JP2004311241A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2004311241A
JP2004311241A JP2003104101A JP2003104101A JP2004311241A JP 2004311241 A JP2004311241 A JP 2004311241A JP 2003104101 A JP2003104101 A JP 2003104101A JP 2003104101 A JP2003104101 A JP 2003104101A JP 2004311241 A JP2004311241 A JP 2004311241A
Authority
JP
Japan
Prior art keywords
fuel cell
supply pipe
fuel
hydrogen
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003104101A
Other languages
English (en)
Inventor
Masatoshi Iio
雅俊 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003104101A priority Critical patent/JP2004311241A/ja
Publication of JP2004311241A publication Critical patent/JP2004311241A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】運転中に水素流路に空気が流入するのを回避すると共に、空気流路に水素が流入するのも回避して無駄に消費する水素をなくすことができ、高効率を達成することができる燃料電池システムを提供する。
【解決手段】燃料電池システムは、第1空気供給配管L3から、水素供給配管L1における1次水素調圧弁4と2次水素調圧弁5との間にかけて、逆止弁11が設けられた第2空気供給配管L4を備える。この燃料電池システムにおいては、運転中は、1次水素調圧弁4と2次水素調圧弁5との間に接続された第2空気供給配管L4と、水素供給配管L1との合流部12の圧力が、必ず空気供給圧力よりも高くなり、空気が水素流路に流入することはなくなる一方で、逆止弁11が設けられているので、水素が第2空気供給配管L4を逆流して空気流路に流入することも防止される。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、例えば燃料電池車両に搭載可能な燃料電池システムに関する。
【0002】
【従来の技術】
近年、燃料電池の燃料極(水素極)に水素を多量に含む燃料ガスを供給すると共に、空気極に酸化剤ガスとしての空気を供給し、所定の電解質を介してこれら水素と酸素とを電気化学的に反応させて発電電力を得る燃料電池システムが知られている。
【0003】
このような燃料電池を用いた燃料電池システムにおいては、燃料極の近傍に存在している水分によって反応ガスの拡散が阻害されたり、電解質膜の電気伝導率が低下したりする問題がある。そこで、これに対応するために、従来の燃料電池システムでは、運転停止時に水素流路に設けた切り替え弁によって流路を切り替えて、水素流路に空気を導入することにより、燃料極の水分を除去するものがある(特許文献1参照。)。
【0004】
【特許文献1】
特開2002−246054号公報
【0005】
【発明が解決しようとする課題】
ところで、上述した特許文献1に記載された燃料電池システムにおいては、水素流路に空気を導入する切り替え弁に洩れが生じた場合には、運転中に水素流路に空気が流入してしまい、発電効率の低下を招来するという問題があった。
【0006】
そこで、本発明は、上述した実情に鑑みて提案されたものであり、運転中に水素流路に空気が流入するのを回避すると共に、空気流路に水素が流入するのも回避して無駄に消費する水素をなくすことができ、水素の使用効率を高くすることができる燃料電池システムを提供するものである。
【0007】
【課題を解決するための手段】
本発明では、燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、前記燃料ガスを前記燃料電池に供給する燃料ガス供給配管を有する燃料ガス供給手段と、前記燃料ガス供給配管に設けられ、前記燃料ガスの圧力を調整する1次調圧弁と、前記燃料ガス供給配管における前記1次調圧弁よりも下流側に設けられ、前記燃料電池の燃料ガス入口における前記燃料ガス圧力を調整する2次調圧弁と、前記酸化剤ガスを前記燃料電池に供給する酸化剤ガス供給手段と、前記1次調圧弁と前記2次調圧弁との間の前記燃料ガス供給配管に接続され、前記酸化剤ガス供給手段から供給される前記酸化剤ガスを前記燃料ガス供給配管に供給する酸化剤ガス供給配管と、前記酸化剤ガス供給配管に設けられ、少なくとも前記燃料ガス供給配管から前記酸化剤ガス供給手段側へのガスを遮断する逆止弁とを設けた構成の燃料電池システムに適用される。
【0008】
このような燃料電池システムでは、制御手段により、1次調圧弁又は2次調圧弁を制御して、酸化剤ガス供給手段から酸化剤ガス供給配管を介して、燃料ガス供給配管に酸化剤ガスを供給させることにより、燃料ガス供給配管のガスを空気に置換することにより、上述の課題を解決する。
【0009】
【発明の効果】
本発明に係る燃料電池システムによれば、1次調圧弁と2次調圧弁との間の燃料ガス供給配管に、逆止弁が設けられた酸化剤ガス供給配管を接続し、制御手段によって1次調圧弁又は2次調圧弁のうち少なくとも一方の開度を制御することにより、酸化剤ガスが燃料ガス供給配管に流入することがなくなる一方で、燃料ガスが酸化剤ガス供給配管を逆流することも防止される。したがって、この燃料電池システムによれば、無駄に消費する燃料ガスがなくなり、燃料ガスの使用効率を高くすることができる。
【0010】
【発明の実施の形態】
以下、本発明を適用した第1実施形態〜第5実施形態について図面を参照しながら詳細に説明する。
【0011】
以下の実施形態は、例えば燃料電池車両に搭載され、負荷として搭載された駆動モータに必要とされる電力値に応じて、燃料電池スタックを発電させる補機類等に電力供給することにより、車両走行するための駆動トルクを発生させる燃料電池システムについて説明したものである。
【0012】
[第1実施形態]
まず、第1実施形態に係る燃料電池システムについて説明する。
【0013】
[燃料電池システムの構成]
第1実施形態に係る燃料電池システムは、図1に示すように、当該燃料電池システムの主電源であって、発電反応を発生させるための水素を多量に含む燃料ガスと酸素を含む酸化剤ガスとが供給されることによって発電する燃料電池スタック1を備える。この燃料電池スタック1は、固体高分子電解質を挟んで、酸化剤ガスが供給される空気極と燃料ガスが供給される水素極とを対設した燃料電池セル構造体をセパレータで挟持し、セル構造体を複数積層することによって構成されている。すなわち、この燃料電池スタック1による発電は、水素極にて水素が電子を放出してイオン化し、生成された水素イオン(H)が高分子電解質を通過して空気極に到達し、この水素イオンが空気極にて酸素と結合して水(HO)を生成することによって行われる。
【0014】
燃料電池システムは、燃料電池スタック1に水を供給する水素供給系として、燃料電池スタック1の運転圧よりも高圧にして燃料ガスとしての水素を貯蔵する高圧水素タンク2を備える。この高圧水素タンク2に貯蔵された水素は、高圧水素タンク2と接続された水素供給配管L1によって燃料電池スタック1に導入される。
【0015】
この水素供給配管L1には、開閉することによって高圧水素タンク2からの水素を供給又は遮断するための水素開閉弁3、水素の圧力を調整するための1次水素調圧弁4、この1次水素調圧弁4よりも下流に設けられて燃料電池スタック1の入り口における水素の圧力を調整するための2次水素調圧弁5、エゼクタ6が設けられている。そして、水素は、水素開閉弁3、1次水素調圧弁4及び2次水素調圧弁5の開閉がコントローラ13により制御されることにより、水素開閉弁3、1次水素調圧弁4、2次水素調圧弁5及びエゼクタ6を介して燃料電池スタック1に導入される。ここで、水素は、通常、例えば駆動モータ等の負荷に必要とされる電力に応じた圧力(運転圧)よりも高い圧力で燃料電池スタック1に供給される。
【0016】
更に、この燃料電池システムでは、燃料電池スタック1の水素出口側に、燃料電池スタック1による発電で未使用であったために当該燃料電池スタック1から排出される余剰分の水素を、当該燃料電池スタック1の下流から再度水素供給配管L1へと戻す水素循環流路L2を備える。この水素循環流路L2は、燃料電池スタック1からの水素をエゼクタ6に供給して、水素供給配管L1からの水素と混合させて燃料電池スタック1に供給する。
【0017】
また、この水素循環流路L2には、時間経過と共にガス中に蓄積される窒素等の水素以外の不純物ガスを外部へと排出するために、水素循環流路L2から分岐した配管に開閉弁7が設けられる。この開閉弁7は、必要に応じて、コントローラ13によって開閉制御されることで、燃料電池スタック1や水素循環流路L2内に蓄積した不純物ガスを外部に放出する。
【0018】
更にまた、燃料電池システムは、空気供給系として、例えばコンプレッサモータによって駆動されて外気を取り込むエアコンプレッサといった空気供給装置8を備える。この空気供給装置8によって取り込まれた空気は、空気供給装置8と接続された第1空気供給配管L3によって燃料電池スタック1に導入される。
【0019】
この第1空気供給配管L3には、空気を加湿する加湿装置9が設けられ、空気供給装置8からの空気を加湿して燃料電池スタック1に供給する。また、燃料電池スタック1から排出された空気は、空気調圧弁10を介して外部に放出される。この空気調圧弁10は、燃料電池スタック1の発電時においてコントローラ13によりその開度が調整されることにより、燃料電池スタック1内の空気圧力を調整する。
【0020】
また、燃料電池システムは、加湿装置9の上流側の第1空気供給配管L3に一方端が接続され、他方端が1次水素調圧弁4と2次水素調圧弁5との間の水素供給配管L1に接続された第2空気供給配管L4を備える。この第2空気供給配管L4は、空気供給装置8から第1空気供給配管L3に送られた空気を水素供給配管L1に供給する。また、この第2空気供給配管L4には、水素供給配管L1から第1空気供給配管L3側に水素や空気を逆流させないための逆止弁11が設けられている。
【0021】
このような水素供給系及び空気供給系を備える燃料電池システムにおいて、水水素供給配管L1は、第2空気供給配管L4との合流部12から水素下流(燃料電池スタック1側)における配管径が、合流部12から水素上流(高圧水素タンク2側)における配管径よりも大きくなるように構成されている。
【0022】
更にまた、燃料電池システムは、上述した各部の動作を制御して燃料電池スタック1の発電反応を制御するコントローラ13を備える。このコントローラ13は、例えば図示しないROM(Read Only Memory)等の記憶部に、燃料電池システムを起動して負荷装置に対して電力供給を行う一連の処理手順を記述した燃料電池制御プログラムを格納し、当該燃料電池制御プログラムを図示しないCPU(Central Processing Unit)等によって実行することにより、各部を制御する。
【0023】
このコントローラ13では、燃料電池スタック1の発電をさせるときには、例えば図示しない水素圧力センサや空気圧力センサからのセンサ信号を読み込んで、水素開閉弁3、1次水素調圧弁4及び2次水素調圧弁5の開度を調整すると共に、空気供給装置8の回転数や空気調圧弁10の開度を調整する。
【0024】
このような各部を備える燃料電池システムにおいては、当該燃料電池システムの停止時に、燃料電池スタック1の水素系内部の水分を除去し、流路が凍結によって閉塞するのを防止する必要がある。これを達成するために、燃料電池システムにおいては、通常、空気流路と水素流路とに乾燥したガスを流入させるが、乾燥した水素を用いて水素流路から水分を除去すると、このために用いた水素を無駄に廃棄することになる。
【0025】
そこで、この燃料電池システムにおいては、水素供給配管L1や水素循環流路L2を含む水素流路に乾燥した空気を導入し、コントローラ13により、水素流路の水分除去を行う停止制御処理を実行する。
【0026】
[燃料電池システムによる停止制御処理]
つぎに、上述した燃料電池システムによる停止制御処理の処理手順について図2のフローチャートを参照して説明する。
【0027】
先ず、コントローラ13では、ステップS1にて燃料電池システムの停止指令が入力されることにより、ステップS2において、水素供給配管L1における水素開閉弁3を閉塞するように制御して、高圧水素タンク2から燃料電池スタック1への水素供給を遮断する。なお、コントローラ13では、当該燃料電池システムが停止された場合であっても、水素流路内部に空気をパージするために、空気供給装置8を停止させずに空気供給を継続させる。
【0028】
次のステップS3においては、コントローラ13により、水素供給配管L1における1次水素調圧弁4の開度を最小にする制御をして、ステップS4に処理を進める。
【0029】
ステップS4においては、コントローラ13により、開閉弁7を開放する制御をし、水素循環流路L2及び燃料電池スタック1内のガスを外部へと排出させて、ステップS5に処理を進める。
【0030】
ステップS5においては、コントローラ13により、燃料電池スタック1の入り口にて空気極及び水素極に流れるガス圧の差圧が、燃料電池スタック1を構成する電解質の耐圧等によって決定される許容差圧以下となるように、空気供給装置8の回転数を所定回転数に設定して駆動量を制御し、ステップS6において、空気調圧弁10を所定の開度に設定する。これにより、コントローラ13では、第1空気供給配管L3の空気圧力を、第1空気供給配管L3から第2空気供給配管L4を介して水素供給配管L1に空気を導入することができる圧力値とする。
【0031】
すなわち、コントローラ13では、水素開閉弁3を閉塞させた後、開閉弁7を開放させることにより、水素循環流路L2内部におけるガス外部に排出させ、1次水素調圧弁4の下流側の水素圧力を低下させることにより、当該合流部12での水素圧力よりも、第2空気供給配管L4における空気圧力を高くする。
【0032】
これにより、燃料電池システムにおいては、逆止弁11の第1空気供給配管L3側の圧力と、逆止弁11の水素供給配管L1側の圧力とが、逆止弁11が動作する圧力差となることにより、空気供給装置8から逆止弁11を介して水素循環流路L2に空気を導入することが可能な状態となる。そして、燃料電池システムでは、水素供給配管L1に空気を導入することにより、水素供給配管L1、燃料電池スタック1、及び水素循環流路L2内のガスを、開閉弁7を介して外部に掃気する。
【0033】
また、この燃料電池システムにおいては、合流部12の高圧水素タンク2側の配管径よりも、合流部12の燃料電池スタック1側の配管径の方が大きく構成されているので、第2空気供給配管L4から水素供給配管L1に供給された空気を燃料電池スタック1側に導入することが可能となる。
【0034】
次のステップS7においては、コントローラ13により、ステップS6にて空気調圧弁10の開度を所定開度にして第2空気供給配管L4から水素供給配管L1に空気を導入し始めてからの経過時間が、水素供給配管L1、燃料電池スタック1及び水素循環流路L2内を空気で置換できるように設定された所定時間を超過したか否かを判定する。ここで、所定時間とは、予め燃料電池システムの製造時に、第2空気供給配管L4、水素供給配管L1、水素循環流路L2の容量や、ステップS5にて設定する空気供給装置8の回転数、ステップS6にて設定する空気調圧弁10の開度により予め設定された時間である。
【0035】
そして、コントローラ13は、経過時間が所定時間を超過していないと判定した場合には、空気供給装置8及び空気調圧弁10の動作を継続する一方で、経過時間が所定時間を超過したと判定した場合には、ステップS8へと処理を移行し、空気供給装置8の運転を停止する制御をする。
【0036】
次のステップS9においては、コントローラ13により、水素供給配管L1における2次水素調圧弁5の開度を最小値に設定する制御をする。
【0037】
次のステップS10においては、コントローラ13により、開閉弁7を閉塞する制御をし、ステップS11において、一連のシステム停止シーケンスを完了して処理を終了する。
【0038】
燃料電池システムは、このような一連の停止制御処理を行うことにより、水素供給配管L1、燃料電池スタック1及び水素循環流路L2内に乾燥した空気を供給し、水素供給配管L1、燃料電池スタック1及び水素循環流路L2内の水分を開閉弁7を介して排出して、除去することができる。
【0039】
このように、燃料電池システムにおいては、水素供給配管L1に乾燥した空気を導入して水素供給配管L1、水素循環流路L2の水分除去を行うために第2空気供給配管L4を設けた構成とした場合、燃料電池スタック1の通常運転中に空気が水素供給配管L1にリークするのを防止すると共に、水素が第1空気供給配管L3にリークするのを防止する必要がある。これに対し、燃料電池システムでは、第2空気供給配管L4を1次水素調圧弁4と2次水素調圧弁5との間に接続し、エゼクタ6における図示しないノズルを介して、燃料電池スタック1が最大出力を発揮するのに必要な水素流量を流入させるために、燃料電池スタック1の水素入口における圧力に対して合流部12での圧力を十分高い値とするように1次水素調圧弁4を制御する。
【0040】
また、燃料電池システムにおいては、燃料電池スタック1を構成する電解質膜の耐圧性を考慮すると、燃料電池スタック1の入口において、空気圧力を水素圧力とほぼ同じか、或いはそれ以下の圧力に調整することになるので、運転中は、第2空気供給配管L4と水素供給配管L1との合流部12の水素圧力が、必ず空気供給圧力よりも高くなり、第2空気供給配管L4の空気が水素供給配管L1に流入することはない。
【0041】
更に、燃料電池システムにおいては、通常運転時において、第2空気供給配管L4に逆止弁11が設けられているので、水素が第2空気供給配管L4を逆流して空気流路に流入することも防止される。
【0042】
なお、燃料電池システムにおいては、1次水素調圧弁4を設けずに水素開閉弁3を開度調整が可能な調圧弁にして、1次水素調圧弁4と同様に動作させても良い。
【0043】
[第1実施形態の効果]
以上詳細に説明したように、第1実施形態に係る燃料電池システムにおいては、1次水素調圧弁4と2次水素調圧弁5との間に、逆止弁11が設けられた第2空気供給配管L4を接続し、コントローラ13によって1次水素調圧弁4又は2次水素調圧弁5のうち少なくとも一方の開度を制御することにより、運転中は、空気が水素流路に流入することがなくなる一方で、水素が第2空気供給配管L4を逆流して空気流路に流入することも防止される。したがって、この燃料電池システムにおいては、無駄に消費する水素がなくなり、水素の使用効率を高くすることができる。
【0044】
また、燃料電池システムにおいては、第2空気供給配管L4に逆止弁11が設けられているので、2次水素調圧弁5の上流圧力により、水素流路への空気導入タイミングが自動的に制御される。このため、燃料電池システムにおいては、第1空気供給配管L3及び第2空気供給配管L4に開閉弁を備えなくても、停止時に限り水素供給配管L1空気を導入することができる。
【0045】
更に、この燃料電池システムにおいては、空気を水素流路に供給しない場合には、2次水素調圧弁5の上流圧力を空気の圧力よりも高く維持する一方で、空気を水素供給配管L1に供給する場合には、2次水素調圧弁5の上流圧力を空気の圧力よりも低くなるように、1次水素調圧弁4又は2次水素調圧弁5のうち少なくとも一方の開度を制御することにより、無駄に消費する水素を確実になくすことができ、水素の使用効率を高くすることが可能となる。
【0046】
更に、この燃料電池システムにおいては、第2空気供給配管L4が、加湿装置9の上流から分岐されているので、加湿装置9の乾燥を待たずに、早急に水素供給配管L1に乾燥した空気を供給することができる。
【0047】
更にまた、燃料電池システムにおいては、水素供給配管L1として、第2空気供給配管L4との合流部12から下流における配管径が、上流の配管径よりも大きくなるように形成されているものを用いることにより、配管が細く限られたスペースであっても容易にレイアウトすることができると共に、合流部12から下流では空気流入時の配管圧力損失を小さく抑えることができ、燃料電池スタック1の入り口における空気流路と水素流路との入り口圧力を、燃料電池スタック1の許容する差圧以下に抑えながら、大量の空気を水素流路に流入することができる。
【0048】
[第2実施形態]
つぎに、第2実施形態に係る燃料電池システムについて説明する。なお、第2実施形態の説明では、上述の第1実施形態と同様の部分については同一の符号及びステップ番号を付することにより、その詳細な説明を省略する。
【0049】
[燃料電池システムの構成]
この第2実施形態に係る燃料電池システムは、図3に示すように、水素供給配管L1における2次水素調圧弁5及びエゼクタ6をバイパスするバイパス配管L11を備えると共に、このバイパス配管L11にバイパス弁21を設け、水素供給配管L1に空気を導入する際に、バイパス弁21を開放し、バイパス配管L11を介して燃料電池スタック1に空気を導入する。また、バイパス配管L11に設けられたバイパス弁21は、燃料電池スタック1に対して、高圧水素タンク2からの水素を供給又は遮断する。
【0050】
また、燃料電池システムは、第2空気供給配管L4に設けられた逆止弁11と直列であって、当該逆止弁11よりも上流側(第1空気供給配管L3)に、開閉することによって空気供給装置8から水素供給配管L1への空気を供給又は遮断するための空気開閉弁22を備える。
【0051】
なお、バイパス配管L11は、2次水素調圧弁5及びエゼクタ6をバイパスする場合のみならず、少なくともエゼクタ6のみをバイパスするようにしても良い。
【0052】
また、水素供給配管L1は、第1実施形態と同様に、第2空気供給配管L4との合流部12から下流における配管径が、上流の配管径よりも大きくなるように形成されている。
【0053】
このような燃料電池システムは、当該燃料電池システムの停止指令があると、コントローラ13の制御により、図4に示すような停止制御処理を実行して、水素供給配管L1に空気を供給する。
【0054】
すなわち、コントローラ13では、ステップS1〜ステップS3によって水素開閉弁3を閉状態、1次水素調圧弁4を最小開度にした後のステップS21において、燃料電池スタック1における水素極に空気導入が必要であるか否かを判定する。ここで、コントローラ13は、例えばシステム停止後すぐにリスタートすることがわかっている場合等のように、水素極への空気導入が必要でないと判定した場合には、ステップS22へと処理を移行し、水素極に対する空気導入を行わずにそのまま空気供給装置8の運転を停止し、ステップS23において、処理を終了する。
【0055】
なお、このステップS21における判定は、運転者の手動入力で行うようにしても良く、または、所定のナビゲーション情報等に基づいて自動的に判断するようにしてもよい。
【0056】
一方、コントローラ13は、水素極への空気導入が必要であると判定した場合には、ステップS4にて開閉弁7を開状態にし、ステップS24において、第2空気供給配管L4における空気開閉弁22を開放すると共に、ステップS25において、バイパス弁21を開放する。
【0057】
そして、コントローラ13は、第1実施形態と同様に、空気供給装置8の回転数及び空気調圧弁10の開度を制御することにより(ステップS5、ステップS6)、空気開閉弁22及び逆止弁11を介して水素供給配管L1に空気を供給開始し、バイパス配管L11のバイパス弁21、燃料電池スタック1及び水素循環流路L2を介して開閉弁7からガスを排出する。すなわち、燃料電池システムにおいては、開閉弁7が開放された後、空気開閉弁22及びバイパス弁21が開放されることにより、空気供給装置8が所定回転数になると直ちに多量の空気が導入できるようにする。
【0058】
そして、コントローラ13では、第1実施形態と同様に空気を水素供給配管L1に供給開始してから所定時間が経過した場合に、空気供給装置8を停止させ(ステップS8)、更にバイパス弁21及び空気開閉弁22を閉状態にして(ステップS26、ステップS27)、ステップS9〜ステップS11の処理をして処理を終了する。
【0059】
燃料電池システムは、このような一連の停止制御処理を実行するにより、水素供給配管L1に対して乾燥した空気を供給し、水分を除去することができる。
【0060】
[第2実施形態の効果]
以上詳細に説明したように、第2実施形態に係る燃料電池システムによれば、水素循環流路L2と水素供給配管L1とを接続するエゼクタ6を少なくともバイパスするバイパス配管L11及びバイパス弁21を備え、水素供給配管L1に対して空気を導入する際に、バイパス弁21を開放し、バイパス配管L11を介して燃料電池スタック1に空気を導入させることにより、エゼクタ6のノズルオリフィス径に起因して空気流量が制限されることがなく、大量の空気を水素供給配管L1に導入することができ、速やかに空気によって水素を掃気することができる。
【0061】
また、この燃料電池システムによれば、バイパス配管L11を、エゼクタ6と共に2次水素調圧弁5もバイパスするものとすることにより、2次水素調圧弁5の圧力損失に起因して空気流量が制限されることもなく、大量の空気を水素供給配管L1に導入することができ、速やかに空気によって水素を掃気することができる。
【0062】
このように、燃料電池システムにおいては、空気開閉弁22を設けることにより、水素供給配管L1に空気を導入するタイミングを自在に制御することができ、例えば、停止後に短時間でリスタートすることが予めわかっている場合等には、水素供給配管L1に空気を導入しない停止制御処理を行う。この場合、燃料電池システムにおいては、停止時には水素極に水素が残存した状態となるので、リスタート時には迅速に燃料電池スタック1を起動することが可能となる。
【0063】
さらにまた、この燃料電池システムによれば、空気開閉弁22が、逆止弁11よりも上流側(第1空気供給配管L3)に設けられているので、空気開閉弁22を常時空気にのみ晒すことができ、水素が水素供給配管L1から第1空気供給配管L3にリークさせないために空気開閉弁22に特別な構成を施す必要がなくなる。
【0064】
[第3実施形態]
つぎに、第3実施形態に係る燃料電池システムについて説明する。なお、この第3実施形態の説明では、上述の実施形態と同様の部分については同一の符号を付することによってその詳細な説明を省略するものとする。
【0065】
この第3実施形態に係る燃料電池システムは、図5に示すように、第1空気供給配管L3と第2空気供給配管L4との分岐点と、燃料電池スタック1との間に、空気調圧弁31を備え、水素供給配管L1に空気を供給する際に、燃料電池スタック1の入口にて、分岐点における空気圧力が高くなるように、空気調圧弁31を制御するものである。
【0066】
このような燃料電池システムは、第2実施形態において図4に示した停止制御処理を行うことにより、水素供給配管L1に乾燥した空気を供給し、水分を除去する。このとき、燃料電池システムにおいては、水素供給配管L1に空気を供給する際に、燃料電池スタック1のガス入口にて、水素圧力と空気圧力との圧力差が、燃料電池スタック1を構成する電解質の耐圧力以下となるように、コントローラ13より、空気調圧弁31によって空気極の入口圧力を調整させる。すなわち、燃料電池システムにおいては、水素供給配管L1に空気を供給する際には、燃料電池スタック1のガス入口にて、第1空気供給配管L3と第2空気供給配管L4との分岐点における空気圧力が高くなるように、コントローラ13によって空気調圧弁31を制御する。
【0067】
これにより、燃料電池システムにおいては、水素供給配管L1に空気を供給する場合に、燃料電池スタック1のガス入口にて、水素圧力と空気圧力との圧力差を、電解質の耐圧以下に調整することができる。そのため、燃料電池システムによれば、この許容差圧以下となるように空気流量を制限する必要がなく、大きな流量の空気を水素供給配管L1に供給することができる。したがって、燃料電池システムによれば、停止時の水分除去を短時間に終了することが可能となる。
【0068】
[第4実施形態]
つぎに、第4実施形態に係る燃料電池システムについて説明する。なお、この第4実施形態の説明では、上述の実施形態と同様の部分については同一の符号を付することによってその詳細な説明を省略するものとする。
【0069】
この第4実施形態に係る燃料電池システムは、図6に示すように、加湿装置9をバイパスするバイパス配管L12を第1空気供給配管L3に設けると共に、このバイパス配管L12に開閉弁41を設けた点で、上述した実施形態とは異なる。
【0070】
このような燃料電池システムは、上述の図4に示した停止制御処理を実行することにより、水素供給配管L1に乾燥した空気を供給し、水分を除去する。
【0071】
ここで、燃料電池システムにおいては、上述の停止制御処理におけるステップS5において、水素供給配管L1に空気を供給するとき、コントローラ13の制御により、開閉弁41を開放し、バイパス配管L11を介して燃料電池スタック1に乾燥した空気を導入する。
【0072】
これは、以下のような理由に基づくものである。
【0073】
すなわち、燃料電池システムにおいては、加湿装置9として、当該加湿装置9の圧力損失が、第1空気供給配管L3から水素供給配管L1までの空気流路圧力損失と比較して大きいものを備える場合には、空気圧力と水素圧力とのガス圧差を、燃料電池スタック1の許容圧力差以内に抑えるために、開閉弁7の開放時に第1空気供給配管L3を介して燃料電池スタック1に流入させる空気流量を小さくする必要がある。
【0074】
これに対して、第4実施形態に係る燃料電池システムによれば、加湿装置9をバイパスするバイパス配管L12及び開閉弁41を介して燃料電池スタック1に空気を導入することができるので、加湿装置9の圧力損失がない状態にて燃料電池スタック1に空気を供給することができ、燃料電池スタック1の空気極に供給する空気流量を大きくすることができる。したがって、この燃料電池システムによれば、水素供給配管L1に供給する空気流量を大きくすることができ、更に短時間で停止時の水分除去を完了することができる。
【0075】
また、この燃料電池システムによれば、より速やかに空気の低湿度の空気を燃料電池スタック1に供給することにより、燃料電池スタック1内の空気流路の水分除去を短時間に終了することが可能となる。
【0076】
[第5実施形態]
つぎに、第5実施形態に係る燃料電池システムについて説明する。なお、この第5実施形態の説明では、上述の実施形態と同様の部分については同一の符号を付することによってその詳細な説明を省略するものとする。
【0077】
上述の燃料電池システムは、水素供給配管L1と水素循環流路L2との合流点にエゼクタ6を備えていたが、この第5実施形態に係る燃料電池システムは、エゼクタ6を省略した点で、上述した燃料電池システムとは異なるものである。
【0078】
燃料電池システムは、図7に示すように、上述の実施形態に係る燃料電池システムにおいて備えられていたエゼクタ6を設ける代わりに、水素循環流路L2内のガスを循環させる燃料ガスポンプである水素ポンプ51を備える。なお、水素供給配管L1は、第1実施形態乃至第4実施形態に係る燃料電池システムと同様に、第2空気供給配管L4との合流部12から下流における配管径が、上流よりも大きくなるように形成されている。
【0079】
このような燃料電池システムは、図2に示した停止制御処理を実行することにより、燃料電池スタック1に乾燥した空気を供給し、水分を除去する。
【0080】
これに対し、停止制御処理時以外の燃料電池スタック1の通常運転時においては、コントローラ13では、水素ポンプ51によって水素循環流路L2内の水素を循環させる。これにより、燃料電池システムでは、2次水素調圧弁5により、第2空気供給配管L4内の空気圧力に対して、当該2次水素調圧弁5の上流の圧力を常に高く維持することができる。すなわち、この燃料電池システムにおいては、第1実施形態乃至第4実施形態に係るエゼクタ6を用いた燃料電池システムと同様の効果を得ることができる。
【0081】
なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
【図面の簡単な説明】
【図1】本発明を適用した第1実施形態に係る燃料電池システムの構成を示すブロック図である。
【図2】本発明を適用した燃料電池システムにおいて、当該燃料電池システムの停止時に行う一連のシステム停止シーケンスを示すフローチャートである。
【図3】本発明を適用した第2実施形態に係る燃料電池システムの構成を示すブロック図である。
【図4】本発明を適用した燃料電池システムにおいて、当該燃料電池システムの停止時に行う一連のシステム停止シーケンスを示すフローチャートである。
【図5】本発明を適用した第3実施形態に係る燃料電池システムの構成を示すブロック図である。
【図6】本発明を適用した第4実施形態に係る燃料電池システムの構成を示すブロック図である。
【図7】本発明を適用した第5実施形態に係る燃料電池システムの構成を示すブロック図である。
【符号の説明】
1 燃料電池スタック
2 高圧水素タンク
3 水素開閉弁
4 1次水素調圧弁
5 2次水素調圧弁
6 エゼクタ
7 開閉弁
8 空気供給装置
9 加湿装置
10,31 空気調圧弁
11 逆止弁
12 合流部
13 コントローラ
21 バイパス弁
22 空気開閉弁
41 開閉弁
51 水素ポンプ
L1 水素供給配管
L2 水素循環流路
L3 第1空気供給配管
L4 第2空気供給配管
L11,L12 バイパス配管

Claims (11)

  1. 燃料ガスと酸化剤ガスとを用いて発電する燃料電池と、
    前記燃料ガスを前記燃料電池に供給する燃料ガス供給配管を有する燃料ガス供給手段と、
    前記燃料ガス供給配管に設けられ、前記燃料ガスの圧力を調整する1次調圧弁と、
    前記燃料ガス供給配管における前記1次調圧弁よりも下流側に設けられ、前記燃料電池の燃料ガス入口における前記燃料ガス圧力を調整する2次調圧弁と、
    前記酸化剤ガスを前記燃料電池に供給する酸化剤ガス供給手段と、
    前記1次調圧弁と前記2次調圧弁との間の前記燃料ガス供給配管に接続され、前記酸化剤ガス供給手段から供給される前記酸化剤ガスを前記燃料ガス供給配管に供給する酸化剤ガス供給配管と、
    前記酸化剤ガス供給配管に設けられ、少なくとも前記燃料ガス供給配管から前記酸化剤ガス供給手段側へのガスを遮断する逆止弁と、
    前記1次調圧弁又は前記2次調圧弁を制御して、前記酸化剤ガス供給手段から前記酸化剤ガス供給配管を介して、前記燃料ガス供給配管に酸化剤ガスを供給させる制御手段と
    を備えることを特徴とする燃料電池システム。
  2. 前記制御手段は、前記酸化剤ガスを前記燃料ガス供給配管に供給しない場合には、前記2次調圧弁の上流圧力を前記酸化剤ガスの圧力よりも高くし、前記酸化剤ガスを前記燃料ガス供給配管に供給する場合には、前記2次調圧弁の上流圧力を前記酸化剤ガスの圧力よりも低くするように、前記1次調圧弁又は前記2次調圧弁のうち少なくとも一方の開度を制御することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記酸化剤ガス供給手段から前記燃料電池に供給される前記酸化剤ガスを加湿する加湿手段を更に備え、
    前記酸化剤ガス供給配管は、前記加湿手段の上流の前記酸化剤ガス供給手段から前記燃料電池に酸化剤ガスを供給する配管から分岐されて構成されていることを特徴とする請求項1又は請求項2に記載の燃料電池システム。
  4. 前記燃料電池から排出される余剰分の燃料ガスを前記燃料ガス供給配管に循環させる燃料ガス循環配管と、
    前記燃料ガス循環配管と前記燃料ガス供給配管とを接続するエゼクタと、
    前記燃料ガス供給配管からの燃料ガスを、少なくとも前記エゼクタからバイパスするエゼクタバイパス配管と、
    前記エゼクタバイパス配管に設けられ、前記燃料ガス供給手段からの燃料ガスを供給又は遮断するためのバイパス弁とを備え、
    前記制御手段は、前記燃料ガス供給配管に前記酸化剤ガスを導入する場合に、前記バイパス弁を開放し、前記エゼクタバイパス配管を介して前記燃料電池に前記酸化剤ガスを導入させることを特徴とする請求項1〜請求項3の何れかに記載の燃料電池システム。
  5. 前記エゼクタバイパス配管は、前記エゼクタと共に前記2次調圧弁もバイパスするように構成されていることを特徴とする請求項4に記載の燃料電池システム。
  6. 前記酸化剤ガス供給配管は、前記酸化剤ガス供給手段から前記燃料電池に酸化剤ガスを供給する配管から分岐して構成され、
    前記酸化剤ガス供給配管と、前記燃料電池に酸化剤ガスを供給する配管との分岐点と、前記燃料電池との間に、前記酸化剤ガスの圧力を調整するための酸化剤ガス調圧弁を備え、
    前記制御手段は、前記燃料ガス供給配管に前記酸化剤ガスを供給する場合に、前記分岐点における前記酸化剤ガスの圧力が、前記燃料ガスの圧力よりも高くなるように前記酸化剤ガス調圧弁を制御することを特徴とする請求項1〜請求項5の何れかに記載の燃料電池システム。
  7. 前記酸化剤ガス供給手段から前記燃料電池に酸化剤ガスを供給する配管に設けられ、前記酸化剤ガス供給手段から供給される前記酸化剤ガスを加湿する加湿手段と、
    前記酸化剤ガス供給手段からの酸化剤ガスを、前記加湿手段からバイパスして前記燃料電池に供給する加湿バイパス配管と、
    前記加湿バイパス配管に設けられ、前記酸化剤ガス供給手段からの前記酸化剤ガスを供給又は遮断するための開閉弁と
    を更に備えることを特徴とする請求項1〜請求項6の何れかに記載の燃料電池システム。
  8. 前記酸化剤ガス供給配管における前記逆止弁と直列に設けられ、前記酸化剤ガス供給手段からの前記酸化剤ガスを供給又は遮断する酸化剤ガス開閉弁を更に備えることを特徴とする請求項1に記載の燃料電池システム。
  9. 前記酸化剤ガス開閉弁は、前記逆止弁よりも上流に設けられることを特徴とする請求項8に記載の燃料電池システム。
  10. 前記燃料電池から排出される余剰分の燃料ガスを前記燃料ガス供給配管へと戻して循環させる燃料ガス循環配管と、
    前記燃料ガス循環配管内の燃料ガスを循環させる燃料ガスポンプと
    を更に備えることを特徴とする請求項1に記載の燃料電池システム。
  11. 前記燃料ガス供給配管は、前記酸化剤ガス供給配管との合流部から下流における配管径が、前記酸化剤ガス供給配管との合流部から上流における配管径よりも大きくなるように形成されていることを特徴とする請求項1〜請求項10の何れかに記載の燃料電池システム。
JP2003104101A 2003-04-08 2003-04-08 燃料電池システム Withdrawn JP2004311241A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104101A JP2004311241A (ja) 2003-04-08 2003-04-08 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104101A JP2004311241A (ja) 2003-04-08 2003-04-08 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2004311241A true JP2004311241A (ja) 2004-11-04

Family

ID=33467023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104101A Withdrawn JP2004311241A (ja) 2003-04-08 2003-04-08 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2004311241A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134670A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 燃料電池システム
JP2006134618A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 燃料電池システム
JP2007035369A (ja) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの凍結防止方法
JP2008243617A (ja) * 2007-03-27 2008-10-09 Honda Motor Co Ltd 燃料電池のアノード系掃気システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134670A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 燃料電池システム
JP2006134618A (ja) * 2004-11-04 2006-05-25 Honda Motor Co Ltd 燃料電池システム
JP4630040B2 (ja) * 2004-11-04 2011-02-09 本田技研工業株式会社 燃料電池システム
JP2007035369A (ja) * 2005-07-25 2007-02-08 Nissan Motor Co Ltd 燃料電池システム及び燃料電池システムの凍結防止方法
JP2008243617A (ja) * 2007-03-27 2008-10-09 Honda Motor Co Ltd 燃料電池のアノード系掃気システム

Similar Documents

Publication Publication Date Title
US6926980B2 (en) System and method for draining remaining water in fuel cell
US7563528B2 (en) Fuel cell system and method of scavenging same
WO2009028340A1 (ja) 燃料電池システム及びその制御方法
JP2002313395A (ja) 燃料電池システムの残留水排出装置
JP2007179949A (ja) 燃料電池システム
JP4632055B2 (ja) 燃料電池システム及びその液体排出方法
JP4953051B2 (ja) 燃料電池システム
JP2004129433A (ja) 燃料電池車両及びその制御方法
JP2003331888A (ja) 燃料電池システム
JP2013089352A (ja) 燃料電池システム及びその停止方法
JP5205718B2 (ja) 燃料電池システム
KR101113652B1 (ko) 연료전지 시스템의 수소공급방법
JP2007280676A (ja) 燃料電池システム
JP2003331889A (ja) 燃料電池システム
JP2004311241A (ja) 燃料電池システム
JP2007059348A (ja) 燃料電池システムおよび燃料電池システムの起動方法
JP4498708B2 (ja) 燃料電池運転装置
JP2004296340A (ja) 燃料電池システム
JP2011049040A (ja) 燃料電池システム
JP5151185B2 (ja) 燃料電池システムおよびその掃気処理方法
JP2004185969A (ja) 燃料電池システム
JP2006302832A (ja) 燃料電池システム
JP2006079892A (ja) 燃料電池システム
JP4602052B2 (ja) 燃料電池システム及び燃料電池の掃気方法。
JP2007317471A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090909