JP2006134670A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006134670A
JP2006134670A JP2004321247A JP2004321247A JP2006134670A JP 2006134670 A JP2006134670 A JP 2006134670A JP 2004321247 A JP2004321247 A JP 2004321247A JP 2004321247 A JP2004321247 A JP 2004321247A JP 2006134670 A JP2006134670 A JP 2006134670A
Authority
JP
Japan
Prior art keywords
fuel cell
scavenging
gas flow
gas
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004321247A
Other languages
English (en)
Other versions
JP4630040B2 (ja
Inventor
Minoru Uoshima
稔 魚嶋
Tomoki Kobayashi
知樹 小林
Yasunori Kotani
保紀 小谷
Kazuhiro Wake
千大 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004321247A priority Critical patent/JP4630040B2/ja
Publication of JP2006134670A publication Critical patent/JP2006134670A/ja
Application granted granted Critical
Publication of JP4630040B2 publication Critical patent/JP4630040B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 簡易な構成で燃料電池を好適に掃気可能とする燃料電池システムを提供する。
【解決手段】 燃料ガス流路4および酸化剤ガス流路5を有し、燃料ガスと酸化剤ガスの反応により発電する燃料電池2と、ポンプ21に一端側が接続すると共に途中の連結点C(分岐点)で分岐し、他端側が燃料ガス流路4と酸化剤ガス流路5とにそれぞれ接続した掃気ガス供給配管と、を備え、燃料電池2の停止時または起動時に、燃料ガス流路4および酸化剤ガス流路5に掃気ガスを供給し掃気する燃料電池システム1Aであって、連結点Cより下流側であって、燃料ガス流路4および酸化剤ガス流路5の一方側に、背圧を制御する背圧弁24Aを、さらに備え、背圧弁24Aが、背圧を制御することによって、一方側と他方側とに掃気ガスを分配する。
【選択図】 図1

Description

本発明は、燃料電池システムに関する。
近年、燃料電池自動車などの電源として、単セルが複数積層してなる燃料電池スタック(燃料電池という場合もある)の開発が盛んである。燃料電池は発電すると、主としてカソード(空気極)側で水が生成する。生成した水の一部は単セルを構成する固体高分子電解質膜(以下電解質膜という)内を拡散し、アノード(燃料極)側に透過する。また、前記電解質膜の湿潤状態を維持するために、加湿した酸化剤ガス(例えば加湿した空気)を、カソード側に供給する方法などが一般に採用されている。
このように、発電により生成した水や加湿により、燃料電池内を流通するガスの含水量は高くなっている。したがって、ガスの温度が低下すると、ガスに含まれていた水が凝縮する。ゆえに、燃料電池が冬季や寒冷地で使用された場合などであって、燃料電池を停止した後に氷点下に曝されると、燃料電池内が凍結してしまう場合がある。
そこで、このような燃料電池内の凍結を防止するために、燃料電池の停止時または起動時に、燃料電池内の燃料ガス流路、酸化剤ガス流路を、非加湿の空気(掃気ガス)で掃気(空気パージ)を行う燃料電池システムが提案されている(特許文献1参照)。
特開2003−331893号公報(段落番号0012〜0033、図1)
しかしながら、特許文献1に記載された燃料電池システムでは、燃料ガス流路と酸化剤ガス流路に掃気ガスをそれぞれ供給するために、2つの開閉弁を備えており、軽量化、小型化などが要求される燃料電池自動車などの分野では、好ましいものでなかった。
そこで、本発明は、簡易な構成で燃料電池を好適に掃気可能とする燃料電池システムを提供することを課題とする。
前記課題を解決するための手段として、請求項1に係る発明は、燃料ガス流路および酸化剤ガス流路を有し、燃料ガスと酸化剤ガスの反応により発電する燃料電池と、掃気ガス源に一端側が接続すると共に途中の分岐点で分岐し、他端側が前記燃料ガス流路と前記酸化剤ガス流路とにそれぞれ接続した掃気ガス供給配管と、を備え、燃料電池の停止時または起動時に、前記燃料ガス流路および前記酸化剤ガス流路に掃気ガスを供給し掃気する燃料電池システムであって、前記分岐点より下流側であって、前記燃料ガス流路および酸化剤ガス流路の一方側に、圧力を制御する圧力制御手段を、さらに備え、当該圧力制御手段が、圧力を制御することによって、前記一方側と他方側とに掃気ガスを分配することを特徴とする燃料電池システムである。
ここで、「掃気ガス」とは、燃料電池内の水などを、燃料電池外に押し出し、燃料電池内を掃除するための所定圧力のガスであり、例えば、空気、窒素などである。そして、「掃気する」とは掃気ガスを燃料電池の燃料ガス流路、酸化剤ガス流路に導入し、燃料電池内の水などを、燃料電池外に押し出すことである。
「掃気ガス供給配管の分岐点の下流側であって、燃料ガス流路および酸化剤ガス流路の一方側の圧力制御手段」とは、「燃料ガス流路および酸化剤ガス流路の一方側」が「酸化剤ガス流路側」である場合は、圧力制御手段は、「分岐点と酸化剤ガス流路との間の掃気ガス供給配管」、「酸化剤ガス流路の途中」、および、「酸化剤ガス流路の下流側」のいずれの位置であってもよいことを意味する。
これに対し、「燃料ガス流路および酸化剤ガス流路の一方側」が「燃料ガス流路側」である場合は、圧力制御手段は、「分岐点と燃料ガス流路との間の掃気ガス供給配管」、「燃料ガス流路の途中」、および、「燃料ガス流路の下流側」のいずれの位置であってもよいことを意味する。
なお、後記する第1実施形態では、「燃料ガス流路および酸化剤ガス流路の一方側」が「酸化剤ガス流路5側」であって、圧力制御手段(背圧弁24A)が、「酸化剤ガス流路5の下流側」に位置する場合について説明する(図1参照)。
このような燃料電池システムによれば、掃気ガス供給配管の分岐点より下流側、且つ、燃料ガス流路および酸化剤ガス流路の一方側に、圧力制御手段を備えることでシステムを簡易に構成できる。
そして、この圧力制御手段が圧力を制御することによって、掃気ガス供給配管の分岐点において、燃料ガス流路および酸化剤ガス流路の一方側と他方側とに掃気ガスを分配し、燃料電池を好適に掃気することができる。
請求項2に係る発明は、前記圧力制御手段と前記分岐点との間の流路の最小流路断面積は、前記他方側の流路の最小流路断面積より大きく、前記圧力制御手段の非制御時は、当該圧力制御手段側への掃気ガス流量が大きいことを特徴とする請求項1に記載の燃料電池システムである。
ここで、「圧力制御手段の非制御時」とは、圧力が制御されておらず、「圧力制御手段の上流側と下流側の圧力が同一であるとき」である。
このような燃料電池システムによれば、圧力制御手段側(一方側)の流路の最小流路断面積は、他方側の最小流路断面積より大きく、圧力制御手段の非制御時には、圧力制御手段側に多量の掃気ガスが流れる。
これにより、例えば、圧力制御手段の初期状態が、圧力制御手段の上流側と下流側との圧力が同一となるように設定されている場合(例えば圧力制御手段である背圧弁が全開である場合)、圧力制御手段により背圧を高める方向に制御すると、圧力制御手段側(一方側)に掃気ガスが流れにくくなり、他方側に掃気ガスが流れる。すなわち、圧力制御手段を制御することで、燃料ガス流路および酸化剤ガス流路の一方側と他方側とへの掃気ガスの分配を、幅広い範囲において、さらに好適に制御することができる。
一方、圧力制御手段の初期状態が、圧力制御手段の上流側の圧力が下流側より高くなるように設定されている場合(例えば圧力制御手段である背圧弁が略全閉である場合)、圧力制御手段を背圧を低下させる方向に制御すると、圧力制御手段側に掃気ガスが流れやすくなる。
請求項3に係る発明は、前記圧力制御手段は、前記酸化剤ガス流路の下流側に位置することを特徴とする請求項1または請求項2に記載の燃料電池システムである。
このような燃料電池システムによれば、圧力制御手段が酸化剤ガス流路の下流側に位置することにより、前記した作用効果に加えて、燃料電池の通常の発電時に、圧力制御手段により背圧、つまり、燃料電池の酸化剤ガス流路内の圧力を調整することができる。すなわち、燃料電池の酸化剤ガス流路の圧力と、電解質膜を隔てた燃料ガス流路内の圧力とのバランスを調整することができる。
本発明によれば、簡易な構成で燃料電池を好適に掃気可能とする燃料電池システムを提供することができる。
以下、本発明の実施形態について、図面を適宜参照して説明する。
なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略するものとする。
≪第1実施形態≫
第1実施形態に係る燃料電池システムについて、図1および図2を参照して説明する。参照する図面において、図1は、第1実施形態に係る燃料電池システムの構成図である。図2は、第1実施形態に係る燃料電池システムの動作を示すフローチャートである。
≪燃料電池システムの構成≫
図1に示すように、第1実施形態に係る燃料電池システム1Aは、燃料電池自動車に搭載されたシステムであり、燃料電池自動車の停止時(燃料電池2の停止時)に、背圧弁24A(圧力制御手段)で背圧(圧力)を制御することによって、掃気ガス(非加湿空気)を、連結点C(分岐点)において、燃料電池2の酸化剤ガス流路5側(一方側)と燃料ガス流路4側(他方側)とに分配するシステムである。
図1に示すように、燃料電池システム1Aは、燃料電池2と、燃料電池2のアノード側に水素ガス(燃料ガス、反応ガス)を供給・排出するアノード系と、燃料電池2のカソード側に加湿空気(酸化剤ガス、反応ガス)または掃気ガス(非加湿空気)を供給・排出するカソード系と、掃気時に掃気ガスをカソード系からアノード系に導く掃気系と、温度センサ51と、これらを制御するECU60(Electronic Control Unit、制御装置)を主に備えている。
<燃料電池>
燃料電池2(燃料電池スタック)は、主として、電解質膜3の両面をアノード(燃料極)およびカソード(空気極)で挟持してなる単セルが、セパレータを介して、複数積層されることで構成されている。セパレータには、電解質膜3の全面に水素ガス(燃料ガス)、加湿空気(酸化剤ガス)を供給するための溝、各単セルに供給するための貫通孔などが複雑に形成されており、これら溝などが燃料ガス流路4、酸化剤ガス流路5として機能している。燃料ガス流路4には水素ガスが流通し、この流通する水素ガスが各アノードに供給されるようになっている。一方、酸化剤ガス流路5には、加湿空気が流通し、この流通する加湿空気が各カソードに供給されるようになっている。
そして、水素ガスが各アノードに、加湿空気が各カソードに供給されると、各アノード・各カソードで電気化学反応が生じて、各単セルで所定の電位差が発生し、この単セルが一般に直列で接続されているため、燃料電池2から大きな電力を取り出し可能となっている。
<アノード系>
アノード系は、燃料電池2のアノード側に配置し、水素ガスを供給・排出する系であり、水素ガスが貯蔵された水素タンク11、エゼクタ12、開閉式のパージ弁13を主に備えている。
まず、アノード系の水素ガス供給側を説明すると、水素タンク11は配管11aを介して下流側のエゼクタ12に接続しており、エゼクタ12は配管12aを介して燃料電池2の水素導入口4aに接続している。そして、水素タンク11から、エゼクタ12を介して、燃料電池2の燃料ガス流路4に水素ガスを供給可能となっている。また、水素タンク11とエゼクタ12との間の配管11aには、エゼクタ12に向かって、遮断弁、減圧弁(ともに図示しない)が順に設けられており、水素ガスを適宜に遮断、所定に減圧可能となっている。
次に、アノード系の水素ガス排出側について説明すると、パージ弁13は、燃料ガス流路4に連通する水素排出口4bに、配管13aを介して接続している。また、パージ弁13は、後記するECU60の制御部61と電気的に接続しており、制御部61はパージ弁13を適宜に開閉可能となっている。
配管13aはその途中位置で分岐しており、分岐した部分は水素ガス供給側のエゼクタ12に接続している。これにより、燃料電池2の通常の発電時は、パージ弁13を閉じて、燃料電池2から排出された水素ガス(アノードオフガス、燃料ガス)を水素ガス供給側に戻す(循環させる)ことによって、水素ガスを効率的に利用可能となっている。一方、発電によりアノードオフガス中の水分が多くなった場合などは、パージ弁13を開き、含水量の高いアノードオフガスを系外に排出(パージ)可能となっている。
<カソード系>
カソード系は、燃料電池2のカソード側に配置し、主として、空気(通常発電時は加湿空気、掃気時は非加湿空気である掃気ガス)を供給・排出する系であり、ポンプ21(コンプレッサ)、流量計22、圧力計23、背圧弁24A(圧力制御手段、背圧制御手段)を主に備えている。
まず、カソード系の空気供給側について説明すると、ポンプ21は配管21aを介して下流側の流量計22に接続しており、流量計22は配管22aを介して燃料電池2の空気導入口5aに接続している。
ポンプ21は、外気を取り込み、所定に圧縮して、燃料電池2に送るための機器である。ポンプ21は、後記するECU60の制御部61と電気的に接続しており、制御部61はポンプ21を所望に制御可能となっている。
なお、第1実施形態に係るポンプ21は、特許請求の範囲における「掃気ガス源」に相当する。
流量計22は、燃料電池2の掃気時に、燃料ガス流路4側に実際に流れるアノード掃気ガスの流量(アノード掃気ガス流量Q11)と、酸化剤ガス流路5側に実際に流れるカソード掃気ガスの流量(カソード掃気ガス流量Q12)の合計である合計掃気ガス流量Q13を検出可能となっている。そして、流量計22は、後記するECU60の制御部61と電気的に接続しており、制御部61は、合計掃気ガス流量Q13を監視可能となっている。
配管21aの途中位置には、加湿器(図示しない)が設けられている。燃料電池2の通常の発電時には、この加湿器により、ポンプ21からの空気を所定に加湿可能となっている。一方、燃料電池2の掃気時には、この加湿器による加湿を停止し、下流側に掃気ガス(非加湿空気)を供給可能となっている。
圧力計23は、配管22aに設けられており、燃料電池2の掃気時において、実際に流れる掃気ガスの圧力(掃気ガス圧力P1)を検出可能となっている。また、圧力計23は、後記するECU60の制御部61と電気的に接続しており、制御部61は、掃気ガス圧力P1を監視可能となっている。
流量計22と圧力計23との間であって、配管22aの途中の連結点Cには、後記する掃気系の配管41が連結している。したがって、燃料電池2の掃気時に、ポンプ21からの掃気ガスを、連結点C(分岐点)において、燃料ガス流路4側へのアノード掃気ガスと、酸化剤ガス流路5側へのカソード掃気ガスとに分配可能となっている。
次に、カソード系の空気排出側について説明すると、背圧弁24Aは、酸化剤ガス流路5に連通する空気排出口5bに、配管24aを介して接続している。そして、燃料電池2から排出された空気(発電時はカソードオフガス、掃気時は掃気ガス)は、配管24a、背圧弁24Aを介して系外に排出されるようになっている。また、背圧弁24Aの開度を調整することで、背圧(=背圧弁24Aの上流側の圧力)を適宜に制御可能となっている。また、背圧弁24Aは、後記するECU60の制御部61と電気的に接続しており、制御部61は背圧弁24Aを所望に制御可能となっている。
また、背圧弁24Aが、酸化剤ガス流路の下流側に位置することによって、燃料電池2の通常の発電時に、背圧弁24Aの背圧、つまり、燃料電池2の酸化剤ガス流路5内の圧力を調整することができる。すなわち、燃料電池2の通常の発電時に、背圧弁24Aにより、燃料電池2の酸化剤ガス流路5の圧力と、電解質膜3を隔てた燃料ガス流路4内の圧力とのバランスを調整することもできる。
<掃気系>
掃気系は、燃料電池2の掃気時に、掃気ガス(非加湿空気)を、カソード系からアノード系に導く系であり、配管41と開閉弁42を主に備えている。
配管41の一端は、前記したカソード系の配管22aの連結点C(分岐点)に連結している。配管41の他端は、アノード系の配管12aに連結している。
開閉弁42は、配管41の途中位置に設けられており、配管41内の流通を適宜に遮断可能となっている。また、開閉弁42は、後記するECU60の制御部61と電気的に接続しており、制御部61は開閉弁42を所望に制御可能となっている。
したがって、燃料電池2の通常の発電時は開閉弁42を閉じ、一方、燃料電池2の掃気時は、開閉弁42を開くことで、連結点C(分岐点)から掃気ガス(非加湿空気)を配管41内に導入し、配管41、配管12aを介して、燃料ガス流路4に供給可能となっている。
ゆえに、第1実施形態に係る燃料電池システム1Aにおいて、特許請求の範囲における「掃気ガス供給配管」は、カソード系の配管21aおよび配管22aと、掃気系の配管41と、アノード系の配管12aの一部とで構成されている。すなわち、第1実施形態に係る「掃気ガス供給配管」の一端側は、掃気ガス源であるポンプ21に接続している。そして、「掃気ガス供給配管」は、途中の連結点C(分岐点)で分岐しており、他端側は、燃料ガス流路4と酸化剤ガス流路5とにそれぞれ接続している。
また、配管41は、カソード系の配管21a、22a、24aより細く設定されている。さらに説明すると、カソード系の配管21a、22a、24a内の最小流路断面積は、配管41内の最小流路断面積よりも大きく設定されている。
言い換えると、アノード系のパージ弁13、カソード系の背圧弁24A、掃気系の開閉弁42が全開のとき、連結点Cからアノード系のパージ弁13の下流側の大気出口までの圧力損失と、連結点Cからカソード系の背圧弁24Aの下流側の大気出口までの圧力損失とは、後者のカソード側の圧力損失の方が小さくなるように設定されている。
これにより、背圧弁24Aの非制御時には、連結点Cから酸化剤ガス流路5側(=背圧弁24A側)へのカソード掃気ガス流量Q12が、連結点Cから燃料ガス流路4側へのアノード掃気ガス流量Q11より大きくなっている。したがって、背圧弁24Aで背圧を制御することで、カソード掃気ガス流量Q12とアノード掃気ガス流量Q11との分配を、幅広い範囲で調整可能となっている。
<外気用温度センサ>
温度センサ51は、燃料電池自動車の適所に設けられており、外気温度T0を検出可能となっている。温度センサ51は、後記するECU60の制御部61と電気的に接続しており、制御部61は、外気温度T0を監視可能となっている。
<ECU>
ECU60は、燃料電池2の掃気を制御する機能を主に有している。ECU60は、CPU、ROM、RAM、各種インタフェイス、電子回路、各種記憶媒体などを含んで構成され、制御部61(背圧弁制御手段)と、掃気データ記憶部62(掃気データ記憶手段)を主に備えている。また、ECU60は、燃料電池自動車の起動スイッチであるイグニションスイッチ(以下、IGSW)に連動するようになっている。
[制御部]
制御部61の出力側は、カソード系の背圧弁24Aと電気的に接続しており、制御部61は、背圧弁24Aの開度を適宜に制御して、背圧を所望に調整可能となっている。なお、制御部61は背圧弁24Aを制御せず(背圧弁24Aの開度が全開)、背圧弁24Aの上流側と下流側の圧力を同一にすることも可能となっている。このように背圧弁24Aの開度が全開であるときを、第1実施形態では「背圧弁24Aの非制御時、初期状態」とする。
その他、制御部61の出力側は、カソード系のポンプ21と電気的に接続しており、制御部61はポンプ21を所望に制御可能となっている。さらに、制御部61の出力側は、アノード系のパージ弁13と、掃気系の開閉弁42とに電気的に接続しており、制御部61はこれらを所望に制御可能となっている。
制御部61の入力側は、カソード系の流量計22および圧力計23と、温度センサ51とに電気的に接続しており、制御部61は、実際の合計掃気ガス流量Q13、掃気ガス圧力P1、外気温度T0を監視可能となっている。
そして、制御部61は、実際の合計掃気ガス流量Q13と後記する目標合計掃気ガス流量Q3、実際の掃気ガス圧力P1と後記する目標掃気ガス圧力P0と、をそれぞれ比較して、ポンプ21および背圧弁24Aの制御に従って、予定通りにアノード掃気ガス、カソード掃気ガスが供給されているか否かを判定する機能を有している。
また、制御部61は、外気温度T0に基づいて、掃気が必要であるか否かを判定する機能を有している。
さらに、制御部61は、掃気データ記憶部62と電気的に接続しており、後記する「掃気データA」を適宜に参照可能となっている。そして、制御部61は、参照した「掃気データA」に基づいて、ポンプ21、背圧弁24Aを制御可能となっている。
[掃気データ記憶部]
掃気データ記憶部62には、「掃気データA」が記憶されている。「掃気データA」は、予備試験などにより求められた、燃料電池2の掃気時における「目標掃気ガス圧力P0、目標アノード掃気ガス流量Q1、目標カソード掃気ガス流量Q2、目標合計掃気ガス流量Q3」を含んでいる。
≪燃料電池システムの動作≫
次に、第1実施形態に係る燃料電池システム1Aの動作について、図1に加えて、図2を併せて参照しつつ説明する。
燃料電池自動車のIGSW(図示しない)がOFFされると(S1)、制御部61はアノード系の遮断弁(図示しない)を閉じ、燃料電池2への水素ガスの供給を停止する。また、制御部61は、ポンプ21を稼動したまま、カソード系の加湿器(図示しない)による加湿を停止し、下流側に掃気ガス(非加湿空気)を供給する。
ステップS2においては、制御部61は、燃料電池2の掃気が必要であるか否かを判定する。具体的には、温度センサ51が検出した外気温度T0が0℃以下であるか否かを判定する。これは、外気温度T0が0℃以下の場合、燃料電池2内が凍結する可能性が高いからである。
「外気温度T0が0℃以下であり、掃気が必要である」と判定した場合(S2、Yes)、制御部61は、アノード系のパージ弁13と、掃気系の開閉弁42を開き、掃気ガスを燃料ガス流路4に供給する。その後、ステップS3に進む。
一方、「外気温度T0が0℃より高く、掃気が不要である」と判定した場合(S2、No)、エンドに進み、制御部61はポンプ21を停止し、燃料電池2が停止する。
ステップS3においては、制御部61が、掃気データ記憶部62から、予備試験等により設定された「掃気データA(目標掃気ガス圧力P0、目標アノード掃気ガス流量Q1、目標カソード掃気ガス流量Q2、目標合計掃気ガス流量Q3)」を読み込む。
ステップS4においては、読み込んだ「掃気データA」の「目標掃気ガス圧力P0」と「目標合計掃気ガス流量Q3」とに基づいて、ポンプ21の回転速度と、背圧弁24Aの開度を決定する。
ステップS5においては、制御部61は、ステップS4で決定したポンプ21の回転速度と、背圧弁24Aの開度とに従って、ポンプ21、背圧弁24Aをそれぞれ制御する。そうすると、ポンプ21の回転速度と背圧弁24Aの開度に従って、背圧(=掃気ガス圧力P1)が調整される。そして、ポンプ21からの掃気ガスは、連結点C(分岐点)で所定に分配され、酸化剤ガス流路5側にカソード掃気ガスが、燃料ガス流路4側にアノード掃気ガスが、それぞれ供給される。
さらに説明すると、連結点Cの下流側かつ酸化剤ガス流路5側においては、カソード掃気ガスが配管22aの下流側を介して、燃料電池2の酸化剤ガス流路5に供給され、酸化剤ガス流路5が掃気される。
一方、連結点Cの下流側かつ燃料ガス流路4側においては、アノード掃気ガスが、配管41、配管12aの下流部分を介して、燃料電池2の燃料ガス流路4に供給され、燃料ガス流路4が掃気される。
ステップS6においては、制御部61は、流量計22および圧力計23を介して、実際に流れる合計掃気ガスの「合計掃気ガス流量Q13」、「掃気ガス圧力P1」が、「目標合計掃気ガス流量Q3」、「目標掃気ガス圧力P0」をそれぞれ満たしているか否かを判定する。
実際に流れる掃気ガスが、「目標合計掃気ガス流量Q3」、「目標掃気ガス圧力P0」をそれぞれ満たしていると判定した場合(S6、Yes)、ステップS7に進み、所定時間の間、掃気した後、エンドに進む。
一方、実際に流れる掃気ガスが、「目標合計掃気ガス流量Q3」、「目標掃気ガス圧力P0」の少なくとも一方を満たしていないと判定した場合(S6、No)、ステップS5に戻り、制御部61は、ポンプ21および背圧弁24Aを再び制御する。
このように、第1実施形態に係る燃料電池システムによれば、連結点C(分岐点)の下流側であって、酸化剤ガス流路5側の1つの背圧弁24Aの開度を制御することによって、その背圧を調整し、掃気ガスを連結点Cにおいて、酸化剤ガス流路5側(一方側)のカソード掃気ガスと燃料ガス流路4側(他方側)のアノード掃気ガスとに、分配することができる。
≪第2実施形態≫
次に、第2実施形態に係る燃料電池システムについて、図3を参照して説明する。図3は、第2実施形態に係る燃料電池システムの構成図である。
≪燃料電池システムの構成≫
図3に示すように、第2実施形態に係る燃料電池システム1Bは、第1実施形態に係る背圧弁24Aと異なる位置に、背圧弁24Bを備えている。また、燃料電池システム1Bは、電流電圧検出器52をさらに備えている。
<背圧弁>
背圧弁24Bは、配管22a上であって、圧力計23と酸化剤ガス流路5との間に配置している。すなわち、背圧弁24Bは、連結点C(分岐点)と酸化剤ガス流路5との間に配置している。また、背圧弁24Bは、制御部61と電気的に接続しており、制御部61により所望に制御可能となっている。
なお、背圧弁24Bの非制御時の連結点Cにおける掃気ガスの分配は、第1実施形態と同様に、酸化剤ガス流路5側(一方側)のカソード掃気ガス流量Q12が、燃料ガス流路4側(他方側)のアノード掃気ガス流量Q11より、大きくなるように設定されている。
このように、背圧弁24Bが連結点C(分岐点)と酸化剤ガス流路5との間に配置しても、背圧弁24Bを制御することによって、背圧を調整し、連結点Cにおいて、ポンプ21からの掃気ガスを、カソード掃気ガスとアノード掃気ガスとに分配可能となっている。
<電流電圧検出器>
電流電圧検出器52は、燃料電池2の出力電流、出力電圧を検出する機器であり、電流計、電圧計などで構成され、燃料電池2の出力端子に接続している。また、電流電圧検出器52は、後記するECU60の制御部61と接続しており、制御部61は、燃料電池2の出力電流、出力電圧を監視可能となっている。
したがって、制御部61は、燃料電池2の停止時に、例えば、停止直前の燃料電池2の出力電流・出力電圧から発電状況を推定し、この推定した発電状況(つまり、発電による水の生成状況)に対応して、目標アノード掃気ガス流量Q1と、目標カソード掃気ガス流量Q2を設定可能となっている。
この場合には、ECU60の掃気データ記憶部62に、予め「出力電流、出力電圧」と、「目標アノード掃気ガス流量Q1、目標カソード掃気ガス流量Q2」とか関連付けられた「掃気データB」を記憶されている。そして、燃料電池2の掃気時に、制御部61は、出力電流・出力電圧に基づいて、「掃気データB」を参照して、掃気に必要とされる目標アノード掃気ガス流量Q1、目標カソード掃気ガス流量Q2を決定可能となっている。
次いで、制御部61は、この出力電流等に基づいて決定した目標アノード掃気ガス流量Q1と目標カソード掃気ガス流量Q2とを合計し、目標合計掃気ガス流量Q3を求め、これと目標掃気ガス圧力P0とから、ポンプ21の回転速度、背圧弁24Bの開度を決定可能となっている。
このように、第2実施形態に係る燃料電池システム1Bによれば、停止前の燃料電池2の発電状況に対応して、掃気条件を好適に決定し、燃料電池2を好適に掃気することができる。
≪第3実施形態≫
次に、第3実施形態に係る燃料電池システムについて、図4を参照して説明する。図4は、第3実施形態に係る燃料電池システムの構成図である。
≪燃料電池システムの構成≫
図4に示すように、第3実施形態に係る燃料電池システム1Cは、第1実施形態に係る背圧弁24Aと異なる位置に、背圧弁24Cを備えている。
なお、第3実施形態に係る燃料電池システム1C、および、後記する第4実施形態に係る燃料電池システム1Dでは、連結点C(分岐点)の下流側であって、燃料ガス流路4側が、特許請求の範囲における「一方側」に相当する。そして、連結点Cの下流側であって、酸化剤ガス流路5側が、特許請求の範囲における「他方側」に相当する。
そして、背圧弁24C(後記する第4実施形態では背圧弁24D)の非制御時には、燃料ガス流路4側(一方側)へのアノード掃気ガス流量Q11が、酸化剤ガス流路5側(他方側)へのカソード掃気ガス流量Q12より、大きくなるように設定されている。
<背圧弁>
背圧弁24Cは、アノード系の水素ガス排出側の配管13aに、パージ弁13(図1参照)に代わって配置しており、パージ弁としての機能も有している。また、背圧弁24Cは、ECU60の制御部61と電気的に接続しており、制御部61により所望に制御可能となっている。
このように背圧弁24Cが、燃料電池2のアノード系の燃料ガス流路4の下流側に配置しても、燃料電池2の掃気時に、背圧弁24Cの開度を制御することで背圧を調整し、ポンプ21からの掃気ガスを、燃料ガス流路4側(一方側)へのアノード掃気ガスと、酸化剤ガス流路5側(他方側)へのカソード掃気ガスとに、好適に分配可能となっている。
≪第4実施形態≫
次に、第4実施形態に係る燃料電池システムについて、図5を参照して説明する。図5は、第4実施形態に係る燃料電池システムの構成図である。
≪燃料電池システムの構成≫
図5に示すように、第4実施形態に係る燃料電池システム1Dは、第3実施形態に係る背圧弁24Cと異なる位置に、背圧弁24Dを備えている。
<背圧弁>
背圧弁24Dは、配管41上であって、連結点C(分岐点)と開閉弁42との間に設けられている。すなわち、背圧弁24Dは、連結点Cと燃料ガス流路4との間に配置している。背圧弁24Dは、ECU60の制御部61と電気的に接続しており、制御部61により所望に制御可能となっている。
このように背圧弁24Dが、連結点Cと燃料ガス流路4との間に配置しても、背圧弁24Dを所望に制御することで背圧を調整し、連結点Cにおいて、ポンプ21からの掃気ガスを、燃料ガス流路4側(一方側)へのアノード掃気ガスと、酸化剤ガス流路5側(他方側)へのカソード掃気ガスとに、好適に分配可能となっている。
以上、本発明の好適な各実施形態について一例を説明したが、本発明は前記各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で、前記各実施形態に係る構成を組み合わせたり、その他に例えば以下のような変更をすることができる。
前記した第1実施形態では、燃料電池2の停止時に掃気を行う場合について説明したが、燃料電池2の起動時に掃気を行ってもよい。
前記した第1実施形態では、背圧弁24Aの初期状態は全開であり、制御時に背圧弁24Aの開度を絞り、背圧を高める場合について説明したが、背圧弁24Aの初期状態は略全閉であって、制御時に背圧弁24Aを開き、背圧を下げる場合であってもよい。
前記した第1実施形態では、配管41の途中位置に開閉弁42を設け、開閉弁42により配管41内の流通を制御したが、その他に例えば、連結点Cに三方弁を設けることで、配管41内の流通を制御してもよい。
前記した第1実施形態では、配管41を、カソード系の配管21a、22a、24aより細くすることで、背圧弁24Aのソード掃気ガス流量が、アノード掃気ガス流量より大きくなるとしたが、連結点Cの下流側の圧力損失を調整可能であれば、配管41が細いことに限られず、例えば、配管41を長くすることで、燃料ガス流路4側の圧力損失を大きくしてもよい。
第1実施形態に係る燃料電池システムの構成図である。 第1実施形態に係る燃料電池システムの動作を示すフローチャートである。 第2実施形態に係る燃料電池システムの構成図である。 第3実施形態に係る燃料電池システムの構成図である。 第4実施形態に係る燃料電池システムの構成図である。
符号の説明
1A、1B、1C、1D 燃料電池システム
2 燃料電池
4 燃料ガス流路
5 酸化剤ガス流路
12a、21a、22a、41 配管(掃気ガス供給配管)
21 ポンプ(掃気ガス源)
22 流量計
23 圧力計
24A、24B、24C、24D 背圧弁(圧力制御手段、背圧制御手段)
60 ECU
61 制御部
62 掃気データ記憶部
C 連結点(分岐点)

Claims (3)

  1. 燃料ガス流路および酸化剤ガス流路を有し、燃料ガスと酸化剤ガスの反応により発電する燃料電池と、
    掃気ガス源に一端側が接続すると共に途中の分岐点で分岐し、他端側が前記燃料ガス流路と前記酸化剤ガス流路とにそれぞれ接続した掃気ガス供給配管と、
    を備え、燃料電池の停止時または起動時に、前記燃料ガス流路および前記酸化剤ガス流路に掃気ガスを供給し掃気する燃料電池システムであって、
    前記分岐点より下流側であって、前記燃料ガス流路および酸化剤ガス流路の一方側に、圧力を制御する圧力制御手段を、さらに備え、
    当該圧力制御手段が、圧力を制御することによって、前記一方側と他方側とに掃気ガスを分配することを特徴とする燃料電池システム。
  2. 前記圧力制御手段と前記分岐点との間の流路の最小流路断面積は、前記他方側の流路の最小流路断面積より大きく、前記圧力制御手段の非制御時は、当該圧力制御手段側への掃気ガス流量が大きいことを特徴とする請求項1に記載の燃料電池システム。
  3. 前記圧力制御手段は、前記酸化剤ガス流路の下流側に位置することを特徴とする請求項1または請求項2に記載の燃料電池システム。
JP2004321247A 2004-11-04 2004-11-04 燃料電池システム Expired - Fee Related JP4630040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321247A JP4630040B2 (ja) 2004-11-04 2004-11-04 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321247A JP4630040B2 (ja) 2004-11-04 2004-11-04 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2006134670A true JP2006134670A (ja) 2006-05-25
JP4630040B2 JP4630040B2 (ja) 2011-02-09

Family

ID=36728016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321247A Expired - Fee Related JP4630040B2 (ja) 2004-11-04 2004-11-04 燃料電池システム

Country Status (1)

Country Link
JP (1) JP4630040B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187791A1 (en) * 2007-02-01 2008-08-07 Honda Motor Co., Ltd. Fuel cell system and scavenging method therefor
JP2008243617A (ja) * 2007-03-27 2008-10-09 Honda Motor Co Ltd 燃料電池のアノード系掃気システム
JP2008288014A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd 燃料電池システム
JP2009129793A (ja) * 2007-11-27 2009-06-11 Honda Motor Co Ltd 燃料電池システム及びその制御方法
WO2011158295A1 (ja) * 2010-06-17 2011-12-22 トヨタ自動車株式会社 燃料電池
JP2012207455A (ja) * 2011-03-30 2012-10-25 Toto Ltd 衛生洗浄装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244654A (ja) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd 燃料電池のガス置換方式
JPH0381970A (ja) * 1989-05-19 1991-04-08 Fuji Electric Co Ltd 燃料電池の発電停止方法
JP2004185969A (ja) * 2002-12-03 2004-07-02 Nissan Motor Co Ltd 燃料電池システム
JP2004311241A (ja) * 2003-04-08 2004-11-04 Nissan Motor Co Ltd 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244654A (ja) * 1988-08-04 1990-02-14 Fuji Electric Co Ltd 燃料電池のガス置換方式
JPH0381970A (ja) * 1989-05-19 1991-04-08 Fuji Electric Co Ltd 燃料電池の発電停止方法
JP2004185969A (ja) * 2002-12-03 2004-07-02 Nissan Motor Co Ltd 燃料電池システム
JP2004311241A (ja) * 2003-04-08 2004-11-04 Nissan Motor Co Ltd 燃料電池システム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080187791A1 (en) * 2007-02-01 2008-08-07 Honda Motor Co., Ltd. Fuel cell system and scavenging method therefor
JP2008192373A (ja) * 2007-02-01 2008-08-21 Honda Motor Co Ltd 燃料電池システムおよびその掃気方法
US8722269B2 (en) * 2007-02-01 2014-05-13 Honda Motor Co., Ltd. Fuel cell system and scavenging method therefor
JP2008243617A (ja) * 2007-03-27 2008-10-09 Honda Motor Co Ltd 燃料電池のアノード系掃気システム
JP2008288014A (ja) * 2007-05-17 2008-11-27 Honda Motor Co Ltd 燃料電池システム
JP2009129793A (ja) * 2007-11-27 2009-06-11 Honda Motor Co Ltd 燃料電池システム及びその制御方法
WO2011158295A1 (ja) * 2010-06-17 2011-12-22 トヨタ自動車株式会社 燃料電池
JP5423892B2 (ja) * 2010-06-17 2014-02-19 トヨタ自動車株式会社 燃料電池システム、および燃料電池の運転方法
US8980486B2 (en) 2010-06-17 2015-03-17 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2012207455A (ja) * 2011-03-30 2012-10-25 Toto Ltd 衛生洗浄装置

Also Published As

Publication number Publication date
JP4630040B2 (ja) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4644064B2 (ja) 燃料電池システム
JP5318415B2 (ja) 液体分離器を有する燃料電池システム
JP5596758B2 (ja) 燃料電池システム及びその制御方法
US20100055523A1 (en) Fuel cell system
JP2002313395A (ja) 燃料電池システムの残留水排出装置
WO2009016985A1 (ja) 燃料電池システム及びその制御方法
JP4334851B2 (ja) 燃料電池システム
JP2008077955A (ja) 燃料電池システム
JP4630040B2 (ja) 燃料電池システム
JP2006155997A (ja) 燃料電池システムおよび燃料電池システムの掃気方法
US9252444B2 (en) Fuel cell system
JP2004071349A (ja) 燃料循環式燃料電池システム
JP2010244778A (ja) 燃料電池システム
JP5080727B2 (ja) 燃料電池の排出ガス処理装置
JP2008071539A (ja) 燃料電池システム及び燃料電池スタックの流体配分方法
JP2013165047A (ja) 燃料電池システムの起動方法および起動装置
JP2004185969A (ja) 燃料電池システム
JP5097016B2 (ja) 燃料電池システム及び遮断弁の開閉状態判定方法
KR20150072076A (ko) 연료전지 시스템의 수소 퍼지유닛
JP4978108B2 (ja) 燃料電池システム
JP4645063B2 (ja) 燃料電池システム
JP4742522B2 (ja) 燃料電池システム
JP4397686B2 (ja) 燃料電池の反応ガス供給装置
JP2010177166A (ja) 燃料電池システム
JP2005108698A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4630040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees