D-乳酸との重量平均分子量は、ステレオコンプレックス形成率が高くなる点で、ポリ-L-乳酸およびポリ-D-乳酸のうちいずれか一方の重量平均分子量が30,000~100,000以下であり、もう一方の重量平均分子量が10,000~30,000以下であることが好ましい。さらに好ましくは、一方の重量平均分子量が35,000~90,000、もう一方の重量平均分子量が10,000~25,000である。特に好ましくは、一方の重量平均分子量が40,000~80,000、もう一方の重量平均分子量が10,000~20,000である。 The weight-average molecular weight of poly-L-lactic acid and poly-D-lactic acid used to obtain a polylactic acid block copolymer by this method is such that the formation rate of stereocomplexes is high. It is preferable that the weight average molecular weight of any one of -D-lactic acid is 30,000 to 100,000 or less and the other weight average molecular weight is 10,000 to 30,000 or less. More preferably, one weight average molecular weight is 35,000 to 90,000 and the other weight average molecular weight is 10,000 to 25,000. Particularly preferably, one weight average molecular weight is 40,000 to 80,000, and the other weight average molecular weight is 10,000 to 20,000.
 また、上記の混合に使用するポリ-L-乳酸の重量平均分子量と、ポリ-D-乳酸の重量平均分子量との比は、ステレオコンプレックス形成率が高くなる観点で、2以上10未満であることが好ましい。さらに好ましくは3以上10未満であり、特に好ましくは4以上10未満である。 Further, the ratio of the weight average molecular weight of poly-L-lactic acid used in the above mixing to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 10 from the viewpoint of increasing the stereocomplex formation rate. Is preferred. More preferably, it is 3 or more and less than 10, and particularly preferably 4 or more and less than 10.
 ここで使用する多官能性化合物としては、多価カルボン酸無水物、多価カルボン酸ハロゲン化物、多価カルボン酸、多価イソシアネート、多価アミン、多価アルコールおよび多価エポキシ化合物などが挙げられ、具体的には、1,2-シクロヘキサンジカルボン酸無水物、コハク酸無水物、フタル酸無水物、トリメリット酸無水物、1,8-ナフタレンジカルボン酸無水物、ピロメリット酸無水物などの多価カルボン酸無水物、イソフタル酸クロリド、テレフタル酸クロリド、2,6-ナフタレンジカルボン酸クロリドなどの多価カルボン酸ハロゲン化物、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの多価カルボン酸、ヘキサメチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トルエン-2,4-ジイソシアネートなどの多価イソシアネート、エチレンジアミン、ヘキサンジアミン、ジエチレントリアミンなどの多価アミン、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコール、およびテレフタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの多価エポキシ化合物などが挙げられる。好ましくは、多価カルボン酸無水物、多価イソシアネート、多価アルコールおよび多価エポキシ化合物であり、特に多価カルボン酸無水物、多価イソシアネートおよび多価エポキシ化合物がより好ましい。また、これらは1種または2種以上を併用して使用することができる。 Examples of the polyfunctional compound used here include polyvalent carboxylic acid anhydrides, polyvalent carboxylic acid halides, polyvalent carboxylic acids, polyvalent isocyanates, polyvalent amines, polyhydric alcohols, and polyvalent epoxy compounds. Specifically, 1,2-cyclohexanedicarboxylic acid anhydride, succinic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, pyromellitic acid anhydride, etc. Polycarboxylic acid anhydrides, isophthalic acid chloride, terephthalic acid chloride, polyvalent carboxylic acid halides such as 2,6-naphthalenedicarboxylic acid chloride, succinic acid, adipic acid, sebacic acid, fumaric acid, terephthalic acid, isophthalic acid, 2 , 6-Polycarboxylic acids such as naphthalenedicarboxylic acid, hexamethylene diisocyanate, 4,4 ′ Polyvalent isocyanates such as diphenylmethane diisocyanate, toluene-2,4-diisocyanate, polyvalent amines such as ethylenediamine, hexanediamine, diethylenetriamine, ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, pentaerythritol, etc. Polyhydric alcohol, terephthalic acid diglycidyl ester, naphthalene dicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, pyromellitic acid tetraglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, cyclohexane dimethanol diglycidyl ether , Glycerol triglycidyl ether, trimethylol B pan triglycidyl ether, polyvalent epoxy compounds such as pentaerythritol polyglycidyl ether and the like. Of these, polyvalent carboxylic acid anhydrides, polyvalent isocyanates, polyhydric alcohols and polyvalent epoxy compounds are preferred, and polyvalent carboxylic acid anhydrides, polyvalent isocyanates and polyvalent epoxy compounds are particularly preferred. Moreover, these can be used combining 1 type (s) or 2 or more types.
 多官能性化合物の混合量については、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.01重量部以上、20重量部以下が好ましく、さらに0.1重量部以上、10重量部以下であることがより好ましい。多官能性化合物の添加量が上記好ましい範囲であると、共有結合が生じる効果を十分に発揮できる。 The mixing amount of the polyfunctional compound is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.1 parts by weight, with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. More preferably, it is 10 parts by weight or less. When the addition amount of the polyfunctional compound is within the above preferable range, the effect of causing a covalent bond can be sufficiently exhibited.
 さらに、多官能性化合物を用いる際には、ポリ-L-乳酸およびポリ-D-乳酸と多官能性化合物の反応を促進させるために、反応触媒を添加してもよい。反応触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、水素化ホウ素リチウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、ビスフェノールAの二ナトリウム塩、同二カリウム塩、同二リチウム塩、フェノールのナトリウム塩、同カリウム塩、同リチウム塩、同セシウム塩などのアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウムなどのアルカリ土類金属化合物、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2-(ジメチルアミノメチル)フェノール、ジメチルアニリン、ピリジン、ピコリン、1,8-ジアザビシクロ(5,4,0)ウンデセン-7などの3級アミン、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-エチル-4-メチルイミダゾール、4-フェニル-2-メチルイミダゾールなどのイミダゾール化合物、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリプロピルベンジルアンモニウムクロライド、N-メチルピリジニウムクロライドなどの第4級アンモニウム塩、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン化合物、テトラメチルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、トリフェニルベンジルホスホニウムブロマイドなどのホスホニウム塩、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(p-ヒドロキシ)フェニルホスフェート、トリ(p-メトキシ)フェニルホスフェートなどのリン酸エステル、シュウ酸、p-トルエンスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸などの有機酸、および三フッ化ホウ素、四塩化アルミニウム、四塩化チタン、四塩化錫などのルイス酸などが挙げられ、これらは一種または二種以上を併用して使用することができる。 Furthermore, when a polyfunctional compound is used, a reaction catalyst may be added in order to promote the reaction between poly-L-lactic acid and poly-D-lactic acid and the polyfunctional compound. Examples of the reaction catalyst include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, stearin. Sodium phosphate, potassium stearate, lithium stearate, sodium borohydride, lithium borohydride, sodium phenyl borohydride, sodium benzoate, potassium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, Dilithium hydrogen phosphate, disodium salt of bisphenol A, dipotassium salt, dilithium salt, phenol sodium salt, potassium salt, lithium salt, cesium salt and other alkali metal compounds, calcium hydroxide, water Oxidation Alkaline earths such as lithium, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, magnesium stearate, strontium stearate Metal compounds, triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylaminoethanol, triethylenediamine, dimethylphenylamine, dimethylbenzylamine, 2- (dimethylaminomethyl) phenol, dimethylaniline, pyridine, picoline , Tertiary amines such as 1,8-diazabicyclo (5,4,0) undecene-7, 2-methylimidazole, 2-ethyl Imidazole compounds such as ruimidazole, 2-isopropylimidazole, 2-ethyl-4-methylimidazole, 4-phenyl-2-methylimidazole, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium bromide, trimethylbenzylammonium chloride, triethyl Quaternary ammonium salts such as benzylammonium chloride, tripropylbenzylammonium chloride, N-methylpyridinium chloride, phosphine compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, tetramethylphosphonium bromide, tetrabutylphosphonium bromide, Tetraphenylphosphonium bromide, Eth Phosphonium salts such as rutriphenylphosphonium bromide, triphenylbenzylphosphonium bromide, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl Phosphate esters such as phosphate, octyl diphenyl phosphate, tri (p-hydroxy) phenyl phosphate, tri (p-methoxy) phenyl phosphate, oxalic acid, p-toluenesulfonic acid, dinonylnaphthalenedisulfonic acid, dodecylbenzenesulfonic acid, etc. Organic acids and Lewis acids such as boron trifluoride, aluminum tetrachloride, titanium tetrachloride, tin tetrachloride Etc. are exemplified, and these may be used in combination of one or two or more.
 触媒の添加量は、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.001重量部以上、1重量部以下が好ましい。触媒量が上記好ましい範囲であると、反応促進効果が十分であり、一方、最終的に得られるポリ乳酸ブロック共重合体の分子量が大きくなる傾向である。 The amount of the catalyst added is preferably 0.001 part by weight or more and 1 part by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. When the catalyst amount is in the above preferred range, the reaction promoting effect is sufficient, while the molecular weight of the finally obtained polylactic acid block copolymer tends to increase.
 ポリ-L-乳酸、ポリ-D-乳酸を多官能性化合物と反応する方法としては特に限定されるものではなく、例えばポリ-L-乳酸およびポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で溶融混練する方法が挙げられる。 The method for reacting poly-L-lactic acid or poly-D-lactic acid with a polyfunctional compound is not particularly limited. For example, of poly-L-lactic acid and poly-D-lactic acid, the one having the higher melting point. Examples of the method include melt kneading at a temperature higher than the melting end temperature of the components.
 融解終了温度以上で溶融混練する方法としては、ポリ-L-乳酸とポリ-D-乳酸とを回分法もしくは連続法で混合する方法が挙げられ、いずれの方法で混合してもよく、混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。 Examples of the method of melt-kneading at a temperature higher than the melting end temperature include a method of mixing poly-L-lactic acid and poly-D-lactic acid by a batch method or a continuous method. Examples include a single-screw extruder, a twin-screw extruder, a plastmill, a kneader, and a stirred tank reactor equipped with a decompression device. In terms of uniform and sufficient kneading, a single-screw extruder or a twin-screw extruder should be used. Is preferred.
 溶融混練する温度条件については、ポリ-L-乳酸およびポリ-D-乳酸のうち、融点の高い方の成分の融解終了温度以上で行うことが好ましい。好ましくは140℃~250℃の範囲であり、さらに好ましくは160℃~230℃であり、特に好ましくは180℃~210℃である。混合温度が上記好ましい範囲であると、流動性が低下しすぎず、一方、混合物の分子量低下が起きにくい。 Regarding the temperature condition for melting and kneading, it is preferable to carry out at a temperature higher than the melting end temperature of the component having a higher melting point among poly-L-lactic acid and poly-D-lactic acid. The range is preferably 140 ° C to 250 ° C, more preferably 160 ° C to 230 ° C, and particularly preferably 180 ° C to 210 ° C. When the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
 溶融混練する時間条件については、0.1分~30分の範囲が好ましく、0.3分~20分がより好ましく、0.5分~10分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ-L-乳酸とポリ-D-乳酸との混合が均一となり、一方、混合により熱分解を生じにくい。 The time condition for melt kneading is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes. When the mixing time is within the above preferable range, the mixing of poly-L-lactic acid and poly-D-lactic acid becomes uniform, while thermal decomposition is hardly caused by mixing.
 溶融混練する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。 The pressure condition for melt kneading is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
 混合するL-乳酸単位からなるポリ-L-乳酸と、D-乳酸単位からなるポリ-D-乳酸との混合重量比は、90:10~10:90であることが好ましく、80:20~20:80であることがさらに好ましい。特に好ましくは75:25~60:40あるいは40:60~25:75である。L-乳酸単位からなるポリ-L-乳酸の重量比が上記好ましい範囲であると、ポリ乳酸ステレオコンプレックスを形成しやすく、その結果、最終的に得られるポリ乳酸ブロック共重合体の融点の上昇が十分に大きくなる。 The mixing weight ratio of poly-L-lactic acid composed of L-lactic acid units and poly-D-lactic acid composed of D-lactic acid units is preferably from 90:10 to 10:90, and from 80:20 to More preferably, it is 20:80. Particularly preferred is 75:25 to 60:40 or 40:60 to 25:75. When the weight ratio of poly-L-lactic acid composed of L-lactic acid units is within the above preferred range, a polylactic acid stereocomplex is easily formed, and as a result, the melting point of the polylactic acid block copolymer finally obtained is increased. Become big enough.
 多官能性化合物をポリ-L-乳酸とポリ-D-乳酸と混合して得られるポリ乳酸ブロック共重合体は、多官能性化合物によりポリ-L-乳酸とポリ-D-乳酸とが共有結合されているため高分子量体であるが、混合した後に上述した方法にて固相重合することも可能である。
<1分子に複数の反応基を有する重合体>
 本発明において、1分子に複数の反応基を有する重合体とは、ポリ乳酸樹脂組成物のカルボキシル基やヒドロキシル基末端に対して付加反応するような反応基を有する重合体であり、この重合体を本発明のポリ乳酸樹脂組成物に含むことにより、ポリ乳酸樹脂組成物の粘度が向上し、その結果、成形加工性、機械物性、耐久性、加熱時滞留安定性が向上する。
A polylactic acid block copolymer obtained by mixing a polyfunctional compound with poly-L-lactic acid and poly-D-lactic acid is a polyfunctional compound in which poly-L-lactic acid and poly-D-lactic acid are covalently bonded. Therefore, it is possible to carry out solid phase polymerization by the method described above after mixing.
<Polymer having a plurality of reactive groups in one molecule>
In the present invention, the polymer having a plurality of reactive groups per molecule is a polymer having a reactive group that undergoes an addition reaction with respect to the carboxyl group or hydroxyl group terminal of the polylactic acid resin composition. In the polylactic acid resin composition of the present invention, the viscosity of the polylactic acid resin composition is improved, and as a result, molding processability, mechanical properties, durability, and stability during heating are improved.
 本発明において1分子に複数の反応基を有する重合体は、上記ポリ乳酸樹脂組成物に含む他に、ポリ乳酸ブロック共重合体を作製する際に含んでいても構わない。ポリ乳酸ブロック共重合体を作製する過程で、1分子に複数の反応基を有する重合体を添加する順序は特に制限はなく、例えばポリ-L-乳酸とポリ-D-乳酸を混合する際に添加してもよいし、ポリ-L-乳酸とポリ-D-乳酸を混合した後に添加してもよい。また、混合するポリ-L-乳酸またはポリ-D-乳酸に対してあらかじめ1分子に複数の反応基を有する重合体を含んでいてもよい。本発明のポリ乳酸樹脂組成物中、1分子に複数の反応基を有する重合体の含有量については後述する。 In the present invention, a polymer having a plurality of reactive groups per molecule may be included when preparing a polylactic acid block copolymer in addition to the above-mentioned polylactic acid resin composition. There is no particular limitation on the order of adding a polymer having a plurality of reactive groups per molecule in the process of producing a polylactic acid block copolymer. For example, when mixing poly-L-lactic acid and poly-D-lactic acid. It may be added, or may be added after mixing poly-L-lactic acid and poly-D-lactic acid. In addition, a polymer having a plurality of reactive groups per molecule may be included in advance with respect to poly-L-lactic acid or poly-D-lactic acid to be mixed. In the polylactic acid resin composition of the present invention, the content of the polymer having a plurality of reactive groups per molecule will be described later.
 ここで、1分子に複数の反応基を有する重合体を構成する重合体の種類としては、、1分子に複数の反応基を有する重合体を含むポリ乳酸樹脂組成物の成形性を考慮すると、熱可塑性樹脂を基本構造とし、該重合体の重量平均分子量(Mw)は1,000~15,000である。この範囲の重量平均分子量の重合体を用いることで、ポリ乳酸樹脂組成物中での相溶性を高くすることができる。さらに該重合体の重量平均分子量(Mw)は2,000~10,000であればポリ乳酸樹脂組成物中での相溶性がより高くなり、ポリ乳酸樹脂組成物として成形加工性、機械物性、耐久性、加熱時滞留安定性が向上する。ここでいう重量平均分子量(Mw)とは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。 Here, as the type of polymer constituting a polymer having a plurality of reactive groups in one molecule, considering the moldability of a polylactic acid resin composition containing a polymer having a plurality of reactive groups in one molecule, The basic structure is a thermoplastic resin, and the weight average molecular weight (Mw) of the polymer is 1,000 to 15,000. By using a polymer having a weight average molecular weight within this range, the compatibility in the polylactic acid resin composition can be increased. Furthermore, if the weight average molecular weight (Mw) of the polymer is 2,000 to 10,000, the compatibility in the polylactic acid resin composition is higher, and the polylactic acid resin composition has molding processability, mechanical properties, Durability and stability during heating are improved. The weight average molecular weight (Mw) here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
 また、付加反応するような反応基の具体例としては、カルボジイミド基、エポキシ基、オキサゾリン基、オキサジン基、アジリジン基、イソシアネート基などが挙げられ、この中でも反応性の観点からエポキシ基が好ましい。1分子に複数の反応基を有する重合体として1分子に含まれる反応基の数は、2~30個含有することが好ましく、より好ましくは3~20個、更に好ましくは4~10個である。 Specific examples of the reactive group that undergoes an addition reaction include a carbodiimide group, an epoxy group, an oxazoline group, an oxazine group, an aziridine group, and an isocyanate group. Among these, an epoxy group is preferable from the viewpoint of reactivity. The number of reactive groups contained in one molecule as a polymer having a plurality of reactive groups per molecule is preferably 2-30, more preferably 3-20, and even more preferably 4-10. .
 本発明において、1分子に複数の反応基を有する重合体としてアクリル樹脂系反応性化合物を用いる場合は、アクリル樹脂系反応性化合物がエポキシ基含有アクリル系モノマーおよびスチレン系モノマーの混合物の重合体、あるいは、エポキシ基含有アクリル系モノマー、スチレン系モノマーおよびその他のビニル系モノマーの3種混合物の重合体であることが好ましい。このアクリル樹脂系反応性化合物を本発明のポリ乳酸樹脂組成物に含むことにより、ポリ乳酸樹脂組成物の粘度が向上し、その結果、成形加工性、機械物性、耐久性、加熱時滞留安定性が向上する。 In the present invention, when an acrylic resin reactive compound is used as a polymer having a plurality of reactive groups in one molecule, the acrylic resin reactive compound is a polymer of a mixture of an epoxy group-containing acrylic monomer and a styrene monomer, Or it is preferable that it is a polymer of 3 types of mixtures of an epoxy-group containing acrylic monomer, a styrene monomer, and another vinyl monomer. By including this acrylic resin-based reactive compound in the polylactic acid resin composition of the present invention, the viscosity of the polylactic acid resin composition is improved. As a result, molding processability, mechanical properties, durability, and stability during heating are stabilized. Will improve.
 ここで、アクリル樹脂系反応性化合物を構成するエポキシ基含有アクリルモノマーの具体例としては、(メタ)アクリル酸グリシジル、シクロヘキセンオキシド構造を有する(メタ)アクリル酸エステル、(メタ)アクリル酸グリシジルエーテルが挙げられるが、これらの中では、ラジカル重合性の点でアクリル酸グリシジルが好ましく用いられる。これらは、単独ないし2種以上で用いることができる。 Here, specific examples of the epoxy group-containing acrylic monomer constituting the acrylic resin-based reactive compound include (meth) acrylic acid glycidyl, cyclohexene oxide structure (meth) acrylic acid ester, and (meth) acrylic acid glycidyl ether. Among these, glycidyl acrylate is preferably used in terms of radical polymerizability. These can be used alone or in combination of two or more.
 アクリル樹脂系反応性化合物を構成するスチレン系モノマーの具体例としては、スチレン、α-メチルスチレン、ビニルトルエン、p-メチルスチレン、t-ブチルスチレン、o-クロロスチレン、ビニルピリジン等が挙げられるが、これらの中では、ポリ乳酸ブロック共重合体との親和性の点で、スチレン、α-メチルスチレンの1種以上が好ましく用いられる。 Specific examples of the styrene monomer constituting the acrylic resin reactive compound include styrene, α-methyl styrene, vinyl toluene, p-methyl styrene, t-butyl styrene, o-chlorostyrene, vinyl pyridine and the like. Of these, one or more of styrene and α-methylstyrene are preferably used from the viewpoint of affinity with the polylactic acid block copolymer.
 アクリル樹脂系反応性化合物を構成するその他のビニル系モノマーの具体例としては、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸ヒドロキシルエチル、(メタ)アクリル酸ヒドロキシプロピル、ポリエチレングリコールやポリプロピレングリコールの(メタ)アクリル酸エステル、(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリロニトリル、N,N-ジアルキル(メタ)アクリルアミド、α-ヒドロキシメチルアクリル酸エステル、アクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノエチルなどのアミノ基を有するアクリル系ビニル単位を形成する原料モノマーなどが挙げられ、中でも、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリロニトリルが好ましく、さらに(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリロニトリルが使用される。また、(メタ)アクリルアミド、(メタ)アクリルジアルキルアミド、酢酸ビニル等のビニルエステル類、ビニルエーテル類、(メタ)アリルエーテル類の芳香族系ビニル系単量体、エチレン、プロピレン等のα オレフィンモノマーも使用可能である。これらは、単独ないし二種以上を適宜選択して用いることができる。 Specific examples of other vinyl monomers constituting the acrylic resin reactive compound include (meth) acrylic acid, (meth) methyl acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) Butyl acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, lauryl (meth) acrylate, Stearyl (meth) acrylate, hydroxylethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylate ester of polyethylene glycol or polypropylene glycol, trimethoxysilylpropyl (meth) acrylate, (meth) acrylonitrile , N, N-dia Examples include raw material monomers for forming acrylic vinyl units having amino groups such as kill (meth) acrylamide, α-hydroxymethyl acrylate ester, dimethylaminoethyl acrylate, and dimethylaminoethyl methacrylate. Acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, (meth) Preferred are 2-ethylhexyl acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and (meth) acrylonitrile. Further, (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, (meth) ) Butyl acrylate, (meth) acrylic The acid 2-ethylhexyl, (meth) acrylonitrile is used. Also, (meth) acrylamide, (meth) acrylic dialkylamide, vinyl esters such as vinyl acetate, vinyl ethers, aromatic vinyl monomers such as (meth) allyl ethers, and α-olefin monomers such as ethylene and propylene It can be used. These can be used alone or in combination of two or more.
 本発明において、アクリル樹脂系反応性化合物は1分子当たりの平均エポキシ基を2~30個含有することが好ましく、より好ましくは3~20個、更に好ましくは4~10個である。平均エポキシ基の数がこの好ましい範囲であると、ポリ乳酸樹脂組成物に対する増粘効果に優れ、成形加工性、機械物性、耐久性、加熱時滞留安定性が十分に向上する一方、過剰なエポキシ基がポリ乳酸樹脂組成物のカルボキシル基やヒドロキシル基と過度の架橋反応を起こさず、成形加工性が損なわれない。 In the present invention, the acrylic resin-based reactive compound preferably contains 2 to 30 average epoxy groups per molecule, more preferably 3 to 20, and still more preferably 4 to 10. When the average number of epoxy groups is within this preferred range, the polylactic acid resin composition has an excellent thickening effect, and the moldability, mechanical properties, durability, and stability during heating are sufficiently improved, while excess epoxy is used. The group does not cause an excessive crosslinking reaction with the carboxyl group or hydroxyl group of the polylactic acid resin composition, and the moldability is not impaired.
 本発明において、エポキシ基を含有するアクリル樹脂系反応性化合物のエポキシ当量は、反応性および成形性の観点から、50~800g/molが好ましく、より好ましくは100~700g/mol、最も好ましくは150~600g/molである。ここで、エポキシ当量およびカルボジイミド等量とは、1当量のエポキシ基を含有する重合体のグラム数および1当量のカルボジイミド基を含有する重合体のグラム数を表す。 In the present invention, the epoxy equivalent of the acrylic resin-based reactive compound containing an epoxy group is preferably 50 to 800 g / mol, more preferably 100 to 700 g / mol, and most preferably 150 from the viewpoint of reactivity and moldability. ~ 600 g / mol. Here, the epoxy equivalent and the carbodiimide equivalent represent the gram number of a polymer containing 1 equivalent of an epoxy group and the gram number of a polymer containing 1 equivalent of a carbodiimide group.
 また、エポキシ基を含有するアクリル樹脂系反応性化合物の重量平均分子量(Mw)は、反応性と樹脂との相溶性の観点から、1,000~15,000が好ましく、より好ましくは、2,000~10,000である。ここでいう重量平均分子量(Mw)とは、溶媒としてヘキサフルオロイソプロパノールを用いたゲルパーミエーションクロマトグラフィー(GPC)で測定したポリメタクリル酸メチル(PMMA)換算の重量平均分子量である。 The weight average molecular weight (Mw) of the acrylic resin-based reactive compound containing an epoxy group is preferably 1,000 to 15,000, more preferably 2, from the viewpoint of reactivity and compatibility with the resin. 000 to 10,000. The weight average molecular weight (Mw) here is a weight average molecular weight in terms of polymethyl methacrylate (PMMA) measured by gel permeation chromatography (GPC) using hexafluoroisopropanol as a solvent.
 本発明において、アクリル樹脂系反応性化合物は公知の技術により製造し使用することが可能であるが、市販品を使用することも可能であり、市販品の具体例としては、住友化学(株)製“ボンドファースト”(登録商標)シリーズ、日油(株)製“マープルーフ”(登録商標)シリーズ、東亞合成(株)製“RESEDA”(登録商標)シリーズおよび“ARUFON”(登録商標)シリーズ、BASFジャパン(株)製“JONCRYL”(登録商標)シリーズなどが好適に使用できるが、反応性の観点から東亞合成(株)製“ARUFON”(登録商標)シリーズおよびBASFジャパン(株)製“JONCRYL”(登録商標)シリーズがより好適に使用できる。
<ポリ乳酸樹脂組成物>
 本発明のポリ乳酸樹脂組成物は、L-乳酸を主成分とするポリ-L-乳酸セグメントとD-乳酸を主成分とするポリ-D-乳酸セグメントから構成されるポリ乳酸ブロック共重合体100重量部に対して、1分子に複数の反応基を有する重合体を0.05~2重量部を含む。好ましくは0.1~1.5重量部であり、より好ましくは0.3~1.0重量部である。1分子に複数の反応基を有する重合体が好ましい範囲内でポリ乳酸樹脂中に含有することで、ポリ乳酸樹脂組成物の粘度が向上し、その結果、成形加工性、機械物性、耐久性、加熱時滞留安定性が向上する。また、粘度上昇に伴うゲル化も生じない。
In the present invention, the acrylic resin-based reactive compound can be produced and used by a known technique, but a commercially available product can also be used. As a specific example of the commercially available product, Sumitomo Chemical Co., Ltd. "Bond First" (registered trademark) series, "Marproof" (registered trademark) series manufactured by NOF Corporation, "RESEDA" (registered trademark) series and "ARUFON" (registered trademark) series manufactured by Toagosei Co., Ltd. “JONCRYL” (registered trademark) series manufactured by BASF Japan Ltd. can be used preferably, but from the viewpoint of reactivity, “ARUFON” (registered trademark) series manufactured by Toagosei Co., Ltd. and BASF Japan Ltd. “ The JONCRYL "(registered trademark) series can be used more suitably.
<Polylactic acid resin composition>
The polylactic acid resin composition of the present invention comprises a polylactic acid block copolymer 100 comprising a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component. 0.05 to 2 parts by weight of a polymer having a plurality of reactive groups per molecule is contained with respect to parts by weight. The amount is preferably 0.1 to 1.5 parts by weight, more preferably 0.3 to 1.0 parts by weight. By containing a polymer having a plurality of reactive groups in one molecule in the polylactic acid resin within a preferable range, the viscosity of the polylactic acid resin composition is improved. As a result, molding processability, mechanical properties, durability, Stability during heating is improved. Moreover, gelation accompanying the increase in viscosity does not occur.
 本発明で得られるポリ乳酸樹脂組成物は、耐熱性の観点からステレオコンプレックス形成率(Sc)が80~100%の範囲であることが好ましい。さらに好ましくは85~100%の範囲であり、90~100%であることが特に好ましい。ここで、ステレオコンプレックス形成率とは、ポリ乳酸樹脂組成物中の全結晶におけるステレオコンプレックス結晶の占める割合である。具体的には示差走査型熱量計(DSC)で昇温速度20℃/minで30℃から250℃まで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量をΔHl、ステレオコンプレックス結晶の結晶融解に基づく熱量をΔHhとすると下記式(8)で算出することができる。 The polylactic acid resin composition obtained in the present invention preferably has a stereocomplex formation rate (Sc) in the range of 80 to 100% from the viewpoint of heat resistance. More preferably, it is in the range of 85 to 100%, and particularly preferably 90 to 100%. Here, the stereocomplex formation rate is the ratio of the stereocomplex crystals in all the crystals in the polylactic acid resin composition. Specifically, the crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when the temperature is increased from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min with a differential scanning calorimeter (DSC). It is possible to calculate by the following formula (8), where ΔH1 is the amount of heat based on and ΔHh is the amount of heat based on crystal melting of the stereocomplex crystal.
 Sc=ΔHh/(ΔHl+ΔHh)×100   (8)
 本発明において、ポリ乳酸樹脂組成物は成形性および耐熱性に優れるという点で、降温結晶化温度(Tc)が130℃以上であることが好ましい。ここで、成形体の降温結晶化温度(Tc)とは、示差走査熱量計(DSC)により昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定したポリ乳酸結晶由来の結晶化温度である。結晶化温度(Tc)は、特に限定されるものではないが、耐熱性および透明性の観点から、130℃以上が好ましく、132℃以上がより好ましく、135℃以上が特に好ましい。
Sc = ΔHh / (ΔHl + ΔHh) × 100 (8)
In this invention, it is preferable that the temperature-falling crystallization temperature (Tc) is 130 degreeC or more at the point that a polylactic acid resin composition is excellent in a moldability and heat resistance. Here, the temperature drop crystallization temperature (Tc) of the compact is a constant temperature state at 250 ° C. for 3 minutes after being heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min by a differential scanning calorimeter (DSC). Is a crystallization temperature derived from polylactic acid crystals measured when the temperature is lowered at a cooling rate of 20 ° C./min. The crystallization temperature (Tc) is not particularly limited, but is preferably 130 ° C. or higher, more preferably 132 ° C. or higher, and particularly preferably 135 ° C. or higher from the viewpoint of heat resistance and transparency.
 さらに本発明のポリ乳酸樹脂組成物は、DSC測定において、ポリ乳酸樹脂組成物を250℃まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の結晶化熱量が10J/g以上である。結晶化特性、成形サイクル、成形体の透明性の観点から、10J/g以上であることが好ましく、より好ましくは20J/g以上であり、特に好ましくは40J/g以上である。 Furthermore, in the polylactic acid resin composition of the present invention, the amount of crystallization when the polylactic acid resin composition is heated to 250 ° C. and kept constant for 3 minutes and then cooled at a cooling rate of 20 ° C./min in DSC measurement. Is 10 J / g or more. From the viewpoint of crystallization characteristics, molding cycle, and transparency of the molded body, it is preferably 10 J / g or more, more preferably 20 J / g or more, and particularly preferably 40 J / g or more.
 このように本発明のポリ乳酸樹脂組成物は、1分子に複数の反応基を有する重合体を含んだとしても降温結晶化温度は130℃以上で、降温結晶化時の結晶化熱量が10J/g以上と高いことから、械物性、耐久性、加熱時滞留安定性に優れるだけでなく、耐熱性、結晶化特性においても優れた特徴を有する。 Thus, even if the polylactic acid resin composition of the present invention contains a polymer having a plurality of reactive groups in one molecule, the temperature-falling crystallization temperature is 130 ° C. or higher, and the amount of crystallization during temperature-falling crystallization is 10 J / Since it is as high as g or more, it has not only excellent mechanical properties, durability and stability during heating, but also excellent heat resistance and crystallization characteristics.
 本発明のポリ乳酸樹脂組成物の重量平均分子量は、10万以上50万未満であることが、機械物性の点で好ましい。より好ましくは12万以上45万未満であり、13万以上40万未満であることが成形性、機械物性および加熱時滞留安定性の点で特に好ましい。 The weight average molecular weight of the polylactic acid resin composition of the present invention is preferably 100,000 or more and less than 500,000 from the viewpoint of mechanical properties. More preferably, it is 120,000 or more and less than 450,000, and 130,000 or more and less than 400,000 is particularly preferable from the viewpoints of moldability, mechanical properties, and stability during heating.
 また、ポリ乳酸樹脂組成物の分散度は、1.5~4.5の範囲が機械物性の点で好ましい。分散度の範囲が1.8~3.7であることがさらに好ましく、2.0~3.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。 Further, the dispersity of the polylactic acid resin composition is preferably in the range of 1.5 to 4.5 from the viewpoint of mechanical properties. The range of the degree of dispersion is more preferably from 1.8 to 3.7, and particularly preferably from 2.0 to 3.4 from the viewpoint of moldability and mechanical properties. The weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
 本発明のポリ乳酸樹脂組成物は、熱重量測定(TGA)において、ポリ乳酸樹脂組成物を窒素雰囲気下で240℃、30分恒温状態に維持したときの加熱減量が3%以下であることが好ましい。さらに好ましくは2%以下であることが好ましく、特に好ましくは1%未満である。加熱減量が低いと滞留安定性が優れるため好ましい。 In the polylactic acid resin composition of the present invention, in thermogravimetry (TGA), the heat loss when the polylactic acid resin composition is maintained at a constant temperature of 240 ° C. for 30 minutes under a nitrogen atmosphere may be 3% or less. preferable. More preferably, it is preferably 2% or less, particularly preferably less than 1%. A low heating loss is preferred because of excellent residence stability.
 本発明において、ポリ乳酸樹脂組成物の230℃、21.2N荷重条件における10分後のメルトフローレート(MFR10)と20分後のメルトフローレート(MFR20)の比(MFR10/MFR20)が0.5以上2以下の範囲が成形性、機械物性、耐衝撃性、加熱時滞留安定性の点で好ましい。より好ましくは0.7以上1.8以下の範囲であり、更に好ましくは0.85以上1.5以下の範囲である。ここでいうメルトフローレートとは、(株)東洋精機製作所製「メルトインデクサー」を用い、JIS K 7210に従って、190℃、21.2N荷重条件において測定した値のことである。 In the present invention, the ratio (MFR10 / MFR20) of the melt flow rate (MFR10) after 10 minutes to the melt flow rate (MFR20) after 20 minutes under the condition of 230 ° C. and 21.2N load of the polylactic acid resin composition is 0. A range of 5 or more and 2 or less is preferable in terms of moldability, mechanical properties, impact resistance, and stability during heating. More preferably, it is the range of 0.7 or more and 1.8 or less, More preferably, it is the range of 0.85 or more and 1.5 or less. The melt flow rate here is a value measured at 190 ° C. and 21.2 N load conditions according to JIS K 7210 using “Melt Indexer” manufactured by Toyo Seiki Seisakusho.
 本発明のポリ乳酸樹脂組成物の製造方法については、好ましくは押出機やニーダーなどの加熱溶融混練装置を使用することにより、以下の(I)~(III)の3つの方法のいずれかにて製造することができる。 Regarding the method for producing the polylactic acid resin composition of the present invention, it is preferable to use any one of the following three methods (I) to (III) by using a heat-melt kneading apparatus such as an extruder or a kneader. Can be manufactured.
 ポリ乳酸樹脂組成物の製造方法(I)としては、ポリ乳酸ブロック共重合体と1分子に複数の反応基を有する重合体を溶融混練する手法が挙げられる。溶融混練の手法としては回分法もしくは連続法のいずれの混合手法でもよい。混練装置としては例えば、一軸押出機、二軸押出機、プラストミル、ニーダー、および減圧装置付き撹拌槽型反応機が挙げられ、均一かつ十分に混練できる観点においては一軸押出機、二軸押出機を用いることが好ましい。 Examples of the method (I) for producing a polylactic acid resin composition include a method of melt-kneading a polylactic acid block copolymer and a polymer having a plurality of reactive groups in one molecule. As a method of melt kneading, either a batch method or a continuous method may be used. Examples of the kneading apparatus include a single screw extruder, a twin screw extruder, a plast mill, a kneader, and a stirred tank reactor equipped with a pressure reducing device. From the viewpoint of uniform and sufficient kneading, a single screw extruder and a twin screw extruder are used. It is preferable to use it.
 溶融混練する温度条件については、180℃~250℃で行うことが好ましい。より好ましくは200℃~240℃の範囲であり、さらに好ましくは205℃~235℃である。混合温度が上記好ましい範囲であると、流動性が低下しすぎず、一方、混合物の分子量低下が起きにくい。 As for the temperature condition for melt kneading, it is preferable to carry out at 180 ° C to 250 ° C. The range is more preferably 200 ° C. to 240 ° C., and further preferably 205 ° C. to 235 ° C. When the mixing temperature is within the above preferred range, the fluidity does not decrease excessively, while the molecular weight of the mixture does not easily decrease.
 溶融混練する時間条件については、0.1分~30分の範囲が好ましく、0.3分~20分がより好ましく、0.5分~10分の範囲が特に好ましい。混合時間が上記好ましい範囲であると、ポリ乳酸ブロック共重合体と1分子に複数の反応基を有する重合体との混合が均一となり、一方、混合により熱分解を生じにくい。 The time condition for melt kneading is preferably in the range of 0.1 to 30 minutes, more preferably in the range of 0.3 to 20 minutes, and particularly preferably in the range of 0.5 to 10 minutes. When the mixing time is within the above preferable range, the polylactic acid block copolymer and the polymer having a plurality of reactive groups per molecule are uniformly mixed, while thermal decomposition is hardly caused by mixing.
 溶融混練する圧力条件については特に限定されるものではなく、大気雰囲気下または窒素などの不活性気体雰囲気下のいずれの条件でもよい。 The pressure condition for melt kneading is not particularly limited, and may be any condition under an air atmosphere or an inert gas atmosphere such as nitrogen.
 次に、ポリ乳酸樹脂組成物の製造方法(II)としては、あらかじめポリ-L-乳酸とポリ-D-乳酸を混合した後、1分子に複数の反応基を有する重合体を配合し、配合して得られた混合物を混合物の融点より低い温度で固相重合する手法が挙げられる。この方法における溶融混練の手法は上述のポリ乳酸樹脂組成物の製造方法で適用される混合方法でよく、混練装置、混合時の温度条件、時間条件および圧力条件についても上述のポリ乳酸樹脂組成物の製造方法記載と同様である。 Next, as a production method (II) of the polylactic acid resin composition, poly-L-lactic acid and poly-D-lactic acid are mixed in advance, and then a polymer having a plurality of reactive groups per molecule is blended. And a method of subjecting the resulting mixture to solid phase polymerization at a temperature lower than the melting point of the mixture. The method of melt kneading in this method may be a mixing method applied in the above-described method for producing a polylactic acid resin composition, and the above-mentioned polylactic acid resin composition is also used for the kneading apparatus, temperature conditions, time conditions, and pressure conditions during mixing. This is the same as described in the manufacturing method.
 さらに、ポリ乳酸樹脂組成物の製造方法(III)としては、ポリ-L-乳酸、ポリ-D-乳酸および1分子に複数の反応基を有する重合体の3種を一括で混合した後、混合物の融点より低い温度で固相重合する手法が挙げられる。この方法における溶融混練の手法は上述のポリ乳酸樹脂組成物の製造方法で適用される混合方法でよく、混練装置、混合時の温度条件、時間条件および圧力条件についても上述のポリ乳酸樹脂組成物の製造方法記載と同様である。 Furthermore, as a method (III) for producing a polylactic acid resin composition, three types of poly-L-lactic acid, poly-D-lactic acid and a polymer having a plurality of reactive groups in one molecule are mixed together and then mixed. And a method of solid-phase polymerization at a temperature lower than the melting point. The method of melt kneading in this method may be a mixing method applied in the above-described method for producing a polylactic acid resin composition, and the above-mentioned polylactic acid resin composition is also used for the kneading apparatus, temperature conditions, time conditions, and pressure conditions during mixing. This is the same as described in the manufacturing method.
 本発明のポリ乳酸樹脂組成物は、本発明の効果を損なわない範囲で最終的に得られるポリ乳酸樹脂のL-乳酸単位からなるポリ-L-乳酸(L-乳酸単位からなるセグメント)と、D-乳酸単位からなるポリ-D-乳酸(D-乳酸単位からなるセグメント)との交互性を高めるために、多官能性化合物を混合してもよい。 The polylactic acid resin composition of the present invention comprises a poly-L-lactic acid (segment consisting of L-lactic acid units) comprising L-lactic acid units of a polylactic acid resin finally obtained within a range not impairing the effects of the present invention, In order to enhance the alternation with poly-D-lactic acid composed of D-lactic acid units (segments composed of D-lactic acid units), a polyfunctional compound may be mixed.
 ここで使用する多官能性化合物としては、特に限定されるものではなく、多価カルボン酸無水物、多価カルボン酸ハロゲン化物、多価カルボン酸、多価イソシアネート、多価アミン、多価アルコールおよび多価エポキシ化合物などが挙げられ、具体的には、1,2-シクロヘキサンジカルボン酸無水物、コハク酸無水物、フタル酸無水物、トリメリット酸無水物、1,8-ナフタレンジカルボン酸無水物、ピロメリット酸無水物などの多価カルボン酸無水物、イソフタル酸クロリド、テレフタル酸クロリド、2,6-ナフタレンジカルボン酸クロリドなどの多価カルボン酸ハロゲン化物、コハク酸、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸などの多価カルボン酸、ヘキサメチレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、トルエン-2,4-ジイソシアネートなどの多価イソシアネート、エチレンジアミン、ヘキサンジアミン、ジエチレントリアミンなどの多価アミン、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトールなどの多価アルコール、およびテレフタル酸ジグリシジルエステル、ナフタレンジカルボン酸ジグリシジルエステル、トリメリット酸トリグリシジルエステル、ピロメリット酸テトラグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの多価エポキシ化合物などが挙げられる。好ましくは、多価カルボン酸無水物、多価イソシアネート、多価アルコールおよび多価エポキシ化合物であり、特に多価カルボン酸無水物、多価イソシアネートおよび多価エポキシ化合物がより好ましい。また、これらは一種または二種以上を併用して使用することができる。 The polyfunctional compound used here is not particularly limited, and polyvalent carboxylic acid anhydride, polyvalent carboxylic acid halide, polyvalent carboxylic acid, polyvalent isocyanate, polyvalent amine, polyhydric alcohol and Polyepoxy compounds and the like. Specifically, 1,2-cyclohexanedicarboxylic acid anhydride, succinic acid anhydride, phthalic acid anhydride, trimellitic acid anhydride, 1,8-naphthalenedicarboxylic acid anhydride, Polycarboxylic acid anhydrides such as pyromellitic acid anhydride, polycarboxylic acid halides such as isophthalic acid chloride, terephthalic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, succinic acid, adipic acid, sebacic acid, fumaric acid , Terephthalic acid, isophthalic acid, polyvalent carboxylic acids such as 2,6-naphthalenedicarboxylic acid, hexamethyle Polyisocyanates such as diisocyanate, 4,4'-diphenylmethane diisocyanate, toluene-2,4-diisocyanate, polyvalent amines such as ethylenediamine, hexanediamine, diethylenetriamine, ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, tri Polyhydric alcohols such as methylolpropane and pentaerythritol, terephthalic acid diglycidyl ester, naphthalene dicarboxylic acid diglycidyl ester, trimellitic acid triglycidyl ester, pyromellitic acid tetraglycidyl ester, ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether , Cyclohexanedimethanol diglycidyl ether, glycerol triglyci Ether, trimethylolpropane triglycidyl ether, polyvalent epoxy compounds such as pentaerythritol polyglycidyl ether and the like. Of these, polyvalent carboxylic acid anhydrides, polyvalent isocyanates, polyhydric alcohols and polyvalent epoxy compounds are preferred, and polyvalent carboxylic acid anhydrides, polyvalent isocyanates and polyvalent epoxy compounds are particularly preferred. These may be used alone or in combination of two or more.
 多官能性化合物の混合量については、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.01重量部以上、20重量部以下が好ましく、さらに0.1重量部以上、10重量部以下であることがより好ましい。多官能性化合物の添加量が上記好ましい範囲であると、多官能性化合物を使用する効果を発揮できる。 The mixing amount of the polyfunctional compound is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.1 parts by weight, with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. More preferably, it is 10 parts by weight or less. The effect which uses a polyfunctional compound can be exhibited as the addition amount of a polyfunctional compound is the said preferable range.
 さらに、多官能性化合物を用いる際には、ポリ-L-乳酸およびポリ-D-乳酸と多官能性化合物の反応を促進させるために、反応触媒を添加してもよい。反応触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、水素化ホウ素リチウム、フェニル化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸リチウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素二リチウム、ビスフェノールAの二ナトリウム塩、同二カリウム塩、同二リチウム塩、フェノールのナトリウム塩、同カリウム塩、同リチウム塩、同セシウム塩などのアルカリ金属化合物、水酸化カルシウム、水酸化バリウム、水酸化マグネシウム、水酸化ストロンチウム、炭酸水素カルシウム、炭酸バリウム、炭酸マグネシウム、炭酸ストロンチウム、酢酸カルシウム、酢酸バリウム、酢酸マグネシウム、酢酸ストロンチウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ストロンチウムなどのアルカリ土類金属化合物、トリエチルアミン、トリブチルアミン、トリヘキシルアミン、トリアミルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンジアミン、ジメチルフェニルアミン、ジメチルベンジルアミン、2-(ジメチルアミノメチル)フェノール、ジメチルアニリン、ピリジン、ピコリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンなどの3級アミン、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-エチル-4-メチルイミダゾール、4-フェニル-2-メチルイミダゾールなどのイミダゾール化合物、テトラメチルアンモニウムクロライド、テトラエチルアンモニウムクロライド、テトラブチルアンモニウムブロマイド、トリメチルベンジルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド、トリプロピルベンジルアンモニウムクロライド、N-メチルピリジニウムクロライドなどの第4級アンモニウム塩、トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィンなどのホスフィン化合物、テトラメチルホスホニウムブロマイド、テトラブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、エチルトリフェニルホスホニウムブロマイド、トリフェニルベンジルホスホニウムブロマイドなどのホスホニウム塩、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、トリ(p-ヒドロキシ)フェニルホスフェート、トリ(p-メトキシ)フェニルホスフェートなどのリン酸エステル、シュウ酸、p-トルエンスルホン酸、ジノニルナフタレンジスルホン酸、ドデシルベンゼンスルホン酸などの有機酸、および三フッ化ホウ素、四塩化アルミニウム、四塩化チタン、四塩化錫などのルイス酸などが挙げられ、これらは一種または二種以上を併用して使用することができる。 Furthermore, when a polyfunctional compound is used, a reaction catalyst may be added in order to promote the reaction between poly-L-lactic acid and poly-D-lactic acid and the polyfunctional compound. Examples of the reaction catalyst include sodium hydroxide, potassium hydroxide, lithium hydroxide, cesium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium carbonate, sodium acetate, potassium acetate, lithium acetate, stearin. Sodium phosphate, potassium stearate, lithium stearate, sodium borohydride, lithium borohydride, sodium phenyl borohydride, sodium benzoate, potassium benzoate, lithium benzoate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, Dilithium hydrogen phosphate, disodium salt of bisphenol A, dipotassium salt, dilithium salt, phenol sodium salt, potassium salt, lithium salt, cesium salt and other alkali metal compounds, calcium hydroxide, water Oxidation Alkaline earths such as lithium, magnesium hydroxide, strontium hydroxide, calcium bicarbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium acetate, barium acetate, magnesium acetate, strontium acetate, calcium stearate, magnesium stearate, strontium stearate Metal compounds, triethylamine, tributylamine, trihexylamine, triamylamine, triethanolamine, dimethylaminoethanol, triethylenediamine, dimethylphenylamine, dimethylbenzylamine, 2- (dimethylaminomethyl) phenol, dimethylaniline, pyridine, picoline , Tertiary amines such as 1,8-diazabicyclo [5.4.0] -7-undecene, 2-methylimidazole, 2- Imidazole compounds such as til imidazole, 2-isopropyl imidazole, 2-ethyl-4-methylimidazole, 4-phenyl-2-methylimidazole, tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium bromide, trimethylbenzylammonium chloride, triethyl Quaternary ammonium salts such as benzylammonium chloride, tripropylbenzylammonium chloride, N-methylpyridinium chloride, phosphine compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, trioctylphosphine, tetramethylphosphonium bromide, tetrabutylphosphonium bromide, Tetraphenylphosphonium bromide, Phosphonium salts such as tritylphenylphosphonium bromide, triphenylbenzylphosphonium bromide, trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl Phosphate esters such as diphenyl phosphate, octyl diphenyl phosphate, tri (p-hydroxy) phenyl phosphate, tri (p-methoxy) phenyl phosphate, oxalic acid, p-toluenesulfonic acid, dinonylnaphthalenedisulfonic acid, dodecylbenzenesulfonic acid, etc. Organic acids and Lewis such as boron trifluoride, aluminum tetrachloride, titanium tetrachloride, tin tetrachloride And the like, which can be used in combination of one or more kinds thereof.
 反応触媒の添加量は、ポリ-L-乳酸およびポリ-D-乳酸の合計100重量部に対して、0.001重量部以上、0.5重量部以下が好ましい。触媒量が上記好ましい範囲であると、重合時間の短縮効果が得られ、一方、最終的に得られるポリ乳酸樹脂の分子量も大きくできる。 The amount of the reaction catalyst added is preferably 0.001 part by weight or more and 0.5 part by weight or less with respect to 100 parts by weight of the total of poly-L-lactic acid and poly-D-lactic acid. When the catalyst amount is in the above preferred range, an effect of shortening the polymerization time can be obtained, while the molecular weight of the finally obtained polylactic acid resin can be increased.
 本発明のポリ乳酸樹脂組成物には、本発明の目的を損なわない範囲で、通常の添加剤、例えば、触媒失活剤(ヒンダードフェノール系化合物、チオエーテル系化合物、ビタミン系化合物、トリアゾール系化合物、多価アミン系化合物、ヒドラジン誘導体系化合物、リン系化合物などが挙げられ、これらを併用して用いてもよい。中でもリン系化合物を少なくとも1種含むことが好ましく、ホスフェート系化合物、ホスファイト系化合物あるいはリン酸金属塩無機化合物であることがさらに好ましい。 In the polylactic acid resin composition of the present invention, conventional additives such as a catalyst deactivator (hindered phenol compound, thioether compound, vitamin compound, triazole compound) are used as long as the object of the present invention is not impaired. , Polyamine-based compounds, hydrazine derivative-based compounds, phosphorus-based compounds, etc., which may be used in combination, including at least one phosphorous-based compound, phosphate-based compound, phosphite-based More preferably, it is a compound or a metal phosphate inorganic compound.
 リン系化合物からなる触媒失活剤の具体例としては(株)ADEKA製“アデカスタブ”(登録商標)AX-71(ジオフタデミルホスフェート)、PEP-8(ジステアリルペンタエリスリトールジホスファイト)、PEP-36(サイクリックネオペンタテトライルビス(2,6-t-ブチル-4-メチルフェニル)ホスファイト)などのホスファイト系化合物、あるいは、リン酸二水素ナトリウム、リン酸二水素カリウム、リン酸二水素リチウム、リン酸二水素カルシウム、リン酸水素二ナトリウム、リン酸水素二カリウム、リン酸水素カルシウム、亜リン酸水素ナトリウム、亜リン酸カリウム、亜リン酸水素カルシウム、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸カルシウムから選ばれる少なくとも一種のリン酸金属塩無機化合物が挙げられる。この中でもリン酸二水素ナトリウムとリン酸二水素カリウムがより好ましい。 Specific examples of the catalyst deactivator composed of a phosphorus compound include “ADEKA STAB” (registered trademark) AX-71 (dioftademil phosphate), PEP-8 (distearyl pentaerythritol diphosphite) manufactured by ADEKA, PEP -36 (cyclic neopentatetraylbis (2,6-t-butyl-4-methylphenyl) phosphite) or the like, or sodium dihydrogen phosphate, potassium dihydrogen phosphate, phosphoric acid Lithium dihydrogen, calcium dihydrogen phosphate, disodium hydrogen phosphate, dipotassium hydrogen phosphate, calcium hydrogen phosphate, sodium hydrogen phosphite, potassium phosphite, calcium hydrogen phosphite, sodium hypophosphite, At least one gold phosphate selected from potassium hypophosphite and calcium hypophosphite Salts inorganic compounds. Among these, sodium dihydrogen phosphate and potassium dihydrogen phosphate are more preferable.
 通常の添加剤として可塑剤を添加する場合は、例えば、ポリアルキレングリコール系可塑剤、ポリエステル系可塑剤、多価カルボン酸エステル系可塑剤、グリセリン系可塑剤、リン酸エステル系可塑剤、エポキシ系可塑剤、ステアリン酸アミド、エチレンビスステアリン酸アミドなどの脂肪酸アミド、ペンタエリスリトール、各種ソルビトール、ポリアクリル酸エステル、シリコーンオイルおよびパラフィン類などを挙げることができ、耐ブリードアウト性の観点から、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロックおよび/またはランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、および末端エーテル変性化合物などの末端封鎖化合物などのポリアルキレングリコール系可塑剤、ビス(ブチルジグリコール)アジペート、メチルジグリコールブチルジグリコールアジペート、ベンジルメチルジグリコールアジペート、アセチルトリブチルサイトレート、メトキシカルボニルメチルジブチルサイトレート、エトキシカルボニルメチルジブチルサイトレートなどの多価カルボン酸エステル系可塑剤、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレートおよびグリセリンモノアセトモノモンタネートなどのグリセリン系可塑剤など)、耐衝撃性改良材(天然ゴム、低密度ポリエチレンや高密度ポリエチレンなどのポリエチレン、ポリプロピレン、耐衝撃改質ポリスチレン、ポリブタジエン、スチレン/ブタジエン共重合体、エチレン/プロピレン共重合体、エチレン/メチルアクリレート共重合体、エチレン/エチルアクリレート共重合体、エチレン/酢酸ビニル共重合体、エチレン/グリシジルメタクリレート共重合体、ポリエチレンテレフタレート/ポリ(テトラメチレンオキシド)グリコールブロック共重合体、ポリエチレンテレフタレート/イソフタレート/ポリ(テトラメチレンオキシド)グリコールブロック共重合体などのポリエステルエラストマー、MBSなどのブタジエン系コアシェルエラストマーまたはアクリル系のコアシェルエラストマーが挙げられ、これらは一種又は二種以上使用することができる。ブタジエン系またはアクリル系のコアシェルエラストマーとしては、三菱レイヨン(株)製“メタブレン”(登録商標)、(株)カネカ製“カネエース”(登録商標)、ローム&ハース・ジャパン(株)製“パラロイド”(登録商標)など)、充填剤(繊維状、板状、粉末状、粒状などのいずれの充填剤も使用することができる。具体的には、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカーなどの繊維状、ウィスカー状充填剤、カオリン、シリカ、炭酸カルシウム、ガラスビーズ、ガラスフレーク、ガラスマイクロバルーン、二硫化モリブデン、ワラステナイト、モンモリロナイト、酸化チタン、酸化亜鉛、ポリリン酸カルシウム、グラファイト、硫酸バリウムなど)、難燃剤(赤リン、ブロム化ポリスチレン、臭素化ポリフェニレンエーテル、臭素化ポリカーボネート、水酸化マグネシウム、メラミンおよびシアヌール酸またはその塩、シリコン化合物など)、紫外線吸収剤(レゾルシノール、サリシレート、ベンゾトリアゾール、ベンゾフェノンなど)、熱安定剤(ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、滑剤、離形剤(モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料(ニグロシンなど)および顔料(硫化カドミウム、フタロシアニンなど)を含む着色剤、着色防止剤(亜リン酸塩、次亜リン酸塩など)、導電剤あるいは着色剤(カーボンブラックなど)、摺動性改良剤(グラファイト、フッ素樹脂など)、帯電防止剤などが挙げられ、一種または二種以上を添加することができる。 When adding a plasticizer as a normal additive, for example, polyalkylene glycol plasticizer, polyester plasticizer, polycarboxylic acid ester plasticizer, glycerin plasticizer, phosphate ester plasticizer, epoxy Examples include plasticizers, fatty acid amides such as stearic acid amide and ethylenebisstearic acid amide, pentaerythritol, various sorbitols, polyacrylic acid esters, silicone oils and paraffins. From the viewpoint of bleed-out resistance, polyethylene glycol , Polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, propylene of bisphenols Polyalkylene glycols such as xoxide addition polymers, tetrahydrofuran addition polymers of bisphenols, or terminal end-capping compounds such as terminal epoxy-modified compounds, terminal ester-modified compounds, and terminal ether-modified compounds, polyalkylene glycol plasticizers, bis ( Butyl diglycol) adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, acetyl tributyl citrate, methoxycarbonylmethyl dibutyl citrate, ethoxycarbonylmethyl dibutyl citrate, etc. Monoacetomonolaurate, glycerol diacetomonolaurate, glycerol monoacetomonostearate, glycerol diacetomonooleate And glycerin plasticizers such as glycerin monoacetomonomontanate), impact modifiers (natural rubber, polyethylene such as low-density polyethylene and high-density polyethylene, polypropylene, impact-modified polystyrene, polybutadiene, styrene / butadiene) Polymer, ethylene / propylene copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, ethylene / glycidyl methacrylate copolymer, polyethylene terephthalate / poly (tetramethylene oxide) ) Glycol block copolymers, polyester elastomers such as polyethylene terephthalate / isophthalate / poly (tetramethylene oxide) glycol block copolymers, butadiene based copolymers such as MBS Examples thereof include an ash elastomer or an acrylic core-shell elastomer, and these may be used alone or in combination of two or more. Examples of butadiene-based or acrylic core-shell elastomers include “Metablene” (registered trademark) manufactured by Mitsubishi Rayon Co., Ltd., “Kaneace” (registered trademark) manufactured by Kaneka Co., Ltd., and “Paralloid” manufactured by Rohm & Haas Japan Co., Ltd. (Registered trademark, etc.), fillers (fibrous, plate-like, powdery, granular, etc.), specifically, glass fiber, PAN-based or pitch-based carbon fiber, Stainless steel fiber, metal fiber such as aluminum fiber and brass fiber, organic fiber such as aromatic polyamide fiber, gypsum fiber, ceramic fiber, asbestos fiber, zirconia fiber, alumina fiber, silica fiber, titanium oxide fiber, silicon carbide fiber, rock wool , Potassium titanate whisker, barium titanate whisker, aluminum borate whisker, nitride nitride Fibrous, whisker-like filler, kaolin, silica, calcium carbonate, glass beads, glass flake, glass microballoon, molybdenum disulfide, wollastonite, montmorillonite, titanium oxide, zinc oxide, calcium polyphosphate, graphite, sulfuric acid Flame retardants (red phosphorus, brominated polystyrene, brominated polyphenylene ether, brominated polycarbonate, magnesium hydroxide, melamine and cyanuric acid or salts thereof, silicon compounds, etc.), UV absorbers (resorcinol, salicylate, benzotriazole) , Benzophenone, etc.), heat stabilizers (such as hindered phenols, hydroquinones, phosphites and their substitutes), lubricants, mold release agents (montanic acid and its salts, esters thereof, Half-esters, stearyl alcohol, stearamide and polyethylene waxes), colorants including dyes (eg nigrosine) and pigments (eg cadmium sulfide, phthalocyanine), anti-coloring agents (eg phosphites, hypophosphites), Examples thereof include a conductive agent or a colorant (carbon black, etc.), a slidability improver (graphite, a fluororesin, etc.), an antistatic agent, and the like, and one kind or two or more kinds can be added.
 本発明で用いるポリ乳酸樹脂組成物は、本発明の目的を損なわない範囲で、上述のポリ乳酸ブロック共重合体以外に、さらにポリ-L-乳酸及び/またはポリ-D-乳酸を含むことができる。 The polylactic acid resin composition used in the present invention may further contain poly-L-lactic acid and / or poly-D-lactic acid in addition to the above-mentioned polylactic acid block copolymer, as long as the object of the present invention is not impaired. it can.
 ここで、ポリ-L-乳酸とは、L-乳酸を主成分とする重合体であり、L-乳酸単位を70モル%以上含有していることが好ましく、90モル%以上含有していることがより好ましく、95モル%以上含有していることがさらに好ましく、98モル%以上含有していることが特に好ましい。 Here, poly-L-lactic acid is a polymer containing L-lactic acid as a main component, preferably containing 70 mol% or more of L-lactic acid units, and containing 90 mol% or more. Is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
 また、ポリ-D-乳酸とは、D-乳酸を主成分とする重合体であり、D-乳酸単位を70モル%以上含有していることが好ましく、90モル%以上含有していることがより好ましく、95モル%以上含有していることがさらに好ましく、98モル%以上含有していることが特に好ましい。 Poly-D-lactic acid is a polymer containing D-lactic acid as a main component, and preferably contains 70 mol% or more of D-lactic acid units, more preferably 90 mol% or more. More preferably, it is more preferably 95 mol% or more, and particularly preferably 98 mol% or more.
 本発明において、ポリ-L-乳酸やポリ-D-乳酸は、得られるポリ乳酸樹脂組成物の性能を損なわない範囲で、他の成分単位を含んでいてもよい。L-乳酸またはD-乳酸単位以外の他の成分単位としては、ポリ乳酸ブロック共重合体を構成するL-乳酸を主成分とするセグメントまたはD-乳酸を主成分とするセグメントに対して含んでいてもよい他の成分単位と同様に、多価カルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどが挙げられる。 In the present invention, poly-L-lactic acid and poly-D-lactic acid may contain other component units as long as the performance of the resulting polylactic acid resin composition is not impaired. Component units other than the L-lactic acid or D-lactic acid unit are included for the segment containing L-lactic acid as the main component or the segment containing D-lactic acid as the main component that constitutes the polylactic acid block copolymer. Examples of other component units that may be used include polycarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones.
 本発明で用いるポリ-L-乳酸またはポリ-D-乳酸の重量平均分子量は、特に限定されるものではないが、10万以上であることが、機械物性の点で好ましい。12万以上であることがさらに好ましく、14万以上であることが成形性および機械物性の点で特に好ましい。また、ポリ-L-乳酸またはポリ-D-乳酸の分散度は、1.5~3.0の範囲が機械物性の点で好ましい。分散度の範囲が1.8~2.7であることがさらに好ましく、2.0~2.4であることが成形性および機械物性の点で特に好ましい。なお、重量平均分子量および分散度とは、溶媒としてヘキサフルオロイソプロパノールまたはクロロホルムを用いたゲルパーミエーションクロマトグラフィー(GPC)測定による標準ポリメチルメタクリレート換算の値である。 The weight average molecular weight of poly-L-lactic acid or poly-D-lactic acid used in the present invention is not particularly limited, but is preferably 100,000 or more from the viewpoint of mechanical properties. 120,000 or more is more preferable, and 140,000 or more is particularly preferable in terms of moldability and mechanical properties. Further, the dispersity of poly-L-lactic acid or poly-D-lactic acid is preferably in the range of 1.5 to 3.0 from the viewpoint of mechanical properties. The range of the degree of dispersion is more preferably 1.8 to 2.7, and 2.0 to 2.4 is particularly preferable in terms of moldability and mechanical properties. The weight average molecular weight and dispersity are values in terms of standard polymethyl methacrylate as measured by gel permeation chromatography (GPC) using hexafluoroisopropanol or chloroform as a solvent.
 上記のポリ乳酸樹脂組成物に対するポリ-L-乳酸および/またはポリ-D-乳酸を混合する順序については特に限定されず、上記ポリ乳酸樹脂組成物に対してポリ-L-乳酸および/またはポリ-D-乳酸を混合してもよいし、あらかじめポリ-L-乳酸および/またはポリ-D-乳酸を混合したところへポリ乳酸ブロック共重合体と1分子に複数の反応基を有する重合体を混合しても構わない。 The order of mixing poly-L-lactic acid and / or poly-D-lactic acid with respect to the polylactic acid resin composition is not particularly limited, and poly-L-lactic acid and / or poly with respect to the polylactic acid resin composition is not limited. -D-lactic acid may be mixed, or poly-L-lactic acid and / or poly-D-lactic acid is mixed in advance to form a polylactic acid block copolymer and a polymer having a plurality of reactive groups in one molecule. You may mix.
 ポリ乳酸樹脂組成物中に含有するポリ-L-乳酸および/またはポリ-D-乳酸の量は、ポリ乳酸樹脂組成物100重量部に対して、10重量部以上900重量部以下が好ましく、さらに30重量部以上400重量部以下が好ましい。ポリ乳酸樹脂組成物に対するポリ-L-乳酸および/またはポリ-D-乳酸が上記好ましい範囲であると、ステレオコンプレックス形成性を高めることができるため好ましい。 The amount of poly-L-lactic acid and / or poly-D-lactic acid contained in the polylactic acid resin composition is preferably 10 parts by weight or more and 900 parts by weight or less with respect to 100 parts by weight of the polylactic acid resin composition. 30 to 400 parts by weight is preferable. When the poly-L-lactic acid and / or poly-D-lactic acid in the polylactic acid resin composition is in the above preferred range, the stereocomplex forming property can be improved, which is preferable.
 また、本発明のポリ乳酸樹脂組成物には、本発明の目的を損なわない範囲で他の熱可塑性樹脂(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、アクリルニトリル・ブタジエン・スチレン共重合体、ポリアミド、ポリカーボネート、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミド、セルロースエステルなど)または熱硬化性樹脂(例えば、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコン樹脂、エポキシ樹脂など)または軟質熱可塑性樹脂(例えば、エチレン/グリシジルメタクリレート共重合体、ポリエステルエラストマー、ポリアミドエラストマー、エチレン/プロピレンターポリマー、エチレン/ブテン-1共重合体など)などの少なくとも一種以上をさらに含有することができる。 Further, the polylactic acid resin composition of the present invention includes other thermoplastic resins (for example, polyethylene, polypropylene, polystyrene, acrylic resin, acrylonitrile / butadiene / styrene copolymer, polyamide, and the like within a range not to impair the purpose of the present invention). , Polycarbonate, polyphenylene sulfide resin, polyether ether ketone resin, polyester, polysulfone, polyphenylene oxide, polyacetal, polyimide, polyetherimide, cellulose ester, etc.) or thermosetting resin (eg, phenol resin, melamine resin, polyester resin, silicone) Resin, epoxy resin, etc.) or soft thermoplastic resin (for example, ethylene / glycidyl methacrylate copolymer, polyester elastomer, polyamide elastomer, ethylene / B pyrene terpolymer, and ethylene / butene-1 copolymer) can further contain at least one or more such.
 本発明でアクリル樹脂を使用する場合は、一般に炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキル単位を主成分とするアクリル樹脂が好ましく挙げられる。また、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルには、炭素数1~4のアルキル基を有する他のアクリル酸アルキルやスチレンなどの芳香族ビニル化合物を共重合してもよい。 In the case of using an acrylic resin in the present invention, an acrylic resin having an alkyl (meth) acrylate unit having an alkyl group having 1 to 4 carbon atoms as a main component is preferably mentioned. In addition, an alkyl (meth) acrylate having an alkyl group having 1 to 4 carbon atoms may be copolymerized with another alkyl acrylate having an alkyl group having 1 to 4 carbon atoms or an aromatic vinyl compound such as styrene. Good.
 上記のアルキル基を有する(メタ)アクリル酸アルキルの例としては、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、メタクリル酸エチル、アクリル酸ブチル、メタクリル酸ブチル、アクリル酸シクロヘキシルおよびメタクリル酸シクロヘキシルなどが挙げられる。本発明でアクリル樹脂を使用する場合には、特にメタクリル酸メチルからなるポリメチルメタクリレートが好ましい。 Examples of the alkyl (meth) acrylate having the above alkyl group include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, butyl methacrylate, cyclohexyl acrylate and cyclohexyl methacrylate. Can be mentioned. When an acrylic resin is used in the present invention, polymethyl methacrylate composed of methyl methacrylate is particularly preferable.
 本発明のポリ乳酸樹脂組成物は、成形体として成形品などに加工する際に、一旦熱溶融させて固化した後も、高融点のポリ乳酸ステレオコンプレックスを形成しやすい特徴を有する。 The polylactic acid resin composition of the present invention has a characteristic that, when it is processed into a molded product as a molded body, it is easy to form a high melting point polylactic acid stereocomplex even after it is once melted by heat and solidified.
 本発明の成形体は、相対結晶化度が90%以上で、厚さ1mmの成形体のヘイズ値が10%以下であることが好ましい。 The molded product of the present invention preferably has a relative crystallinity of 90% or more and a molded product having a thickness of 1 mm has a haze value of 10% or less.
 ここでいう相対結晶化度とは、成形体の結晶融解エンタルピーをΔHm、成形体の昇温時の結晶化エンタルピーをΔHcとすると、下記式(9)で算出することができる。 Here, the relative crystallinity can be calculated by the following formula (9), where ΔHm is the crystal melting enthalpy of the molded body and ΔHc is the crystallization enthalpy at the time of temperature rising of the molded body.
 相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100   (9)
 相対結晶化度は90%以上であることが好ましく、92%以上であることがより好ましく、94%以上であることが特に好ましい。ここで、ΔHcとは、示差走査熱量計(DSC)により昇温速度20℃/分で測定した成形体の結晶化エンタルピーであり、ΔHmとは、DSCにより昇温速度20℃/分で測定した成形体の結晶融解エンタルピーであるが、1回目の測定(1st RUN)で昇温速度20℃/分で30℃から250℃まで昇温した後、降温速度20℃/分で30℃まで冷却し、さらに2回目の測定(2nd RUN)で昇温速度20℃/分で30℃から250℃まで昇温した場合に、2nd RUNにおいて測定される結晶融解エンタルピーであることが好ましい。
Relative crystallinity = [(ΔHm−ΔHc) / ΔHm] × 100 (9)
The relative crystallinity is preferably 90% or more, more preferably 92% or more, and particularly preferably 94% or more. Here, ΔHc is the crystallization enthalpy of the molded body measured by a differential scanning calorimeter (DSC) at a heating rate of 20 ° C./min, and ΔHm is measured by DSC at a heating rate of 20 ° C./min. This is the crystal melting enthalpy of the molded body. After the temperature was increased from 30 ° C. to 250 ° C. at a temperature increase rate of 20 ° C./min in the first measurement (1st RUN), the temperature was cooled to 30 ° C. at a temperature decrease rate of 20 ° C./min. Furthermore, when the temperature is increased from 30 ° C. to 250 ° C. at a rate of temperature increase of 20 ° C./min in the second measurement (2nd RUN), it is preferably the crystal melting enthalpy measured at 2 nd RUN.
 また、ヘイズ値とは、JIS K 7105に従って、厚み1mmの成形体を測定した値であり、透明性の点で、ヘイズ値が10%以下であることが好ましく、7%以下であることがより好ましい。下限は特に限定されないが、0.1%以上あれば、実用的に問題なく使用できる。また、本発明の成形体は、透明性を向上させるために用いられる結晶核剤を含有していなくても、厚み1mm以上でヘイズ値が10%以下とすることができる。 Further, the haze value is a value obtained by measuring a 1 mm-thick molded body in accordance with JIS K 7105. In terms of transparency, the haze value is preferably 10% or less, and more preferably 7% or less. preferable. Although a minimum is not specifically limited, If it is 0.1% or more, it can be used practically without a problem. Moreover, even if the molded object of this invention does not contain the crystal nucleating agent used in order to improve transparency, it can make haze value 10% or less by thickness 1mm or more.
 本発明の成形体の製造方法としては、射出成形、押出成形、ブロー成形、真空成形またはプレス成形など公知の成形方法を挙げることができ、透明性および耐熱性の点で、射出成形、ブロー成形、真空成形およびプレス成形が好ましい。 Examples of the method for producing the molded product of the present invention include known molding methods such as injection molding, extrusion molding, blow molding, vacuum molding, and press molding. In terms of transparency and heat resistance, injection molding and blow molding are possible. Vacuum molding and press molding are preferred.
 本発明の成形体の製造方法として射出成形を行う場合には、透明性および耐熱性の点で、金型温度をポリ乳酸樹脂組成物のガラス転移温度以上および融点以下の温度範囲、好ましくは60℃以上、240℃以下の温度範囲、より好ましくは、70℃以上、220℃以下の温度範囲、さらに好ましくは、80℃以上、200℃以下の温度範囲に設定し、成形サイクル150秒以下、好ましくは90秒以下、より好ましくは60秒以下、さらに好ましくは50秒以下で射出成形してなることが好ましい。 When injection molding is performed as the method for producing a molded article of the present invention, the mold temperature is a temperature range from the glass transition temperature of the polylactic acid resin composition to the melting point and below the melting point, preferably 60 in terms of transparency and heat resistance. Set to a temperature range of from 70 ° C. to 240 ° C., more preferably from 70 ° C. to 220 ° C., more preferably from 80 ° C. to 200 ° C., and a molding cycle of 150 seconds or less, preferably Is preferably 90 seconds or less, more preferably 60 seconds or less, and even more preferably 50 seconds or less.
 本発明の成形体の製造方法としてブロー成形を行う場合には、例えば、ポリ乳酸樹脂組成物を上記の方法で射出成形により有底のチューブ状成形物(パリソン)を成形し、次いでポリ乳酸樹脂組成物のガラス転移点以上およびガラス転移点+80℃以下の温度範囲、好ましくは60℃以上、140℃以下の温度範囲、さらに好ましくは70℃以上、130℃以下の温度範囲に設定したブロー成形用の金型に移動して、延伸ロッドにより延伸しつつ、エアノズルから圧縮空気を供給して成形体を得る方法が挙げられる。 When blow molding is performed as a method for producing a molded article of the present invention, for example, a polylactic acid resin composition is molded into a bottomed tubular product (parison) by injection molding using the above method, and then a polylactic acid resin is formed. For blow molding set to a temperature range of not less than the glass transition point of the composition and a glass transition point of + 80 ° C. or less, preferably 60 ° C. or more and 140 ° C. or less, more preferably 70 ° C. or more and 130 ° C. or less. There is a method of obtaining a molded body by moving to the mold and supplying compressed air from an air nozzle while stretching with a stretching rod.
 本発明の成形体の製造方法として真空成形を行う場合には、透明性および耐熱性の点で、ポリ乳酸樹脂組成物を熱板もしくは熱風などのヒーターで60~150℃、好ましくは65~120℃、より好ましくは70~90℃で加熱を行い、そのシートを金型温度30~150℃、好ましくは40~100℃、より好ましくは50~90℃に設定した金型に密着させると同時に、金型内を減圧することで成形する方法が挙げられる。 When vacuum forming is performed as a method for producing the molded article of the present invention, the polylactic acid resin composition is heated at 60 to 150 ° C., preferably 65 to 120 ° C. with a heater such as a hot plate or hot air, in terms of transparency and heat resistance. At the same time, the sheet is heated at 70 ° C., more preferably 70 to 90 ° C., and the sheet is brought into close contact with the mold set at a mold temperature of 30 to 150 ° C., preferably 40 to 100 ° C., more preferably 50 to 90 ° C. There is a method of molding by depressurizing the inside of the mold.
 本発明の成形体の製造方法としてプレス成形を行う場合には、透明性および耐熱性の点で、ポリ乳酸樹脂組成物を熱板もしくは熱風などのヒーターで60~150℃、好ましくは65~120℃、より好ましくは70~90℃で加熱を行い、そのシートを金型温度30~150℃、好ましくは40~100℃、より好ましくは50~90℃に設定した雄型と雌型からなる金型に密着して加圧を行い、型締めする方法が挙げられる。 When press molding is performed as a method for producing a molded article of the present invention, the polylactic acid resin composition is heated at 60 to 150 ° C., preferably 65 to 120 ° C. with a heater such as a hot plate or hot air, in terms of transparency and heat resistance. A mold comprising a male mold and a female mold, which is heated at 70 ° C., more preferably 70-90 ° C., and the sheet is set at a mold temperature of 30-150 ° C., preferably 40-100 ° C., more preferably 50-90 ° C. There is a method in which pressure is applied in close contact with the mold and the mold is clamped.
 本発明のポリ乳酸樹脂組成物からなる成形体は、延伸処理を施さなくても透明性を有することが特徴であるため、透明性を付与するために延伸処理を行う必要はないが、その他必要に応じて延伸処理を施すことが可能である。延伸処理を行う成形体の形状は、フィルムやシート形状であることが好ましい。また、延伸処理を行う場合、ポリ乳酸ステレオコンプレックスのガラス転移点以上のおよび融点以下の温度範囲、好ましくは60℃以上、170℃以下の温度範囲、より好ましくは、70℃以上、150℃以下の温度範囲で延伸することが好ましい。 Since the molded product made of the polylactic acid resin composition of the present invention is characterized by having transparency without being subjected to stretching treatment, it is not necessary to perform stretching treatment in order to impart transparency, but other necessity It is possible to perform a stretching process according to the above. The shape of the formed body to be stretched is preferably a film or sheet shape. Further, when performing the stretching treatment, the temperature range of the polylactic acid stereocomplex above the glass transition point and below the melting point, preferably 60 ° C. or higher and 170 ° C. or lower, more preferably 70 ° C. or higher and 150 ° C. or lower. It is preferable to stretch in the temperature range.
 本発明のポリ乳酸樹脂組成物やポリ乳酸樹脂組成物を含む成形体は、例えば、フィルム、シート、繊維・布、不織布、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、および他の材料との複合体などとして用いることができ、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、文具、医療用品、自動車用部品、電気・電子部品、光学フィルムまたはその他の用途として有用である。 The polylactic acid resin composition and the molded product containing the polylactic acid resin composition of the present invention include, for example, a film, a sheet, a fiber / cloth, a nonwoven fabric, an injection molded product, an extrusion molded product, a vacuum / pressure molded product, a blow molded product, and Can be used as a composite with other materials, such as agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, stationery, medical supplies, automotive parts, electrical / electronic parts, optical films or other It is useful as an application.
 具体的には、リレーケース、コイルボビン、光ピックアップシャーシ、モーターケース、ノートパソコンハウジングまたは内部部品、CRTディスプレーハウジングまたは内部部品、プリンターハウジングまたは内部部品、携帯電話、モバイルパソコン、ハンドヘルド型モバイルなどの携帯端末ハウジングまたは内部部品、記録媒体(CD、DVD、PD、FDDなど)ドライブのハウジングまたは内部部品、コピー機のハウジングまたは内部部品、ファクシミリのハウジングまたは内部部品、パラボラアンテナなどに代表される電気・電子部品を挙げることができる。更に、VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、ビデオカメラ、プロジェクターなどの映像機器部品、“レーザーディスク(登録商標)”、コンパクトディスク(CD)、CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-R、DVD-RW、DVD-RAM、ブルーレイディスクなどの光記録媒体の基板、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭・事務電気製品部品を挙げることができる。また電子楽器、家庭用ゲーム機、携帯型ゲーム機などのハウジングや内部部品、各種ギヤー、各種ケース、センサー、LEPランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドホン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、トランス部材、コイルボビンなどの電気・電子部品、サッシ戸車、ブラインドカーテンパーツ、配管ジョイント、カーテンライナー、ブラインド部品、ガスメーター部品、水道メーター部品、湯沸かし器部品、ルーフパネル、断熱壁、アジャスター、プラ束、天井釣り具、階段、ドアー、床などの建築部材、釣り餌袋などの水産関連部材、植生ネット、植生マット、防草袋、防草ネット、養生シート、法面保護シート、飛灰押さえシート、ドレーンシート、保水シート、汚泥・ヘドロ脱水袋、コンクリート型枠などの土木関連部材、エアフローメーター、エアポンプ、サーモスタットハウジング、エンジンマウント、イグニッションホビン、イグニッションケース、クラッチボビン、センサーハウジング、アイドルスピードコントロールバルブ、バキュームスイッチングバルブ、ECU(Electric Control Unit)ハウジング、バキュームポンプケース、インヒビタースイッチ、回転センサー、加速度センサー、ディストリビューターキャップ、コイルベース、ABS用アクチュエーターケース、ラジエータタンクのトップ及びボトム、クーリングファン、ファンシュラウド、エンジンカバー、シリンダーヘッドカバー、オイルキャップ、オイルパン、オイルフィルター、フューエルキャップ、フューエルストレーナー、ディストリビューターキャップ、ベーパーキャニスターハウジング、エアクリーナーハウジング、タイミングベルトカバー、ブレーキブースター部品、各種ケース、各種チューブ、各種タンク、各種ホース、各種クリップ、各種バルブ、各種パイプなどの自動車用アンダーフード部品、トルクコントロールレバー、安全ベルト部品、レジスターブレード、ウオッシャーレバー、ウインドレギュレーターハンドル、ウインドレギュレーターハンドルのノブ、パッシングライトレバー、サンバイザーブラケット、各種モーターハウジングなどの自動車用内装部品、ルーフレール、フェンダー、ガーニッシュ、バンパー、ドアミラーステー、スポイラー、フードルーバー、ホイールカバー、ホイールキャップ、グリルエプロンカバーフレーム、ランプリフレクター、ランプベゼル、ドアハンドルなどの自動車用外装部品、ワイヤーハーネスコネクター、SMJコネクター(中継接続用コネクター)、PCBコネクター(ボードコネクター)、ドアグロメットコネクターなど各種自動車用コネクター、歯車、ねじ、バネ、軸受、レバー、キーステム、カム、ラチェット、ローラー、給水部品、玩具部品、ファン、テグス、パイプ、洗浄用治具、モーター部品、顕微鏡、双眼鏡、カメラ、時計などの機械部品、マルチフィルム、トンネル用フィルム、防鳥シート、育苗用ポット、植生杭、種紐テープ、発芽シート、ハウス内張シート、農ビの止め具、緩効性肥料、防根シート、園芸ネット、防虫ネット、幼齢木ネット、プリントラミネート、肥料袋、試料袋、土嚢、獣害防止ネット、誘因紐、防風網などの農業部材、シェールガス・オイル採掘時に使用する逸泥防止材(繊維)や成形材料、衛生用品、医療用フィルムなどの医療用品、カレンダー、文具、衣料、食品等の包装用フィルム、トレー、ブリスター、ナイフ、フォーク、スプーン、チューブ、プラスチック缶、パウチ、コンテナー、タンク、カゴなどの容器・食器類、ホットフィル容器類、電子レンジ調理用容器類、食品用透明耐熱容器、化粧品容器、ラップ、発泡緩衝剤、紙ラミ、シャンプーボトル、飲料用ボトル、カップ、キャンディ包装、シュリンクラベル、蓋材料、窓付き封筒、果物かご、手切れテープ、イージーピール包装、卵パック、HDD用包装、コンポスト袋、記録メディア包装、ショッピングバック、電気・電子部品等のラッピングフィルムなどの容器・包装、各種衣料、インテリア用品、キャリアーテープ、プリントラミ、感熱孔版印刷用フィルム、離型フィルム、多孔性フィルム、コンテナバッグ、クレジットカード、キャッシュカード、IDカード、ICカード、光学素子、導電性エンボステープ、ICトレー、ゴルフティー、ゴミ袋、レジ袋、各種ネット、歯ブラシ、文房具、クリアファイル、カバン、イス、テーブル、クーラーボックス、クマデ、ホースリール、プランター、ホースノズル、食卓、机の表面、家具パネル、台所キャビネット、ペンキャップ、ガスライターなどとして有用である。 Specifically, mobile terminals such as relay cases, coil bobbins, optical pickup chassis, motor cases, notebook computer housings or internal parts, CRT display housings or internal parts, printer housings or internal parts, mobile phones, mobile PCs, handheld mobiles, etc. Housing / internal parts, recording medium (CD, DVD, PD, FDD, etc.) drive housing or internal parts, copier housing or internal parts, facsimile housing or internal parts, parabolic antenna Can be mentioned. In addition, VTR parts, TV parts, irons, hair dryers, rice cooker parts, microwave oven parts, acoustic parts, video cameras, video equipment parts such as projectors, "Laser Disk (registered trademark)", Compact Disc (CD), CD -ROM, CD-R, CD-RW, DVD-ROM, DVD-R, DVD-RW, DVD-RAM, Blu-ray disc and other optical recording media substrates, lighting parts, refrigerator parts, air conditioner parts, typewriter parts, Home and office electrical product parts represented by word processor parts can be listed. Also, housings and internal parts of electronic musical instruments, home game machines, portable game machines, various gears, various cases, sensors, LEP lamps, connectors, sockets, resistors, relay cases, switches, coil bobbins, capacitors, variable capacitor cases, Optical pickups, oscillators, various terminal boards, transformers, plugs, printed wiring boards, tuners, speakers, microphones, headphones, small motors, magnetic head bases, power modules, semiconductors, liquid crystals, FDD carriages, FDD chassis, motor brush holders , Electrical and electronic parts such as transformer members, coil bobbins, sash doors, blind curtain parts, piping joints, curtain liners, blind parts, gas meter parts, water meter parts, water heater parts, roof panels, Hot walls, adjusters, plastic bundles, ceiling fishing gear, stairs, doors, floors and other building materials, fishing bait bags and other marine products, vegetation nets, vegetation mats, grass bags, grass nets, curing sheets, slopes Protection sheet, fly ash presser sheet, drain sheet, water retention sheet, sludge / sludge dewatering bag, civil engineering parts such as concrete formwork, air flow meter, air pump, thermostat housing, engine mount, ignition hobbin, ignition case, clutch bobbin, sensor Housing, idle speed control valve, vacuum switching valve, ECU (Electric Control Unit) housing, vacuum pump case, inhibitor switch, rotation sensor, acceleration sensor, distributor cap Coil base, ABS actuator case, radiator tank top and bottom, cooling fan, fan shroud, engine cover, cylinder head cover, oil cap, oil pan, oil filter, fuel cap, fuel strainer, distributor cap, vapor canister housing, Air cleaner housing, timing belt cover, brake booster parts, various cases, various tubes, various tanks, various hoses, various clips, various valves, various pipes, automotive underhood parts, torque control levers, safety belt parts, register blades , Washer lever, window regulator handle, window regulator handle knob, passing Automotive interior parts such as light levers, sun visor brackets, various motor housings, roof rails, fenders, garnishes, bumpers, door mirror stays, spoilers, hood louvers, wheel covers, wheel caps, grill apron cover frames, lamp reflectors, lamp bezels, Automotive exterior parts such as door handles, wire harness connectors, SMJ connectors (connectors for relay connection), PCB connectors (board connectors), door grommet connectors, various automotive connectors, gears, screws, springs, bearings, levers, key stems, Cams, ratchets, rollers, water supply parts, toy parts, fans, guts, pipes, cleaning jigs, motor parts, microscopes, binoculars, cameras, clocks and other mechanical parts, multi Film, tunnel film, bird-proof sheet, seedling pot, vegetation pile, seed string tape, germination sheet, house lining sheet, farm-bi fastener, slow-release fertilizer, root-proof sheet, garden net, insect net, Infant tree nets, printed laminates, fertilizer bags, sample bags, sandbags, animal damage prevention nets, incentive strings, windbreak nets and other agricultural materials, anti-mud materials (fibers) and molding materials used when mining shale gas and oil, Hygiene products, medical products such as medical films, packaging films for calendars, stationery, clothing, food, trays, blisters, knives, forks, spoons, tubes, plastic cans, pouches, containers, tanks, containers, etc. Tableware, hot fill containers, microwave cooking containers, transparent heat-resistant containers for foods, cosmetic containers, wraps, foam buffer, paper lami, shampoo Bottles, beverage bottles, cups, candy packaging, shrink labels, lid materials, envelopes with windows, fruit baskets, hand cut tape, easy peel packaging, egg packs, HDD packaging, compost bags, recording media packaging, shopping bags, electricity -Containers and packaging for wrapping films such as electronic parts, various apparel, interior goods, carrier tapes, print laminates, thermal stencil printing films, release films, porous films, container bags, credit cards, cash cards, ID cards , IC card, optical element, conductive embossed tape, IC tray, golf tee, garbage bag, plastic bag, various nets, toothbrush, stationery, clear file, bag, chair, table, cooler box, kumade, hose reel, planter, Hose nozzle, table, desk surface Useful as furniture panels, kitchen cabinets, pen caps, gas lighters, etc.
 以下実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。ここで、実施例中の部数は、重量部を示す。物性等の測定方法は以下のとおりである。なお、成形体の測定部位は、同じ部分を選択して測定を実施している。
(1)分子量
 ポリ乳酸樹脂組成物の重量平均分子量および分散度は、ゲルパーミエーションクロマトグラフィー(GPC)により測定した標準ポリメチルメタクリレート換算の値である。GPC測定は、検出器に日本ウォーターズ(株)製の示差屈折計WATERS410を用い、ポンプに日本ウォーターズ(株)製のMODEL510を用い、カラムに昭和電工(株)製の“Shodex”(登録商標) GPC HFIP-806Mと“Shodex”(登録商標)GPC HFIP-LGとを直列に接続したものを用いて行った。測定条件は、流速0.5mL/minとし、測定では溶媒にヘキサフルオロイソプロパノールを用い、試料濃度1mg/mLの溶液を0.1mL注入した。
(2)熱的特性
 ポリ乳酸樹脂組成物の融点および融解熱量は、(株)パーキンエルマー・ジャパン製の示差走査型熱量計(DSC)により測定した。測定条件は、試料5mg、窒素雰囲気下、昇温速度が20℃/minである。
Hereinafter, the present invention will be described with reference to examples and the like, but the present invention is not limited to these examples. Here, the number of parts in the examples indicates parts by weight. Measuring methods for physical properties and the like are as follows. In addition, the measurement site | part of a molded object has selected and measured the same part.
(1) Molecular weight The weight average molecular weight and dispersity of a polylactic acid resin composition are the values of standard polymethylmethacrylate conversion measured by gel permeation chromatography (GPC). For GPC measurement, a differential refractometer WATERS410 manufactured by Nippon Waters Co., Ltd. is used as a detector, a MODEL510 manufactured by Nippon Waters Co., Ltd. is used as a pump, and “Shodex” (registered trademark) manufactured by Showa Denko Co., Ltd. is used as a column. GPC HFIP-806M and “Shodex” (registered trademark) GPC HFIP-LG were used in series. The measurement conditions were a flow rate of 0.5 mL / min, and in the measurement, hexafluoroisopropanol was used as a solvent, and 0.1 mL of a solution having a sample concentration of 1 mg / mL was injected.
(2) Thermal characteristics The melting point and heat of fusion of the polylactic acid resin composition were measured with a differential scanning calorimeter (DSC) manufactured by PerkinElmer Japan. Measurement conditions are a sample of 5 mg, a nitrogen atmosphere, and a heating rate of 20 ° C./min.
 ここで、融点とは、結晶融解ピークにおけるピークトップの温度のことを指し、また融解終了温度とは結晶融解ピークにおけるピーク終了温度のことを指す。得られた結果において、融点が190℃以上250℃未満に確認されたものは、ポリ乳酸ステレオコンプレックスが形成されたものと判断し、融点が150℃以上190℃未満に確認されたものについてはポリ乳酸ステレオコンプレックスが形成されなかったものと判断した。ここで示すポリ乳酸樹脂組成物の融点とは、第2昇温時に昇温速度20℃/minで30℃から250℃まで昇温したときに測定される融点を示す。 Here, the melting point refers to the peak top temperature in the crystal melting peak, and the melting end temperature refers to the peak end temperature in the crystal melting peak. In the obtained results, those in which the melting point was confirmed to be 190 ° C. or higher and lower than 250 ° C. were judged as polylactic acid stereocomplexes formed, and those in which the melting point was confirmed to be 150 ° C. or higher and lower than 190 ° C. It was judged that a lactic acid stereocomplex was not formed. The melting point of the polylactic acid resin composition shown here indicates the melting point measured when the temperature is raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 20 ° C./min during the second temperature rise.
 また、熱的特性として下記式(10)で示されるパラメータ値の算出を行った。 Also, the parameter value represented by the following formula (10) was calculated as the thermal characteristics.
 (Tm-Tms)/(Tme-Tm)   (10)
 式(10)のパラメータにおいて、Tm:ポリ乳酸樹脂組成物のステレオコンプレックス結晶由来の融点(結晶融解ピークにおけるピークトップ温度)、Tms:ポリ乳酸樹脂組成物のステレオコンプレックス結晶融解開始温度、Tme:ポリ乳酸樹脂組成物のステレオコンプレックス結晶由来の融点終了温度を示しており、それぞれの値は(株)パーキンエルマー・ジャパン製示差走査型熱量計(DSC)を用いて試料5mg、窒素雰囲気下での測定値である。なお、測定値は、第1昇温時に昇温速度40℃/minで30℃から250℃まで昇温した後、降温速度40℃/minで30℃まで冷却し、さらに第2昇温時に昇温速度40℃/minで30℃から250℃まで昇温したときの値を用いている。
(3)ステレオコンプレックス形成率(Sc)
 ポリ乳酸樹脂組成物のステレオコンプレックス形成率(Sc)は、下記式(4)から算出した。
(Tm-Tms) / (Tme-Tm) (10)
In the parameters of the formula (10), Tm: melting point derived from the stereocomplex crystal of the polylactic acid resin composition (peak top temperature at the crystal melting peak), Tms: stereocomplex crystal melting start temperature of the polylactic acid resin composition, Tme: poly The melting point end temperature derived from the stereocomplex crystal of the lactic acid resin composition is shown, and each value is measured using a differential scanning calorimeter (DSC) manufactured by PerkinElmer Japan Co., Ltd., in a 5 mg sample under a nitrogen atmosphere. Value. The measured value was raised from 30 ° C. to 250 ° C. at a rate of temperature rise of 40 ° C./min at the first temperature rise, then cooled to 30 ° C. at a temperature drop rate of 40 ° C./min, and further raised at the second temperature rise. The value when the temperature is raised from 30 ° C. to 250 ° C. at a temperature rate of 40 ° C./min is used.
(3) Stereo complex formation rate (Sc)
The stereocomplex formation rate (Sc) of the polylactic acid resin composition was calculated from the following formula (4).
 Sc=ΔHh/(ΔHl+ΔHh)×100  (4)
 ここで、ΔHlは150℃以上190℃未満に現れるポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量を示し、ΔHhは190℃以上250℃未満に現れるステレオコンプレックス結晶の結晶融解に基づく熱量を示す。
Sc = ΔHh / (ΔHl + ΔHh) × 100 (4)
Here, ΔHl indicates the amount of heat based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal appearing at 150 ° C. or more and less than 190 ° C., and ΔHh is a stereocomplex crystal appearing at 190 ° C. or more and less than 250 ° C. The amount of heat based on the crystal melting of is shown.
 また、本実施例におけるポリ乳酸樹脂組成物のステレオコンプレックス形成率(Sc)は、示差走査型熱量計(DSC)の第2昇温時に測定される結晶融解ピークから算出したものである。
(4)降温結晶化温度
 ポリ乳酸樹脂組成物の降温結晶化温度は、(株)パーキンエルマー・ジャパン製の示差走査型熱量計(DSC)により測定した。具体的には、試料5mgを示差走査熱量計(DSC)により窒素雰囲気下で昇温速度20℃/minで30℃から250℃まで昇温した後、250℃で3分間恒温状態に維持を行い、冷却速度20℃/minで降温した際に測定される結晶化ピークトップの温度を降温結晶化温度とした。
(5)結晶化エンタルピー(ΔHc)
 示差走査型熱量計(DSC)によって測定されたポリ乳酸樹脂組成物の結晶化ピークのピーク面積を算出したものである。
(6)加熱減量
 ポリ乳酸樹脂組成物の加熱減量は、(株)パーキンエルマー・ジャパン製の熱重量測定装置(TGA)により測定した。具体的には、試料3mgを熱重量測定装置(TGA)により窒素雰囲気下で240℃、30分間恒温状態に維持を行い、ポリ乳酸樹脂組成物の加熱前後の重量から加熱減量を算出した。
(7)溶融粘度比(MFR10/MFR20)
 ポリ乳酸樹脂組成物の溶融粘度比(MFR10/MFR20)は、JIS K 7210に従い、230℃、21.2N荷重条件における10分後のメルトフローレート(MFR10)と20分後のメルトフローレート(MFR20)を(株)東洋精機製作所製メルトインデクサーにて測定し、それぞれの値から比率(MFR10/MFR20)を算出した。
(8)ヘイズ値
 ポリ乳酸樹脂組成物からなる成形体の透明性の指標としてヘイズ値の測定を行った。厚さ0.1mmのシート状成形体につき日本電色工業(株)製ヘイズメーターNDH-300Aを用いて、JIS K 7105に従ってヘイズ値測定を行った。
(9)130℃貯蔵弾性率
 ポリ乳酸樹脂組成物からなる成形体の耐熱性の指標として貯蔵弾性率を測定した。厚さ1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、動的粘弾性測定装置(セイコーインスツル(株)製のDMS6100)にて窒素雰囲気下で昇温速度2℃/min、周波数3.5Hzにて動的粘弾性測定を行い、130℃における貯蔵弾性率を測定した。弾性率が高いほど耐熱性が高いといえる。
(10)引張強度
 ポリ乳酸樹脂組成物からなる厚さ1mmのシート状成形体の中心部を40mm×2mmに切り出して短冊状のサンプルとし、ASTM D882に従い、引張強度を測定した。
Further, the stereocomplex formation rate (Sc) of the polylactic acid resin composition in this example is calculated from the crystal melting peak measured at the second temperature rise of the differential scanning calorimeter (DSC).
(4) Temperature-falling crystallization temperature The temperature-falling crystallization temperature of the polylactic acid resin composition was measured with a differential scanning calorimeter (DSC) manufactured by PerkinElmer Japan. Specifically, 5 mg of a sample was heated from 30 ° C. to 250 ° C. at a temperature rising rate of 20 ° C./min in a nitrogen atmosphere with a differential scanning calorimeter (DSC), and then kept at a constant temperature at 250 ° C. for 3 minutes. The temperature at the top of the crystallization peak measured when the temperature was lowered at a cooling rate of 20 ° C./min was taken as the lowered crystallization temperature.
(5) Crystallization enthalpy (ΔHc)
The peak area of the crystallization peak of the polylactic acid resin composition measured by a differential scanning calorimeter (DSC) is calculated.
(6) Loss on heating The loss on heating of the polylactic acid resin composition was measured with a thermogravimetric measuring device (TGA) manufactured by PerkinElmer Japan. Specifically, 3 mg of the sample was maintained in a constant temperature state at 240 ° C. for 30 minutes in a nitrogen atmosphere by a thermogravimetric apparatus (TGA), and the heating loss was calculated from the weight before and after the heating of the polylactic acid resin composition.
(7) Melt viscosity ratio (MFR10 / MFR20)
The melt viscosity ratio (MFR10 / MFR20) of the polylactic acid resin composition is in accordance with JIS K 7210, the melt flow rate after 10 minutes (MFR10) and the melt flow rate after 20 minutes (MFR20) at 230 ° C. and 21.2 N load conditions. ) Was measured with a melt indexer manufactured by Toyo Seiki Seisakusho, and the ratio (MFR10 / MFR20) was calculated from each value.
(8) Haze value The haze value was measured as an index of the transparency of the molded body made of the polylactic acid resin composition. Using a Nippon Denshoku Industries Co., Ltd. haze meter NDH-300A, a haze value was measured according to JIS K 7105 for a sheet-like molded body having a thickness of 0.1 mm.
(9) Storage elastic modulus at 130 ° C. The storage elastic modulus was measured as an index of the heat resistance of the molded body made of the polylactic acid resin composition. A center part of a sheet-like molded body having a thickness of 1 mm is cut into 40 mm × 2 mm to form a strip-like sample, and a temperature rise rate in a nitrogen atmosphere using a dynamic viscoelasticity measuring apparatus (DMS6100 manufactured by Seiko Instruments Inc.). Dynamic viscoelasticity measurement was performed at 2 ° C / min and a frequency of 3.5 Hz, and the storage elastic modulus at 130 ° C was measured. It can be said that the higher the elastic modulus, the higher the heat resistance.
(10) Tensile strength A 1 mm thick sheet-like molded body made of a polylactic acid resin composition was cut into a 40 mm × 2 mm strip to obtain a strip-like sample, and the tensile strength was measured according to ASTM D882.
 本実施例(実施例1~15および比較例1~17)で使用したポリ-L-乳酸およびポリ-D-乳酸は以下の通りである。 The poly-L-lactic acid and poly-D-lactic acid used in the present examples (Examples 1 to 15 and Comparative Examples 1 to 17) are as follows.
 PLA1:参考例1で得られたポリ-L-乳酸(Mw=5万、分散度1.5)
 PLA2:参考例2で得られたポリ-L-乳酸(Mw=14万、分散度1.6)
 PLA3:参考例3で得られたポリ-L-乳酸(Mw=20万、分散度1.7)
 PDA1:参考例4で得られたポリ-D-乳酸(Mw=4万、分散度1.5)
 PDA2:参考例5で得られたポリ-D-乳酸(Mw=7万、分散度1.5)
 PDA3:参考例6で得られたポリ-D-乳酸(Mw=13万、分散度1.6)
 PDA4:参考例7で得られたポリ-D-乳酸(Mw=18万、分散度1.6)
[参考例1]
 撹拌装置および還流装置を備えた反応容器中に、90%L-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-L-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で5時間固相重合を行い、ポリ-L-乳酸(PLA1)を得た。PLA1の重量平均分子量は5万、分散度は1.5、融点は157℃であった。
[参考例2]
 撹拌装置および還流装置を備えた反応容器中に、90%L-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-L-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ-L-乳酸(PLA2)を得た。PLA2の重量平均分子量は14万、分散度は1.6、融点は165℃であった。
[参考例3]
 撹拌装置および還流装置を備えた反応容器中に、90%L-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-L-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ-L-乳酸(PLA3)を得た。PLA3の重量平均分子量は20万、分散度は1.7、融点は170℃であった。
[参考例4]
 撹拌装置と還流装置を備えた反応容器中に、90%D-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-D-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で5時間固相重合を行い、ポリ-D-乳酸(PDA1)を得た。PDA1の重量平均分子量は4.0万、分散度は1.5、融点は156℃であった。
[参考例5]
 撹拌装置と還流装置を備えた反応容器中に、90%D-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-D-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で9時間固相重合を行い、ポリ-D-乳酸(PDA2)を得た。PDA2の重量平均分子量は7.0万、分散度は1.5、融点は161℃であった。
[参考例6]
 撹拌装置と還流装置を備えた反応容器中に、90%D-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-D-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で12時間固相重合を行い、ポリ-D-乳酸(PDA3)を得た。PDA3の重量平均分子量は13万、分散度は1.6、融点は164℃であった。
[参考例7]
 撹拌装置および還流装置を備えた反応容器中に、90%D-乳酸水溶液を50部入れ、温度を150℃にした後、徐々に減圧して水を留去しながら3.5時間反応した。その後、窒素雰囲気下で常圧にし、酢酸錫(II)0.02部を添加した後、170℃にて13Paになるまで徐々に減圧しながら7時間重合反応を行った。続いて、得られたポリ-D-乳酸を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ-D-乳酸(PDA4)を得た。PDA4の重量平均分子量は18万、分散度は1.6、融点は168℃であった。
(A)ポリ乳酸樹脂
 A-1:参考例8で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=11万、分散度2.7)
 A-2:参考例9で得られたポリ乳酸ブロック共重合体(Mw=13万、分散度2.4)
 A-3:参考例10で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=13万、分散度2.6)
 A-4:参考例11で得られたポリ乳酸ブロック共重合体(Mw=16万、分散度2.3)
 A-5:参考例12で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=4万、分散度1.8)
 A-6:参考例13で得られたポリ乳酸ブロック共重合体(Mw=6万、分散度1.6)
 A-7:参考例14で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=10万、分散度2.2)
 A-8:参考例15で得られたポリ乳酸ブロック共重合体(Mw=13万、分散度2.0)
 A-9:参考例16で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=12万、分散度2.4)
 A-10:参考例17で得られたポリ乳酸ブロック共重合体(Mw=14万、分散度2.2)
 A-11:参考例18で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=13万、分散度2.5)
 A-12:参考例19で得られたポリ乳酸ブロック共重合体(Mw=15万、分散度2.3)
 A-13:参考例20で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=15万、分散度2.6)
 A-14:参考例21で得られたポリ乳酸ブロック共重合体(Mw=17万、分散度2.4)
 A-15:参考例22で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=17万、分散度2.4)
 A-16:参考例23で得られたポリ乳酸ブロック共重合体(Mw=19万、分散度2.2)
 A-17:参考例24で得られたポリ乳酸ブロック共重合体(Mw=15万、分散度1.8)
 A-18:参考例25で得られたポリ乳酸ブロック共重合体(Mw=11万、分散度1.7)
 A-19:参考例26で得られたポリ乳酸ステレオコンプレックス(ポリ-L-乳酸とポリ-D-乳酸との混合物)(Mw=17万、分散度1.7)
 PLA3:参考例3で得られたポリ-L-乳酸(Mw=20万、分散度1.7)
[参考例8]
 参考例3で得られたPLA3と参考例4で得られたPDA1を混合前にあらかじめ窒素雰囲気下で温度110℃、2時間結晶化処理を行った。続いて、結晶化した50重量部のPLA3を二軸押出機の樹脂供給口より添加し、50重量部のPDA1を後述するL/D=30の部分に設けたサイド供給口より添加することで溶融混練を行った。ここで、二軸押出機は、樹脂供給口よりL/D=10の部分に温度190℃に設定した可塑化部分を有するとともに、L/D=30の部分にニーディングディスクを備えてせん断付与できるスクリューとしてせん断付与下で混合できる構造を有している。二軸押出機によって、減圧下、混練温度210℃でPLA1およびPDA1の溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-1)を得た。ポリ乳酸ステレオコンプレックス(A-1)の重量平均分子量は11万、分散度は2.7、融点は211℃で、ステレオコンプレックス形成率は100%であった。
[参考例9]
 参考例8で得られたポリ乳酸ステレオコンプレックス(A-1)を、窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、140℃で3時間、150℃で3時間、160℃で18時間固相重合を行い、ポリ乳酸ブロック共重合体(A-2)を得た。ポリ乳酸ブロック共重合体(A-2)の重量平均分子量は13万、分散度は2.4、融点は211℃で、ステレオコンプレックス形成率は100%であった。
[参考例10]
 二軸押出機に供給するPLA3を70重量部、PDA1を30重量部とする以外は参考例8と同様の方法で溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-3)を得た。ポリ乳酸ステレオコンプレックス(A-3)の重量平均分子量は13万、分散度は2.6、融点は214℃と151℃のダブルピークで、ステレオコンプレックス形成率は95%であった。
[参考例11]
 参考例10で得られたポリ乳酸ステレオコンプレックス(A-3)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-4)を得た。ポリ乳酸ブロック共重合体(A-4)の重量平均分子量は16万、分散度は2.3、融点は215℃と171℃のダブルピークで、ステレオコンプレックス形成率は97%であった。
[参考例12]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA1、ポリ-D-乳酸をPDA1とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-5)を得た。ポリ乳酸ステレオコンプレックス(A-5)の重量平均分子量は4万、分散度は1.8、融点は215℃で、ステレオコンプレックス形成率は100%であった。
[参考例13]
 参考例12で得られたポリ乳酸ステレオコンプレックス(A-5)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-6)を得た。ポリ乳酸ブロック共重合体(A-6)の重量平均分子量は6万、分散度は1.6、融点は215℃で、ステレオコンプレックス形成率は100%であった。
[参考例14]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA2、ポリ-D-乳酸をPDA1とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-7)を得た。ポリ乳酸ステレオコンプレックス(A-7)の重量平均分子量は10万、分散度は2.2、融点は213℃と152℃のダブルピークで、ステレオコンプレックス形成率は96%であった。
[参考例15]
 参考例14で得られたポリ乳酸ステレオコンプレックス(A-7)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-8)を得た。ポリ乳酸ブロック共重合体(A-8)の重量平均分子量は12万、分散度は2.0、融点は212℃と170℃のダブルピークで、ステレオコンプレックス形成率は98%であった。
[参考例16]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA2、ポリ-D-乳酸をPDA2とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-9)を得た。ポリ乳酸ステレオコンプレックス(A-9)の重量平均分子量は12万、分散度は2.4、融点は212℃と160℃のダブルピークで、ステレオコンプレックス形成率は93%であった。
[参考例17]
 参考例16で得られたポリ乳酸ステレオコンプレックス(A-9)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-10)を得た。ポリ乳酸ブロック共重合体(A-10)の重量平均分子量は14万、分散度は2.2、融点は212℃と171℃のダブルピークで、ステレオコンプレックス形成率は95%であった。
[参考例18]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA2、ポリ-D-乳酸をPDA3とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-11)を得た。ポリ乳酸ステレオコンプレックス(A-11)の重量平均分子量は13万、分散度は2.5、融点は210℃と165℃のダブルピークで、ステレオコンプレックス形成率は55%であった。
[参考例19]
 参考例18で得られたポリ乳酸ステレオコンプレックス(A-11)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-12)を得た。ポリ乳酸ブロック共重合体(A-12)の重量平均分子量は15万、分散度は2.3、融点は211℃と170℃のダブルピークで、ステレオコンプレックス形成率は63%であった。
[参考例20]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA3、ポリ-D-乳酸をPDA2とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-13)を得た。ポリ乳酸ステレオコンプレックス(A-13)の重量平均分子量は15万、分散度は2.6、融点は211℃と161℃のダブルピークで、ステレオコンプレックス形成率は90%であった。
[参考例21]
 参考例20で得られたポリ乳酸ステレオコンプレックス(A-13)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-14)を得た。ポリ乳酸ブロック共重合体(A-14)の重量平均分子量は17万、分散度は2.4、融点は212℃と171℃のダブルピークで、ステレオコンプレックス形成率は95%であった。
[参考例22]
 二軸押出機で溶融混練するポリ-L-乳酸をPLA3、ポリ-D-乳酸をPDA3とする以外は参考例10と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-15)を得た。ポリ乳酸ステレオコンプレックス(A-15)の重量平均分子量は17万、分散度は2.4、融点は212℃と168℃のダブルピークで、ステレオコンプレックス形成率は60%であった。
[参考例23]
 参考例22で得られたポリ乳酸ステレオコンプレックス(A-15)を参考例9と同様の方法で固相重合を行い、ポリ乳酸ブロック共重合体(A-16)を得た。ポリ乳酸ブロック共重合体(A-16)の重量平均分子量は19万、分散度は2.2、融点は212℃と171℃のダブルピークで、ステレオコンプレックス形成率は67%であった。
[参考例24]
 L-ラクチド100部、エチレングリコール0.15部を撹拌装置のついた反応容器中で、窒素雰囲気下、160℃で均一に溶解させた後、オクチル酸錫0.01部を加え、2時間開環重合反応を行った。重合反応終了後、反応物をクロロホルムに溶解させ、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去してポリ-L-乳酸(PLA4)を得た。PLA4の重量平均分子量は8万、分散度は1.6、融点は168℃であった。
PLA1: Poly-L-lactic acid obtained in Reference Example 1 (Mw = 50,000, dispersity 1.5)
PLA2: Poly-L-lactic acid obtained in Reference Example 2 (Mw = 140,000, dispersity 1.6)
PLA3: Poly-L-lactic acid obtained in Reference Example 3 (Mw = 200,000, dispersity 1.7)
PDA1: Poly-D-lactic acid obtained in Reference Example 4 (Mw = 40,000, dispersity 1.5)
PDA2: Poly-D-lactic acid obtained in Reference Example 5 (Mw = 70,000, dispersity 1.5)
PDA3: poly-D-lactic acid obtained in Reference Example 6 (Mw = 130,000, dispersity 1.6)
PDA4: Poly-D-lactic acid obtained in Reference Example 7 (Mw = 180,000, dispersity 1.6)
[Reference Example 1]
In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% L-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-L-lactic acid was crystallized under a nitrogen atmosphere at 110 ° C. for 1 hour, and then at a pressure of 60 Pa at 140 ° C. for 3 hours, 150 ° C. for 3 hours, and 160 ° C. for 5 hours. Solid phase polymerization was carried out to obtain poly-L-lactic acid (PLA1). PLA1 had a weight average molecular weight of 50,000, a dispersity of 1.5, and a melting point of 157 ° C.
[Reference Example 2]
In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% L-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-L-lactic acid was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 12 hours at 160 ° C. Solid-phase polymerization was performed for time to obtain poly-L-lactic acid (PLA2). PLA2 had a weight average molecular weight of 140,000, a dispersity of 1.6, and a melting point of 165 ° C.
[Reference Example 3]
In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% L-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-L-lactic acid was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 18 hours at 160 ° C. Solid-phase polymerization was performed for time to obtain poly-L-lactic acid (PLA3). PLA3 had a weight average molecular weight of 200,000, a dispersity of 1.7, and a melting point of 170 ° C.
[Reference Example 4]
In a reaction vessel equipped with a stirrer and a reflux apparatus, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-D-lactic acid was crystallized under a nitrogen atmosphere at 110 ° C. for 1 hour, and then at a pressure of 60 Pa at 140 ° C. for 3 hours, 150 ° C. for 3 hours, and 160 ° C. for 5 hours. Solid-phase polymerization was performed for time to obtain poly-D-lactic acid (PDA1). PDA1 had a weight average molecular weight of 40,000, a dispersity of 1.5, and a melting point of 156 ° C.
[Reference Example 5]
In a reaction vessel equipped with a stirrer and a reflux apparatus, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-D-lactic acid was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa, 140 ° C. for 3 hours, 150 ° C. for 3 hours, and 160 ° C. for 9 hours. Solid phase polymerization was carried out to obtain poly-D-lactic acid (PDA2). PDA2 had a weight average molecular weight of 7 million, a dispersity of 1.5, and a melting point of 161 ° C.
[Reference Example 6]
In a reaction vessel equipped with a stirrer and a reflux apparatus, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was raised to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-D-lactic acid was crystallized at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 12 hours at 160 ° C. Solid phase polymerization was carried out to obtain poly-D-lactic acid (PDA3). PDA3 had a weight average molecular weight of 130,000, a dispersity of 1.6, and a melting point of 164 ° C.
[Reference Example 7]
In a reaction vessel equipped with a stirrer and a reflux device, 50 parts of a 90% D-lactic acid aqueous solution was placed, the temperature was adjusted to 150 ° C., and the mixture was reacted for 3.5 hours while gradually reducing the pressure to distill off water. Thereafter, the pressure was increased to normal pressure in a nitrogen atmosphere, 0.02 part of tin (II) acetate was added, and then the polymerization reaction was performed for 7 hours while gradually reducing the pressure to 170 Pa at 170 ° C. Subsequently, the obtained poly-D-lactic acid was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa for 3 hours at 140 ° C., 3 hours at 150 ° C., and 18 hours at 160 ° C. Solid phase polymerization was carried out to obtain poly-D-lactic acid (PDA4). PDA4 had a weight average molecular weight of 180,000, a dispersity of 1.6, and a melting point of 168 ° C.
(A) Polylactic acid resin A-1: Polylactic acid stereocomplex obtained in Reference Example 8 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 110,000, dispersity 2.7)
A-2: Polylactic acid block copolymer obtained in Reference Example 9 (Mw = 130,000, dispersity 2.4)
A-3: Polylactic acid stereocomplex obtained in Reference Example 10 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 130,000, dispersity 2.6)
A-4: Polylactic acid block copolymer obtained in Reference Example 11 (Mw = 160,000, dispersity 2.3)
A-5: Polylactic acid stereocomplex obtained in Reference Example 12 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 40,000, dispersity 1.8)
A-6: Polylactic acid block copolymer obtained in Reference Example 13 (Mw = 60,000, dispersity 1.6)
A-7: Polylactic acid stereocomplex (mixture of poly-L-lactic acid and poly-D-lactic acid) obtained in Reference Example 14 (Mw = 100,000, dispersity 2.2)
A-8: Polylactic acid block copolymer obtained in Reference Example 15 (Mw = 130,000, dispersity 2.0)
A-9: Polylactic acid stereocomplex obtained in Reference Example 16 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 120,000, dispersity 2.4)
A-10: Polylactic acid block copolymer obtained in Reference Example 17 (Mw = 140,000, degree of dispersion 2.2)
A-11: Polylactic acid stereocomplex obtained in Reference Example 18 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 130,000, dispersity 2.5)
A-12: Polylactic acid block copolymer obtained in Reference Example 19 (Mw = 150,000, dispersity 2.3)
A-13: Polylactic acid stereocomplex obtained in Reference Example 20 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 150,000, dispersity 2.6)
A-14: Polylactic acid block copolymer obtained in Reference Example 21 (Mw = 17,000, dispersity 2.4)
A-15: Polylactic acid stereocomplex obtained in Reference Example 22 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 170,000, dispersity 2.4)
A-16: Polylactic acid block copolymer obtained in Reference Example 23 (Mw = 190,000, degree of dispersion 2.2)
A-17: Polylactic acid block copolymer obtained in Reference Example 24 (Mw = 150,000, dispersity 1.8)
A-18: Polylactic acid block copolymer obtained in Reference Example 25 (Mw = 110,000, dispersity 1.7)
A-19: Polylactic acid stereocomplex obtained in Reference Example 26 (mixture of poly-L-lactic acid and poly-D-lactic acid) (Mw = 170,000, dispersity 1.7)
PLA3: Poly-L-lactic acid obtained in Reference Example 3 (Mw = 200,000, dispersity 1.7)
[Reference Example 8]
The PLA 3 obtained in Reference Example 3 and the PDA 1 obtained in Reference Example 4 were subjected to crystallization treatment at 110 ° C. for 2 hours in a nitrogen atmosphere before mixing. Subsequently, 50 parts by weight of crystallized PLA 3 is added from the resin supply port of the twin-screw extruder, and 50 parts by weight of PDA 1 is added from the side supply port provided at the portion of L / D = 30 described later. Melt kneading was performed. Here, the twin-screw extruder has a plasticized portion set at a temperature of 190 ° C. at a portion of L / D = 10 from the resin supply port, and is provided with a kneading disk at a portion of L / D = 30 to give shear. It has a structure that can be mixed under shearing as a possible screw. Using a twin screw extruder, PLA1 and PDA1 were melt-kneaded at a kneading temperature of 210 ° C. under reduced pressure to obtain polylactic acid stereocomplex (A-1). The polylactic acid stereocomplex (A-1) had a weight average molecular weight of 110,000, a dispersity of 2.7, a melting point of 211 ° C., and a stereocomplex formation rate of 100%.
[Reference Example 9]
The polylactic acid stereocomplex (A-1) obtained in Reference Example 8 was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, and then at a pressure of 60 Pa at 140 ° C. for 3 hours and at 150 ° C. for 3 hours. Solid phase polymerization was carried out at 160 ° C. for 18 hours to obtain a polylactic acid block copolymer (A-2). The polylactic acid block copolymer (A-2) had a weight average molecular weight of 130,000, a dispersity of 2.4, a melting point of 211 ° C., and a stereocomplex formation rate of 100%.
[Reference Example 10]
A polylactic acid stereocomplex (A-3) was obtained by melt kneading in the same manner as in Reference Example 8 except that 70 parts by weight of PLA3 and 30 parts by weight of PDA1 supplied to the twin screw extruder were used. The polylactic acid stereocomplex (A-3) had a weight average molecular weight of 130,000, a dispersity of 2.6, melting points of 214 ° C and 151 ° C double peaks, and a stereocomplex formation rate of 95%.
[Reference Example 11]
The polylactic acid stereocomplex (A-3) obtained in Reference Example 10 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-4). The polylactic acid block copolymer (A-4) had a weight average molecular weight of 160,000, a dispersity of 2.3, melting points of double peaks of 215 ° C. and 171 ° C., and a stereocomplex formation rate of 97%.
[Reference Example 12]
A polylactic acid stereocomplex (A-5) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-1 is the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA1 is the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-5) had a weight average molecular weight of 40,000, a dispersity of 1.8, a melting point of 215 ° C., and a stereocomplex formation rate of 100%.
[Reference Example 13]
The polylactic acid stereocomplex (A-5) obtained in Reference Example 12 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-6). The polylactic acid block copolymer (A-6) had a weight average molecular weight of 60,000, a dispersity of 1.6, a melting point of 215 ° C., and a stereocomplex formation rate of 100%.
[Reference Example 14]
A polylactic acid stereocomplex (A-7) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-2 is used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA1 is used as the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-7) had a weight average molecular weight of 100,000, a degree of dispersion of 2.2, melting points of 213 ° C. and 152 ° C. double peaks, and a stereo complex formation rate of 96%.
[Reference Example 15]
The polylactic acid stereocomplex (A-7) obtained in Reference Example 14 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-8). The polylactic acid block copolymer (A-8) had a weight average molecular weight of 120,000, a dispersity of 2.0, melting points of 212 ° C. and 170 ° C. double peaks, and a stereocomplex formation rate of 98%.
[Reference Example 16]
A polylactic acid stereocomplex (A-9) was prepared by melt kneading in the same manner as in Reference Example 10 except that PLA-2 was used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA2 was used as the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-9) had a weight average molecular weight of 120,000, a dispersity of 2.4, melting points of 212 ° C and 160 ° C double peaks, and a stereocomplex formation rate of 93%.
[Reference Example 17]
The polylactic acid stereocomplex (A-9) obtained in Reference Example 16 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-10). The polylactic acid block copolymer (A-10) had a weight average molecular weight of 140,000, a degree of dispersion of 2.2, melting points of 212 ° C. and 171 ° C. double peaks, and a stereocomplex formation rate of 95%.
[Reference Example 18]
A polylactic acid stereocomplex (A-11) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-2 is used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA3 is used as the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-11) had a weight average molecular weight of 130,000, a dispersity of 2.5, melting points of 210 ° C and 165 ° C double peaks, and a stereocomplex formation rate of 55%.
[Reference Example 19]
The polylactic acid stereocomplex (A-11) obtained in Reference Example 18 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-12). The weight average molecular weight of the polylactic acid block copolymer (A-12) was 150,000, the degree of dispersion was 2.3, the melting points were 211 ° C. and 170 ° C. double peaks, and the stereocomplex formation rate was 63%.
[Reference Example 20]
A polylactic acid stereocomplex (A-13) is obtained by melt-kneading in the same manner as in Reference Example 10 except that PLA-3 is the poly-L-lactic acid to be melt-kneaded with a twin screw extruder and PDA2 is the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-13) had a weight average molecular weight of 150,000, a dispersity of 2.6, melting points of 211 ° C. and 161 ° C. double peaks, and a stereocomplex formation rate of 90%.
[Reference Example 21]
The polylactic acid stereocomplex (A-13) obtained in Reference Example 20 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-14). The polylactic acid block copolymer (A-14) had a weight average molecular weight of 170,000, a degree of dispersion of 2.4, melting points of 212 ° C. and 171 ° C. double peaks, and a stereocomplex formation rate of 95%.
[Reference Example 22]
A polylactic acid stereocomplex (A-15) was prepared by melt kneading in the same manner as in Reference Example 10 except that PLA3 was used as the poly-L-lactic acid to be melt-kneaded by a twin screw extruder and PDA3 was used as the poly-D-lactic acid. Got. The polylactic acid stereocomplex (A-15) had a weight average molecular weight of 170,000, a dispersity of 2.4, melting points of 212 ° C. and 168 ° C. double peaks, and a stereocomplex formation rate of 60%.
[Reference Example 23]
The polylactic acid stereocomplex (A-15) obtained in Reference Example 22 was subjected to solid phase polymerization in the same manner as in Reference Example 9 to obtain a polylactic acid block copolymer (A-16). The polylactic acid block copolymer (A-16) had a weight average molecular weight of 190,000, a degree of dispersion of 2.2, melting points of 212 ° C. and 171 ° C. double peaks, and a stereocomplex formation rate of 67%.
[Reference Example 24]
After 100 parts of L-lactide and 0.15 part of ethylene glycol were uniformly dissolved in a reaction vessel equipped with a stirrer at 160 ° C. in a nitrogen atmosphere, 0.01 part of tin octylate was added and opened for 2 hours. A ring polymerization reaction was performed. After completion of the polymerization reaction, the reaction product was dissolved in chloroform and reprecipitated with stirring in methanol (5 times the amount of chloroform solution) to remove unreacted monomers to obtain poly-L-lactic acid (PLA4). . PLA4 had a weight average molecular weight of 80,000, a dispersity of 1.6, and a melting point of 168 ° C.
 次に、得られたPLA4の100部を撹拌装置のついた反応容器中で、窒素雰囲気下にて200℃で溶解させた後、120部のD-ラクチドを投入し、0.01部のオクチル酸錫を加えた後、3時間重合反応させた。得られた反応物はクロロホルムに溶解し、メタノール(クロロホルム溶液の5倍量)中で撹拌しながら再沈殿させ、未反応のモノマーを除去して、L-乳酸単位からなるPLA4にD-乳酸単位からなるセグメントが結合したセグメント数が3のポリ乳酸ブロック共重合体(A-17)を得た。A-17の分子量は15万、分散度は1.8、融点は208℃と169℃とのダブルピークで、ステレオコンプレックス形成率は95%であった。また、ポリ乳酸ブロック共重合体A-17を構成するL-乳酸単位からなるセグメントの重量平均分子量とD-乳酸単位からなるセグメントの重量平均分子量との比は2.7であった。
[参考例25]
 参考例3で得られたPLA3(50重量部)と参考例7で得られたPDA4(50重量部)を(株)東洋精機製作所製バッチ式二軸混練機(ラボプラストミル)にて混練温度270℃、混練回転数120rpm、混練時間10分にて混練を行い、PLA3のL-乳酸単位からなるセグメントとPDA4のD-乳酸単位からなるセグメントがエステル交換したポリ乳酸ブロック共重合体(A-18)を得た。A-18の分子量は11万、分散度は1.7、融点は211℃で、ステレオコンプレックス形成率は100%であった。
[参考例26]
 参考例3で得られたPLA3と参考例7で得られたPDA4を、参考例8と同様の方法にて溶融混練を行い、ポリ乳酸ステレオコンプレックス(A-19)を得た。ポリ乳酸ステレオコンプレックス(A-19)の重量平均分子量は17万、分散度は1.7、融点は220℃と169℃のダブルピークで、ステレオコンプレックス形成率は55%であった。
(B)1分子に複数の反応基を有する重合体
 B-1:アクリル樹脂系反応性化合物:エポキシ基含有スチレン/アクリル酸エステル共重合体(BASFジャパン(株)製“JONCRYL”(登録商標)ADR-4368、Mw(PMMA換算)8,000、エポキシ当量285g/mol)
 B-2:ポリカルボジイミド(日清紡ケミカル(株)製“カルボジライト”(登録商標)HMV-8CA、Mw(PMMA換算)3,000、カルボジイミド当量278g/mol)
 B-3:ポリカルボジイミド(日清紡ケミカル(株)製「“カルボジライト”(登録商標)LA-1、Mw(PMMA換算)2,000、カルボジイミド当量247g/mol)
(C)多官能性化合物
 C-1:N,N’-ジ-2,6-ジイソプロピルフェニルカルボジイミド(ラインケミージャパン(株)製“スタバクゾール”(登録商標)、分子量363)
 C-2:ヘキサメチレンジイソシアネート(日本ポリウレタン工業(株)製、分子量168)
 C-3:2,2’-(1,3-フェニレン)ビス(2-オキサゾリン)(三國製薬工業(株)製、分子量216)
(D)結晶核剤
 D-1:タルク(日本タルク(株)製“ミクロエース”(登録商標)P-6)
 D-2:リン酸エステルナトリウム塩((株)ADEKA製“アデカスタブ”(登録商標)NA-11)
 D-3:リン酸エステルアルミニウム塩((株)ADEKA製“アデカスタブ”(登録商標)NA-21)
(実施例1~18)
 表1および表2に示す種々の割合で、ポリ乳酸樹脂(A)、1分子に複数の反応基を有する重合体(B)および結晶核剤(D)をあらかじめドライブレンドした後、ベントを有する二軸押出機にて溶融混練を行った。二軸押出機は、上述したように、樹脂供給口よりL/D=10の部分に温度225℃に設定した可塑化部分と、L/D=30の部分にニーディングディスクを備えてせん断付与できるスクリューとしてせん断付与下で混合できる構造とを有しており、この二軸押出機を用いて減圧下、混練温度220℃で溶融混練を行って、ペレット化されたポリ乳酸樹脂組成物を得た。
Next, 100 parts of the resulting PLA4 was dissolved in a reaction vessel equipped with a stirrer at 200 ° C. under a nitrogen atmosphere, 120 parts of D-lactide was added, and 0.01 part of octyl was added. After adding the acid tin, the polymerization reaction was carried out for 3 hours. The obtained reaction product was dissolved in chloroform, re-precipitated with stirring in methanol (5 times the amount of chloroform solution), unreacted monomers were removed, and D-lactic acid units were added to PLA4 consisting of L-lactic acid units. As a result, a polylactic acid block copolymer (A-17) having 3 segments to which segments consisting of The molecular weight of A-17 was 150,000, the degree of dispersion was 1.8, the melting point was a double peak of 208 ° C. and 169 ° C., and the stereocomplex formation rate was 95%. The ratio of the weight average molecular weight of the segment consisting of L-lactic acid units constituting the polylactic acid block copolymer A-17 to the weight average molecular weight of the segment consisting of D-lactic acid units was 2.7.
[Reference Example 25]
Kneading temperature of PLA3 (50 parts by weight) obtained in Reference Example 3 and PDA4 (50 parts by weight) obtained in Reference Example 7 with a batch type twin-screw kneader (labor plast mill) manufactured by Toyo Seiki Seisakusho Co., Ltd. Kneading was performed at 270 ° C., a kneading rotation speed of 120 rpm, and a kneading time of 10 minutes, and a polylactic acid block copolymer (A- 18) was obtained. A-18 had a molecular weight of 110,000, a dispersity of 1.7, a melting point of 211 ° C., and a stereocomplex formation rate of 100%.
[Reference Example 26]
PLA 3 obtained in Reference Example 3 and PDA 4 obtained in Reference Example 7 were melt kneaded in the same manner as in Reference Example 8 to obtain a polylactic acid stereocomplex (A-19). The polylactic acid stereocomplex (A-19) had a weight average molecular weight of 170,000, a dispersity of 1.7, melting points of 220 ° C. and 169 ° C. double peaks, and a stereocomplex formation rate of 55%.
(B) Polymer having a plurality of reactive groups per molecule B-1: Acrylic resin-based reactive compound: Epoxy group-containing styrene / acrylic acid ester copolymer ("JONCRYL" (registered trademark) manufactured by BASF Japan Ltd.) ADR-4368, Mw (PMMA equivalent) 8,000, epoxy equivalent 285 g / mol)
B-2: Polycarbodiimide (“Carbodilite” (registered trademark) HMV-8CA, manufactured by Nisshinbo Chemical Co., Ltd.), Mw (PMMA conversion) 3,000, carbodiimide equivalent 278 g / mol)
B-3: Polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd. ““ Carbodilite ”(registered trademark) LA-1, Mw (PMMA conversion) 2,000, carbodiimide equivalent 247 g / mol)”
(C) Polyfunctional compound C-1: N, N′-di-2,6-diisopropylphenylcarbodiimide (“STABAXOL” (registered trademark), molecular weight 363, manufactured by Rhein Chemie Japan)
C-2: Hexamethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., molecular weight 168)
C-3: 2,2 ′-(1,3-phenylene) bis (2-oxazoline) (manufactured by Mikuni Pharmaceutical Co., Ltd., molecular weight 216)
(D) Crystal nucleating agent D-1: Talc ("Microace" (registered trademark) P-6, manufactured by Nippon Talc Co., Ltd.)
D-2: Phosphate ester sodium salt (“ADEKA STAB” (registered trademark) NA-11, manufactured by ADEKA Corporation)
D-3: Phosphate ester aluminum salt (“ADEKA STAB” (registered trademark) NA-21, manufactured by ADEKA Corporation)
(Examples 1 to 18)
At various ratios shown in Tables 1 and 2, polylactic acid resin (A), polymer (B) having a plurality of reactive groups per molecule, and crystal nucleating agent (D) are dry-blended in advance, and then have a vent Melt kneading was performed with a twin screw extruder. As described above, the twin-screw extruder is provided with a plasticized portion set at a temperature of 225 ° C. at a portion of L / D = 10 from the resin supply port, and a kneading disk at a portion of L / D = 30 to apply shear. It has a structure that can be mixed under shearing as a screw capable of being melted and melt-kneaded at a kneading temperature of 220 ° C. under reduced pressure using this twin-screw extruder to obtain a pelletized polylactic acid resin composition It was.
 続いて、上記のポリ乳酸樹脂組成物のペレットを240℃で2分間加熱して溶融し、その後プレス温度80℃でプレスすることで厚さ1mmのプレスシートを作製した。次いで、プレスシートを窒素雰囲気下、110℃で30分間の熱処理条件にて熱処理を行うことで各種測定用のシート状成形体とした。 Subsequently, the pellet of the polylactic acid resin composition was heated at 240 ° C. for 2 minutes to melt, and then pressed at a press temperature of 80 ° C. to produce a 1 mm thick press sheet. Next, the press sheet was heat-treated at 110 ° C. for 30 minutes under a nitrogen atmosphere to obtain sheet-like molded bodies for various measurements.
 溶融混練により得られたポリ乳酸樹脂組成物および成形体の物性は表1および表2に示す通りである。 The physical properties of the polylactic acid resin composition and the molded body obtained by melt kneading are as shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~4では、ポリ乳酸樹脂(A)としてポリ乳酸ブロック共重合体A-2を、実施例5~8ではポリ乳酸ブロック共重合体A-4を用い、これらポリ乳酸樹脂に対して1分子に複数の反応基を有する重合体(B)として添加量の異なるアクリル樹脂系反応性化合物(B-1)を添加して溶融混練を行った。その結果、ポリ乳酸樹脂組成物(A-2)および(A-4)いずれについてもアクリル樹脂系反応性化合物の添加量が多くなるとともにポリ乳酸樹脂組成物の重量平均分子量は増加した。また、アクリル樹脂系反応性化合物で反応後においてもポリ乳酸樹脂組成物の降温結晶化温度は140℃以上で結晶化エンタルピー(ΔHc)はいずれも40J/g以上と結晶化特性に優れていた。240℃、30分間での加熱減量はいずれも1%未満であり、溶融粘度比(MFR10/MFR20)についても、0.7以上1.1以下の範囲内であることから加熱時滞留安定性に優れていた。さらに、成形品のヘイズ値についても10%未満であり、透明性に優れることもわかった。 In Examples 1 to 4, polylactic acid block copolymer A-2 was used as polylactic acid resin (A), and in Examples 5 to 8, polylactic acid block copolymer A-4 was used. Acrylic resin-based reactive compounds (B-1) having different addition amounts were added as a polymer (B) having a plurality of reactive groups per molecule, and melt kneading was performed. As a result, in both of the polylactic acid resin compositions (A-2) and (A-4), the amount of the acrylic resin-based reactive compound increased and the weight average molecular weight of the polylactic acid resin composition increased. Further, even after the reaction with the acrylic resin-based reactive compound, the polylactic acid resin composition had excellent crystallization characteristics with a temperature-falling crystallization temperature of 140 ° C. or higher and a crystallization enthalpy (ΔHc) of 40 J / g or higher. The heating loss at 240 ° C. for 30 minutes is less than 1%, and the melt viscosity ratio (MFR10 / MFR20) is within the range of 0.7 to 1.1. It was excellent. Furthermore, it was also found that the haze value of the molded product was less than 10%, and the transparency was excellent.
 実施例9~14では、ポリ乳酸樹脂(A)の種類を表1に記載の通りに変更し、ポリ乳酸樹脂組成物を作製したものであるが、いずれのポリ乳酸樹脂を用いてもアクリル樹脂系反応性化合物(B-1)との反応により、実施例1~8と同様に分子量増加ならびに加熱時滞留安定性を示した。また、熱物性においても降温結晶化温度は130℃以上であり、結晶化特性に優れることがわかった。さらに、成形品のヘイズ値は10%未満で透明性に優れ、引張強度および貯蔵弾性率においても良好な機械物性を示した。 In Examples 9 to 14, the type of polylactic acid resin (A) was changed as shown in Table 1 to produce a polylactic acid resin composition. However, any polylactic acid resin could be used as an acrylic resin. As a result of the reaction with the system reactive compound (B-1), the increase in molecular weight and the retention stability during heating were shown as in Examples 1-8. Further, in terms of thermophysical properties, the temperature-falling crystallization temperature was 130 ° C. or higher, and it was found that the crystallization characteristics were excellent. Furthermore, the haze value of the molded product was less than 10% and excellent in transparency, and showed good mechanical properties in terms of tensile strength and storage elastic modulus.
 実施例15では、1分子に複数の反応基を有する重合体(B)として、ポリカルボジイミド(B-3)を用いてポリ乳酸樹脂組成物を作製したものであるが、ポリカルボジイミドとの反応により分子量増加および加熱時滞留安定性が得られた。 In Example 15, a polylactic acid resin composition was prepared using polycarbodiimide (B-3) as a polymer (B) having a plurality of reactive groups per molecule, but by reaction with polycarbodiimide. Increased molecular weight and retention stability during heating were obtained.
 実施例16~18では、ポリ乳酸樹脂(A-4)に対して、アクリル樹脂系反応性化合物(B-1)に加えて結晶核剤D-1~D-3をそれぞれ添加してポリ乳酸樹脂組成物を作製したものであるが、いずれのポリ乳酸樹脂組成物においてもアクリル樹脂系反応性化合物(B-1)との反応により、分子量増加ならびに加熱時滞留安定性を示した。また、熱物性においても降温結晶化温度は130℃以上で結晶化エンタルピー(ΔHc)も37J/g以上であることから耐熱性と結晶化特性に優れることがわかった。さらに、成形品のヘイズ値は12%以下で透明性に優れ、引張強度および貯蔵弾性率おいて良好な機械物性を示した。
(比較例1~23)
 表3および表4に示す種々の割合で、ポリ乳酸樹脂(A)、1分子に複数の反応基を有する重合体(B)、多官能性化合物(C)および結晶核剤(D)をあらかじめドライブレンドした後、ベントを有する二軸押出機にて溶融混練を行った。比較例1~23についても、実施例1~18と同様の方法にてペレット化されたポリ乳酸樹脂組成物ならびに成形体を得た。
In Examples 16 to 18, polylactic acid was added to the polylactic acid resin (A-4) by adding crystal nucleating agents D-1 to D-3 in addition to the acrylic resin reactive compound (B-1). Resin compositions were prepared, and any of the polylactic acid resin compositions showed an increase in molecular weight and a residence stability upon heating due to the reaction with the acrylic resin-based reactive compound (B-1). Further, in terms of thermophysical properties, since the temperature drop crystallization temperature was 130 ° C. or higher and the crystallization enthalpy (ΔHc) was 37 J / g or higher, it was found that heat resistance and crystallization characteristics were excellent. Further, the haze value of the molded product was 12% or less and excellent transparency, and showed good mechanical properties in terms of tensile strength and storage elastic modulus.
(Comparative Examples 1 to 23)
Polylactic acid resin (A), polymer (B) having a plurality of reactive groups per molecule, polyfunctional compound (C), and crystal nucleating agent (D) in various proportions shown in Table 3 and Table 4 After dry blending, melt kneading was performed in a twin screw extruder having a vent. For Comparative Examples 1 to 23, a polylactic acid resin composition and a molded body pelletized by the same method as in Examples 1 to 18 were obtained.
 溶融混練により得られたポリ乳酸樹脂組成物および成形体の物性は表3および表4に示す通りである。 The physical properties of the polylactic acid resin composition and the molded product obtained by melt kneading are as shown in Table 3 and Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1~4では100重量部のポリ乳酸樹脂A-2あるいはA-4に対してアクリル樹脂系反応性化合物(B-1)をそれぞれ0.03重量部と2.5重量部で添加したものである。その結果、比較例1、3ではアクリル樹脂系反応性化合物(B-1)との反応後においても溶融粘度比(MFR10/MFR20)が0.5未満であり、実施例1~13に比較して加熱時滞留安定性が低いことがわかった。一方、比較例2、4ではアクリル樹脂系反応性化合物(B-1)との反応後、ポリ乳酸樹脂組成物はゲル化が生じ、溶融粘度比(MFR10/MFR20)については1以上であった。比較例2、4のポリ乳酸樹脂組成物についてはゲル化が生じたことにより成形体への加工が不可能であった。 In Comparative Examples 1 to 4, the acrylic resin-based reactive compound (B-1) was added at 0.03 parts by weight and 2.5 parts by weight with respect to 100 parts by weight of the polylactic acid resin A-2 or A-4, respectively. Is. As a result, in Comparative Examples 1 and 3, the melt viscosity ratio (MFR10 / MFR20) was less than 0.5 even after the reaction with the acrylic resin-based reactive compound (B-1), compared with Examples 1 to 13. It was found that the residence stability during heating was low. On the other hand, in Comparative Examples 2 and 4, after the reaction with the acrylic resin-based reactive compound (B-1), the polylactic acid resin composition was gelled, and the melt viscosity ratio (MFR10 / MFR20) was 1 or more. . The polylactic acid resin compositions of Comparative Examples 2 and 4 could not be processed into molded articles due to gelation.
 比較例5~15についてはポリ乳酸樹脂(A)として表3および4に示すポリ乳酸ステレオコンプレックスあるいはポリ乳酸ブロック共重合体を用いてポリ乳酸樹脂組成物を作製した。その結果、比較例5~9ではアクリル樹脂系反応性化合物(B-1)との反応により重量平均分子量は増加するものの、240℃、30分での加熱減量は3%以上であった。溶融粘度比(MFR10/MFR20)は0.45~0,59であり、実施例3,7および9~11に示すポリ乳酸ブロック共重合体に比較して加熱時滞留安定性に劣っていた。 For Comparative Examples 5 to 15, polylactic acid resin compositions were prepared using polylactic acid stereocomplexes or polylactic acid block copolymers shown in Tables 3 and 4 as polylactic acid resin (A). As a result, in Comparative Examples 5 to 9, although the weight average molecular weight increased due to the reaction with the acrylic resin-based reactive compound (B-1), the loss on heating at 240 ° C. for 30 minutes was 3% or more. The melt viscosity ratio (MFR10 / MFR20) was 0.45 to 0,59, which was inferior in residence stability during heating as compared with the polylactic acid block copolymers shown in Examples 3, 7 and 9-11.
 比較例10~15について、いずれの場合も一分子に複数の反応基を有する重合体(B)としてアクリル樹脂系反応性化合物(B-1)を添加することで重量平均分子量の増加が認められるものの、比較例12以外ではいずれも降温結晶化温度における結晶化エンタルピーΔHcは10J/g未満で結晶化特性が乏しかった。また、ポリ乳酸樹脂(A)としてポリ乳酸ステレオコンプレックスを使用した比較例10,12,13,15では溶融粘度比(MFR10/MFR20)はポリ乳酸ブロック共重合体を用いた実施例に比較して低く、溶融粘度の安定性が劣る結果であった。成形体の物性については、比較例10~15いずれの水準についても成形体のヘイズ値は10%以上であり、実施例に比較して透明性に劣るものであった。 In Comparative Examples 10 to 15, in any case, an increase in the weight average molecular weight is observed by adding the acrylic resin-based reactive compound (B-1) as the polymer (B) having a plurality of reactive groups in one molecule. However, except for Comparative Example 12, the crystallization enthalpy ΔHc at the temperature-falling crystallization temperature was less than 10 J / g and the crystallization characteristics were poor. Further, in Comparative Examples 10, 12, 13, and 15 using a polylactic acid stereocomplex as the polylactic acid resin (A), the melt viscosity ratio (MFR10 / MFR20) is compared with the examples using the polylactic acid block copolymer. The result was low and the stability of the melt viscosity was poor. Regarding the physical properties of the molded products, the haze value of the molded products was 10% or more at any level of Comparative Examples 10 to 15, and the transparency was inferior to the Examples.
 比較例16は、ポリ乳酸樹脂(A)としてホモポリ乳酸であるPLA3を用いたものであるが、ステレオコンプレックスの形成がなく、降温結晶化温度も認められないことから耐熱性および結晶化特性が実施例に比較して劣る結果であった。 In Comparative Example 16, PLA3, which is homopolylactic acid, was used as the polylactic acid resin (A), but there was no formation of a stereocomplex, and no temperature drop crystallization temperature was observed, so heat resistance and crystallization characteristics were implemented. The results were inferior to the examples.
 比較例17~19については、ポリ乳酸ブロック共重合体(A-4)に対して多官能性化合物(C)として(C-1)~(C-3)を添加してポリ乳酸樹脂組成物を作製した。その結果、比較例17~19いずれにおいてもアクリル樹脂系反応性化合物(B-1)を添加した実施例7に比較して降温結晶化温度が125℃未満と低く、結晶化特性に劣ることがわかった。これらの成形体のヘイズ値についても10%以上であり、実施例に比較して透明性に劣ることがわかった。 For Comparative Examples 17 to 19, polylactic acid resin compositions obtained by adding (C-1) to (C-3) as polyfunctional compounds (C) to the polylactic acid block copolymer (A-4) Was made. As a result, in any of Comparative Examples 17 to 19, the temperature-falling crystallization temperature was lower than 125 ° C. compared to Example 7 to which the acrylic resin-based reactive compound (B-1) was added, and the crystallization characteristics were inferior. all right. The haze values of these molded bodies were also 10% or more, and it was found that the transparency was inferior compared to the examples.
 比較例20~22については、ポリ乳酸樹脂(A)についてポリ乳酸ステレオコンプレックスA-19を使用し、アクリル樹脂系反応性化合物(B-1)に加えて結晶核剤(D-1)~(D-3)を添加してポリ乳酸樹脂組成物を作製した。その結果、これらポリ乳酸樹脂組成物のステレオコンプレックス形成率(Sc)は70%未満であり、実施例に比較して耐熱性が低く、比較例17~19と同様に結晶化特性にも劣ることがわかった。特に、リン酸金属エステルを併用した比較例21と22においては240℃、30分での加熱減量が9%以上と高く、滞留安定性が低かった。また、これらの成形体のヘイズ値についても10%以上であり、実施例に比較して透明性は低かった。 For Comparative Examples 20 to 22, the polylactic acid stereocomplex A-19 was used for the polylactic acid resin (A), and in addition to the acrylic resin reactive compound (B-1), the crystal nucleating agent (D-1) to ( A polylactic acid resin composition was prepared by adding D-3). As a result, the stereocomplex formation rate (Sc) of these polylactic acid resin compositions is less than 70%, the heat resistance is low compared to the examples, and the crystallization characteristics are also inferior as in the comparative examples 17-19. I understood. In particular, in Comparative Examples 21 and 22 in which a phosphoric acid metal ester was used in combination, the heat loss at 240 ° C. for 30 minutes was as high as 9% or more, and the residence stability was low. Further, the haze values of these molded products were also 10% or more, and the transparency was low as compared with the Examples.
 比較例23では、ポリ乳酸樹脂(A-4)に対してポリカルボジイミド(B-2)を添加して溶融混練したものであるが、得られたポリ乳酸樹脂組成物は降温結晶化温度が105℃と実施例に比較して低く、結晶化エンタルピーΔHcについても5J/gであり、結晶化特性が実施例に比較して劣るものであった。
(実施例19、20)
 参考例3で得られたPLA3と参考例4で得られたPDA1を混合前にあらかじめ窒素雰囲気下で温度110℃、2時間結晶化処理を行った。続いて、表3に示す添加量にて結晶化したPLA3、PDA1およびアクリル樹脂系反応性化合物(B-1)を二軸押出機の樹脂供給口より添加し、一方、結晶化したPDA1を後述するL/D=30の部分に設けたサイド供給口より添加することで溶融混練を行った。ここで、二軸押出機は、樹脂供給口よりL/D=10の部分に温度190℃に設定した可塑化部分を有するとともに、L/D=30の部分にニーディングディスクを備えてせん断付与できるスクリューとしてせん断付与下で混合できる構造を有している。
In Comparative Example 23, polycarbodiimide (B-2) was added to polylactic acid resin (A-4) and melt-kneaded. The resulting polylactic acid resin composition had a temperature-falling crystallization temperature of 105. The crystallization enthalpy ΔHc was 5 J / g, and the crystallization characteristics were inferior to those of the examples.
(Examples 19 and 20)
The PLA 3 obtained in Reference Example 3 and the PDA 1 obtained in Reference Example 4 were subjected to crystallization treatment at 110 ° C. for 2 hours in a nitrogen atmosphere before mixing. Subsequently, PLA3, PDA1 and acrylic resin-based reactive compound (B-1) crystallized in the addition amounts shown in Table 3 were added from the resin supply port of the twin screw extruder, while crystallized PDA1 was described later. Melting and kneading were performed by adding from the side supply port provided in the portion of L / D = 30. Here, the twin-screw extruder has a plasticized portion set at a temperature of 190 ° C. at a portion of L / D = 10 from the resin supply port, and is provided with a kneading disk at a portion of L / D = 30 to give shear. It has a structure that can be mixed under shearing as a possible screw.
 さらに、上記で混練した混練物を窒素雰囲気下で110℃、1時間結晶化処理を行った後、60Paの圧力下、150℃にて24時間で固相重合を行い、ポリ乳酸樹脂組成物を得た。また、該ポリ乳酸樹脂組成物についても実施例1~18と同様の方法にてシート状成形体を作製した。 Further, the kneaded material kneaded as described above was subjected to crystallization treatment at 110 ° C. for 1 hour in a nitrogen atmosphere, followed by solid phase polymerization at 150 ° C. for 24 hours under a pressure of 60 Pa to obtain a polylactic acid resin composition. Obtained. For the polylactic acid resin composition, sheet-like molded bodies were produced in the same manner as in Examples 1 to 18.
 ポリ乳酸樹脂組成物および成形体の物性は表5に示す通りである。
(実施例21)
 参考例10で得られたポリ乳酸ステレオコンプレックス(A-3)とアクリル樹脂系反応性化合物(B-1)を二軸押出機の樹脂供給口より添加し、溶融混練を行った。押出機のエレメント構成および温度設定については実施例19、20に記載の通りである。続いて溶融混練後の混練物を、実施例19,20に記載した方法で固相重合を行った。また、実施例1~18と同様の方法にてシート状成形体を作製した。
ポリ乳酸樹脂組成物および成形体の物性は表5に示す通りである。
(実施例22~24)
 参考例3で得られたPLA3、参考例7で得られたPDA4および参考例11で得られた(A-4)を混合前にあらかじめ窒素雰囲気下で温度110℃、2時間結晶化処理を行った。
Table 5 shows the physical properties of the polylactic acid resin composition and the molded body.
(Example 21)
The polylactic acid stereocomplex (A-3) obtained in Reference Example 10 and the acrylic resin-based reactive compound (B-1) were added from the resin supply port of the twin screw extruder and melt kneaded. The element configuration and temperature setting of the extruder are as described in Examples 19 and 20. Subsequently, the kneaded product after melt-kneading was subjected to solid phase polymerization by the method described in Examples 19 and 20. In addition, a sheet-like molded body was produced in the same manner as in Examples 1-18.
Table 5 shows the physical properties of the polylactic acid resin composition and the molded body.
(Examples 22 to 24)
The PLA 3 obtained in Reference Example 3, the PDA 4 obtained in Reference Example 7 and (A-4) obtained in Reference Example 11 were subjected to crystallization treatment at a temperature of 110 ° C. for 2 hours in a nitrogen atmosphere before mixing. It was.
 ポリ乳酸樹脂組成物の作製について、あらかじめポリ乳酸ブロック共重合体(A-4)とアクリル樹脂系反応性化合物(B-1)を表5に示す添加量にて二軸押出機の樹脂供給口より添加して溶融混練することで混合物を得た。続いて、二軸押出機の樹脂供給口に対して上記混合物と、さらにPLA3およびPDA4を表5に示す添加量にて添加して溶融混練することにより、ポリ乳酸樹脂組成物を作製した。なお、実施例22~24についてはポリ乳酸樹脂組成物の混練後に固相重合は実施しなかった。また、該ポリ乳酸樹脂組成物についても実施例1~18と同様の方法にてシート成形体を作製した。 For the preparation of the polylactic acid resin composition, the resin supply port of the twin screw extruder was added in advance with the polylactic acid block copolymer (A-4) and the acrylic resin-based reactive compound (B-1) added in the amounts shown in Table 5. The mixture was obtained by further adding and melt-kneading. Then, the polylactic acid resin composition was produced by adding the said mixture and PLA3 and PDA4 with the addition amount shown in Table 5 with respect to the resin supply port of a twin-screw extruder, and melt-kneading. In Examples 22 to 24, solid phase polymerization was not performed after kneading the polylactic acid resin composition. For the polylactic acid resin composition, sheet molded bodies were produced in the same manner as in Examples 1 to 18.
 得られたポリ乳酸樹脂組成物および成形体の物性は表5に示す通りである。
(比較例24、25)
 実施例20、21と同様の方法にて二軸押出機にて混練物を作製することでポリ乳酸樹脂組成物を作製した。なお、比較例24、25については混練物の固相重合は実施しなかった。また、該ポリ乳酸樹脂組成物についても実施例1~19と同様の方法にてシート状成形体を作製した。
Table 5 shows the physical properties of the obtained polylactic acid resin composition and molded article.
(Comparative Examples 24 and 25)
A polylactic acid resin composition was prepared by preparing a kneaded material using a twin screw extruder in the same manner as in Examples 20 and 21. In Comparative Examples 24 and 25, the kneaded product was not subjected to solid phase polymerization. For the polylactic acid resin composition, sheet-like molded bodies were produced in the same manner as in Examples 1 to 19.
 得られたポリ乳酸樹脂組成物および成形体の物性は表5に示す通りである。 The physical properties of the obtained polylactic acid resin composition and the molded product are as shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例19、20について、ポリ乳酸樹脂としてあらかじめポリ乳酸ブロック共重合体を作製せずにPLA3、PDA1およびアクリル樹脂系反応性化合物(B-1)を一括で溶融混練後に固相重合したところ、ポリ乳酸樹脂組成物はアクリル樹脂系反応性化合物(B-1)との反応により重量平均分子量は増加し、240℃、30分の加熱減量は1%未満であり、溶融粘度比(MFR10/MFR20)についても0.5~1未満であることから加熱時滞留安定性に優れていた。また、熱物性についてもステレオコンプレックス形成率(Sc)は90%以上と耐熱性が高く、降温結晶化温度および結晶化エンタルピーも高いことから結晶化特性に優れることがわかった。さらに成形体のヘイズ値についても10%未満と低いため透明性に優れ、引張強度および貯蔵弾性率おいて良好な機械物性を示した。 For Examples 19 and 20, PLA3, PDA1 and the acrylic resin-based reactive compound (B-1) were solid-phase polymerized after melt kneading all together without preparing a polylactic acid block copolymer in advance as a polylactic acid resin. The polylactic acid resin composition has a weight average molecular weight increased by reaction with the acrylic resin-based reactive compound (B-1), and the heat loss at 240 ° C. for 30 minutes is less than 1%, and the melt viscosity ratio (MFR10 / MFR20 ) Was also less than 0.5 to 1 and was excellent in retention stability during heating. In addition, regarding the thermophysical properties, the stereocomplex formation rate (Sc) was 90% or higher, and the heat resistance was high, and the temperature-falling crystallization temperature and crystallization enthalpy were also high, indicating that the crystallization characteristics were excellent. Further, the haze value of the molded product was also low, less than 10%, so that it was excellent in transparency and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
 実施例21について、実施例1~18と異なり、アクリル樹脂系反応性化合物(B-1)を固相重合前に添加した場合も、実施例1~18と同様にポリ乳酸樹脂組成物はアクリル樹脂系反応性化合物(B-1)との反応により重量平均分子量は増加し、溶融粘度比(MFR10/MFR20)についても0.9と加熱時滞留安定性に優れていた。また、降温結晶化温度は130℃以上で、結晶化エンタルピーも35J/g以上と高いことから結晶化特性に優れることがわかった。さらに、成形体のヘイズ値については9%で透明性に優れ、引張強度や貯蔵弾性率においても良好な機械物性を示した。 In Example 21, unlike Examples 1 to 18, when the acrylic resin-based reactive compound (B-1) was added before solid-phase polymerization, the polylactic acid resin composition was acrylic as in Examples 1 to 18. The weight average molecular weight increased by the reaction with the resin-based reactive compound (B-1), and the melt viscosity ratio (MFR10 / MFR20) was 0.9, which was excellent in the retention stability during heating. Further, the temperature-falling crystallization temperature was 130 ° C. or higher and the crystallization enthalpy was as high as 35 J / g or more, so that it was found that the crystallization characteristics were excellent. Further, the haze value of the molded product was 9%, which was excellent in transparency, and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
 実施例22~24について、得られたポリ乳酸樹脂組成物の物性については実施例1~18と同様、アクリル樹脂系反応性化合物(B-1)との反応により重量平均分子量は増加し、溶融粘度比(MFR10/MFR20)についても0.5~1未満と加熱時滞留安定性に優れていた。また、熱物性についてもステレオコンプレックス形成率(Sc)は90%以上と耐熱性が高く、降温結晶化温度および結晶化エンタルピーも高いことから結晶化特性に優れることがわかった。さらに成形体のヘイズ値についても10%未満と低いため透明性に優れ、引張強度および貯蔵弾性率において良好な機械物性を示した。 As for Examples 22 to 24, the physical properties of the obtained polylactic acid resin compositions were increased by the reaction with the acrylic resin-based reactive compound (B-1) as in Examples 1 to 18, and the melt was melted. The viscosity ratio (MFR10 / MFR20) was also 0.5 to less than 1, and the residence stability during heating was excellent. In addition, regarding the thermophysical properties, the stereocomplex formation rate (Sc) was 90% or higher, and the heat resistance was high, and the temperature-falling crystallization temperature and crystallization enthalpy were also high, indicating that the crystallization characteristics were excellent. Further, the haze value of the molded product was also low, less than 10%, so that it was excellent in transparency and exhibited good mechanical properties in terms of tensile strength and storage elastic modulus.
 比較例24、25について、実施例19、20と同様にPLA3、PDA1およびアクリル樹脂系反応性化合物(B-1)を一括で溶融混練したが、その後固相重合しなかったことから、重量平均分子量は実施例19、20に比較して低く、加熱減量および溶融粘度比(MFR10/MFR20)の結果からも加熱時滞留安定性に劣ることがわかった。また熱物性について、比較例24では降温結晶化時の結晶化エンタルピーが25J/g未満で結晶化特性についても劣る結果であった。さらに成形体のヘイズ値は10%以上と高く実施例19、20に比較して透明性が劣る結果であった。 For Comparative Examples 24 and 25, PLA3, PDA1 and the acrylic resin-based reactive compound (B-1) were collectively melt-kneaded in the same manner as in Examples 19 and 20, but the solid-phase polymerization was not performed thereafter. The molecular weight was lower than in Examples 19 and 20, and it was found that the residence stability during heating was inferior from the results of weight loss on heating and melt viscosity ratio (MFR10 / MFR20). Further, regarding the thermal properties, in Comparative Example 24, the crystallization enthalpy at the time of temperature-fall crystallization was less than 25 J / g, and the crystallization characteristics were also inferior. Furthermore, the haze value of the molded body was as high as 10% or more, and the result was inferior in transparency as compared with Examples 19 and 20.
 本発明のポリ乳酸樹脂組成物は、本発明は、1分子に複数の反応基を有する重合体による増粘効果により、機械物性、耐久性、加熱時滞留安定性が向上し、さらには耐熱性、結晶化特性にも優れるため、耐熱性、結晶化特性および加熱時滞留安定性が要求される分野に好適に採用できる。 The polylactic acid resin composition of the present invention has improved mechanical properties, durability, stability during heating, and heat resistance due to the thickening effect of the polymer having a plurality of reactive groups in one molecule. Also, since it has excellent crystallization characteristics, it can be suitably used in fields that require heat resistance, crystallization characteristics, and retention stability during heating.

Claims (15)

  1.  (A)L-乳酸を主成分とするポリ-L-乳酸セグメントとD-乳酸を主成分とするポリ-D-乳酸セグメントから構成されるポリ乳酸ブロック共重合体100重量部に対して(B)1分子に複数の反応基を有する重合体を0.05~2重量部配合してなるポリ乳酸樹脂組成物であって、(B)1分子に複数の反応基を有する重合体の重量平均分子量が1,000~15,000であり、DSC測定において、ポリ乳酸樹脂組成物を250℃まで昇温して3分間恒温状態にした後、冷却速度20℃/minで降温した際の結晶化熱量が10J/g以上であるポリ乳酸樹脂組成物。 (A) 100 parts by weight of a polylactic acid block copolymer composed of a poly-L-lactic acid segment containing L-lactic acid as a main component and a poly-D-lactic acid segment containing D-lactic acid as a main component (B ) A polylactic acid resin composition comprising 0.05 to 2 parts by weight of a polymer having a plurality of reactive groups per molecule, and (B) a weight average of the polymers having a plurality of reactive groups per molecule Crystallization when the molecular weight is 1,000 to 15,000 and the polylactic acid resin composition is heated to 250 ° C. and kept at a constant temperature for 3 minutes and then cooled at a cooling rate of 20 ° C./min in DSC measurement. A polylactic acid resin composition having a calorific value of 10 J / g or more.
  2.  前記(B)1分子に複数の反応基を有する重合体がエポキシ基含有アクリル樹脂系反応性化合物である請求項1に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 1, wherein the polymer (B) having a plurality of reactive groups per molecule is an epoxy group-containing acrylic resin-based reactive compound.
  3.  前記エポキシ基含有アクリル樹脂系反応性化合物の1分子あたりのエポキシ基の数が2~30個である請求項2に記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to claim 2, wherein the epoxy group-containing acrylic resin-based reactive compound has 2 to 30 epoxy groups per molecule.
  4.  ステレオコンプレックス形成率(Sc)が、下記式(1)を満たす請求項1~3いずれかに記載のポリ乳酸樹脂組成物。
     Sc=ΔHh/(ΔHl+ΔHh)×100≧80   (1)
     ここで、
     ΔHh:ポリ乳酸樹脂組成物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
     ΔHl:ポリ乳酸樹脂組成物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
    The polylactic acid resin composition according to any one of claims 1 to 3, wherein a stereo complex formation rate (Sc) satisfies the following formula (1).
    Sc = ΔHh / (ΔHl + ΔHh) × 100 ≧ 80 (1)
    here,
    ΔHh: Amount of heat (J / g) based on the stereocomplex crystal when the polylactic acid resin composition is heated at a rate of temperature increase of 20 ° C./min in the DSC measurement.
    ΔHl: Calorie (J / g) based on crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of polylactic acid resin composition
  5.  ポリ乳酸樹脂組成物の230℃、21.2N荷重条件における10分後のメルトフローレート(MFR10)と20分後のメルトフローレート(MFR20)の比(MFR10/MFR20)が0.5以上2以下である請求項1~4いずれかに記載のポリ乳酸樹脂組成物。 The ratio (MFR10 / MFR20) of the melt flow rate (MFR10) after 10 minutes and the melt flow rate (MFR20) after 20 minutes of the polylactic acid resin composition at 230 ° C. and 21.2 N load condition is 0.5 or more and 2 or less. The polylactic acid resin composition according to any one of claims 1 to 4, wherein
  6.  DSC測定において、ポリ乳酸樹脂組成物を250℃まで昇温して3分間恒温状態にした後、冷却速度20℃/分で降温した際のポリ乳酸樹脂組成物の降温結晶化温度が130℃以上である請求項1~5いずれかに記載のポリ乳酸樹脂組成物。 In DSC measurement, the polylactic acid resin composition was heated to 250 ° C. and kept at a constant temperature for 3 minutes, and then the temperature-decreasing crystallization temperature of the polylactic acid resin composition was 130 ° C. or higher when the temperature was lowered at a cooling rate of 20 ° C./min. The polylactic acid resin composition according to any one of claims 1 to 5, wherein
  7.  前記(A)ポリ乳酸ブロック共重合体が、ポリ-L-乳酸またはポリ-D-乳酸を下記組合せ1および/または下記組合せ2の条件で混合し、重量平均分子量90,000以上かつステレオコンプレックス形成率(Sc)が下記式(2)を満たす混合物を得た後、該混合物の融点より低い温度で固相重合することにより得られるものである請求項1~6いずれかに記載のポリ乳酸樹脂組成物。
    (組合せ1)ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万である
    (組合せ2)ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満である
     Sc=ΔHh/(ΔHl+ΔHh)×100>60   (2)
     ここで、
     ΔHh:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
     ΔHl:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
    The (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following combination 1 and / or the following combination 2 to form a stereocomplex with a weight average molecular weight of 90,000 or more. The polylactic acid resin according to any one of claims 1 to 6, wherein the polylactic acid resin is obtained by obtaining a mixture having a rate (Sc) satisfying the following formula (2) and then solid-phase polymerization at a temperature lower than the melting point of the mixture. Composition.
    (Combination 1) The weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 60,000 to 300,000, and the other weight average molecular weight is 10,000 to 100,000 (Combination 2). The ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30 Sc = ΔHh / (ΔHl + ΔHh) × 100> 60 (2)
    here,
    ΔHh: calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
    ΔHl: Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
  8.  前記(A)ポリ乳酸ブロック共重合体が、ポリ-L-乳酸またはポリ-D-乳酸を下記組合せ3および/または下記組合せ4の条件で混合し、重量平均分子量90,000以上かつステレオコンプレックス形成率(Sc)が下記式(2)を満たす混合物を得た後、該混合物の融点より低い温度で固相重合することにより得られるものである請求項1~6いずれかに記載のポリ乳酸樹脂組成物。
    (組合せ3)ポリ-L-乳酸またはポリ-D-乳酸のいずれか一方の重量平均分子量が12万~30万であり、もう一方の重量平均分子量が3万~10万である
    (組合せ4)ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満である。
     Sc=ΔHh/(ΔHl+ΔHh)×100>60   (2)
     ここで、
     ΔHh:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のステレオコンプレックス結晶に基づく熱量(J/g)
     ΔHl:ポリ-L-乳酸とポリ-D-乳酸の混合物のDSC測定において昇温速度20℃/minで昇温した際のポリ-L-乳酸単独結晶およびポリ-D-乳酸単独結晶の結晶融解に基づく熱量(J/g)
    The (A) polylactic acid block copolymer is prepared by mixing poly-L-lactic acid or poly-D-lactic acid under the conditions of the following combination 3 and / or the following combination 4 to form a stereocomplex with a weight average molecular weight of 90,000 or more. The polylactic acid resin according to any one of claims 1 to 6, wherein the polylactic acid resin is obtained by obtaining a mixture having a rate (Sc) satisfying the following formula (2) and then solid-phase polymerization at a temperature lower than the melting point of the mixture. Composition.
    (Combination 3) The weight average molecular weight of either poly-L-lactic acid or poly-D-lactic acid is 120,000 to 300,000, and the other weight average molecular weight is 30,000 to 100,000 (Combination 4) The ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30.
    Sc = ΔHh / (ΔHl + ΔHh) × 100> 60 (2)
    here,
    ΔHh: calorific value (J / g) based on stereocomplex crystals when the temperature is raised at a rate of temperature rise of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid
    ΔHl: Crystal melting of poly-L-lactic acid single crystal and poly-D-lactic acid single crystal when heated at a rate of temperature increase of 20 ° C./min in DSC measurement of a mixture of poly-L-lactic acid and poly-D-lactic acid Heat quantity based on (J / g)
  9.  ポリ乳酸樹脂組成物の重量平均分子量が100,000~500,000である請求項1~8いずれかに記載のポリ乳酸樹脂組成物。 The polylactic acid resin composition according to any one of claims 1 to 8, wherein the polylactic acid resin composition has a weight average molecular weight of 100,000 to 500,000.
  10.  請求項1~9に記載するポリ乳酸樹脂組成物に対してさらに、(b)ポリ-L-乳酸および/または(c)ポリ-D-乳酸を含むポリ乳酸樹脂組成物。 A polylactic acid resin composition further comprising (b) poly-L-lactic acid and / or (c) poly-D-lactic acid in addition to the polylactic acid resin composition according to any one of claims 1 to 9.
  11.  請求項1~10いずれかに記載のポリ乳酸樹脂組成物からなる成形体。 A molded body comprising the polylactic acid resin composition according to any one of claims 1 to 10.
  12.  下記式(3)で表される成形体の相対結晶化度が90%以上であり、かつ厚さ1mmの成形体のヘイズ値が10%以下である請求項11に記載の成形体。
    相対結晶化度=[(ΔHm-ΔHc)/ΔHm]×100   (3)
     ここで、
    ΔHm:成形体の結晶融解エンタルピー(J/g)
    ΔHc:成形体の昇温時結晶化エンタルピー(J/g)
    The molded product according to claim 11, wherein the molded product represented by the following formula (3) has a relative crystallinity of 90% or more and a molded product having a thickness of 1 mm has a haze value of 10% or less.
    Relative crystallinity = [(ΔHm−ΔHc) / ΔHm] × 100 (3)
    here,
    ΔHm: Crystal melting enthalpy of compact (J / g)
    ΔHc: Crystallization enthalpy at elevated temperature of the compact (J / g)
  13.  ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合し、
    該混合物の融点より低い温度で固相重合をした後、
    前記(B)1分子に複数の反応基を有する重合体を配合する請求項1~10いずれかに記載のポリ乳酸樹脂組成物の製造方法。
    Poly-L-lactic acid and poly-L-lactic acid or poly-D-lactic acid having a weight average molecular weight of 60,000 to 300,000 and the other weight average molecular weight of 10,000 to 100,000 Mixing poly-L-lactic acid and poly-D-lactic acid in which the ratio of the weight average molecular weight of D-lactic acid or poly-L-lactic acid and the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30;
    After solid phase polymerization at a temperature below the melting point of the mixture,
    The method for producing a polylactic acid resin composition according to any one of claims 1 to 10, wherein (B) a polymer having a plurality of reactive groups is added to one molecule.
  14.  ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸を混合した後、
    前記(B)1分子に複数の反応基を有する重合体を配合し、
    該混合物の融点より低い温度で固相重合する請求項1~10いずれかに記載のポリ乳酸樹脂組成物の製造方法。
    Poly-L-lactic acid and poly-L-lactic acid or poly-D-lactic acid having a weight average molecular weight of 60,000 to 300,000 and the other weight average molecular weight of 10,000 to 100,000 After mixing poly-L-lactic acid and poly-D-lactic acid in which the ratio of the weight average molecular weight of D-lactic acid or poly-L-lactic acid and the weight average molecular weight of poly-D-lactic acid is 2 or more and less than 30,
    (B) blending a polymer having a plurality of reactive groups in one molecule,
    The method for producing a polylactic acid resin composition according to any one of claims 1 to 10, wherein solid-phase polymerization is performed at a temperature lower than the melting point of the mixture.
  15.  ポリ-L-乳酸もしくはポリ-D-乳酸のいずれか一方の重量平均分子量が6万~30万であり、もう一方の重量平均分子量が1万~10万であるポリ-L-乳酸とポリ-D-乳酸ならびに前記(B)1分子に複数の反応基を有する重合体を混合し、または、ポリ-L-乳酸の重量平均分子量とポリ-D-乳酸の重量平均分子量の比が2以上30未満であるポリ-L-乳酸とポリ-D-乳酸ならびに前記(B)1分子に複数の反応基を有する重合体を混合し、
    該混合物の融点より低い温度で固相重合する請求項1~10いずれかに記載のポリ乳酸樹脂組成物の製造方法。
    Poly-L-lactic acid and poly-L-lactic acid or poly-D-lactic acid having a weight average molecular weight of 60,000 to 300,000 and the other weight average molecular weight of 10,000 to 100,000 D-lactic acid and (B) a polymer having a plurality of reactive groups per molecule are mixed, or the ratio of the weight average molecular weight of poly-L-lactic acid to the weight average molecular weight of poly-D-lactic acid is 2 to 30 Less than poly-L-lactic acid and poly-D-lactic acid and (B) a polymer having a plurality of reactive groups per molecule,
    The method for producing a polylactic acid resin composition according to any one of claims 1 to 10, wherein solid-phase polymerization is performed at a temperature lower than the melting point of the mixture.
PCT/JP2014/052384 2013-02-19 2014-02-03 Polylactic resin composition, molded product, and method for producing polylactic resin composition WO2014129293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015501382A JPWO2014129293A1 (en) 2013-02-19 2014-02-03 Polylactic acid resin composition, molded body, and method for producing polylactic acid resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029654 2013-02-19
JP2013029654 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129293A1 true WO2014129293A1 (en) 2014-08-28

Family

ID=51391090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052384 WO2014129293A1 (en) 2013-02-19 2014-02-03 Polylactic resin composition, molded product, and method for producing polylactic resin composition

Country Status (3)

Country Link
JP (1) JPWO2014129293A1 (en)
TW (1) TW201437251A (en)
WO (1) WO2014129293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144235A1 (en) * 2019-01-09 2020-07-16 Purac Biochem B.V. Thermoforming of pla-based articles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3037460B1 (en) * 2014-12-22 2021-11-24 PURAC Biochem BV Shaped polylactide article and method of preparation
TWI605069B (en) * 2016-10-04 2017-11-11 Yan-Ru Zhou Polylactic acid foaming molding material, foamed molded article and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265399A (en) * 2005-03-24 2006-10-05 Toagosei Co Ltd Aliphatic polyester resin composition
JP2009079124A (en) * 2007-09-26 2009-04-16 Unitika Ltd Biodegradable polyester resin composition and molded body formed of it
JP2010222556A (en) * 2009-02-24 2010-10-07 Kaneka Corp Thermoplastic resin composition
JP2011052149A (en) * 2009-09-03 2011-03-17 Osaka Gas Co Ltd Polylactic acid resin composition
JP2012177011A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Polylactic acid composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265399A (en) * 2005-03-24 2006-10-05 Toagosei Co Ltd Aliphatic polyester resin composition
JP2009079124A (en) * 2007-09-26 2009-04-16 Unitika Ltd Biodegradable polyester resin composition and molded body formed of it
JP2010222556A (en) * 2009-02-24 2010-10-07 Kaneka Corp Thermoplastic resin composition
JP2011052149A (en) * 2009-09-03 2011-03-17 Osaka Gas Co Ltd Polylactic acid resin composition
JP2012177011A (en) * 2011-02-25 2012-09-13 Toray Ind Inc Polylactic acid composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144235A1 (en) * 2019-01-09 2020-07-16 Purac Biochem B.V. Thermoforming of pla-based articles
CN113286692A (en) * 2019-01-09 2021-08-20 普拉克生化公司 Thermoforming of PLA-based articles
CN113286692B (en) * 2019-01-09 2023-12-26 普拉克生化公司 Thermoforming of PLA-based articles

Also Published As

Publication number Publication date
TW201437251A (en) 2014-10-01
JPWO2014129293A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6191460B2 (en) Polylactic acid resin composition, molded body, and method for producing polylactic acid resin composition
JP5957885B2 (en) Polylactic acid block copolymer
JP6341194B2 (en) Fiber made of polylactic acid resin and method for producing the same
TWI444428B (en) Polylactic acid composition
JP5565469B2 (en) POLYLACTIC ACID RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND MOLDED ARTICLE COMPOSED
JP2015501856A (en) Polylactic acid resin and copolyester resin blend and molded product using the same
JP2007231051A (en) Resin composition and molded article composed thereof
WO2014129293A1 (en) Polylactic resin composition, molded product, and method for producing polylactic resin composition
JP2014028882A (en) Polylactic acid resin composition and molded article comprising the same
JP2015044927A (en) Polylactic acid resin composition, and molded article made of the same
JP2015105302A (en) Resin composition, and molded article obtained therefrom
JP2021161373A (en) Polyester resin composition, molding, and composite molding
JP2015010119A (en) Polylactic acid resin and polylactic acid resin composition, production method of the same, and molded article made of the same
JP2012136561A (en) Resin composition and molded article comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754137

Country of ref document: EP

Kind code of ref document: A1