JP3785904B2 - Polylactic acid composition and method for producing the same - Google Patents
Polylactic acid composition and method for producing the same Download PDFInfo
- Publication number
- JP3785904B2 JP3785904B2 JP2000224867A JP2000224867A JP3785904B2 JP 3785904 B2 JP3785904 B2 JP 3785904B2 JP 2000224867 A JP2000224867 A JP 2000224867A JP 2000224867 A JP2000224867 A JP 2000224867A JP 3785904 B2 JP3785904 B2 JP 3785904B2
- Authority
- JP
- Japan
- Prior art keywords
- polylactic acid
- thermoplastic elastomer
- radical reaction
- reaction initiator
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W90/00—Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
- Y02W90/10—Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
Landscapes
- Artificial Filaments (AREA)
- Nonwoven Fabrics (AREA)
- Wrappers (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Biological Depolymerization Polymers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、主としてポリ乳酸と特定の熱可塑性エラストマーからなる成形性が良好で、かつ強度・耐衝撃性に優れたポリ乳酸系組成物及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、自然環境保護の見地から、自然環境中で分解する生分解性樹脂からなる成形品が求められ、脂肪族ポリエステルなどの自然分解性樹脂による研究が活発に行われている。
その1例として、ポリ乳酸がある。ポリ乳酸は、融点が150〜180℃と比較的高く、しかも透明性に優れる為、成型用材料として期待されている。しかし、ポリ乳酸は、その剛直な分子構造の為に、強度は高い一方、耐衝撃性に劣り脆いという欠点がある。
【0003】
又、ポリ乳酸以外の脂肪族ポリエステルは、一般に柔軟性・耐衝撃性に優れているが、ポリ乳酸に比べ低く融点60〜110℃、ガラス転移温度も室温以下で結晶性も高い為不透明であり、強度も低い。このように、現在市販されているいずれの生分解性樹脂も、単独ではそれぞれ欠点を有し、機械特性のバランスに優れた成形品が得られていないのが現状であり、改良が望まれている。
【0004】
特許公報2725870号では、ポリ乳酸にセグメント化ポリエステル、天然ゴム、スチレンブタジエン共重合体を混合する事で耐衝撃性を改善できる記載されてるが、一般にこれらの材料とポリ乳酸は相溶性が悪く、耐衝撃性は改善されるもののブレンドムラが発生し易く、製品とした場合、見た目に劣るだけでなく機械的強度も安定しない。又、より優れた耐衝撃性を得るには、改質剤添加量の増加が必要であった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ポリ乳酸に特定の熱可塑性エラストマーをブレンドし、それを相溶化する事で、溶融特性、機械特性、耐衝撃性、成形品外観などが改善されたポリ乳酸系組成物を提供する事にある。
【課題を解決するための手段】
本発明者らは鋭意検討の結果、ポリ乳酸と特定の熱可塑性エラストマーを主原料とし、さらに過酸化物によりポリマー同志を反応させる事により相溶化する事で、安定して優れた機械特性を有し、表面性にも優れる事を見いだした。
すなわち、本発明は、ポリ乳酸(A)とゴム成分としてエチレン−プロピレン−ジエンゴム(EPDM)を含む熱可塑性エラストマー(B)を混合したことを特徴とする組成物に関するものである。又、本発明は、ポリ乳酸(A)とEPDMを含む熱可塑性エラストマー(B)とラジカル反応開始剤(C)を窒素雰囲気下にて溶融混合した、剛性、靭性及び耐熱性に優れ、かつ透明性に優れたポリ乳酸系組成物及びその製造方法に関するものである。さらに本発明は、その組成物より得た各種成形品に関するものである。
【0006】
【発明の実施の形態】
本発明において、ポリ乳酸(A)とは、実質的にL−乳酸及び/又はD−乳酸由来のモノマー単位のみで構成されるポリマーである。ここで「実質的に」とは、本発明の効果を損なわない範囲で、L−乳酸またはD−乳酸に由来しない、他のモノマー単位を含んでいても良いという意味である。
【0007】
ポリ乳酸(A)の製造方法としては、既知の任意の重合方法を採用することができる。最も代表的に知られているのは、乳酸の無水環状二量体であるラクチドを開環重合する方法(ラクチド法)であるが、乳酸を直接縮合重合しても構わない。また、分子量としては、重量平均分子量で、50、000〜300,000の範囲が好ましい。かかる範囲を下回ると機械物性等が十分発現されず、上回る場合は加工性に劣る。
【0008】
ポリ乳酸(A)が、L−乳酸及び/又はD−乳酸に由来するモノマー単位からだけなる場合には、重合体は結晶性で高融点を有する。しかも、L−乳酸、D−乳酸由来のモノマー単位の比率(L/D比と略称する)を変化させることにより、結晶性・融点を自在に調節する事ができるので、用途に応じ、実用特性を制御する事が可能である。
【0009】
本発明において、ゴム成分としてエチレン−プロピレン−ジエンゴム(EPDM)を含む熱可塑性エラストマー(B)としては、ゴム成分としてEPDMを含んでいれば特に限定されず、他の複数の成分がブレンド及び/又は共重合されていても構わない。例えばアクリル、スチレンとEPDMを共重合したものは、宇部サイコン株式会社製UCLモディファイヤーレジンE500N、E700Nとして市販されている。
【0010】
熱可塑性エラストマー中のゴム成分が多い程、得られる成型品の耐衝撃性は優れるが、反面ポリ乳酸との相溶性は悪くなる傾向がある。優れた耐衝撃性を得るには、少なくとも50重量%のEPDMが含まれている事が好ましい。
【0011】
ポリ乳酸(A)との相溶性を考えた場合、乳酸と構造の似ているアクリル成分が構造中に導入されている事が好ましくい。特に優れた相溶性を得るには、少なくとも10重量%のアクリルが含まれている事が好ましい。又、後述する過酸化物を添加する場合、構造中に反応性のある二重結合が導入されている事で、より相溶化反応が進み易くなり、得られる成型品の外観も優れる。
【0012】
本発明のポリ乳酸系組成物のポリ乳酸(A)とEPDMを含む熱可塑性エラストマー(B)の混合比は、(A)/(B)の重量比で99/1〜50/50である事が好ましい。ポリ乳酸(A)が、99重量%より多いと耐衝撃性の改善が困難であり、50重量%より少ないとポリ乳酸の特徴である高剛性が損なわれるだけでなく生分解性の観点からも好ましくない。
【0013】
本発明のポリ乳酸組成物のポリ乳酸(A)とEPDMを含む熱可塑性エラストマー(B)が、それぞれ単独及び/又は相互に架橋構造を有すると溶融張力を向上し、成形加工性に優れ、特に押出成形、ブロー成形に適した材料が得られる。特に相互に架橋構造を有する事で、熱可塑性エラストマーの分散性がより向上し、成形品の表面状態が改善される。
【0014】
本発明においてラジカル反応開始剤(C)とは、過酸化物などラジカル発生剤の事を意味するが特に限定されるものではない。またラジカル反応開始剤としては油溶性開始剤のみでなくエマルジョン重合に用いられる水溶性開始剤を用いる事も可能である。油溶性開始剤の例としては、t−ブチルハイドロパーオキシド、過硫酸カリウム、過硫酸アンモニウム、アゾビスシアノ吉草酸、アゾビスイソブチロニトリルなどが挙げられる。またこれらのラジカル反応開始剤と亜硫酸塩類、スルホキシレート類との組み合わせによりなる、いわゆるレドックス系触媒として用いる事が出来る。有機過酸化物としては例えば、ケトンパーオキシド類、ハイドロパーオキシド類、ジアシルパーオキシド類、ジアルキルパーオキシド類、パーオキシケタール類、アルキルパーエステル類、パーカーボネート類等が挙げられる。特に10時間半減期温度や活性酸素量、遊離水酸基の有無等の諸特性を総合的に判断してジアルキルパーオキシドが良い。
【0015】
これらラジカル反応開始剤(C)を混合する事で、ポリ乳酸(A)と熱可塑性エラストマー(B)は、部分的に架橋反応が起こり相溶化する。
【0016】
ラジカル反応開始剤(C)の添加量としては、混合する樹脂の総量(A+B)に対して、0.01〜5.0重量部含まれる事が好ましい。0.01重量部以下では、混合される樹脂の相溶化が不十分となり、所望の物性が得られない。5.0重量部以上では、局所的なグラフト化反応によりゲルの発生が起こるだけでなく、加工性にも劣る結果となる。
【0017】
本発明のポリ乳酸系組成物の製造方法を説明する。まず、ポリ乳酸(A)とEPDMを含む熱可塑性エラストマー(B)及びラジカル反応開始剤(C)の混合方法や混合装置は、特に限定されないが、連続的に処理できるものが工業的に有利で好ましい。例えば、ポリ乳酸(A)と熱可塑性エラストマー(B)及びラジカル反応開始剤(C)を所定比率で混合し、そのまま成形機のホッパー内に投入し、溶融させ、直ちに成形しても良い。又、各成分を溶融混合した後、一旦ペレット化し、その後で必要に応じて溶融成形しても良い。同じく、ポリマーをそれぞれ別に押出機などで溶融し、ラジカル反応開始剤(C)を一定量でフィードしながら所定比率で静止混合機及び/又は機械的撹拌装置で混合し、直ちに成形しても良く、一旦ペレット化しても良い。押出機などの機械的撹拌による混合と、静止混合機とを組み合わせても良い。均一に混合させるには、一旦ペレット化する方法が好ましい。溶融押出温度としては、使用する樹脂の融点及び混合比率を考慮して、適宜選択するが、通常100〜250℃の範囲である。好ましくは120〜220℃の範囲より選択する事が望ましい。反応溶融時間としては20分以内であることが好ましく、より好ましくは10分以内である。また熱可塑性エラストマー(B)が2成分以上からなる場合は、予め熱可塑性エラストマー(B)のみ溶融混合したものを用いても良く、または上記混合工程において同時期に行う事も可能である。
【0018】
ラジカル反応開始剤(C)の添加方法としては特に限定されないが、上記のように予め3成分を混合したものを溶融混合しても良く、液状物質であれば、プランジャ式ポンプやチューブポンプなど定量性の高いフィードポンプを用いて、ポリ乳酸(A)及び熱可塑性エラストマー(B)が溶融混合しているところに滴下しても良い。定量性の低いポンプを使用したりフィード量が安定して供給されない場合は局在的にラジカル反応が進行し、分解反応が起きたりミクロゲルの生成などの問題を生じる為好ましくない。またラジカル反応開始剤(C)が分解する事が考えられるので、ラジカル反応開始剤を添加する点での温度は、少なくとも200℃以下であることが望ましい。好ましくは、そのラジカル反応開始剤(C)の10時間半減期温度+50℃以下の温度である事が望ましい。
【0019】
又、材料の着色や酸化反応による分解を抑制する為、押出機内は窒素を流入し窒素雰囲気下で混合・反応させる事がより好ましい。
【0020】
上記の方法で混合されたポリマーを、通常の成形機のホッパーに投入し、溶融後、成形を行う事で、本発明の成型品は容易に得られる。本発明の成型品としては、通常の成形機で成形できるすべての成形品を指しているが、フィルム、シート、被覆紙、ブロー成形体、射出成形体、押出し成形体、繊維(マルチフィラメント、モノフィラメント)、または不織布、包装材などに適している。
【0021】
本発明によるポリ乳酸系組成物は、溶融混合時あるいは成形時に、副次的添加剤を加えていろいろな改質も可能である。副次的添加剤の例としては、安定剤、酸化防止剤、紫外線吸収剤、顔料、着色剤、各種フィラー、静電気防止剤、離型剤、可塑剤、香料、抗菌剤、核形成剤等その他の類似の物が挙げられる。
【0022】
【実施例】
以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。
本発明及び以下の実施例、比較例において、重合体の重量平均分子量(Mw)はGPC分析によるポリスチレン換算値である。又、射出成形により試験片を作成し、JIS−K7113による引張試験、JIS−K7110硬質プラスチックのアイゾット衝撃試験方法に準じて試験を行った。相溶性は射出成形により1mmtの名刺大プレートを作成し、その外観を目視評価しブレンドムラの有無を判断した。
本実施例では、以下に示すポリ乳酸、熱可塑性エラストマー、ラジカル反応開始剤を使用し実験を行った。
【0023】
<ポリ乳酸(P1)>
ポリ乳酸
島津製作所製 ラクティ#5000
重量平均分子量 200,000
<熱可塑性エラストマー(P2)>
AES樹脂(アクリル−EPDM−スチレン共重合体)
宇部サイコン製 UCLモディファイヤーレジンE700N
<ラジカル反応開始剤(O1)>
有機過酸化物(2,5−ジメチル−2,5ージ(t−ブチルペルオキシ)ヘキサン)
化薬アクゾ製 カヤヘキサAD40C
炭酸カルシウム担持品
【0024】
(実施例1)
P1を90重量部とP2を10重量部をロッキングミキサーで混合し、定量フィーダを用いて窒素雰囲気下200℃の30mm同方向2軸押出機に連続的に供給し(平均滞留時間5分)、直径2mmのノズルにより押出し、水冷し切断する事で、ポリ乳酸系組成物チップ(PC1)を得た。そのチップPC1を80℃で8時間真空乾燥し絶乾状態にした後、射出成形により各種物性試験片を得た。その後、得られた試験片を用いて各種評価を行った。
【0025】
(実施例2)
P1を90重量部とP2を10重量部、O1を0.2重量部をロッキングミキサーで混合し、定量フィーダを用いて窒素雰囲気下200℃の30mm同方向2軸押出機に連続的に供給し(平均滞留時間5分)、直径2mmのノズルにより押出し、水冷し切断する事で、ポリ乳酸系組成物チップ(PC2)を得た。そのチップPC2を80℃で8時間真空乾燥し絶乾状態にした後、射出成形により各種物性試験片を得た。その後、得られた試験片を用いて各種評価を行った。
【0026】
(実施例3〜4)
各ポリマー、添加剤の混合比を次の表1の様にして、実施例1、2と同様に実施した。
【0027】
(比較例1)
P1を80℃で8時間真空乾燥し絶乾状態にした後、射出成形により各種物性試験片を得た。その後、得られた試験片を用いて各種評価を行った。
【0028】
実施例1〜4及び比較例1の結果を、表1に示す。
【表1】
【0029】
【発明の効果】
本発明に係る主としてポリ乳酸とゴム成分としてエチレン−プロピレン−ジエンゴム(EPDM)を含む熱可塑性エラストマーからなる樹脂組成物は、流動性、成形性に優れ、射出成形品、押出成形品、真空圧空成形品、ブロー成形品、繊維、マルチフィラメント、モノフィラメント、ロープ、織物、編み物、不織布、フィルム、シート、ラミネート、容器、発泡体、各種部品、その他の成形品を得るのに好適であり、得られる成形品は十分な機械的強度と耐熱性を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polylactic acid composition having good moldability mainly composed of polylactic acid and a specific thermoplastic elastomer and excellent in strength and impact resistance, and a method for producing the same.
[0002]
[Prior art]
In recent years, from the standpoint of protecting the natural environment, molded articles made of biodegradable resins that decompose in the natural environment have been demanded, and research on natural degradable resins such as aliphatic polyester has been actively conducted.
One example is polylactic acid. Polylactic acid is expected to be a molding material because it has a relatively high melting point of 150 to 180 ° C. and excellent transparency. However, polylactic acid has high strength due to its rigid molecular structure, but has the disadvantage of being inferior in impact resistance and fragile.
[0003]
Aliphatic polyesters other than polylactic acid are generally excellent in flexibility and impact resistance, but are opaque because they have a low melting point of 60 to 110 ° C., a glass transition temperature below room temperature, and high crystallinity compared to polylactic acid. The strength is also low. Thus, any biodegradable resin currently on the market has its own drawbacks, and it is the present situation that molded products with excellent balance of mechanical properties have not been obtained, and improvement is desired. Yes.
[0004]
Patent Publication No. 2725870 describes that impact resistance can be improved by mixing segmented polyester, natural rubber, and styrene-butadiene copolymer with polylactic acid, but generally these materials and polylactic acid have poor compatibility, Although the impact resistance is improved, blending unevenness is likely to occur, and when it is made into a product, not only is it inferior in appearance but also the mechanical strength is not stable. In addition, in order to obtain better impact resistance, it is necessary to increase the amount of modifier added.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to blend a polylactic acid with a specific thermoplastic elastomer and compatibilize it to obtain a polylactic acid-based composition having improved melting properties, mechanical properties, impact resistance, appearance of molded products, etc. It is to provide.
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have stable and excellent mechanical properties by using polylactic acid and a specific thermoplastic elastomer as main raw materials and further compatibilizing them by reacting polymers with peroxides. And it was found to be excellent in surface properties.
That is, the present invention relates to a composition characterized by mixing polylactic acid (A) and a thermoplastic elastomer (B) containing ethylene-propylene-diene rubber (EPDM) as a rubber component. In addition, the present invention is a thermoplastic elastomer (B) containing polylactic acid (A) and EPDM and a radical reaction initiator (C) melted and mixed in a nitrogen atmosphere, and has excellent rigidity, toughness and heat resistance, and is transparent. The present invention relates to a polylactic acid composition having excellent properties and a method for producing the same. Furthermore, the present invention relates to various molded articles obtained from the composition.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the polylactic acid (A) is a polymer that is substantially composed only of monomer units derived from L-lactic acid and / or D-lactic acid. Here, “substantially” means that other monomer units not derived from L-lactic acid or D-lactic acid may be included as long as the effects of the present invention are not impaired.
[0007]
As the method for producing polylactic acid (A), any known polymerization method can be employed. Most representatively known is a method of ring-opening polymerization of lactide, which is an anhydrous cyclic dimer of lactic acid (lactide method), but lactic acid may be directly subjected to condensation polymerization. Moreover, as a molecular weight, the range of 50,000-300,000 is preferable at a weight average molecular weight. Below this range, the mechanical properties and the like are not sufficiently expressed, and when it exceeds, the processability is inferior.
[0008]
When polylactic acid (A) consists only of monomer units derived from L-lactic acid and / or D-lactic acid, the polymer is crystalline and has a high melting point. Moreover, by changing the ratio of monomer units derived from L-lactic acid and D-lactic acid (abbreviated as L / D ratio), the crystallinity and melting point can be freely adjusted, so that practical properties can be used according to the application. Can be controlled.
[0009]
In the present invention, the thermoplastic elastomer (B) containing ethylene-propylene-diene rubber (EPDM) as a rubber component is not particularly limited as long as EPDM is contained as a rubber component, and other plural components are blended and / or It may be copolymerized. For example, copolymers of acrylic, styrene and EPDM are commercially available as UCL modifier resins E500N and E700N manufactured by Ube Saikon Co., Ltd.
[0010]
The more the rubber component in the thermoplastic elastomer, the better the impact resistance of the obtained molded product, but the compatibility with polylactic acid tends to deteriorate. In order to obtain excellent impact resistance, it is preferable that at least 50% by weight of EPDM is contained.
[0011]
When considering compatibility with polylactic acid (A), it is preferable that an acrylic component having a structure similar to that of lactic acid is introduced into the structure. In order to obtain particularly excellent compatibility, it is preferable that at least 10% by weight of acrylic is contained. In addition, when a peroxide described later is added, a reactive double bond is introduced into the structure, so that the compatibilization reaction is facilitated and the appearance of the obtained molded product is excellent.
[0012]
The mixing ratio of the polylactic acid (A) of the polylactic acid-based composition of the present invention to the thermoplastic elastomer (B) containing EPDM is 99/1 to 50/50 by weight ratio (A) / (B). Is preferred. If the polylactic acid (A) is more than 99% by weight, it is difficult to improve the impact resistance. If the polylactic acid (A) is less than 50% by weight, not only the high rigidity characteristic of polylactic acid is impaired but also from the viewpoint of biodegradability. It is not preferable.
[0013]
The polylactic acid (A) of the polylactic acid composition of the present invention and the thermoplastic elastomer (B) containing EPDM each have a crosslinked structure independently and / or with each other, thereby improving the melt tension and excellent molding processability. Materials suitable for extrusion molding and blow molding can be obtained. In particular, by having a cross-linked structure, the dispersibility of the thermoplastic elastomer is further improved, and the surface state of the molded product is improved.
[0014]
In the present invention, the radical reaction initiator (C) means a radical generator such as peroxide, but is not particularly limited. As the radical reaction initiator, not only an oil-soluble initiator but also a water-soluble initiator used for emulsion polymerization can be used. Examples of oil-soluble initiators include t-butyl hydroperoxide, potassium persulfate, ammonium persulfate, azobiscyanovaleric acid, azobisisobutyronitrile, and the like. Further, it can be used as a so-called redox catalyst comprising a combination of these radical reaction initiators and sulfites and sulfoxylates. Examples of the organic peroxide include ketone peroxides, hydroperoxides, diacyl peroxides, dialkyl peroxides, peroxyketals, alkyl peresters, and percarbonates. In particular, dialkyl peroxide is preferable by comprehensively judging various properties such as a 10-hour half-life temperature, an amount of active oxygen, and the presence or absence of a free hydroxyl group.
[0015]
By mixing these radical reaction initiators (C), the polylactic acid (A) and the thermoplastic elastomer (B) partially undergo a crosslinking reaction and become compatible.
[0016]
The addition amount of the radical reaction initiator (C) is preferably 0.01 to 5.0 parts by weight with respect to the total amount (A + B) of the resin to be mixed. If the amount is 0.01 parts by weight or less, compatibilization of the resin to be mixed becomes insufficient, and desired physical properties cannot be obtained. If it is 5.0 parts by weight or more, not only the gel is generated by the local grafting reaction, but also the processability is poor.
[0017]
A method for producing the polylactic acid composition of the present invention will be described. First, the mixing method and mixing apparatus of the thermoplastic elastomer (B) and the radical reaction initiator (C) containing polylactic acid (A) and EPDM are not particularly limited, but those that can be processed continuously are industrially advantageous. preferable. For example, polylactic acid (A), thermoplastic elastomer (B), and radical reaction initiator (C) may be mixed at a predetermined ratio, put into a hopper of a molding machine as it is, melted, and immediately molded. Moreover, after each component is melt-mixed, it may be once pelletized and then melt-molded as necessary. Similarly, each polymer may be melted separately by an extruder, etc., mixed with a static mixer and / or mechanical stirrer at a predetermined ratio while feeding a predetermined amount of radical reaction initiator (C), and may be immediately molded. , Once pelletized. You may combine mixing by mechanical stirring, such as an extruder, and a static mixer. In order to mix uniformly, the method of once pelletizing is preferable. The melt extrusion temperature is appropriately selected in consideration of the melting point and mixing ratio of the resin used, but is usually in the range of 100 to 250 ° C. It is preferable to select from the range of 120 to 220 ° C. The reaction melting time is preferably within 20 minutes, more preferably within 10 minutes. In the case where the thermoplastic elastomer (B) is composed of two or more components, a thermoplastic elastomer (B) alone melt-mixed in advance may be used, or it may be performed at the same time in the mixing step.
[0018]
The method for adding the radical reaction initiator (C) is not particularly limited, but a mixture of three components in advance as described above may be melt-mixed. Using a highly reliable feed pump, the polylactic acid (A) and the thermoplastic elastomer (B) may be added dropwise to a melt-mixed place. If a pump with low quantitativeness is used or if the feed amount is not stably supplied, a radical reaction proceeds locally, causing problems such as a decomposition reaction or formation of microgel, which is not preferable. Moreover, since it is considered that the radical reaction initiator (C) is decomposed, the temperature at which the radical reaction initiator is added is preferably at least 200 ° C. or less. Preferably, the radical reaction initiator (C) has a 10-hour half-life temperature of + 50 ° C. or lower.
[0019]
Further, in order to suppress decomposition of the material due to coloring or oxidation reaction, it is more preferable that nitrogen is introduced into the extruder and mixed and reacted in a nitrogen atmosphere.
[0020]
The molded product of the present invention can be easily obtained by charging the polymer mixed by the above method into a hopper of a normal molding machine and performing molding after melting. The molded product of the present invention refers to all molded products that can be molded with ordinary molding machines, but films, sheets, coated paper, blow molded products, injection molded products, extruded molded products, fibers (multifilaments, monofilaments) ), Or suitable for nonwoven fabrics, packaging materials, and the like.
[0021]
The polylactic acid composition according to the present invention can be modified in various ways by adding a secondary additive during melt mixing or molding. Examples of secondary additives include stabilizers, antioxidants, UV absorbers, pigments, colorants, various fillers, antistatic agents, mold release agents, plasticizers, fragrances, antibacterial agents, nucleating agents, etc. The similar thing is mentioned.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In the present invention and the following examples and comparative examples, the weight average molecular weight (Mw) of the polymer is a polystyrene equivalent value by GPC analysis. Moreover, a test piece was prepared by injection molding, and a test was conducted in accordance with a tensile test according to JIS-K7113 and an Izod impact test method for JIS-K7110 hard plastic. For compatibility, a 1 mmt business card large plate was prepared by injection molding, and the appearance was visually evaluated to determine the presence or absence of blend unevenness.
In this example, experiments were conducted using the following polylactic acid, thermoplastic elastomer, and radical reaction initiator.
[0023]
<Polylactic acid (P1)>
Lacty # 5000 manufactured by Poly Lactate Shimadzu Corporation
Weight average molecular weight 200,000
<Thermoplastic elastomer (P2)>
AES resin (acrylic-EPDM-styrene copolymer)
Ube modifier UCL modifier resin E700N
<Radical reaction initiator (O1)>
Organic peroxide (2,5-dimethyl-2,5-di (t-butylperoxy) hexane)
Kaya Hexa AD40C manufactured by Kayaku Akzo
Calcium carbonate supported product [0024]
Example 1
90 parts by weight of P1 and 10 parts by weight of P2 were mixed with a rocking mixer and continuously fed to a 30 mm co-directional twin-screw extruder at 200 ° C. in a nitrogen atmosphere using a quantitative feeder (average residence time 5 minutes) A polylactic acid composition chip (PC1) was obtained by extruding with a nozzle having a diameter of 2 mm, cooling with water and cutting. The chip PC1 was vacuum-dried at 80 ° C. for 8 hours to make it completely dry, and various physical property test pieces were obtained by injection molding. Then, various evaluation was performed using the obtained test piece.
[0025]
(Example 2)
90 parts by weight of P1, 10 parts by weight of P2, and 0.2 parts by weight of O1 are mixed with a rocking mixer, and continuously fed to a 30 mm co-directional twin-screw extruder at 200 ° C. in a nitrogen atmosphere using a quantitative feeder. The polylactic acid composition chip (PC2) was obtained by extruding with a nozzle having a diameter of 2 mm (average residence time 5 minutes), cooling with water and cutting. The chip PC2 was vacuum-dried at 80 ° C. for 8 hours to make it completely dry, and various physical property test pieces were obtained by injection molding. Then, various evaluation was performed using the obtained test piece.
[0026]
(Examples 3 to 4)
The mixing ratio of each polymer and additive was carried out in the same manner as in Examples 1 and 2 as shown in Table 1 below.
[0027]
(Comparative Example 1)
P1 was vacuum-dried at 80 ° C. for 8 hours to make it completely dry, and various physical property test pieces were obtained by injection molding. Then, various evaluation was performed using the obtained test piece.
[0028]
The results of Examples 1 to 4 and Comparative Example 1 are shown in Table 1.
[Table 1]
[0029]
【The invention's effect】
The resin composition comprising a thermoplastic elastomer mainly comprising polylactic acid and ethylene-propylene-diene rubber (EPDM) as a rubber component according to the present invention is excellent in fluidity and moldability, and is an injection molded product, an extruded product, and a vacuum / pressure molding. Suitable for obtaining products, blow-molded products, fibers, multifilaments, monofilaments, ropes, woven fabrics, knitted fabrics, non-woven fabrics, films, sheets, laminates, containers, foams, various parts, and other molded products. The product has sufficient mechanical strength and heat resistance.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000224867A JP3785904B2 (en) | 2000-07-26 | 2000-07-26 | Polylactic acid composition and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000224867A JP3785904B2 (en) | 2000-07-26 | 2000-07-26 | Polylactic acid composition and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002037987A JP2002037987A (en) | 2002-02-06 |
JP3785904B2 true JP3785904B2 (en) | 2006-06-14 |
Family
ID=18718737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000224867A Expired - Fee Related JP3785904B2 (en) | 2000-07-26 | 2000-07-26 | Polylactic acid composition and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3785904B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004051666A (en) | 2002-07-16 | 2004-02-19 | Toyota Central Res & Dev Lab Inc | Polylactic acid composite material and molded product |
US7514503B2 (en) | 2003-10-08 | 2009-04-07 | Asahi Kasei Chemicals Corporation | Molded article produced from aliphatic polyester resin composition |
JP2005226054A (en) * | 2004-02-16 | 2005-08-25 | Asahi Kasei Chemicals Corp | Aliphatic polyester resin composition |
US7847021B2 (en) | 2004-02-16 | 2010-12-07 | Mitsui Chemicals, Inc. | Aliphatic polyester resin composition containing copolymer |
KR100805413B1 (en) | 2004-03-05 | 2008-02-20 | 미츠비시 레이온 가부시키가이샤 | Thermoplastic resin composition and molded article comprising the same |
WO2005123831A1 (en) * | 2004-06-16 | 2005-12-29 | Unitika Ltd. | Polylactic acid-containing resin composition and molded body obtained from same |
JP2006152162A (en) * | 2004-11-30 | 2006-06-15 | Toyota Motor Corp | Polylactic acid composition and molded resin product using the same |
EP2048200B1 (en) | 2006-07-27 | 2018-11-14 | Techno-UMG Co., Ltd. | Thermoplastic polymer composition and molded article |
EP2055737B1 (en) | 2006-08-23 | 2012-08-08 | JSR Corporation | Thermoplastic resin composition and molded article obtained from the same |
WO2008026632A1 (en) * | 2006-09-01 | 2008-03-06 | Kaneka Corporation | Thermoplastic elastomer composition |
WO2008041356A1 (en) | 2006-10-03 | 2008-04-10 | Techno Polymer Co., Ltd. | Thermoplastic resin composition and resin molded article |
JP5292755B2 (en) * | 2007-09-28 | 2013-09-18 | 凸版印刷株式会社 | Cosmetic sheet and cosmetic material |
CN101696318B (en) * | 2009-10-29 | 2013-06-12 | 奇瑞汽车股份有限公司 | Modified polylactic acid and preparation method thereof |
CN104312120A (en) * | 2014-11-06 | 2015-01-28 | 芜湖瀚博电子科技有限公司 | Flexible plastic line for 3D printing |
CN114437461A (en) * | 2020-10-20 | 2022-05-06 | 中国石油化工股份有限公司 | Composition for preparing ethylene propylene diene monomer/polylactic acid thermoplastic elastomer microcellular foaming material and preparation method and application thereof |
-
2000
- 2000-07-26 JP JP2000224867A patent/JP3785904B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002037987A (en) | 2002-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3785904B2 (en) | Polylactic acid composition and method for producing the same | |
Hamad et al. | Biodegradable polymer blends and composites: An overview | |
JP5233105B2 (en) | Polylactic acid resin molded product | |
JP3716730B2 (en) | Lactic acid resin composition | |
JP2001123055A (en) | Polylactic acid resin composition | |
JPWO2006064846A1 (en) | Biodegradable resin composition and molded article thereof | |
CN115803381B (en) | Aliphatic polyester resin composition and use thereof | |
JP5469322B2 (en) | Environmentally friendly thermoplastic resin composition | |
JP5226335B2 (en) | Resin composition and molded body formed by molding the same | |
KR101461777B1 (en) | A biodegradable polymer composition comprising cellulose and polylactic acid, and a biodegradable film prepared by using the same | |
CN104470978B (en) | Resin composition for foaming containing biodegradable resin, and foam manufactured therefrom | |
JP2002037995A (en) | Method of producing polylactic acid composition and composition thereof | |
JP2006265399A (en) | Aliphatic polyester resin composition | |
Augé et al. | Recent advances on reactive extrusion of poly (lactic acid) | |
JP5552317B2 (en) | Resin composition and molded article using the same | |
JP2021102669A (en) | Aliphatic polyester resin composition and its usage | |
KR20110082702A (en) | Biodegradable resin composition, method for production thereof and biodegradable film therefrom | |
KR101412516B1 (en) | Biodegradable resin composition including polylactic acid and method for manufacturing thereof | |
JP2001064379A (en) | Production of compatible aliphatic polyester and its composition | |
JP2005307157A (en) | Novel compatibilizer and polar polymer composition using this compatibiliser | |
KR102466532B1 (en) | Water based biodegadable composition, products including the same and manufacturing method of water based biodegadable products | |
JP2000327847A (en) | Resin composition | |
JP2002371172A (en) | Lactic acid polymer composition and method of producing the same | |
JP5022257B2 (en) | Method for producing compatible aliphatic polyester | |
JP4366848B2 (en) | Method for producing crosslinked soft lactic acid polymer and composition thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060313 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100331 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110331 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120331 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130331 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |