JP2006140373A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2006140373A
JP2006140373A JP2004330181A JP2004330181A JP2006140373A JP 2006140373 A JP2006140373 A JP 2006140373A JP 2004330181 A JP2004330181 A JP 2004330181A JP 2004330181 A JP2004330181 A JP 2004330181A JP 2006140373 A JP2006140373 A JP 2006140373A
Authority
JP
Japan
Prior art keywords
film
wiring
heat treatment
insulating film
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004330181A
Other languages
English (en)
Inventor
Shuji Sone
修次 曽祢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2004330181A priority Critical patent/JP2006140373A/ja
Publication of JP2006140373A publication Critical patent/JP2006140373A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】 Cu系金属を充填したダマシン配線の信頼性、特にストレスマイグレーション(SM)耐性を向上させる。
【解決手段】 下地絶縁膜1上の層間絶縁膜2にトレンチ3を設け、トレンチ3に第1バリアメタル膜5を介して埋め込む第1Cu膜6を成膜し、20℃〜200℃範囲の第1の熱処理を施し清浄化した第1Cu膜6aにする。次に、第1Cu膜6aの第1キャップ層2c上の不要部分を化学的機械研磨で除去し、上記トレンチ3にCu配線8を形成する。その後に、300℃〜400℃の温度でCu配線8に第2の熱処理を施し、結晶性の優れたCu配線8aを形成する。同様に、ビアホールに埋め込む第2Cu膜を成膜した後に、300℃〜400℃範囲の第3の熱処理を施し、その後に化学的機械研磨してCuビアプラグを形成する。
【選択図】 図2

Description

本発明は、半導体装置の製造方法に係り、詳しくは、多孔質絶縁膜を層間絶縁膜に用いたダマシン配線構造を有する半導体装置の製造方法に関する。
半導体装置を構成する素子の微細化は、半導体装置の高性能化にとって最も有効であり、現在、その寸法の設計基準は65nmから45nmに向けて技術開発が精力的に進められている。そして、上記微細な構造を有する半導体装置の高性能化においては、素子間を接続する配線の低抵抗化および配線の寄生容量の低減化のために、微細加工により層間絶縁膜に接続孔(ビアホール)あるいは配線用溝(トレンチ)を形成し、上記ビアホールあるいはトレンチを埋め込むようにして層間絶縁膜上に銅(Cu)膜等の配線材料膜を堆積し、上記ビアホール等内に埋め込まれた部分以外にある上記配線材料膜を化学的機械研磨(CMP:Chemical Mechanical Polishing)により除去する、いわゆるダマシン法で形成する溝配線、すなわちダマシン配線が必須になっている。
上記ダマシン配線の形成では、層間絶縁膜の材料としてシリコン酸化膜に代わり、それより比誘電率が低くなる、いわゆる低誘電率膜の絶縁膜材料が必須である。そして、層間絶縁膜の低誘電率化を推し進めるためには、低誘電率膜の多孔質化が最も有効な手段になってくる。ここで、低誘電率膜とは二酸化シリコン膜の比誘電率3.9以下の絶縁膜のことをいう。
しかし、多孔質化した低誘電率膜が半導体装置のダマシン配線の製造プロセスに具体的に適用される場合には種々の解決すべき課題がある。その中の一つに配線が微細化し、例えば上記65nm〜45nmノードになって顕在化してきたストレスマイグレーション(SM)に関する信頼性の問題がある。ダマシン配線構造体のSM関しては、130nmノードの場合におけるCuのダマシン配線についての報告がなされている(例えば、非特許文献1参照)。この非特許文献1では、特にデュアルダマシン法で形成したCuダマシン配線の場合に、ビアホールに配線材料膜を充填して形成しCu材から成るビアプラグのSMによる劣化が生じ易くなるとしている。これに対し、いわゆるシングルダマシン法で形成したダマシン配線の場合には、Cu材のビアプラグのSM耐性は高くなり、ビアプラグのSMによる劣化は生じなくなるとしている。
以下、多孔質絶縁膜を層間絶縁膜に用いシングルダマシン法で形成する2層構造のCuダマシン配線について図7を参照して説明する。シングルダマシン法で形成されたダマシン配線は、図7に示すように、例えばシリコン酸化膜から成る下地絶縁膜101表面に、Cu拡散防止膜として機能し絶縁性バリア層である第1エッチングストッパー層102a、多孔質の低誘電率膜である第1低誘電率膜102b、第1キャップ層102cが積層して形成され、第1層間絶縁膜102を構成する。そして、この第1層間絶縁膜102の所定の領域に設けられたトレンチ内に第1バリア層103を介して第1Cu配線104が充填され形成されている。
そして、第1バリア層103および第1Cu配線104上に、絶縁性バリア層である第2エッチングストッパー層105a、多孔質の低誘電率膜である第2低誘電率膜105b、第2キャップ層105cから成る第2層間絶縁膜105が形成され、この第2層間絶縁膜105の所定の領域に設けられたビアホール内に第2バリア層106を介してCu材のビアプラグ107が充填されて形成される。ここで、第2バリア層106は上記第1Cu配線104に接続する。
同様にして、第2バリア層106およびビアプラグ107上に、絶縁性バリア層である第3エッチングストッパー層108a、多孔質の低誘電率膜である第3低誘電率膜108b、第3キャップ層108cから成る第3層間絶縁膜108が形成され、この第3層間絶縁膜108の所定の領域に設けられたトレンチ内に第3バリア層109を介して第2Cu配線110が充填され形成されている。ここで、第3バリア層109は上記第2バリア層106およびビアプラグ107に接続している。そして、絶縁バリア層111およびパッシベーション膜112が全体を被覆するように形成されている。
2002 Symposium on VLSI Technology Digest of Technical Papers,p.34-35
非特許文献1では、Cuダマシン配線をシングルダマシン法で形成することにより、例えば図7に示したように比較的に線幅の広い第1Cu配線104上に形成したビアプラグ107において、配線のストレスマイグレーション(SM)に関係した信頼性の問題は生じないとしていた。
しかし、上述したように半導体装置の素子は、その設計基準が65nmから45nmへとその微細化が進み、また、ダマシン配線の層間絶縁膜に用いる低誘電率膜の比誘電率は2.5程度以下の値になってくると、層間絶縁膜の多孔質化は必須の状況になり、このような技術推移の中にあっては、上記シングルダマシン法で形成したCuダマシン配線のSM等の信頼性にかかる問題は無視できないようになってきた。
本発明は、上述の事情に鑑みてなされたもので、多孔質絶縁膜を含む層間絶縁膜に形成されたCuダマシン配線の信頼性を高め、その微細化を容易にする半導体装置の製造方法を提供することを目的とする。
上記目的を達成するために、半導体装置の製造方法にかかる発明は、半導体基板上に形成した多孔質絶縁膜を含む層間絶縁膜に配線用溝およびビアホールを設け、前記配線用溝およびビアホールに銅系金属膜を充填する半導体装置の製造方法であって、銅系金属膜を配線用溝に埋め込んで成膜した後に20℃〜200℃範囲の第1の熱処理を前記銅系金属膜に施す工程と、前記第1の熱処理の後に前記銅系金属膜の不要部分を化学的機械研磨により除去し前記銅系金属膜を前記配線用溝に充填する工程と、前記化学的機械研磨後に300℃〜400℃範囲の第2の熱処理を前記配線用溝に充填した前記銅系金属膜に施す工程と、銅系金属膜をビアホールに埋め込んで成膜した後に300℃〜400℃範囲の第3の熱処理を前記銅系金属膜に施す工程と、前記第3の熱処理の後に前記銅系金属膜の不要部分を化学的機械研磨により除去し前前記銅系金属膜を前記ビアホールに充填する工程と、を有する構成となっている。
上記発明において、前記熱処理は、水素ガス、窒素ガスあるいは希ガス雰囲気で行うことが好ましい。そして、好適な一態様では、前記配線用溝あるいは前記ビアホールの側壁に前記多孔質絶縁膜とは異種の絶縁膜を形成し、多孔質絶縁膜の前記配線用溝あるいは前記ビアホールの側壁において露出する空孔(ポア)をポアシールする。
本発明の構成によれば、多孔質の低誘電率膜を層間絶縁膜とした微細構造のCuダマシン配線におけるストレスマイグレーション(SM)耐性が向上し、高い信頼性を有し高速動作が可能な半導体装置が具現化される。
以下、本発明の好適な実施の形態について図面を参照して詳細に説明する。図1乃至図4は、本発明の実施の形態にかかるダマシン配線構造体の製造工程別素子断面図である。
シリコン基板上に化学気相成長(CVD)法でシリコン酸化膜を堆積させ、下地絶縁膜1を形成する。続いて、第1エッチングストッパー層2aとして膜厚が25nm程度であり、比誘電率が3.5程度のSiC膜をCVD法により成膜し、例えば多孔質構造の炭素含有シリコン酸化膜(SiOC膜)のCVD成膜により比誘電率が2.5程度、膜厚が200nm〜300nm程度になる第1低誘電率膜2bを形成する。そして、上記第1低誘電率膜2b表面に、CVD法で成膜した膜厚が100nm程度のSiO膜から成る第1キャップ層2cを形成し、多層構造の第1層間絶縁膜2を形成する(図1(a))。ここで、第1低誘電率膜2bの空孔の含有比率は15%〜30%である。この含有比率は、多孔質膜の密度をMpとし多孔質膜のバルク(空孔を有しない材料膜)の密度をMbとして、(Mb−Mp)/Mbなる比率のことである。この含有比率が大きくなると共に膜の比誘電率が小さくなる。
そして、トレンチ3の開口パターンを有する第1レジストマスク4をエッチングマスクにし、フルオロカーボン系ガスをエッチング用ガスとして、上記第1キャップ層2c、第1低誘電率膜2bを順次に反応性イオンエッチング(RIE)でドライエッチングし幅寸法が例えば300nm程度のトレンチ3を形成する。ここで、第1エッチングストッパー層2aはエッチングしない(図1(b))。
このようにして、第1レジストマスク4をHガス、Heガス等のプラズマで除去した後、残渣物を除去する洗浄処理を施して、第1キャップ層2c、第1低誘電率膜2bにトレンチ3を形成する(図1(c))。
次に、第1キャップ層2cをハードマスクにしたRIEにより第1エッチングストッパー層2aをドライエッチングする。このエッチバックに使用するエッチングガスは、フッ素化合物ガスに窒素(N)ガスを含む混合ガスが好適である(図1(d))。
次に、膜厚が5nm〜10nmになるTa膜/TaN膜をスパッタ(PVD)法でこの順に堆積させて第1バリアメタル膜5を全面に成膜する。このようにして、トレンチ3内の第1層間絶縁膜2側壁と下地絶縁膜1表面および第1キャップ層2c表面が第1バリアメタル膜5で被覆される。更に、PVD法により例えば膜厚が50nm程度のCuシード層を形成し、電解メッキ法を用いて膜厚が500nm程度のCu膜を第1バリアメタル膜5に積層して堆積させ、トレンチ3を埋め込むように第1Cu膜6を形成する(図2(a))。ここで、電解メッキのメッキ液の温度は15℃〜20℃程度である。
このようにした後、上記第1Cu膜6に対して次のような熱処理を施し、清浄化した第1Cu膜6aにする(図2(b))。第1の熱処理である上記熱処理は、例えば窒素ガスあるいは希ガス(He、Ar等)の不活性ガスあるいは水素ガスのような非酸化性雰囲気のオーブンあるいは炉内において、例えば150℃程度の温度で行う。ここで、熱処理時間は30分〜1時間程度になる。この熱処理は、第1Cu膜6中の特にその結晶粒界に残留するメッキ液等の不純物を除去し、結晶粒界を清浄化する働きをもっている。この第1の熱処理の温度は、上記メッキ液の温度より高めの室温(20〜25℃)〜200℃の範囲が好適である。ここで、室温より低くなると第1Cu膜6の接着性が充分でなく、後述するCu膜のCMP工程においてCu膜の研磨剥がれが生じ易くなる。また、上記メッキ液の不純物が第1Cu膜6中に残留し、後述する第2の熱処理におけるCu膜の結晶性向上を阻害するようになる。また、上記熱処理温度が200℃を超えてくると、トレンチ3に埋め込まれた第1Cu膜6が熱流動を起こし、第1Cu膜6表面の表面張力によるCu吸い上がりの現象が生じて、トレンチ3底部のCuが上面に吸い上げられその領域に微小な空洞が生じるようになる。
次に、CMP法を用いて、第1キャップ層2c上の不要な部分の第1Cu膜6aおよび第1バリアメタル膜5を研磨除去しその表面を平坦化する。そして、トレンチ3内に第1バリア層7を介して充填したCu配線8を形成する(図2(c))。
このようにした後、上記Cu配線8に対して次の第2の熱処理を施し、結晶粒が拡大したCu配線8aを形成する(図2(d))。この第2の熱処理も、第1の熱処理と同じように不活性ガスあるいは水素ガスのような非酸化性雰囲気のオーブンあるいは炉内において、例えば300℃程度の温度で行う。ここで、熱処理時間は30分〜1時間程度でよい。この第2の熱処理は、上記第1の熱処理により清浄化したCu膜の結晶粒界のCu原子を移動させ、Cu膜の結晶粒を拡大させる働きをもっている。この第2の熱処理の温度は、300〜400℃の範囲が好適である。
この第2の熱処理を施すことにより、上述したダマシン配線におけるCuのストレスマイグレーション(SM)の問題は解消されるようになる。ここで、300℃より低くなると上記SMを完全には無くすることができず、上記熱処理温度が400℃を超えてくると、Cu配線8aのCu原子の一部は、Cu拡散防止膜である第1バリア層7あるいはエッチングストッパー層2aを透過して配線外部に拡散し、半導体装置の能動素子を汚染してその特性を劣化させるようになる。ここで、ダマシン配線構造が微細になってくると、上記第1バリア層7あるいは第1エッチングストッパー層2aは薄膜化することが必須になる。例えば、第1バリア層7は1〜2nm程度に、また、Cuの絶縁性バリア層である第1エッチングストッパー層2aは10nm程度の炭化窒化シリコン(SiCN)膜等で形成されるようになると、上記第2の熱処理の温度は350℃以下にするとより好ましくなる。
次に、上記Cu配線8a、第1バリア層7および第1キャップ層2cを被覆するように、膜厚が25nm程度のSiC膜から成る第2エッチングストッパー層、膜厚が200nm程度の多孔質構造のSiOC膜から成る第2低誘電率膜9b、膜厚が100nm程度のSiO膜から成る第1キャップ層2cを積層して形成し、多層構造の第2層間絶縁膜3を形成する(図3(a))。ここで、第2低誘電率膜9bの空孔の含有比率は15%〜30%である。
そして、ビアホール10の開口パターンを有する第2レジストマスク11をエッチングマスクにし、フルオロカーボン系ガスをエッチング用ガスとして、上記第2キャップ層9c、第2低誘電率膜9bを順次にRIEでドライエッチングし口径が100nm程度のビアホール10を形成する。ここで、第2エッチングストッパー層9aはエッチングしないままである(図3(b))。
次に、上記第2レジストマスクをHガス、Heガス等のプラズマで除去した後、第2キャップ層9cをハードマスクにしたRIEにより第2エッチングストッパー層9aをドライエッチングし、上記ビアホール10をCu配線8a表面に達するように貫通させる。このRIEに使用するエッチングガスは、フッ素化合物ガスに窒素(N)ガスを含む混合ガスが好適である(図3(c))。
次に、バリア材料として、膜厚が1nm〜5nmになる窒化タンタル(TaN)膜をPVD法で堆積し、ビアホール10内の第2層間絶縁膜9側壁とCu配線8a表面および第2キャップ層9c表面を第2バリアメタル膜12で被覆する。更に、PVD法により例えば膜厚が20nm程度のCuシード層を形成し、電解メッキ法を用いて膜厚が100nm程度のCuを第2バリアメタル膜12に積層して堆積させ、ビアホール10を埋め込むように第2Cu膜13形成する(図4(a))。ここで、電解メッキのメッキ液の温度は20℃程度である。
このようにした後、上記第2Cu膜13に対して次のような第3の熱処理を施し、結晶化した第2Cu膜13aにする(図4(b))。この第3の熱処理は、例えば不活性ガスあるいは水素ガスのような非酸化性雰囲気のオーブンあるいは炉内において、例えば350℃程度の温度で行う。ここで、熱処理時間は30分〜1時間程度になる。引続いて、CMP法を用いて、第2キャップ層9c上の不要な部分のCu膜およびバリアメタル膜を研磨除去しその表面を平坦化する。そして、ビアホール10内に第2バリア層14を介して充填したCuビアプラグ15を形成する(図4(c))。
上記図4(b)におけるCMP工程の前の熱処理は、CMP工程においてCu膜の研磨剥がれを防止すると共に、第2Cu膜13の結晶粒界のCu原子を移動させ、Cu膜の結晶粒を拡大してCuビアプラグ15の結晶性を向上させる。そして、上記熱処理の好適な温度は300〜400℃の範囲である。このような熱処理を施すことによりCuビアプラグ15の結晶性が向上し、上述したダマシン配線のビアホールでのCuのストレスマイグレーション(SM)の問題は解消される。ここで、300℃より低くなると上記SMの生じる場合が出てくる。そして、上記熱処理温度が400℃を超えてくると、Cuビアプラグ15のCu原子の一部は、Cu拡散防止膜である第2バリア層14あるいは第2エッチングストッパー層9aを透過して配線外部に拡散し、半導体装置の能動素子を汚染してその特性を劣化させるようになる。
上記第2Cu膜13の熱処理において、第1Cu膜6の熱処理と異なり高い熱処理温度にできるのは、この場合に上述した第2Cu膜13のCu吸い上がり現象が生じないからである。これは、ビアホール10は、配線パターン形状のトレンチ3と異なり、その占める面積が小さくメッキ成膜後の第2Cu膜13表面は略平坦になり、その表面張力に起因したCu流動が生じなくなるからである。なお、上記Cuビアプラグ15の形成後に、不活性ガスあるいは水素ガスのような非酸化性雰囲気のオーブンあるいは炉内において、室温(20〜25℃)〜200℃の範囲で行ってもよい。このCMP工程後の熱処理により、後述するCMP工程の研磨時に生成される低誘電率膜の残留歪みが緩和される。なお、この残留歪を緩和するための上記CMP工程後の熱処理は、次の第2Cu配線の形成工程において同様に行う上述したところの第1の熱処理によっても代用できるものである。
このようにした後、上記Cuビアプラグ15、第2バリア層14および第2キャップ層9cを被覆するように、膜厚が25nm程度のSiC膜から成る第3エッチングストッパー層等の積層した第3層間絶縁膜(不図示)を形成し、上記Cu配線8a(第1Cu配線)の形成と全く同様にして上層のCu配線(第2Cu配線)を形成していく。この繰り返し工程を通して、図7で説明した構造の多層のダマシン配線構造体が形成される。
次に、上記実施の形態の別の好適な一態様を図5、図6を参照して説明する。ここで、図1〜4に記載したのと同様なものは同一符号を付している。この一態様は、低誘電率膜の多孔質の度合いが高くなり空孔の含有比率が30〜45%となる場合であり、低誘電率膜の表面に露出する空孔にポアシールを形成する場合である。ここで、低誘電率膜の比誘電率は2.0程度あるいはそれ以下にできる。
図5(a)に示すように、図1(c)と同様に下地絶縁膜1上であって第1キャップ層2cおよび第1低誘電率膜2bに、第1エッチングストッパー層2a表面に達するトレンチ3を形成する。ここで、第1低誘電率膜2bは塗布法を用いて形成され、その膜組成が例えば[CH3 SiO3/2 ]nとなるメチルシルセスキオキサン(MSQ:Methyl Silsesquioxane)膜を多孔質化した低誘電率膜である(以下、p−MSQ膜ともいう)。
そして、図5(b)に示すように、トレンチ3の内壁等、全面を被覆するように、膜厚が2nm〜5nm程度の保護絶縁膜16を成膜する。ここで、この成膜には原子層気相成長(ALD;Atomic Layer Deposition)法を使用し、第1エッチングストッパー層2aと同じSiC膜を形成する。あるいは、多孔質でない他の絶縁膜を堆積させてもよい。
引続いて、高い異方性のRIEのエッチバックを施す。このエッチバックに使用するエッチングガスは、第1エッチングストッパー層2aをエッチングするガスであり、フッ素化合物ガスに窒素(N)ガスを含むものであり、第1キャップ層2c上および第1エッチングストッパー層2a上の保護絶縁膜16とトレンチ3底部の第1エッチングストッパー層2aをエッチング除去する。そして、図5(c)に示すようにトレンチ3の側壁に側壁保護絶縁膜17を形成し、トレンチ3の側壁において露出する第1低誘電率膜2bの空孔をポアシールする。ここで、側壁保護絶縁膜17の膜厚は2nm〜5nm程度である。
以後の工程は、図2に示したのと全く同様である。すなわち、内壁が側壁保護絶縁膜17によりポアシールされたトレンチ3内にバリアメタル膜およびCu膜の配線材料膜が形成され、上述した第1Cu膜6に対する第1の熱処理さらにはCMP後の第2の熱処理が施されてCu配線8,8aが形成される。
そして、図3および図4に示したCuビアプラグ15の形成において、上記Cu配線の場合と同様にして、ビアホール10の内壁にポアシールを形成してから、ビアホール10内にバリアメタル膜およびCu膜の配線材料膜が成膜され、第2Cu膜13に対して図4で説明したのと同様の第3の熱処理が施される。
そして、この繰り返しの工程を通して、図6に示すような多層のダマシン配線構造体が形成される。ここで、出来上がりの構造は、上記ポアシールが形成されている外は図7に示したものと同じである。すなわち、シリコン酸化膜から成る下地絶縁膜1表面に、絶縁性バリア層の第1エッチングストッパー層2a、高い多孔性を有するP−MSQ膜から成る第1低誘電率膜2b、第1キャップ層2cが積層して形成され、第1層間絶縁膜2を構成している。そして、この第1層間絶縁膜2の所定の領域に設けられたトレンチ3内壁が側壁保護絶縁膜17によりシールされ、その中に第1バリア層7を介して第1Cu配線8aが充填され形成されている。
そして、第1バリア層7および第1Cu配線8a上に、第2エッチングストッパー層9a、高い多孔性を有するP−MSQ膜から成る第2低誘電率膜9b、第2キャップ層9cから成る第2層間絶縁膜9が形成され、この第2層間絶縁膜9の所定の領域に設けられたビアホール10内壁が側壁保護絶縁膜17によりシールされ、その中に第2バリア層14を介してCuビアプラグ15が充填されて形成される。ここで、第2バリア層14は上記第1Cu配線8aに接続する。
同様にして、第2バリア層14およびCuビアプラグ15上に、絶縁性バリア層である第3エッチングストッパー層18a、高い多孔性を有するP−MSQ膜から成る第3低誘電率膜18b、第3キャップ層18cから成る第3層間絶縁膜18が形成され、この第3層間絶縁膜18の所定の領域に設けられたトレンチ内壁が側壁保護絶縁膜17によりシールされ、その中に第3バリア層19を介して第2Cu配線20が充填され形成される。ここで、第3バリア層19は上記第2バリア層14およびCuビアプラグ15に接続している。そして、絶縁バリア層21およびパッシベーション膜22が全体を被覆するように形成される。
上述したように、ダマシン配線構造体の形成においては、配線用溝であるトレンチあるいは配線間の接続孔であるビアホールに埋め込むようにして形成した配線材料膜のCMPが必須になる。しかし、このCMP工程の研磨時には、層間絶縁膜に大きなせん断応力がかかる。このために、上記CMP工程において低誘電率膜に歪みが生じ、それにより生じる残留歪みが、上記トレンチ内あるいはビアホール内に配線材料膜として充填したCu膜に対して残留応力を生じさせるようになる。このような残留応力は、低誘電率膜中の空孔の含有比率が高くなりその比誘電率が小さくなるにしたがい層間絶縁膜の機械的強度が不可避的に低減するようになるために、その値は大きくなる。
そこで、上記の実施の形態において説明したように、トレンチあるいはビアホールに埋め込んで成膜したCu膜に対して上述したような適宜な熱処理を施すことにより、上述したCu膜の結晶性の向上の他にも、上記残留応力が緩和されるようになり、ストレスマイグレーション(SM)の向上と共にエレクトロマイグレーション(EM)耐性も向上し、ダマシン配線構造体の信頼性が大幅に向上するようになる。
また、上述したように高い多孔性を有する低誘電率膜に形成したトレンチおよびビアホールの側壁をポアシールすることで、多孔質の低誘電率膜を含む層間絶縁膜の機械的強度の低減に起因するクラックの発生およびダマシン配線間のショート不良は低減する。そして、上記側壁絶縁保護膜17は、低誘電率膜の空孔を通した層間絶縁膜内への、水分あるいは配線材料膜のCu、Ta、TaN等の侵入を完全に防止するようになる。このために、ダマシン配線構造体の層間絶縁膜は高い信頼性を有し、層間絶縁膜の実効的な誘電率の上昇はなくなり、しかも配線層間のリーク電流の増加およびビアホール部での配線接続の不良等の問題も皆無になる。
また、半導体装置においてダマシン配線の多層化も容易になる。そして、実用レベルにおいて、高い信頼性を有し微細なダマシン配線構造体が半導体装置に形成できるようになる。このようにして、信頼性が高く高速動作が可能な半導体装置が具現化される。
以上、本発明の好適な実施形態について説明したが、上述した実施形態は本発明を限定するものでない。当業者にあっては、具体的な実施態様において本発明の技術思想および技術範囲から逸脱せずに種々の変形・変更を加えることが可能である。
例えば、上記多孔質構造の低誘電率膜としては、CVD法で成膜するSiOC膜、上記p−MSQ膜と同様に、シロキサン骨格を有する他の絶縁膜あるいは有機高分子を主骨格とした絶縁膜を多孔質化した絶縁膜を用いることができる。なお、上記シロキサン骨格を有する絶縁膜には、シルセスキオキサン類の絶縁膜であるSi−CH3 結合、Si−H結合、Si−F結合のうち少なくとも1つの結合を含むシリカ膜があり、有機高分子を主骨格とした絶縁膜には、有機ポリマーで成るSiLK(登録商標)がある。そして、シルセスキオキサン類の絶縁膜としてよく知られた絶縁材料には、上記MSQの他、ハイドロゲンシルセスキオキサン(HSQ:Hydrogen Silsesquioxane)、メチレーテッドハイドロゲンシルセスキオキサン(MHSQ:Methylated Hydrogen Silsesquioxane)等がある。さらに、多孔質構造の低誘電率膜としては、CVD法により成膜する多孔質のSiOCH膜も同様に使用することができる。
また、上記キャップ層としては、エッチングストッパー層と異なる絶縁膜であれば、SiO膜に限定されるものではない。例えばシリコン窒化膜(SiN膜)、SiOC膜、SiCN膜等を使用することができる。
また、配線材料膜としてはCu膜の他にCu合金膜を用いることができる。そして、バリア層用の配線材料膜(バリアメタル膜)としては、上記Ta膜およびTaN膜の他にW膜、WN膜、WSiN膜、Ti膜、TiN膜、TiSiN膜を用いてもよい。
また、上記実施の形態では、ダマシン配線の層間絶縁膜として低誘電率膜を用いる場合について説明しているが、本発明はこのような絶縁膜に限定されるものではなく、層間絶縁膜がシリコン酸化膜、シリコン窒化膜あるいはシリコン酸窒化膜等の絶縁膜で形成される場合にも同様に適用できることに言及しておく。
そして、本発明は、シリコン半導体基板、化合物半導体基板等の半導体基板上にダマシン配線を形成する場合に限定されるものではなく、その他に、表示デバイスを形成する液晶表示基板、プラズマディスプレイ基板上にダマシン配線を形成する場合にも同様に適用できることにも言及しておく。
本発明の実施の形態にかかるダマシン配線構造体の製造方法を示す工程別素子断面図である。 図1に示す工程の続きの工程別素子断面図である。 図2に示す工程の続きの工程別素子断面図である。 図3に示す工程の続きの工程別素子断面図である。 本発明の別の一態様にかかるダマシン配線構造体の製造方法を説明するための工程別素子断面図である。 本発明の別の一態様にかかるデュアルダマシン配線構造体の断面図である。 ダマシン配線構造体の断面図である。
符号の説明
1 下地絶縁膜
2 第1層間絶縁膜
2a 第1エッチングストッパー層
2b 第1低誘電率膜
2c 第1キャップ層
3 トレンチ
4 第1レジストマスク
5 第1バリアメタル膜
6,6a 第1Cu膜
7 第1バリア層
8,8a (第1)Cu配線
9 第2層間絶縁膜
9a 第2エッチングストッパー層
9b 第2低誘電率膜
9c 第2キャップ層
10 ビアホール
11 第2レジストマスク
12 第2バリアメタル膜
13 第2Cu膜
14 第2バリア層
15 Cuビアプラグ
16 保護絶縁膜
17 側壁保護絶縁膜
18 第3層間絶縁膜
18a 第3エッチングストッパー層
18c 第3低誘電率膜
18c 第3キャップ層
19 第3バリア層
20 第2Cu配線
21 絶縁性バリア層
22 パッシベーション膜

Claims (3)

  1. 半導体基板上に形成した多孔質絶縁膜を含む層間絶縁膜に配線用溝およびビアホールを設け、前記配線用溝およびビアホールに銅系金属膜を充填する半導体装置の製造方法であって、
    銅系金属膜を配線用溝に埋め込んで成膜した後に20℃〜200℃範囲の第1の熱処理を前記銅系金属膜に施す工程と、
    前記第1の熱処理の後に前記銅系金属膜の不要部分を化学的機械研磨により除去し前記銅系金属膜を前記配線用溝に充填する工程と、
    前記化学的機械研磨後に300℃〜400℃範囲の第2の熱処理を前記配線用溝に充填した前記銅系金属膜に施す工程と、
    銅系金属膜をビアホールに埋め込んで成膜した後に300℃〜400℃範囲の第3の熱処理を前記銅系金属膜に施す工程と、
    前記第3の熱処理の後に前記銅系金属膜の不要部分を化学的機械研磨により除去し前前記銅系金属膜を前記ビアホールに充填する工程と、
    を有することを特徴とする半導体装置の製造方法。
  2. 前記熱処理は、水素ガス、窒素ガスあるいは希ガス雰囲気で行うことを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記配線用溝あるいは前記ビアホールの側壁に前記多孔質絶縁膜とは異種の絶縁膜を形成することを特徴とする請求項1又は2に記載の半導体装置の製造方法。

JP2004330181A 2004-11-15 2004-11-15 半導体装置の製造方法 Pending JP2006140373A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004330181A JP2006140373A (ja) 2004-11-15 2004-11-15 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330181A JP2006140373A (ja) 2004-11-15 2004-11-15 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006140373A true JP2006140373A (ja) 2006-06-01

Family

ID=36620971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330181A Pending JP2006140373A (ja) 2004-11-15 2004-11-15 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006140373A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026866A (ja) * 2007-07-18 2009-02-05 Fujitsu Ltd 半導体装置及びその製造方法
JP2011526078A (ja) * 2008-06-27 2011-09-29 アプライド マテリアルズ インコーポレイテッド 薄いバリア層を用いた多孔性誘電体への溶媒および溶液の侵入の阻止および低減
JP2013197407A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 半導体装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026866A (ja) * 2007-07-18 2009-02-05 Fujitsu Ltd 半導体装置及びその製造方法
JP2011526078A (ja) * 2008-06-27 2011-09-29 アプライド マテリアルズ インコーポレイテッド 薄いバリア層を用いた多孔性誘電体への溶媒および溶液の侵入の阻止および低減
JP2013197407A (ja) * 2012-03-21 2013-09-30 Toshiba Corp 半導体装置

Similar Documents

Publication Publication Date Title
US7871923B2 (en) Self-aligned air-gap in interconnect structures
US8368220B2 (en) Anchored damascene structures
JP4529880B2 (ja) 半導体装置および半導体装置の製造方法
US7834459B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2006019480A (ja) 半導体装置の製造方法
JP2007173511A (ja) 半導体装置の製造方法
JP2007081113A (ja) 半導体装置の製造方法
JP2005340808A (ja) 半導体装置のバリア構造
JP2009026989A (ja) 半導体装置及び半導体装置の製造方法
JP2007294625A (ja) 半導体装置の製造方法
JP2004146798A (ja) 半導体装置およびその製造方法
JP5047504B2 (ja) ビアキャッピング保護膜を使用する半導体素子のデュアルダマシン配線の製造方法
JP2003273216A (ja) 半導体装置およびその製造方法
JP2005038999A (ja) 半導体装置の製造方法
US7307014B2 (en) Method of forming a via contact structure using a dual damascene process
JP2006140373A (ja) 半導体装置の製造方法
JP4383262B2 (ja) 半導体装置及びその製造方法
JP4447433B2 (ja) 半導体装置の製造方法及び半導体装置
JP2005203568A (ja) 半導体装置の製造方法及び半導体装置
JP2009026866A (ja) 半導体装置及びその製造方法
JP2007067324A (ja) 半導体装置の製造方法
JP2009158657A (ja) 配線構造の製造方法および配線構造
JP2012009617A (ja) 半導体装置の製造方法、配線用銅合金、及び半導体装置
JP4695842B2 (ja) 半導体装置およびその製造方法
JP2004296620A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071015

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20080805

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028