JP2006128400A - 縦型ホール素子 - Google Patents

縦型ホール素子 Download PDF

Info

Publication number
JP2006128400A
JP2006128400A JP2004314416A JP2004314416A JP2006128400A JP 2006128400 A JP2006128400 A JP 2006128400A JP 2004314416 A JP2004314416 A JP 2004314416A JP 2004314416 A JP2004314416 A JP 2004314416A JP 2006128400 A JP2006128400 A JP 2006128400A
Authority
JP
Japan
Prior art keywords
hall element
vertical hall
current
output
magnetic detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004314416A
Other languages
English (en)
Inventor
Satoshi Ohira
聡 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004314416A priority Critical patent/JP2006128400A/ja
Priority to DE102005051306A priority patent/DE102005051306A1/de
Priority to US11/260,681 priority patent/US20060097715A1/en
Publication of JP2006128400A publication Critical patent/JP2006128400A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

【課題】当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応して最適化を図ることのできる縦型ホール素子を提供する。
【解決手段】ホール電圧を出力する部分として設けられたコンタクト領域13cおよび13dによる軸(L1―L1線)の周辺に、その軸につき非対称な電位分布が形成される構造とする。そして、コンタクト領域13cおよび13dについてはこれを、これら2つの領域に挟まれるかたちで配されて磁気検出部HPへ電流を供給する、もしくは同磁気検出部HPからの電流を取り出す部分(コンタクト領域13a)を上記軸上から外すべく、その軸周辺に形成される非対称な電位分布の等電位線の疎となる側へずらした配置とする。
【選択図】 図1

Description

この発明は、基板表面(チップ面)に平行な磁界成分が同基板内の磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させる縦型ホール素子に関する。
周知のように、ホール素子は、非接触での角度検出が可能であることから、いわゆるホールIC等に搭載されて例えば磁気センサとして車載内燃機関のスロットル弁開度センサ等の角度検出センサに用いられる。まず、図33を参照して、ホール素子の磁気検出原理について説明する。
物質中を流れる電流に対して垂直な磁界(磁気)が加わると、それら電流および磁界の双方に垂直な方向に電界(電圧)が生じる。この現象をホール効果と呼び、ここで発生する電圧をホール電圧と呼ぶ。
例えば、図33に示すようなホール素子(導体)100を考えた場合、同素子の磁気検出部(ホールプレート)の幅をW、長さをL、厚さをd、同素子と磁界とのなす角度をθ、磁束密度をB、供給(駆動)電流(端子TI−TI’間に供給する電流)をIとすると、ホール電圧(端子TVH−TVH’間に生じる電圧)VHは、
H=(RHIB/d)cosθ、RH=1/(qn)
のように表せる。ここで、RHはホール係数であり、またqは電荷、nはキャリア濃度である。
上記関係式からも分かるように、ホール素子と磁界とのなす角度θに応じてホール電圧VHが変化するため、これを利用することで角度の検出が可能となる。このように、ホール素子を用いることで上述の角度検出センサを実現することができる。
そして、一般的なホール素子としては、例えば非特許文献1に記載のようなホール素子、いわゆる横型ホール素子が知られている。この横型ホール素子は、基板表面(チップ面)に対して垂直な磁界成分を検出するものである。
以下、図34を参照して、このホール素子(横型ホール素子)についてさらに説明する。なお、図34(a)はこのホール素子の平面図、図34(b)は図34(a)のL1−L1線に沿った断面図である。
同図34(a)および(b)に示されるように、このホール素子は、例えばP型のシリコンからなる半導体層(P-sub)21の上に、例えばエピタキシャル成長にて形成されたN型のシリコンからなる半導体領域22を有して構成されている。なお、この半導体領域22は、N型の半導体基板(N-sub)や、イオン注入等による拡散層、すなわちウェル(Well)として形成することもできる。また一般に、シリコン等の半導体材料は、P型からなる半導体よりもN型からなる半導体のほうが大きなキャリア移動度をもっているため、この半導体領域22の材料としては、N型の半導体材料(例えばシリコン)が用いられることが多い。しかし、製造工程や構造上の条件等に応じてP型の半導体材料(P-層)が採用されることもある。また、この半導体領域22の不純物濃度が小さく(薄く)なるほど、同領域におけるキャリア移動度は大きくなるため、ホール素子としての感度を上げる、すなわち出力電圧として大きな電圧を得るためには、同半導体領域22の不純物濃度を小さく(薄く)することがより望ましい。
そして、この半導体領域22には、当該ホール素子を他の素子と素子分離すべく、半導体層21に接続されるような例えばP型の拡散層(P型拡散分離壁)24が形成されている。また、同半導体領域22の表面には、同表面の不純物濃度(N型)が選択的に高められるかたちでコンタクト領域23a〜23dが形成され、これらコンタクト領域23a〜23dとそこに配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになっている。そして、そのオーミックコンタクトを形成した各電極(配線)を介して、それらコンタクト領域23a〜23dと端子SおよびG、並びに端子V1およびV2とがそれぞれ電気的に接続される。なお、コンタクト領域23aおよび23bとコンタクト領域23cおよび23dとは、互いに直交するかたちで例えば上記拡散層24に囲まれた領域(活性領域)22aの4隅に配置される。
ここで、例えば端子Sと端子Gとの間に一定の駆動電流を流すと、その電流は基板表面に平行な成分を主に含む電流となる。そしてこのとき、その電流に対し、基板表面に垂直な成分を含む磁界(例えば図34中に矢印Bで示される磁界)が印加されると、前述したホール効果により、端子V1と端子V2との間にその磁界に応じたホール電圧が発生することとなる。したがって、それら端子V1およびV2を通じてその発生したホール電圧を検出することで、図33に示した先の関係式「VH=(RHIB/d)cosθ」に基づき検出対象とする磁界成分が、すなわち当該ホール素子に用いられる基板の表面(チップ面)に垂直な磁界成分が求められることとなる。ちなみに、このホール素子においては、端子V1およびV2に駆動電流を流して端子SおよびGにてホール電圧を検出することもできる。そのため、こうした電極の入れ替えを利用して、例えば電極の入れ替えを周期的に行って、同素子に発生するオフセット電圧(不平衡電圧)を相殺するような駆動方法なども実用されるに至っている。
また近年、上記横型ホール素子に加え、例えば特許文献1に記載されているように、基板表面(チップ面)に平行な磁界成分を検出するホール素子、いわゆる縦型ホール素子も提案されている。この縦型ホール素子は、異なる位相(角度)を検出する2つの素子を1チップに集積化できるという特長をもつため、2つの縦型ホール素子を「90°」の角度をなすように配置することで、「0°〜360°」の角度範囲でリニアな出力(電圧信号)が得られる回転センサ等も実現可能になる。以下、図35を参照して、縦型ホール素子の一例について説明する。なお、図35において、図35(a)はこのホール素子の平面図、図35(b)は図35(a)のL1−L1線に沿った断面図、図35(c)は図35(a)のL2−L2線に沿った断面図である。
同図35(a)〜(c)に示されるように、このホール素子は、大きくは、例えばP型のシリコンからなる半導体層(P-sub)31と、この表面にN型の導電型不純物が導入されるかたちで形成された埋込層BLと、さらにこの上に例えばエピタキシャル成長にて形成されたN型のシリコンからなる半導体領域32とを有して構成されている。なお、上記埋込層BLは、いわば下部電極として機能するものであり、その不純物濃度は上記半導体領域32よりも高い濃度に設定される。
このホール素子においても、上記半導体領域32には、当該ホール素子を他の素子と素子分離すべく、半導体層31に接続されるような例えばP型の拡散層(P型拡散分離壁)34が形成されている。また、同半導体領域32の表面には、同表面の不純物濃度(N型)が選択的に高められるかたちでコンタクト領域(N+層)33a〜33eが形成され、これらコンタクト領域33a〜33eとそこに配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになっている。そして、そのオーミックコンタクトを形成した各電極(配線)を介して、それらコンタクト領域33a〜33eと端子SおよびG1およびG2およびV1およびV2とがそれぞれ電気的に接続される。
また、図35(a)に示されるように、上記拡散層34に囲まれた領域(活性領域)においては、上記半導体領域32が、各拡散層によるpn接合分離を通じて、P型の拡散層(P型拡散分離壁)34aおよび34bを互いに隔てた領域32a〜32cに分割されている。また、それら拡散層34aおよび34bは上記埋込層BLに接続される態様で形成されているため、図35(b)および(c)に示されるように、上記領域32a〜32cは、基板内部においても電気的に区画された領域(空間)を形成している。また、これら領域のうちの、領域32aには上記コンタクト領域33bが、領域32bには上記コンタクト領域33cが、領域(素子領域)32cには上記コンタクト領域33aおよび33dおよび33eがそれぞれ形成されている。そして、これらコンタクト領域33a〜33eは、コンタクト領域33aがコンタクト領域33bおよび33cとこれらに直交するコンタクト領域33dおよび33eとの双方に挟まれるかたちで配置されている。すなわち、同コンタクト領域33aが上記拡散層34aおよび34bを隔てて上記コンタクト領域33bおよび33cにそれぞれ対向するような配置となっている。
そして、このホール素子においては、上記領域32cの基板内部に電気的に区画される領域(空間)にあって上記コンタクト領域33dおよび33eにて挟まれる領域(空間)が、いわゆる磁気検出部(ホールプレート)HPとなる。すなわち、このホール素子では、ここに印加される磁界に応じたホール電圧が発生することになる。そしてこのとき、磁気検出部HPに流れる電流に対して発生するホール電圧を上記コンタクト領域33dおよび33eを通じてより確実にとらえることができるように、それら領域に挟まれる上記コンタクト領域33aが、それらコンタクト領域33dおよび33eによる軸(L1−L1線)上に配置されている。
このホール素子において、例えば、上記端子Sから端子G1へ、並びに端子Sから端子G2へそれぞれ一定の駆動電流を流した場合、その電流は、基板表面に形成されたコンタクト領域33aから上記磁気検出部HPを通じて、埋込層BL、そしてコンタクト領域33bおよび33cへとそれぞれ流れるようになる。すなわち、上記磁気検出部HPに流れる駆動電流は、同基板の表面に垂直な成分を主に含む電流となる。このため、その駆動電流を流した状態において、同基板の表面に平行な成分を含む磁界(例えば図35中に矢印Bで示される磁界)が当該ホール素子の磁気検出部HPに印加されたとすると、上述のホール効果によって、上記端子V1と端子V2との間にその磁界に応じたホール電圧が発生することになる。したがって、それら端子V1およびV2を通じてその発生したホール電圧を検出することで、図33に示した先の関係式「VH=(RHIB/d)cosθ」に基づき検出対象とする磁界成分が、すなわち当該ホール素子に用いられる基板の表面(チップ面)に平行な磁界成分が求められることとなる。ちなみに、このホール素子では、図35中に示す寸法dが磁気検出部(ホールプレート)の厚さ(上記関係式中の「d」)に相当する。また、このホール素子において駆動電流を流す方向は任意であり、駆動電流の向きを反対にして磁界(磁気)の検出を行うこともできる。
前中一介、外3名,「集積化三次元磁気センサ」,電気学会論文誌 C,平成元年,第109巻,第7号,p483−490 特開平1−251763号公報
このように、上記図35に例示した縦型ホール素子によれば、磁気検出部HPに印加される磁界成分、より正確には基板表面(チップ面)に平行な磁界成分を検出することは確かに可能になる。しかし、この縦型ホール素子では、必ずしも同素子のおかれるその時々の状況に対応することのできる構造、すなわちホール素子の用途や同素子を利用したセンサの用途、あるいは使用環境等に応じて最適化の図られた構造とはなっておらず、未だ改良の余地を残すものとなっている。
具体的には、通常、縦型ホール素子は、同素子特有の構造の複雑さから、例えばその製造過程(リソグラフィ工程)においてマスク合わせ誤差等に起因する位置ずれ(アライメントずれ)が生じやすくなっている。そして、こうした位置ずれが生じた場合には、すなわちホール素子の構成要素が本来の位置からずれて(偏って)形成された場合には、素子内部の電流経路に偏りが生じて、素子内部の電位分布にアンバランス(不平衡)が生じることになる。そしてこれにより、同ホール素子には、磁界が印加されていないにもかかわらず、幾らかの出力電圧、いわゆるオフセット電圧(不平衡電圧)が発生するようになる。
また、オフセット電圧は、外部からの機械的な応力によっても発生することがある。例えば、当該ホール素子をパッケージングする際には、熱硬化性のエポキシ樹脂(モールド樹脂)等の封止材や銀ペースト等からなる接着剤に起因して基板に応力が印加される。そして、基板にこうした応力が印加されると、同基板の各個所に不均一に印加された応力の各々に応じたピエゾ抵抗効果により、素子内部における抵抗成分の等価回路としての抵抗ブリッジがより非平衡なものとなる。すなわちこの場合も、素子内部の電位分布にアンバランスが生じ、オフセット電圧が発生することになる。
こうして発生するオフセット電圧は、正確な磁界検出の妨げになる。そのため通常、補正回路などを設けてこれを補正除去するようにしている。しかし、こうした場合においても、ホール素子のオフセット電圧のばらつき(例えば標準偏差)が大きいときには、補正回路を大きくせざるを得なくなり、それに伴う種々の不都合は避けられなくなる。また、こうした補正回路を設ける場合、ホール素子と共々、補正回路が1チップに集積化されることもあれば、補正回路を別のチップとして設けることもある。いずれの場合も補正回路の拡大によって上記不都合を伴うことになるが、特に、補正回路が1チップに集積化される場合は、チップ面積に関するスペース的な制約やコストアップ等、多くの不都合を伴うことになる。
また、正確な磁界検出の妨げになるものはこうしたオフセット電圧に限られない。例えば、ホール素子の感度(いわゆる積感度)が低下することによっても、すなわち磁界に応じた出力電圧(ホール電圧)が小さくなることによっても検出精度は低下することになる。そしてこの場合も、当該ホール素子と共に1チップに集積化された、あるいは別のチップとして設けられた信号処理回路等によって出力電圧を増大させる(増幅する)ことが考えられるが、出力電圧が小さいときには、結局、それら回路の拡大は避けられず、それに伴う種々の不都合は避けられなくなる。
このように、ホール素子による磁界検出を行う上では、オフセット電圧や素子感度が重要な要素となる。そして、これら要素についての要求値はホール素子の用途や同素子のおかれる様々な環境等に応じて異なるため、これら用途や環境等にも柔軟に対応することのできる構造、すなわちそれら用途や環境等に応じて最適化を図ることのできる構造をもつ縦型ホール素子が求められている。
この発明は、こうした実情に鑑みてなされたものであり、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応して最適化を図ることのできる縦型ホール素子を提供することを目的とする。
こうした目的を達成すべく、請求項1に記載の発明では、半導体基板の表面に垂直な成分を含む電流が同基板内に所定領域として設けられた磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させる縦型ホール素子として、前記発生したホール電圧を出力する部分として前記半導体基板の表面に設けられた2つの部分に挟まれる態様で同表面に配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を、前記ホール電圧を出力する2つの部分による軸上から外すかたちに配することとした。
ところで、上記図35に例示した縦型ホール素子のように、従来の縦型ホール素子では通常、磁気検出部に流れる電流に対して発生するホール電圧をより確実にとらえる(出力する)ために、上記ホール電圧を出力する2つの部分(コンタクト領域33dおよび33e)に挟まれるかたちで配されて磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分(コンタクト領域33a)を、それら2つの部分(コンタクト領域33dおよび33e)による軸(L1−L1線)上に配置するようにしている。しかしながら、発明者は、上記ホール電圧を出力する2つの部分による軸周辺に形成される電位分布に着眼し、上記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を上記軸上から外すかたちに配することで、オフセット電圧の低減あるいは素子感度の向上などに特化させ、ホール素子としての特性向上を図ることが可能になることを発見した。
例えば、請求項2に記載のように、前記ホール電圧を出力する2つの部分についてはこれを、これら2つの部分による軸周辺をとりまく電位分布の等電位線が密となるところに配するようにする。
当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等によっては、オフセット電圧の低減よりも素子感度の向上を要求されることがある。この点、上記レイアウトによれば、前記ホール電圧を出力する2つの部分が等電位線の密となる領域、すなわち電位の変化の大きい(急な)領域におかれることで、より大きな電圧(電位差)がそれら2つの部分から出力されることとなる。すなわち、ホール素子としての高感度化が図られるようになる。
また、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等によっては、ホール素子としての高感度化よりもオフセット電圧の低減を要求されることがある。この場合、例えば請求項3に記載のように、前記ホール電圧を出力する2つの部分についてはこれを、これら2つの部分による軸周辺をとりまく電位分布の等電位線が疎となるところに配するようにすれば、前記ホール電圧を出力する2つの部分が等電位線の疎となる領域、すなわち電位変化の緩やかな領域におかれることとなり、それら2つの部分の電位差は小さくなるため、オフセット電圧の低減が図られることとなる。
このように、上記ホール素子を構成する各要素のレイアウトをその時々の状況に応じたものとすることで、オフセット電圧の低減や素子感度の向上などに特化してホール素子としての特性向上が図られるようになる。すなわち、上記構造によれば、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応して最適化を図ることができるようになる。ただし、上記部分を軸上から外す程度については、上記ホール電圧を出力する2つの部分により上記磁気検出部に発生したホール電圧を確実にとらえる(出力する)ことのできる範囲に設定することが好ましい。
そして、これら縦型ホール素子に関しては、例えば請求項4に記載のように、
・前記ホール電圧を出力する2つの部分を、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成した構造。
あるいは請求項5に記載のように、
・前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成した構造。
等々の構造を採用することがより有効である。こうした構造によれば、それら各部分に配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになり、ひいてはより優れた電気特性が得られるようになる。
また、請求項1〜5のいずれか一項に記載の縦型ホール素子に関しては、請求項6に記載のように、前記ホール電圧を出力する2つの部分による軸の周辺に、その軸につき非対称な電位分布を形成するような構造とすることで、同電位分布には等電位線の疎密がより明確に現れるようになる。そして、これを利用することによって、前述したその時々の状況に応じた各レイアウトをより容易に実現することができるようになる。
すなわち、例えば請求項7に記載のように、前記ホール電圧を出力する2つの部分についてはこれを、これら2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を前記ホール電圧を出力する2つの部分による軸上から外すべく、前記形成される非対称な電位分布の等電位線が密となる側へずらして配することとする。こうしたレイアウトにすることでホール素子としての高感度化が図られるようになることは、前述したとおりである。
あるいは請求項8に記載のように、前記ホール電圧を出力する2つの部分についてはこれを、これら2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を前記ホール電圧を出力する2つの部分による軸上から外すべく、前記形成される非対称な電位分布の等電位線が疎となる側へずらして配することとする。こうしたレイアウトによれば、前記ホール電圧を出力する2つの部分が電位変化の緩やかな領域におかれるようになり、オフセット電圧の低減が図られるようになることも前述したとおりである。
また、上記非対称な電位分布は、請求項9に記載のように、前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対(組)をなして電流を流す部分を、前記ホール電圧を出力する2つの部分による軸に対して非対称に設けた構造とすることで、容易に実現することができる。
例えば、請求項10に記載のように、前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対(組)をなして電流を流す部分を、前記ホール電圧を出力する2つの部分による軸について一方側のみに設けた構造とすることで、その軸の周辺の電位分布が一方側へ偏ったものとなり、前記非対称な電位分布がより容易に形成されることとなる。しかもこの場合、上記対(組)をなして電流を流す部分を、上記軸について一方側のみに設けるようにしているため、当該ホール素子の素子面積は自ずと小さくなり、ホール素子としての小型化が図られることとなる。
また、請求項1〜10のいずれか一項に記載の縦型ホール素子に関しては、請求項11に記載のように、前記ホール電圧を出力する2つの部分による軸と、前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分、およびこれと対をなして電流を流す部分の2つの部分による軸とが互いに直交するような配置(レイアウト)にすることが有効である。すなわち、こうしたレイアウトによれば、簡単な素子設計をもって良好な素子特性が得られることとなる。
また、これら請求項9〜11のいずれか一項に記載の縦型ホール素子に関しては、請求項12に記載のように、前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対(組)をなして電流を流す部分を、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成した構造とすることで、前述したように、同部分に配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになり、ひいてはより優れた電気特性が得られるようになる。
また、請求項1〜12のいずれか一項に記載の縦型ホール素子に関しては、請求項13に記載のように、前記半導体基板の表面に垂直な成分を含む電流が少なくとも前記磁気検出部において同基板表面に対し斜めの方向へ流れるよう導かれるような構造とすることが有効である。
例えば、前記半導体基板の表面に垂直な成分のみからなる電流を前記磁気検出部に流そうとすると、同磁気検出部の下方に埋込層(例えば図35の埋込層BL)などを設ける必要が生じ、これに伴い、素子内部の電位分布に変化が生じたり、素子構造が複雑化したりすることが懸念される。この点、上記構造によれば、前記半導体基板の表面に対し斜めの方向へ流れる電流(すなわち基板表面に垂直な成分を含む電流)が磁気検出部に流れるようになるため、上述の素子内部の電位分布の変化や素子構造の複雑化等を招くことなく、基板表面に平行な磁界成分に対応したホール電圧を発生させるという縦型ホール素子としての本来の機能を維持することができるようになる。
さらに、こうした請求項1〜13のいずれか一項に記載の縦型ホール素子に関しては、例えば請求項14に記載のように、
・当該ホール素子から出力されるホール電圧信号に対して所定の信号処理を行う信号処理回路と共々、当該縦型ホール素子を1チップに集積化して、所定の方向から印加される磁界を検出する磁気センサを構成させる。
あるいは請求項15に記載のように、
・異なる角度から印加される磁界を検出する態様で2つの素子を1チップに集積化して磁気センサを構成させる。
あるいは請求項16に記載のように、
・前記半導体基板の表面に垂直な磁界成分を検出する横型ホール素子と共々、直交配置された2つの素子を1チップに集積化して、互いに直交する3軸方向からの磁界を検出する3次元磁気センサを構成させる。
等々の構成をもって所要の磁気センサを実現することができる。
そして、請求項15または16に記載の縦型ホール素子に関しては、請求項17に記載の発明によるように、前記1チップに集積化される2つの素子を、それぞれ同一方向に対向するかたちで形成された別の素子とペア(対)をなすものとすることで、それら互いに対向配置されてペアをなす縦型ホール素子の出力電圧(ホール電圧)を平均化したり、それら縦型ホール素子の出力を切り替えたりするなどして、磁気センサとしての検出精度を高めることができるようになる。
またこの場合、請求項18に記載の発明によるように、前記1チップに集積化される2つの素子が各々形成するペア(対)の双方を、チップとして切り出された基板の側面に対して45°傾けて配置させることで、前述した素子外部から印加される種々の機械的な応力の影響を受けにくくなる。すなわち、それら各ホール素子のオフセット電圧が好適に低減され、磁気センサとしての検出精度がさらに高められることとなる。
また、請求項15〜18のいずれか一項に記載の縦型ホール素子に関しては、請求項19に記載の発明によるように、前記1チップに集積化される2つの素子を、前記半導体基板の原子配列を等しくする結晶方位に配することが有効である。
通常、ホール素子の出力電圧(ホール電圧)は、磁気検出部(ホールプレート)のキャリア移動度に比例する。そして、こうしたキャリア移動度は、結晶構造(より詳しくは原子配列)に依存する傾向にある。また、前述した素子外部から印加される種々の機械的な応力に伴うピエゾ抵抗効果の影響も、同じく結晶構造に依存する傾向にある。このため、複数のホール素子を1チップ(同一の基板)に集積化する場合には、その基板のいずれの結晶方位(面方位)にそれらホール素子を配置するかが重要となる。この点、上記構造のように、それらホール素子を前記半導体基板の原子配列を等しくする結晶方位に配することとすれば、それらホール素子について良好なペア性が得られることとなる。すなわち、それらホール素子に発生するホール電圧(出力電圧)や外部からの応力に応ずるピエゾ抵抗効果などについて、それらホール素子間でのばらつきが抑制されるようになり、ひいては磁気センサとしての高い検出精度が得られるようになる。
また、請求項15〜19のいずれか一項に記載の縦型ホール素子に関しては、請求項20に記載の発明によるように、前記1チップに集積化される2つの素子を互いに隣り合うかたちで形成するとともに、それら2つの素子の周囲を囲繞する態様でトレンチアイソレーションを設けた構造とすることで、前述した素子外部から印加される種々の機械的な応力の影響が緩和されるようになり、より良好なペア性が得られるようになる。
(第1の実施の形態)
以下、この発明に係る縦型ホール素子についてその第1の実施の形態を示す。
まず、図1を参照して、この実施の形態に係る縦型ホール素子の概略構造およびその動作態様について説明する。なお、この図1において、図1(a)はこのホール素子の平面構造を模式的に示す平面図、図1(b)は図1(a)のL1−L1線に沿った断面図、図1(c)は図1(a)のL2−L2線に沿った断面図である。
同図1(a)〜(c)に示されるように、このホール素子は、大きくは、例えばP型のシリコンからなる半導体層(P-sub)11と、この表面に例えばN型の導電型不純物が導入されて拡散層として形成されたN型の半導体領域(Nウェル)12とを有して構成されている。なお、前述したように、シリコン等の半導体材料はP型からなる半導体よりもN型からなる半導体のほうが大きなキャリア移動度をもっているため、この半導体領域12の材料としては、N型の半導体材料(例えばシリコン)を用いることが望ましい。しかし、製造工程や構造上の条件等に応じてP型の半導体材料(P-層)を採用することもできる。また、この半導体領域12の不純物濃度が小さく(薄く)なるほど、同領域におけるキャリア移動度は大きくなるため、ホール素子としての感度を上げる、すなわち出力電圧として大きな電圧を得るためには、同半導体領域12の不純物濃度を小さく(薄く)することがより望ましい。
このホール素子においても、上記半導体層11には、当該ホール素子を他の素子と素子分離すべく、例えばP型の拡散層(P型拡散分離壁)14が形成されている。また、上記半導体領域12の表面には、同表面の不純物濃度(N型)が選択的に高められるかたちでコンタクト領域(N+層)13a〜13dが形成され、これら各コンタクト領域とそこに配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになっている。そして、そのオーミックコンタクトを形成した各電極(配線)を介して、それらコンタクト領域13a〜13dと、端子SおよびG、並びに端子V1およびV2とがそれぞれ電気的に接続される。
また、図1(a)に示されるように、上記拡散層14に囲まれた領域(活性領域)においては、上記半導体領域12が、各拡散層によるpn接合分離を通じて、P型の拡散層(P型拡散分離壁)15を互いに隔てた領域12aおよび12bに分割されている。また、図1(b)および(c)に示されるように、これら領域12aおよび12bは、上記拡散層14および15によって基板内部においても電気的に区画された空間を形成している。そして、これら領域のうちの、領域(素子領域)12aには上記コンタクト領域13aおよび13cおよび13dが、領域12bには上記コンタクト領域13bがそれぞれ形成されている。そして詳しくは、コンタクト領域13aおよび13bによる軸とコンタクト領域13cおよび13dによる軸とが互いに直交し、コンタクト領域13bが拡散層15を隔ててコンタクト領域13aに対向するような配置となっている。さらに、上記領域12aにおいて、上記コンタクト領域13aは、コンタクト領域13cおよび13dによる軸(L1―L1線)上から外れるかたちをもって、これらコンタクト領域13cおよび13dに挟まれる態様で配設されている。
そして、このホール素子においては、上記領域12aの基板内部に電気的に区画される領域(空間)にあって上記コンタクト領域13cおよび13dにて挟まれる領域(空間)が、いわゆる磁気検出部(ホールプレート)HPとなる。すなわち、このホール素子では、ここに印加される磁界に応じたホール電圧が発生することになる。
以下、図2および図3を参照して、図35に例示した従来の縦型ホール素子の電位分布と対比するかたちでこの実施の形態に係る縦型ホール素子の電位分布の形成態様について説明する。
図2(a)は、図35に例示した従来の縦型ホール素子の電位分布である。この縦型ホール素子では、ホール電圧を出力する部分として設けられたコンタクト領域33dおよび33eに挟まれるかたちで配設されたコンタクト領域33aと対(組)をなして電流を流す部分(コンタクト領域33bおよび33c)が、上記コンタクト領域33dおよび33eによる軸(L1―L1線)について対称(線対称)に設けられている。そのため、同図2(a)に示すように、この縦型ホール素子においては、そのコンタクト領域33dおよび33eによる軸(L1―L1線)の周辺(領域32c)に、その軸につき対称(図2(a)の左右に線対称)な電位分布が形成される。
一方、上記縦型ホール素子において、領域32aやコンタクト領域33b等を割愛した構造とした場合には、図2(b)に示すように、コンタクト領域33aと対をなして電流を流す部分(コンタクト領域33c)が、コンタクト領域33dおよび33eによる軸(L1―L1線)について一方側(図2(b)の左側)のみに設けられた構造となる。このため、その軸の周辺の電位分布が一方側へ偏ったものとなり、ひいてはその軸につき非対称な電位分布が形成されることとなる。
そして、この実施の形態に係る縦型ホール素子もこれに準じた構造をとるため、図3に示されるように、コンタクト領域13cおよび13dによる軸(L1―L1線)の周辺(領域12a)の電位分布が一方側へ偏ったものとなり、同じようにその軸につき非対称な電位分布が形成されることとなる。また、同図3に示されるように、上記コンタクト領域13cおよび13dは、これら2つの領域に挟まれるかたちで配設されたコンタクト領域13aを上記軸上から外す態様で、上記形成される非対称な電位分布の等電位線の疎となる側へずらされた配置となっている。
次に、図4を併せ参照して、この縦型ホール素子の動作態様について説明する。
このホール素子において、例えば、上記端子Sから端子Gへ一定の駆動電流を流した場合、その電流は、図4(a)に示すように、基板表面に形成されたコンタクト領域13aから磁気検出部HP、そして拡散層15の下方を通じてコンタクト領域13bへと流れることとなる。すなわち、上記磁気検出部HPに流れる駆動電流は、同基板の表面(チップ面)に垂直な成分を含む電流となる。ただし、この縦型ホール素子においては、埋込層(図35の埋込層BL参照)を割愛した構造とすることで、その駆動電流が少なくとも磁気検出部HPにおいて同基板表面に対し斜めの方向へ流れるよう導かれるようになる。このため、先の図35に示した従来の縦型ホール素子とは異なり、この縦型ホール素子においては、磁気検出部HPにおける駆動電流が、基板表面に略垂直でなく、基板表面に対し斜めの方向に流れることとなる。
そしてこの駆動電流を流した状態において、同基板の表面に平行な成分を含む磁界(例えば図1中に矢印Bで示される磁界)が当該ホール素子の磁気検出部HPに印加されたとすると、前述したホール効果によって、上記端子V1と端子V2との間にその磁界に応じたホール電圧が発生することとなる。したがって、それら端子V1およびV2を通じてその発生したホール電圧を検出することで、図33に示した先の関係式「VH=(RHIB/d)cosθ」に基づき検出対象とする磁界成分が、すなわち当該ホール素子に用いられる基板の表面(チップ面)に平行な磁界成分が求められることとなる。ちなみに、このホール素子では、図1中に示す寸法dが磁気検出部(ホールプレート)の厚さ(上記関係式中の「d」)に相当する。また、このホール素子において駆動電流を流す方向は任意であり、例えば端子Gを電源電位に、また端子Sをグランド電位にそれぞれ固定し、図4(b)に示すように、駆動電流の向きを反対にしてホール電圧の検出を行うこともできる。なおこの場合も、磁気検出部HPにおける駆動電流は、基板表面に略垂直でなく、基板表面に対し斜めの方向に流れることとなる。
ところで、ホール素子による磁界検出を行う上で、オフセット電圧や素子感度が重要な要素となることは前述したとおりである。そして、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等によっては、ホール素子としての高感度化よりもオフセット電圧の低減を要求されることがある。この点、この実施の形態に係る縦型ホール素子では、ホール電圧を出力する部分として設けられたコンタクト領域13cおよび13dについてはこれを、上記コンタクト領域13aをそれら領域による軸(L1―L1線)上から外すべく、上記形成される非対称な電位分布の等電位線が疎となる側へずらして配設するようにしている。すなわち、それらコンタクト領域13cおよび13dは等電位線の疎となる領域(電位変化の緩やかな領域)におかれることとなり、それら2つの領域の電位差が小さくなることで、オフセット電圧の低減が図られることとなる。このように、この実施の形態に係る縦型ホール素子によれば、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応して最適化を図ることができるようになる。
次に、図5および図6を参照して、この実施の形態に係る縦型ホール素子の製造方法について詳述する。なお、これら各図は、先の図1(c)の断面図に対応した断面図であり、同図1(c)に示した要素と同一の要素には各々同一の符号を付して示している。またここでは、この縦型ホール素子と共に1チップに集積化されて同素子から出力されるホール電圧信号に対して所定の信号処理を行う信号処理回路や、オフセット電圧の補正演算(演算除去)を行う補正回路等を、当該ホール素子の周辺回路として設けた磁気センサを想定している。すなわち、CMOS(Complementary Metal Oxide Semiconductor)回路等からなる周辺回路(回路部)と当該ホール素子(ホール素子部)とを同時に形成する場合の製造方法について説明する。
この製造に際しては、まず、図5(a)に示すように、例えば面方位「100」のP型のシリコンからなる基板(半導体層11)を用意する。そして、図5(b)に示すように、例えばフォトリソグラフィによりパターニングされた適宜のマスクを用いてその半導体層11に対して例えばリン等からなるN型不純物のイオン注入を行った後、これに適宜の熱処理を施して、N型の半導体領域12およびC12を拡散層(Nウェル)として形成する。
その後、図5(c)に示すように、例えばフォトリソグラフィによりパターニングされた適宜のマスクを用いて所望の箇所に例えば硼素(ボロン)等からなるP型不純物のイオン注入を行った後、これに適宜の熱処理を施して、P型の拡散層(Pウェル)14および15、並びに拡散層(Pウェル)C13を形成する。
次に、図5(a)に示す構造とすべく、例えば周知の選択酸化法により、LOCOS構造をとるフィールド酸化膜(LOCOS酸化膜)CL1を所望の箇所に選択的に形成する。そして、例えば熱酸化により、酸化シリコン等からなるゲート絶縁膜I1a〜I1cを形成した後、それらゲート絶縁膜I1a〜I1cの上に、それぞれ例えば多結晶シリコンからなるゲート電極G1a〜G1cを形成する。
次いで、例えばフォトリソグラフィによりパターニングされた適宜のマスクを用いて所望の箇所に、例えば砒素等からなるN型不純物、並びに例えば硼素(ボロン)等からなるP型不純物のイオン注入を行った後、これに適宜の熱処理を施す。こうして、図5(b)に示すように、コンタクト領域13a〜13d(ここでは便宜上、コンタクト領域13aおよび13bのみ図示)や、ソースドレイン層C13a〜C13fが形成されることとなる。なお、ソースドレイン層C13a〜C13fについては、上記LOCOS酸化膜CL1やゲート電極G1a〜G1cをマスクとして用いて自己整合的に形成することもできる。またこの際、サイドウォールやシリサイド等の形成も必要に応じて行われる。
さらに、この上に、例えば熱CVDにより、例えばPSG(Phospho Silicate Glass)等からなる絶縁膜18を形成するとともに、同絶縁膜18を適宜パターニングして所望の箇所にコンタクトホールを形成する。そして、それらコンタクトホールを埋め込むかたちで、例えばアルミニウム等からなる配線材料を成膜するとともに、この成膜した配線材料を適宜パターニングする。こうして、図5(c)に示すように、上記コンタクト領域やソースドレイン層との間にそれぞれ良好なオーミックコンタクトを形成する配線(電極)19aおよび19b、並びにC19a〜C19fが形成されることとなる。そしてこれにより、先の図1に示した縦型ホール素子およびその周辺回路が完成することとなる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、以下に記載するような多くの優れた効果が得られるようになる。
(1)ホール電圧を出力する部分として設けられたコンタクト領域13cおよび13dによる軸(L1―L1線)の周辺に、その軸つき非対称な電位分布が形成される構造とする。そして、コンタクト領域13cおよび13dについてはこれを、これら2つの領域に挟まれるかたちで配設されて磁気検出部HPへ電流を供給する、もしくは同磁気検出部HPからの電流を取り出す部分となるコンタクト領域13aを上記軸上から外すべく、その軸周辺に形成される非対称な電位分布の等電位線が疎となる側へずらした配置とする。これにより、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応してホール素子としての特性の最適化が図られるようになる。
(2)また、ホール素子としての特性の最適化が図られることは、ホール素子の歩留り向上や低コスト化にもつながり、ひいては省エネルギー化が図られることにもなる。
(3)コンタクト領域13aおよび13bによる軸とコンタクト領域13cおよび13dによる軸とが互いに直交するような配置(レイアウト)とした。これにより、簡単な素子設計をもって良好な素子特性が得られることとなる。
(4)また、上記コンタクト領域13aと対をなして電流を流す部分(コンタクト領域13b)が、上記コンタクト領域13cおよび13dによる軸(L1―L1線)について一方側のみに設けられた構造とした。これにより、その軸の周辺の電位分布が一方側へ偏ったものとなるため、その軸につき非対称な電位分布がより容易に形成されることとなる。しかもこの場合、上記コンタクト領域13aと対をなして電流を流す部分を、上記軸について一方側のみに設けるようにしているため、当該ホール素子の素子面積は自ずと小さくなり、ホール素子としての小型化が図られることとなる。
(5)ホール電圧を出力する2つの部分と、これら2つの部分に挟まれるかたちで配されて磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と、この部分と対(組)をなして電流を流す部分とを、いずれも基板表面の不純物濃度が選択的に高められるかたちで形成された領域として設けるようにした。これにより、電流を供給する、もしくは取り出すために、あるいはホール電圧を検出するためにそれら各領域に配設される電極(配線)との間に良好なオーミックコンタクトが形成されるようになる。
(6)基板表面(チップ面)に垂直な成分を含む電流が少なくとも磁気検出部HPにおいて同基板表面に対し斜めの方向へ流れるよう導かれるような構造とした。これにより、埋込層を設けることなどに起因する素子内部の電位分布の変化や素子構造の複雑化等を招くことなく、基板表面に平行な磁界成分に対応したホール電圧を発生させるという縦型ホール素子としての本来の機能が維持されるようになる。
(7)当該ホール素子から出力されるホール電圧信号に対して所定の信号処理を行う信号処理回路と共々、当該縦型ホール素子を1チップに集積化して、所定の方向から印加される磁界を検出する磁気センサを構成させることで、前述した角度検出センサ等に用いて好適な磁気センサなども実現することができるようになる。
(第2の実施の形態)
図7に、この発明に係る縦型ホール素子の第2の実施の形態を示す。
以下、図7を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、この図7の平面図は先の図1(a)の平面図に対応するものであり、同図1(a)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図7に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。すなわち、この縦型ホール素子においても、ホール電圧を出力する部分として設けられたコンタクト領域13cおよび13dによる軸(L1―L1線)の周辺に、その軸につき非対称な電位分布が形成される構造となっている。ただし、この実施の形態では、コンタクト領域13cおよび13dに挟まれるかたちで配設されたコンタクト領域13aを上記軸上から外すべく、それらコンタクト領域13cおよび13dを上記形成される非対称な電位分布の等電位線が密となる側へずらして配設するようにしている。
ところで、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等によっては、オフセット電圧の低減よりも素子感度の向上を要求されることがある。この点、上記レイアウトによれば、上記コンタクト領域13cおよび13dが等電位線の密となる領域、すなわち電位の変化の大きい(急な)領域におかれることで、より大きな電圧(電位差)がそれら2つの領域から出力されることとなる。すなわち、ホール素子としての高感度化が図られるようになる。このように、この実施の形態に係る縦型ホール素子によっても、当該ホール素子のおかれる環境や、ホール素子の用途、あるいは同素子を利用したセンサの用途等にも柔軟に対応して最適化を図ることができるようになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果が得られるようになる。
(第3の実施の形態)
図8に、この発明に係る縦型ホール素子の第3の実施の形態を示す。
以下、図8を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、この図8の平面図も先の図1(a)の平面図に対応するものであり、同図1(a)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図8に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この実施の形態においては、当該ホール素子を他の素子と素子分離するために設けた拡散層14を割愛した構造としている。これにより、ホール素子としての構造の簡素化、並びに小型化(小面積化)が図られるようになる。また、図9に示すように、先の第2の実施の形態の縦型ホール素子についてこの拡散層14を割愛した構造を採用した場合も、同様の効果が得られることとなる。なお、これら縦型ホール素子では、上記割愛した拡散層14の代わりに半導体層11が素子分離の役目を果たすことになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(8)当該ホール素子を他の素子と素子分離するために設けた拡散層14を割愛した構造とした。これにより、ホール素子としての構造の簡素化、並びに小型化(小面積化)が図られるようになる。
(第4の実施の形態)
図10に、この発明に係る縦型ホール素子の第4の実施の形態を示す。
以下、図10(a)および(b)を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、図10(a)の平面図は先の図1(a)の平面図に対応するものであり、図10(b)は図10(a)のL1−L1線に沿った断面図である。これら各図においては、図1に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図10に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この実施の形態においては、所定の電位(例えばグランド電位)に固定された例えばアルミニウムや多結晶シリコン等からなる導体プレートGPを、素子表面を覆うかたちで設けた構造としている。また、拡散層14も所定の電位(例えばグランド電位)に固定するようにしている。
ところで、縦型ホール素子において、素子表面に形成される層間絶縁膜(例えば図6に示した絶縁膜18)内などには、ナトリウム(Na)等の可動イオンが存在する。このため、当該ホール素子への通電や温度変化等に伴ってこの可動イオンが動き、同素子から出力される極微小なホール電圧信号をふらつかせることがある。こうした出力電圧のふらつきは、同電圧に基づく磁界の検出に誤差を生じさせ、特に当該ホール素子を角度検出センサとして用いた場合にはそのセンサ特性の劣化は避けられず、深刻である。この点、この実施の形態に係る縦型ホール素子では、上記導体プレートGPを設けることで、あるいは拡散層14を所定の電位に固定することで、素子表面の電位が固定され、その周囲も安定した電位環境におかれることとなる。そのため、上記可動イオンの動きは抑制され、この可動イオンに起因する上述の出力電圧のふらつき等も小さくなり、ホール素子としての検出精度を高く維持することができるようになる。さらに、上記導体プレートGPは、素子上方からのノイズに対するシールドとしても機能するため、当該ホール素子のノイズ耐性を高めることもできるようになる。
なお、図11に示すように、先の第3の実施の形態の縦型ホール素子についてこの導体プレートGPを採用した場合も、同様の効果もしくはそれに準じた効果が得られることとなる。また、図示は割愛しているが、第2の実施の形態の縦型ホール素子に対して採用した場合も同様である。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(9)所定の電位に固定された導体プレートGPを素子表面を覆うかたちで設けた構造とした。これにより、ホール素子としての検出精度が高く維持されるようになる。さらに、当該ホール素子のノイズ耐性が高められることにもなる。
(第5の実施の形態)
図12に、この発明に係る縦型ホール素子の第5の実施の形態を示す。
以下、図12(a)および(b)を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、図12(a)の平面図は先の図1(a)の平面図に対応するものであり、図12(b)は図12(a)のL1−L1線に沿った断面図である。これら各図においては、図1に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図12に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この実施の形態においては、例えば周知の選択酸化法により、素子表面を覆うかたちでLOCOS酸化膜LS1を設けた構造としている。
ところで、素子表面の層間絶縁膜内などに含まれる可動イオンの挙動が当該ホール素子の検出精度に影響を及ぼすことは前述した。この点、この実施の形態に係る縦型ホール素子によれば、上記LOCOS酸化膜LS1によって素子表面が覆われることでこれが保護され、上記可動イオンによる影響、すなわち検出精度の低下が抑制されるようになる。しかも、LOCOS酸化膜LS1によって素子表面が保護されることで、同素子を形成した後に、例えばその周辺回路の製造工程としてイオン注入処理やプラズマ処理等を基板全面に施したとしても、これによる当該ホール素子へのダメージは軽減されるようになる。なお、LOCOS酸化膜LS1に代えて、適宜の酸化膜あるいは絶縁膜を用いることもできる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(10)素子表面を覆うかたちでLOCOS酸化膜LS1を設けた構造とした。これにより、可動イオンによる影響、すなわち検出精度の低下が好適に抑制されるようになる。しかも、素子表面が保護されるようになるため、製造過程等における素子表面へのダメージも好適に軽減されるようになる。
(第6の実施の形態)
図13に、この発明に係る縦型ホール素子の第5の実施の形態を示す。
以下、図13(a)および(b)を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、図13(a)の平面図は先の図1(a)の平面図に対応するものであり、図13(b)は図13(a)のL1−L1線に沿った断面図である。これら各図においては、図1に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図13に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この実施の形態においては、例えば硼素(ボロン)等からなるP型不純物を導入することにより、P型の導電型不純物が導入された拡散領域D1を素子表面を覆うかたちで形成した構造としている。
ところで、素子表面の層間絶縁膜内などに含まれる可動イオンの挙動が当該ホール素子の検出精度に影響を及ぼすことは前述した。この点、この実施の形態に係る縦型ホール素子によれば、例えば上記拡散領域D1と半導体領域12との間に逆バイアスの電圧を印加した状態に同素子をおくことで、その電圧の印加により形成されるpn接合付近の空乏層によって素子表面が保護されることとなり、上記可動イオンによる影響、すなわち検出精度の低下が抑制されるようになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1もしくは第5の実施の形態による前記(1)〜(7)および(10)の効果と同様の効果もしくはそれに準じた効果が得られるようになる。
(第7の実施の形態)
図14に、この発明に係る縦型ホール素子の第7の実施の形態を示す。
以下、図14を参照して、先の第1の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造について説明する。なお、この図14の平面図も先の図1(a)の平面図に対応するものであり、同図1(a)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図14に示されるように、この縦型ホール素子も、基本的には、図1に例示した先の第1の実施の形態の縦型ホール素子と略同様の構造を有しており、その動作態様も前述したとおりである。ただし、この実施の形態においては、コンタクト領域13aと対をなして電流を流す上記コンタクト領域13bを複数設け、それらコンタクト領域13bの各々を、一部(過電流により自断線するヒューズF1a〜F1g)を断線可能にして配設される配線材を介して所定の電位(例えばグランド電位)に固定するようにしている。
こうした構造によれば、上記複数の配線材(ヒューズ部分)を適宜に断線して、上記複数のコンタクト領域13bの中から所望のものを、あるいは所望の組み合わせを選択することができるようになる。そして、この断線により同コンタクト領域13bの位置や数などを変更すると、それに伴い、素子内部の電位分布も変化することになる。このため、その断線を適宜に行うようにすれば、素子内部の電位分布として所望の電位分布が得られることになる。このように、この実施の形態に係る縦型ホール素子では、例えば製造過程におけるアライメントずれ等に起因して素子内部の電位分布にアンバランス(不平衡)が生じたとしても、これを適宜に補正してオフセット電圧(不平衡電圧)を好適に低減することができるようになる。また、オフセット電圧についての補正演算を行う補正回路等を備える構成にあっても、その補正分が低減されることになるため、同補正回路の回路規模の縮小化が図られることとなる。また、図15に示すように、こうした構造についても上記拡散層14を割愛した構造とすることができる。
また、図16(a)に示すように、上記複数のコンタクト領域13bを、縦列および横列をもつ格子状に配列させることもできる。こうした構造によれば、それら格子状に配列された各領域につき、その各々に配設される配線材から断線すべき配線材を適宜に選択することで、素子内部の多様な電位分布にも柔軟に対応して、オフセット電圧をより好適に補正、低減することができるようになる。また、図16(b)に示すように、上記縦列および横列をもつ格子の所望の箇所に空隙を設けたレイアウトとしても、上記効果に準ずる効果は得られることとなる。なお、これら各図においては、説明の便宜上、ヒューズの図示を割愛している。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(11)コンタクト領域13aと対をなして電流を流す上記コンタクト領域13bを複数設け、それらコンタクト領域13bの各々を、一部(ヒューズF1a〜F1g)を断線可能にして配設される配線材を介して所定の電位(例えばグランド電位)に固定するようにした。これにより、例えば製造過程におけるアライメントずれ等に起因して素子内部の電位分布にアンバランス(不平衡)が生じたとしても、これを適宜に補正してオフセット電圧(不平衡電圧)を好適に低減することができるようになる。また、オフセット電圧に関しての補正演算を行う補正回路等を備える構成にあっても、その補正分が低減されることになるため、同補正回路の回路規模の縮小化が図られることとなる。
(第8の実施の形態)
図17および図18に、この発明に係る縦型ホール素子の第8の実施の形態を示す。
はじめに、図17を参照して、この実施の形態に係る縦型ホール素子の構造、より正確にはこの縦型ホール素子による磁気センサの構成について説明する。なお、この図17の平面図において、図1(a)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図17に示すように、この実施の形態においては、互いに直交する2軸方向から印加される磁界(例えば図17中に矢印BxおよびByで示される磁界)を検出する態様で配設された、すなわち互いに直交するかたちで配設された2つの縦型ホール素子10が1チップに集積化されて磁気センサを構成している。なお、上記縦型ホール素子10は、いずれも先の図1に示した構造を有する縦型ホール素子である。
図18は、上記互いに直交するかたちで配設された2つの縦型ホール素子からそれぞれ出力されるホール電圧信号の出力波形VxおよびVyを示すグラフである。横軸の角度は、これらホール素子へ印加される磁界の角度を示している。
この図18のグラフからも分かるように、こうしたホール電圧信号により、より正確には例えば周辺回路として設けられた信号処理回路等を通じてこれらホール電圧信号に対して適宜の信号処理(演算処理)を施すことにより、1つの平面上の全ての方向からの磁界の検出、すなわち360°の広角度な磁界の検出が可能となる。
なお、こうして1チップに集積化される2つの縦型ホール素子については、その製造工程における各種条件のばらつき等によりそれら素子のペア性が悪化することが懸念されるため、互いの間隔をできるだけ近づけて、例えば「100μm」以内に配置させることが望ましい。こうした配置にすることで、製造工程等に起因する両者間のばらつきが抑制され、より良好なペア性が得られるようになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(12)互いに直交する2軸方向から印加される磁界を検出する態様で2つの縦型ホール素子10を1チップに集積化して磁気センサを構成させるようにした。これにより、360°の広角度な磁界の検出を可能とする高性能な磁気センサなども実現することができるようになる。
(第9の実施の形態)
図19に、この発明に係る縦型ホール素子の第9の実施の形態を示す。
以下、同図19を参照して、この実施の形態に係る縦型ホール素子の構造、より正確にはこの縦型ホール素子による磁気センサの構成について説明する。なお、この図19の平面図においては、先の図1(a)および図34に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図19に示すように、この実施の形態においては、基板表面(チップ面)に垂直な磁界成分を検出する横型ホール素子20と共々、直交配置された2つの縦型ホール素子10が1チップに集積化されて、互いに直交する3軸方向からの磁界(例えば図19中に矢印BxおよびByおよびBzで示される磁界)を検出する3次元磁気センサを構成している。なおここでも、上記縦型ホール素子10は、先の図1に示した構造を有する縦型ホール素子である。また、上記横型ホール素子としては、先の図34に例示した構造の横型ホール素子20に限らず、適宜の横型ホール素子を採用することができる。
こうした構成の磁気センサにおいては、例えば周辺回路として設けられた信号処理回路等により上記各ホール素子から出力されるホール電圧信号に対して適宜の信号処理(演算処理)を施すことで、1つの平面上の全ての方向(2次元方向)に加え、さらにこれに直交する軸方向からの磁界(矢印Bz)の検出も可能となる。すなわち、いわゆる3次元の磁界検出が実現されることとなる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1の実施の形態による前記(1)〜(7)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(13)基板表面(チップ面)に垂直な磁界成分を検出する横型ホール素子20と共々、直交配置された2つの縦型ホール素子10を1チップに集積化して、互いに直交する3軸方向からの磁界を検出する3次元磁気センサを構成させるようにした。これにより、3次元の磁界検出が可能となる。
(第10の実施の形態)
図20および図21に、この発明に係る縦型ホール素子の第10の実施の形態を示す。
以下、図20および図21を参照して、先の第8の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造、より正確にはこの縦型ホール素子による磁気センサの構成について説明する。なお、これら図20および図21の平面図においても、先の図1(a)に示した要素と同一の要素には各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図20に示すように、この実施の形態においても、互いに直交する2軸方向から印加される磁界を検出する態様で配設された、すなわち互いに直交するかたちで配設された2つの縦型ホール素子10(先の図1に示した構造を有する縦型ホール素子)が1チップに集積化されて磁気センサを構成している。ただし、ここでは、それら2つの縦型ホール素子10を、それぞれ同一方向に対向するかたちで形成された別の縦型ホール素子10a(これも先の図1に示した構造を有する縦型ホール素子)とペア(対)をなすものとしている。こうした構成とすることで、互いに対向配置されてペアをなす2つの縦型ホール素子の出力電圧(ホール電圧)を平均化したり、それら縦型ホール素子の出力を切り替えたりするなどして、磁気センサとしての検出精度を高めることができるようになる。
また、図21に示すように、それら2つの縦型ホール素子10が各々形成するペアの双方を、チップとして切り出された基板の側面に対して略45°傾けて配置させることで、前述した素子外部から印加される種々の機械的な応力の影響を受けにくくなる。すなわち、それら各ホール素子のオフセット電圧が好適に低減され、磁気センサとしての検出精度がさらに高められることとなる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1もしくは第8の実施の形態による前記(1)〜(7)および(12)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(14)互いに直交するかたちで1チップに集積化されて磁気センサを構成する2つの縦型ホール素子10を、それぞれ同一方向に対向するかたちで形成された別の縦型ホール素子10aとペアをなすものとした。これにより、磁気センサとしての検出精度を高めることができるようになる。
(15)また、それら2つの縦型ホール素子10が各々形成するペアの双方を、チップとして切り出された基板の側面に対して略45°傾けて配置させることで、磁気センサとしての検出精度がさらに高められることとなる。
(第11の実施の形態)
図22〜図25に、この発明に係る縦型ホール素子の第11の実施の形態を示す。
はじめに、図22を参照して、この実施の形態に係る縦型ホール素子の構造、より正確にはこの縦型ホール素子による磁気センサの構成について説明する。なお、この図22の平面図においては、先の図1(a)に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図22に示すように、この実施の形態においても、互いに直交する2軸方向から印加される磁界を検出する態様で配設された、すなわち互いに直交するかたちで配設された2つの縦型ホール素子10(先の図1に示した構造を有する縦型ホール素子)が1チップ(同一の基板)に集積化されて磁気センサを構成している。ただし、ここでは、それら2つの縦型ホール素子10をその基板の原子配列を等しくする結晶方位に、すなわち結晶方位(001)(または(00−1))および結晶方位(010)(または(0−10))にそれぞれ配することとしている。なおここでは、シリコンからなる基板(シリコン基板)を採用した場合を想定している。
通常、ホール素子の出力電圧(ホール電圧)は、磁気検出部HPのキャリア移動度に比例する。そして、このキャリア移動度は、結晶構造(より詳しくは原子配列)に依存する傾向にある。また、前述した素子外部から印加される種々の機械的な応力に伴うピエゾ抵抗効果の影響も、同じく結晶構造に依存する傾向にある。このため、複数のホール素子を1チップ(同一の基板)に集積化する場合には、その基板のいずれの結晶方位(面方位)にそれらホール素子を配置するかが重要となる。この点、この実施の形態に係る縦型ホール素子のように、それら縦型ホール素子10を基板の原子配列を等しくする結晶方位に配することとすれば、それら縦型ホール素子10について良好なペア性が得られることとなる。すなわち、それら縦型ホール素子10に発生するホール電圧(出力電圧)や外部からの応力に応ずるピエゾ抵抗効果などについて、それらホール素子間でのばらつきが抑制されるようになり、ひいては磁気センサとしての高い検出精度が得られるようになる。
なお、シリコン基板においてその原子配列を等しくする結晶方位は、図22に例示したものに限られない。周知のように、単結晶シリコンはタイヤモンド構造(四面体構造)の材料であるため、結晶方位(001)、(00−1)、(010)、(0−10)に同様の原子配列をもつ。すなわち、例えば図23に示すように、
・上記2つの縦型ホール素子10を、結晶方位(011)または(0−1−1)、結晶方位(0−11)または(01−1)にそれぞれ配した構成。
あるいは図24に示すように、
・上記2つの縦型ホール素子10を、結晶方位(1−11)または(−11−1)、結晶方位(11−1)または(−1−11)にそれぞれ配した構成。
等々の構成としても、上述の効果と同様の効果が得られるようになる。
さらに、3つの縦型ホール素子を1チップに集積化する場合には、例えば図25に示すように、それら3つの縦型ホール素子10を、結晶方位(1−10)または(−110)、結晶方位(0−11)または(01−1)、結晶方位(10−1)または(−101)にそれぞれ配した構成とすることで、同様の効果が得られることとなる。
また、シリコン基板以外の基板を用いる場合も、1チップに集積化される2つの素子をその基板の原子配列を等しくする結晶方位に配することで、上述の効果と同様の効果が得られるようになる。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1もしくは第8の実施の形態による前記(1)〜(7)および(12)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(16)1チップ(同一の基板)に集積化される複数の縦型ホール素子10を、その基板の原子配列を等しくする結晶方位に配するようにした。これにより、磁気センサとしての高い検出精度が得られるようになる。
(第12の実施の形態)
図26および図27に、この発明に係る縦型ホール素子の第12の実施の形態を示す。
以下、これら図26および図27を参照して、上記第11の実施の形態との相違点を中心に、この実施の形態に係る縦型ホール素子の構造、より正確にはこの縦型ホール素子による磁気センサの構成について説明する。なお、これら図26および図27の平面図は先の図22および図23に対応するものである。これら各図においては、先の図1(a)に示した要素と同一の要素に各々同一の符号を付して示し、それら要素についての重複する説明は割愛する。
同図26および図27に示すように、この実施の形態においても、互いに直交する2軸方向から印加される磁界を検出する態様で配設された、すなわち互いに直交するかたちで配設された2つの縦型ホール素子10(先の図1に示した構造を有する縦型ホール素子)が1チップ(同一の基板)に集積化されて磁気センサを構成している。そして、それら2つの縦型ホール素子10は、互いに隣り合うかたちで形成されるとともに、その基板の原子配列を等しくする結晶方位にそれぞれ配されている。ただし、ここでは、それら2つの縦型ホール素子10の周囲を囲繞する態様で、トレンチアイソレーションを、すなわち絶縁膜ILの埋設されたトレンチTNを設けた構造としている。これにより、前述した素子外部から印加される種々の機械的な応力の影響が緩和され、より良好なペア性が得られるようになる。なお、トレンチTNとしては、シャロートレンチ(STI)等を用いるようにしてもよい。
以上説明したように、この実施の形態に係る縦型ホール素子によれば、先の第1もしくは第8もしくは第11の実施の形態による前記(1)〜(7)および(12)および(16)の効果と同様の効果もしくはそれに準じた効果に加え、さらに次のような効果が得られるようになる。
(17)1チップに集積化される2つの縦型ホール素子10を互いに隣り合うかたちで形成するとともに、それら2つの素子の周囲を囲繞する態様でトレンチアイソレーションを設けた構造とした。これにより、前述した素子外部から印加される種々の機械的な応力の影響が緩和され、より良好なペア性が得られるようになる。
(他の実施の形態)
なお、上記各実施の形態は、以下の態様をもって実施することもできる。
・上記第7の実施の形態においては、上記一部を断線可能にして配設される配線材として、過電流により自断線するヒューズを備えるものを採用することとした。しかし、これに限られることなく、例えばヒューズに代えて、レーザ等によるトリミング断線を可能とする例えばCrSiやAl(アルミニウム)等からなる薄膜抵抗を用いるようにしてもよい。またさらに、調整用のデータを記憶したメモリ(例えばEPROMや、EEPROM、フラッシュメモリ、ROMなど)等を別に用いた構成として、例えば外部からの信号に応じてスイッチング動作するスイッチング素子なども採用することができる。要は、少なくとも一部を一時的もしくは永続的に断線可能にして配設される配線材であれば、第7の実施の形態による上記(11)の効果と同様の効果もしくはそれに準じた効果は得ることができる。
・上記第8の実施の形態においては、互いに直交する2軸方向から印加される磁界を検出する態様で2つの縦型ホール素子10を1チップに集積化して磁気センサを構成させるようにしたが、この構造に限られることない。要は、異なる角度から印加される磁界を検出する態様で2つの素子を1チップに集積化して磁気センサを構成させることで足りる。こうした構造であれば、第8の実施の形態による上記(12)の効果に準じた効果は得ることができる。
・上記各実施の形態においては、上記領域12aおよび12bを電気的に区画する分離壁として、拡散層14および15を用いるようにした。しかし、これに限られることなく、例えば図28(a)〜(c)(図1(a)〜(c)に対応)に示すように、トレンチアイソレーションを、すなわち絶縁膜IL14およびIL15の埋設されたトレンチT1およびT2を用いるようにしてもよい。
・また、例えば図29に示すように、先の図28に示した縦型ホール素子について、硼素(ボロン)等からなるP型不純物を導入することにより、上記トレンチT1およびT2の内壁にP型の拡散領域D2を設けた構造としてもよい。ところで、半導体基板にトレンチを形成すると通常、そのトレンチの内壁にはダメージ層が形成されることとなり、そこでキャリアの再結合が生じ易くなる。この点、上記拡散領域D2を設けた構造によれば、同拡散領域D2によってこうしたキャリアの再結合が抑制され、半導体領域12のキャリア移動度は高く維持されるようになる。また、この拡散領域D2と半導体領域12との間に形成されたpn接合の空乏層が素子内部まで進入するようになるため、磁気検出部(ホールプレート)HPの厚さd(図33参照)に相当する寸法が実質的に狭められることにもなる。すなわち、こうした構造によれば、ホール素子としての高感度化が図られるようになる。
・上記各実施の形態においては、半導体領域12を拡散層として形成するようにしたが、これに限られることはなく、例えば図30(a)〜(c)(図1(a)〜(c)に対応)に示すような縦型ホール素子に対してもこの発明は同様に適用することができる。すなわち、上記半導体領域12に代えて、エピタキシャル成長にて形成された半導体領域E12を用いることもできる。また一般に、こうしたエピタキシャル基板を採用する場合には、同図30に示すように、埋込層BL(図35参照)が用いられることが多い。また他に、SOI(Silicon On Insulator)基板等も適宜採用することができる。
・上記各実施の形態において、領域(素子領域)12aを囲繞する態様で環状のトレンチアイソレーションを設けるようにしてもよい。すなわち、例えば図31に示すように、この環状のトレンチアイソレーションとして、絶縁膜IL16の埋設されたトレンチT3を採用して、その内壁に上記拡散領域D2を設けた構造とすることができる。
・上記各実施の形態においては、ホール電圧を出力する2つの部分と、これら2つの部分に挟まれるかたちで配されて磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と、この部分と対をなして電流を流す部分とを、いずれも基板表面の不純物濃度が選択的に高められるかたちで形成された領域として設けるようにした。しかし、これは必須の構成ではなく、例えばこうしたコンタクト領域を設けずに半導体領域12の上に直に配線(電極)を設けるようにしてもよい。
・さらに、上記各実施の形態において、上記拡散層15等、領域12aを電気的に区画する分離壁も必須の構成要素ではない。すなわち、例えば磁気検出部HPに電流を流すための配線(電極)を基板の表裏に対向するかたちで設けた構造などにおいては、こうした分離壁を設けずとも、上記磁気検出部HPに対して基板表面(チップ面)に垂直な成分を含む電流を流すことができる。
・また、上記各実施の形態においては、コンタクト領域13aおよび13bによる軸とコンタクト領域13cおよび13dによる軸とが互いに直交するような配置(レイアウト)とした。しかしこれは必須ではなく、これら軸が互いに直交した配置には限られない。
・また、上記実施の形態においては、縦型ホール素子の駆動方法の一例として定電流駆動について説明したが、この縦型ホール素子の駆動方法は任意であり、例えば定電圧駆動によって駆動することもできる。
・また、上記実施の形態においては、当該ホール素子の周辺回路の一例としてCMOS回路を有して構成される回路を例示した。しかし、周辺回路の構成は任意であり、例えばバイポーラ回路を有して構成される回路を周辺回路として用いることもできる。
・上記各実施の形態において、半導体基板を構成する各要素の導電型を入れ替えた構造、すなわちP型とN型とを入れ替えた構造についても、この発明は同様に適用することができる。
・上記各実施の形態においては、基板の材料としてシリコンを用いるようにしたが、製造工程や構造上の条件等に応じてその他の材料を適宜採用するようにしてもよい。例えば、GaAs、InSb、InAs、SiC等の化合物半導体材料やGe(ゲルマニウム)等の他の半導体材料も用いることができる。特に、GaAs、InAsは温度特性に優れた材料であり、当該ホール素子の高感度化を図る上で有効である。
・上記各実施の形態においては、コンタクト領域13aと対をなして電流を流す部分(コンタクト領域13b)をコンタクト領域13cおよび13dによる軸について一方側のみに設けた構造とすることで、その軸周辺に、その軸につき非対称な電位分布が形成されるようにした。しかし、これに限られることなく、ホール電圧を出力する2つの部分による軸の周辺にその軸につき非対称な電位分布が形成される構造であれば、同電位分布には等電位線の疎密がより明確に現れるようになる。そして、これを利用することによって、その時々の状況に応じて先の図3に例示した構造や図7に例示した構造などをより容易に実現することができるようになる。すなわち、コンタクト領域13aと対をなして電流を流す部分を、コンタクト領域13cおよび13dによる軸に対して非対称に設けた構造、例えばその軸の両側に非対称な配置や数にして設けた構造とした場合であっても上記効果は得られることとなる。
・また、この発明は、図32(a)および(b)(各図とも図1(a)に対応)に示すように、先の図35に示した構造、すなわちホール電圧を出力する部分として設けられたコンタクト領域33dおよび33eによる軸周辺にその軸につき対称な電位分布が形成されるような構造の縦型ホール素子に対しても同様に適用することができる。そしてこの場合も、ホール電圧を出力する2つの部分についてはこれを、これら2つの部分による軸周辺をとりまく電位分布の等電位線が疎となるところ、あるいは密となるところに配することで、第1の実施の形態による上記(1)の効果に準じた効果は得ることができる。ちなみに、図32(a)および(b)には、この部分を等電位線が疎となるところに配した例を示している。
この発明に係る縦型ホール素子の第1の実施の形態について、(a)はそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。 (a)および(b)は、それぞれ従来の縦型ホール素子の電位分布およびこのホール素子を変形させたときの電位分布を示す平面図。 上記第1の実施の形態に係る縦型ホール素子の電位分布を示す平面図。 (a)および(b)は、同第1の実施の形態に係る縦型ホール素子の動作態様を示す断面図。 同第1の実施の形態に係る縦型ホール素子の製造方法について、(a)〜(c)はその製造プロセスを示す断面図。 同第1の実施の形態に係る縦型ホール素子の製造方法について、(a)〜(c)はその製造プロセスを示す断面図。 この発明に係る縦型ホール素子の第2の実施の形態についてそのホール素子の概略構造を模式的に示す平面図。 この発明に係る縦型ホール素子の第3の実施の形態についてそのホール素子の概略構造を模式的に示す平面図。 同第3の実施の形態に係る縦型ホール素子の変形例を示す平面図。 (a)はこの発明に係る縦型ホール素子の第4の実施の形態についてそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図。 (a)は同第4の実施の形態に係る縦型ホール素子の変形例を示す平面図、(b)は(a)のL1−L1線に沿った断面図。 (a)はこの発明に係る縦型ホール素子の第5の実施の形態についてそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図。 (a)はこの発明に係る縦型ホール素子の第6の実施の形態についてそのホール素子の概略構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図。 この発明に係る縦型ホール素子の第7の実施の形態についてそのホール素子の概略構造を模式的に示す平面図。 同第7の実施の形態に係る縦型ホール素子の変形例を示す平面図。 (a)および(b)は、同第7の実施の形態に係る縦型ホール素子の別の変形例を示す平面図。 この発明に係る縦型ホール素子の第8の実施の形態についてその縦型ホール素子による磁気センサの概略構成を示す平面図。 同第8の実施の形態に係る縦型ホール素子の出力電圧(ホール電圧)の波形例を示すグラフ。 この発明に係る縦型ホール素子の第9の実施の形態についてその縦型ホール素子による磁気センサの概略構成を示す平面図。 この発明に係る縦型ホール素子の第10の実施の形態についてその縦型ホール素子による磁気センサの概略構成を示す平面図。 同第10の実施の形態に係る縦型ホール素子の変形例を示す平面図。 この発明に係る縦型ホール素子の第11の実施の形態についてその縦型ホール素子による磁気センサの概略構成を示す平面図。 同第11の実施の形態に係る縦型ホール素子の変形例を示す平面図。 同第11の実施の形態に係る縦型ホール素子の別の変形例を示す平面図。 同第11の実施の形態に係る縦型ホール素子の別の変形例を示す平面図。 この発明に係る縦型ホール素子の第12の実施の形態についてその縦型ホール素子による磁気センサの概略構成を示す平面図。 同第12の実施の形態に係る縦型ホール素子の変形例を示す平面図。 (a)はこの発明に係る縦型ホール素子の変形例を示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。 (a)はこの発明に係る縦型ホール素子の別の変形例を示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。 (a)はこの発明に係る縦型ホール素子の別の変形例を示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。 (a)はこの発明に係る縦型ホール素子の別の変形例を示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。 (a)および(b)は、この発明に係る縦型ホール素子の別の変形例を示す平面図。 ホール素子の磁気検出原理を示す斜視図。 従来のホール素子(横型ホール素子)の一例について、(a)はそのホール素子の平面構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図。 従来のホール素子(縦型ホール素子)の一例について、(a)はそのホール素子の平面構造を模式的に示す平面図、(b)は(a)のL1−L1線に沿った断面図、(c)は(a)のL2−L2線に沿った断面図。
符号の説明
10、10a…縦型ホール素子、11、31…半導体層、12、E12、32…半導体領域、12a、12b、32a〜32c…領域、13a〜13d、33a〜33e…コンタクト領域、14、15、34、34a、34b…拡散層、18…絶縁膜、19a、19b…配線(電極)、20…横型ホール素子、BL…埋込層、D1、D2…拡散領域、F1a〜F1g…ヒューズ、GP…導体プレート、HP…磁気検出部、IL、IL14〜IL16…絶縁膜、LS1…LOCOS酸化膜、T1〜T3、TN…トレンチ。

Claims (20)

  1. 半導体基板の表面に垂直な成分を含む電流が同基板内に所定領域として設けられた磁気検出部に供給された状態で、同基板の表面に平行な磁界成分が前記磁気検出部に印加されたとき、その磁界成分に応じたホール電圧を発生させる縦型ホール素子であって、
    前記発生したホール電圧を出力する部分として前記半導体基板の表面に設けられた2つの部分に挟まれる態様で同表面に配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分が、前記ホール電圧を出力する2つの部分による軸上から外れるかたちに配されてなる
    ことを特徴とする縦型ホール素子。
  2. 前記ホール電圧を出力する2つの部分は、これら2つの部分による軸周辺をとりまく電位分布の等電位線が密となるところに配されてなる
    請求項1に記載の縦型ホール素子。
  3. 前記ホール電圧を出力する2つの部分は、これら2つの部分による軸周辺をとりまく電位分布の等電位線が疎となるところに配されてなる
    請求項1に記載の縦型ホール素子。
  4. 前記ホール電圧を出力する2つの部分は、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成されてなる
    請求項1〜3のいずれか一項に記載の縦型ホール素子。
  5. 前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分は、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成されてなる
    請求項1〜4のいずれか一項に記載の縦型ホール素子。
  6. 前記ホール電圧を出力する2つの部分による軸の周辺に、その軸につき非対称な電位分布を形成する
    請求項1〜5のいずれか一項に記載の縦型ホール素子。
  7. 前記ホール電圧を出力する2つの部分は、これら2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を前記ホール電圧を出力する2つの部分による軸上から外すべく、前記形成される非対称な電位分布の等電位線が密となる側へずらして配されてなる
    請求項6に記載の縦型ホール素子。
  8. 前記ホール電圧を出力する2つの部分は、これら2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分を前記ホール電圧を出力する2つの部分による軸上から外すべく、前記形成される非対称な電位分布の等電位線が疎となる側へずらして配されてなる
    請求項6に記載の縦型ホール素子。
  9. 前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対をなして電流を流す部分が、前記ホール電圧を出力する2つの部分による軸に対して非対称に設けられてなる
    請求項6〜8のいずれか一項に記載の縦型ホール素子。
  10. 前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対をなして電流を流す部分が、前記ホール電圧を出力する2つの部分による軸について一方側のみに設けられてなる
    請求項6〜8のいずれか一項に記載の縦型ホール素子。
  11. 前記ホール電圧を出力する2つの部分による軸と、前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分、およびこれと対をなして電流を流す部分の2つの部分による軸とが互いに直交するような配置をもつ
    請求項1〜10のいずれか一項に記載の縦型ホール素子。
  12. 前記ホール電圧を出力する2つの部分に挟まれるかたちで配されて前記磁気検出部へ電流を供給する、もしくは同磁気検出部からの電流を取り出す部分と対をなして電流を流す部分は、前記半導体基板の表面の不純物濃度が選択的に高められるかたちで形成されてなる
    請求項9〜11のいずれか一項に記載の縦型ホール素子。
  13. 前記半導体基板の表面に垂直な成分を含む電流が少なくとも前記磁気検出部において同基板表面に対し斜めの方向へ流れるよう導かれる
    請求項1〜12のいずれか一項に記載の縦型ホール素子。
  14. 当該ホール素子から出力されるホール電圧信号に対して所定の信号処理を行う信号処理回路と共々、1チップに集積化され、所定の方向から印加される磁界を検出する磁気センサを構成する
    請求項1〜13のいずれか一項に記載の縦型ホール素子。
  15. 異なる角度から印加される磁界を検出する態様で2つの素子が1チップに集積化されて磁気センサを構成する
    請求項1〜14のいずれか一項に記載の縦型ホール素子。
  16. 前記半導体基板の表面に垂直な磁界成分を検出する横型ホール素子と共々、直交配置された2つの素子が1チップに集積化され、互いに直交する3軸方向からの磁界を検出する3次元磁気センサを構成する
    請求項1〜15のいずれか一項に記載の縦型ホール素子。
  17. 前記1チップに集積化される2つの素子は、それぞれ同一方向に対向するかたちで形成された別の素子と対をなす
    請求項15または16に記載の縦型ホール素子。
  18. 前記1チップに集積化される2つの素子の各々が形成する対は、いずれもチップとして切り出された基板の側面に対して45°傾けられて配置される
    請求項17に記載の縦型ホール素子。
  19. 前記1チップに集積化される2つの素子は、前記半導体基板の原子配列を等しくする結晶方位に配されてなる
    請求項15〜18のいずれか一項に記載の縦型ホール素子。
  20. 前記1チップに集積化される2つの素子は、互いに隣り合うかたちで形成されてなり、それら2つの素子の周囲を囲繞する態様でトレンチアイソレーションが設けられてなる
    請求項15〜19のいずれか一項に記載の縦型ホール素子。
JP2004314416A 2004-10-28 2004-10-28 縦型ホール素子 Pending JP2006128400A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004314416A JP2006128400A (ja) 2004-10-28 2004-10-28 縦型ホール素子
DE102005051306A DE102005051306A1 (de) 2004-10-28 2005-10-26 Vertikale Hallvorrichtung und Verfahren zur Einstellung der Offsetspannung einer vertikalen Hallvorrichtung
US11/260,681 US20060097715A1 (en) 2004-10-28 2005-10-28 Vertical Hall device and method for adjusting offset voltage of vertical Hall device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004314416A JP2006128400A (ja) 2004-10-28 2004-10-28 縦型ホール素子

Publications (1)

Publication Number Publication Date
JP2006128400A true JP2006128400A (ja) 2006-05-18

Family

ID=36722780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004314416A Pending JP2006128400A (ja) 2004-10-28 2004-10-28 縦型ホール素子

Country Status (1)

Country Link
JP (1) JP2006128400A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051704A (ja) * 2006-08-25 2008-03-06 Denso Corp 電流センサ
JP2008185406A (ja) * 2007-01-29 2008-08-14 Denso Corp 回転センサ
JP2009258122A (ja) * 2009-07-28 2009-11-05 Denso Corp 回転センサ及び回転センサ装置
JP2012173260A (ja) * 2011-02-24 2012-09-10 Rohm Co Ltd 電子回路、集積回路、ならびにそれらを搭載する磁気検出装置および電子機器
JP2013108877A (ja) * 2011-11-22 2013-06-06 Asahi Kasei Electronics Co Ltd 半導体装置、および、その製造方法
WO2013129103A1 (ja) * 2012-03-02 2013-09-06 セイコーインスツル株式会社 ホール素子
JP2014116448A (ja) * 2012-12-10 2014-06-26 Asahi Kasei Electronics Co Ltd ホール素子及びその製造方法
EP2966462A1 (en) * 2014-07-11 2016-01-13 Senis AG Vertical hall device
CN108574040A (zh) * 2017-03-09 2018-09-25 艾普凌科有限公司 半导体装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051704A (ja) * 2006-08-25 2008-03-06 Denso Corp 電流センサ
JP2008185406A (ja) * 2007-01-29 2008-08-14 Denso Corp 回転センサ
US8106647B2 (en) 2007-01-29 2012-01-31 Denso Corporation Rotation sensor
JP2009258122A (ja) * 2009-07-28 2009-11-05 Denso Corp 回転センサ及び回転センサ装置
JP2012173260A (ja) * 2011-02-24 2012-09-10 Rohm Co Ltd 電子回路、集積回路、ならびにそれらを搭載する磁気検出装置および電子機器
JP2013108877A (ja) * 2011-11-22 2013-06-06 Asahi Kasei Electronics Co Ltd 半導体装置、および、その製造方法
WO2013129103A1 (ja) * 2012-03-02 2013-09-06 セイコーインスツル株式会社 ホール素子
JP2014116448A (ja) * 2012-12-10 2014-06-26 Asahi Kasei Electronics Co Ltd ホール素子及びその製造方法
EP2966462A1 (en) * 2014-07-11 2016-01-13 Senis AG Vertical hall device
US9496487B2 (en) 2014-07-11 2016-11-15 Senis Ag Vertical hall device
CN108574040A (zh) * 2017-03-09 2018-09-25 艾普凌科有限公司 半导体装置
CN108574040B (zh) * 2017-03-09 2024-03-12 艾普凌科有限公司 半导体装置

Similar Documents

Publication Publication Date Title
JP2005333103A (ja) 縦型ホール素子およびその製造方法
US20060097715A1 (en) Vertical Hall device and method for adjusting offset voltage of vertical Hall device
US7511484B2 (en) Magnetic sensor and method for detecting magnetic field
JP5815986B2 (ja) ホールセンサ
JP4798102B2 (ja) 縦型ホール素子
JP4039436B2 (ja) 回転角検出装置
TW201216538A (en) Hall sensor
JP4784186B2 (ja) 縦型ホール素子およびその磁気検出感度調整方法
US20040251507A1 (en) Hall device and magnetic sensor
JP2006128400A (ja) 縦型ホール素子
JP4924308B2 (ja) 縦型ホール素子
JP2006128399A (ja) 縦型ホール素子
US20110204448A1 (en) Semiconductor device
JP3760945B2 (ja) 半導体装置及びその製造方法
JP2016021568A (ja) 縦型ホール素子
WO2013140984A1 (ja) ホールセンサ
JP2006179594A (ja) ホール素子
JP2006165492A (ja) 縦型ホール素子およびそのオフセット電圧調整方法
JP2004311824A (ja) 半導体集積回路
JP4353055B2 (ja) 縦型ホール素子
JP2008016863A (ja) 縦型ホール素子
EP3690467A1 (en) Semiconductor device
US11372061B2 (en) Hall effect sensor devices and methods of forming hall effect sensor devices
JP2006147710A (ja) 縦型ホール素子
JP2022111675A (ja) ホール素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108