JP2006126701A - プラスチック光ファイバの被覆方法 - Google Patents

プラスチック光ファイバの被覆方法 Download PDF

Info

Publication number
JP2006126701A
JP2006126701A JP2004317770A JP2004317770A JP2006126701A JP 2006126701 A JP2006126701 A JP 2006126701A JP 2004317770 A JP2004317770 A JP 2004317770A JP 2004317770 A JP2004317770 A JP 2004317770A JP 2006126701 A JP2006126701 A JP 2006126701A
Authority
JP
Japan
Prior art keywords
pof
coating
plastic optical
core portion
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317770A
Other languages
English (en)
Inventor
Tadahiro Kikazawa
忠宏 気賀沢
Yoshisada Nakamura
善貞 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004317770A priority Critical patent/JP2006126701A/ja
Priority to PCT/JP2005/020328 priority patent/WO2006049266A1/en
Publication of JP2006126701A publication Critical patent/JP2006126701A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】 伝送損失の上昇を抑制しながらプラスチック光ファイバを被覆する。
【解決手段】 コア部21と、コア部21よりも低い屈折率を有するクラッド部22からなるプラスチック光ファイバ(POF)11の外周を被覆してプラスチック光ケーブルを作製するとき、コア部21の外径D2(コア部21が複数の層からなる場合には、その最外層の外径とする)とクラッド部22の外径D1とが、D1≧D2×1.5を満たすようなPOF11を用いる。被覆時においては、被覆材として熱可塑性樹脂を用い、POF11の長手方向に対する伸び率が被覆前に比べて1%以下になるようにする。この場合には、被覆時におけるPOF11の伝送損失の上昇を抑制し、かつ施工性が優れたプラスチック光ファイバケーブルを得ることができる。
【選択図】 図2

Description

本発明は、プラスチック光ファイバの被覆方法に関するものである。
光ファイバは、光を伝送するコア部と、このコア部の外周を覆うクラッド部からなる光伝送体であり、その構成材料の種類により、石英系光ファイバとプラスチック光ファイバ(Plastic Optical Fiber;POF、以下、POFと称する)とに大別される。このうちPOFは、石英系光ファイバに比べて、光の伝送損失が大きいために中・長距離伝送には向いていないが、プラスチック系材料でできているので、成形加工性,部材の軽量化,低コスト化,可撓性,耐衝撃性などに優れており、また、これらの特性から、光ファイバのコア部を大口径化することができたり、人体への突き刺し災害などの危険性を回避することができたりするなどの利点を有するために、家庭や車載への用途が注目されている。また、その外周を被覆材で覆って保護層を形成させたプラスチック光ケーブルは、高速データ処理装置の内部配線や、DVI(Digital Video Interface)リンクなどの極短距離かつ大容量のケーブルとしての利用が検討されている。
また、高速伝送および低伝送損失を実現することができる光ファイバとして、POFのコア部において、その中心に向かって屈折率に分布を設けた屈折率分布型POFが注目されている。この屈折率分布型POFは、屈折率分布の違いによって、SI(Step Index)型とGI(Graded Index)型とに大別できる。前者は、コア部の中心に向けて屈折率が段階的に高くなるPOFであり、後者はコア部の中心に向かって連続的に屈折率が高くなるものである。SI型およびGI型ともに、コア部の中心に向かうにつれて、屈折率が高くなる構造を有するが、SI型が段階的に変化するのに対して、GI型は、屈折率が中心に向かって連続的に高くなるため、伝送波形が崩れにくいという特徴を有する。GI型はSI型に比べて、製造が難しく高価になりがちであるが、高速伝送かつ低伝送損失を実現することができる。本発明においては、SI型,GI型を含む全てのプラスチック光ファイバをPOFと総称する。
上述したように、POFは、その外周を被覆材で被覆して保護層が形成させられて、プラスチック光ケーブルとされる。このプラスチック光ケーブルは、高速伝送かつ大容量の情報を伝送する手段として、幅広く利用されている。POFの外周を被覆材で被覆する方法としては、POFの外周に押出温度の低い1次被覆層を押出した後に、その上に押出温度の高い2次被覆層を押出して2層の保護層を形成させる方法(例えば、特許文献1参照)や、POFの外周に断熱層として機能する抗張力体層を設け、さらにその上に、被覆材を被覆して保護層を形成させる方法(例えば、特許文献2参照)が知られている。
特許文献1記載の被覆方法は、押出温度を替えて2段階で保護層を形成させるので、急激な温度変化がないために、POFの伝送損失の上昇を抑えることができ、かつ端末処理しやすいプラスチック光ケーブルを得ることができるという特徴を有する。また、特許文献2記載の被覆方法は、断熱層として機能する抗張力体層を形成させるので、強靭なプラスチック光ケーブルを得ることができる。
特開平6−167642号公報 特開平10−96840号公報
しかしながら、特許文献1記載の方法は、被覆工程が2回必要であるために、生産効率が劣るという問題が生じる。また、特許文献2記載の方法では、抗張力体層が強靭であるために、端末処理の際に切断しにくく、施工性が劣るという問題が生じる。また、POFの外周を被覆するときには、伝送損失の上昇が生じる場合がある。この損失上昇が生じると、伝送性能が著しく低下してしまうという問題がある。
本発明は、POFの外周を被覆材で被覆するときに、伝送損失の上昇を抑制し、かつ施工性に優れたプラスチック光ケーブルを作製することができるプラスチック光ケーブルの製造方法を提供することを目的とする。
本発明者は、POFへの被覆条件とPOFの伝送損失との関係を鋭意検討した結果、以下のような関係があることを見出した。まず、被覆時において、POFには熱と張力とがかかり、これによってPOFは塑性変形を起こしやすくなる。ただし、このときの熱量としてはPOF全体が溶融するほどの熱がPOFに加わる可能性は低く、もっとも大きく影響を受けるのは、被覆用の溶融樹脂にもっとも近づくクラッド部である。そして、この際に、熱と張力とによってコア部とクラッド部との界面不整などが起こる可能性があること、コア部が屈折率分布を有している場合に、屈折率分布の付与が屈折率調整剤によるものであっても、または共重合によるものであっても、組成が不均一状態であり、それによってポリマーマトリックスの熱的安定性が不均一となっているため、熱と張力とを受けることで、屈折率分布のプロファイルがひずむと考えた。この熱と張力とによる影響を排除するために、本発明では、前記界面への熱の到達を抑えるとともに、POF全体が受ける張力を緩和してPOFの変形を抑えるようにしている。このため、クラッド部の直径をコア部の直径を基準にして、その1.5倍以上とし、かつ樹脂をPOFに被覆する際のPOFの伸び率が1%以下としている。なお、コア部が複層のときには、最外層の直径をコア部の直径とする。
なお、前記コア部が、中央部に向かうにしたがい、その屈折率が次第に高くなる分布を有することが好ましく、前記コア部および/またはクラッド部が、(メタ)アクリル酸エステルよりなる重合体を主成分とすることが好ましい。
本発明により、クラッド部の外径をD1、コア部の外径をD2としたときに、D1≧D2×1.5の関係にし、プラスチック光ファイバの伸び率を1%以下として、被覆材として樹脂を用いてプラスチック光ファイバの外周を被覆するようにしたから、被覆時において、被覆される溶融樹脂の熱がクラッド部の厚みによってクラッド部とコア部との境界に伝達されることが妨げられ、熱ダメージが少なくなる。しかも、プラスチック光ファイバの伸び率を1%以下にしてプラスチック光ファイバの張力を小さくしているため、屈折率分布のプロファイルのひずみの発生が抑えられる。これによって、伝送損失の上昇が少なくなり、伝送性能の低下が少ないプラスチック光ファイバを得ることができる。
本発明での実施形態について図を引用しながら説明する。ただし、本発明は下記実施形態に限定されるものではない。本発明は、POFの層数について限定されるものではないが、ここでは3層構造のPOFを製造する場合を、本発明の一様態として例示する。図1は、本発明を実施した一様態としてのプラスチック光ケーブルを製造するフロー図であり、図2は、得られたPOFの断面図である。また、図3は、図2に示すPOFの断面径方向における屈折率を示すグラフである。なお、図3において、横軸はPOFの断面径方向を示し、縦軸は屈折率を示す。屈折率は、上に行くほど高い値であることを意味している。本発明のプラスチック光ケーブルの製造工程は、POF11の3層を形成する各重合体を溶融し3層構造のPOF原糸12として共押し出しする溶融押出工程13と、POF原糸12を加熱して所定の径に延伸することによりPOF11とする加熱延伸工程16と、POF11の外周に所定の被覆材を被覆して保護層を設けてプラスチック光ケーブル17とする被覆工程18とを有している。
被覆工程18を経たPOF11は、プラスチック光ファイバ心線またはプラスチック光ファイバコード(ともに、plastic optical code)と称される。本発明においては、このファイバ心線が1本のままであって必要に応じてさらに被覆を施されたものをシングルファイバケーブルと称し、一方、ファイバ心線がテンションメンバなどとともに複数本組み合わされて、さらなる被覆材を被されたものをマルチファイバケーブルと称することとし、プラスチック光ケーブル(plastic optical cable)17とは、これらのシングルファイバケーブルとマルチファイバケーブルとの両方を含む。
本発明により得られるPOF11は、図2に示すように、光を通すコア部21と、その外殻部であるクラッド部22とを有し、このクラッド部22は、外径D1および内径D2が長手方向にそれぞれ一定で、厚みが均一の管形状となっている。コア部21は、クラッド部22の内面に接するアウターコア部24と、アウターコア部24の内側のインナーコア部25とからなる。したがって、クラッド部22の外径をD1(単位;μm)とし、アウターコア部の外径をD2(単位;μm)、インナーコア部25の外径をD3(単位;μm)とすると、アウターコア部24の外径D2はクラッド部22の内径に等しく、インナーコア部25の外径D3はアウターコア部24の内径に等しいものとなっている。
図3において、横軸の符号(A)で示される範囲は、図2におけるクラッド部22の屈折率であり、符号(B)で示される範囲は、図1におけるアウターコア部24の屈折率であり、符号(C)で示される範囲はインナーコア部25の屈折率である。
インナーコア部25は、図3に示されるように、アウターコア部24との境界から中心に向けて屈折率が連続的に高くなっている。クラッド部22はアウターコア部24よりも屈折率が低く、アウターコア部24はインナーコア部25よりも屈折率が低くなっている。なお、断面円形の径方向において、屈折率の最大値と最小値との差が0.001以上0.3以下であることが好ましい。上記のような構造によりPOF11は、GI型光伝送体としての機能を発現する。なお、POF11を延伸させる前のPOF原糸12は(図4参照)、POF11よりもD1〜D3で示される各径が大きいが、基本的構造はPOF11と同じであるので図示は略す。また、図2ではアウターコア部24とインナーコア部25との境界を、説明の便宜上、示してはいるが、製造の条件などにより境界の明確さは異なり必ずしも確認できるものでなくともよい。
また、本実施形態のアウターコア部24は、図3に示すように屈折率が概ね一定となっているが、インナーコア部25に近づくほど屈折率が大きくなっていてもよく、この屈折率の変化はインナーコア部25に近づくほど段階的に大きくなってもよいし連続的に大きくなってもよい。
また、コア部21が本実施形態のようなアウターコア部24とインナーコア部25との2層のみの構造ではなく、他の構造とされていても本発明は適用される。コア部21の他の構造としては、例えば、アウターコア部24とインナーコア部25との境界が存在せずに、クラッド部22の内周からコア部21の中央に向かって屈折率が連続的もしくは段階的に高くなる構造や、あるいは、3層以上の構造を挙げることができる。また、本実施形態ではクラッド部22が単層構造とされているが、本発明はこれに限定されず、例えば必要に応じ2層以上の複層構造とされてもよい。なお、本実施形態におけるPOF11では、光はアウターコア部24とクラッド部22との界面で反射してアウターコア部24とインナーコア部25との両方を通過することもあるが、また、インナーコア部25のみを通過することもある。本発明は、製造するPOFについて、シングルモード、マルチモード、そして、SI型、GI型のいずれのタイプであっても適用することができるが、以上のようなGI型POFとすることで、SI型よりも光伝送特性に優れたPOFを得ることができる。
本発明において、POF11を構成するコア部21およびクラッド部22の材料としては、光透過性が高い有機材料であることが好ましく、コア部21およびクラッド部22において、すくなくともひとつがフッ素系樹脂からなることが好ましい。また、(メタ)アクリル酸エステルの重合体を主成分とすることが好ましい。これらの材料の詳細については、後ほど説明する。また、クラッド部22がコア部21よりも屈折率が低い材料を用いる限り問題はないが、フッ素系樹脂を用いた場合には、光の伝送に関係する屈折率の点で好ましく、特に、フッ素系樹脂をクラッド部22の材料とすると、低屈折率で光学的に問題のないものを容易に製造することができる。
また、コア部21を伝送する光がコア部21とクラッド部22との界面で全反射するように、クラッド部22の材料は、コア部21の屈折よりも低い屈折率を有するようなポリマーとする。また、クラッド部22およびコア部21の材料は、光散乱を生じないように、非晶性のポリマーとすることが好ましく、互いに密着性に優れるポリマーとし、これらがタフネスなどに示される機械的特性に優れ、耐湿熱性にも優れていることがより好ましい。さらに、水分がコア部に侵入することをできるだけ防ぐことが好ましいので、クラッド部22の材料を吸水率が低いものとするとよい。例えば、クラッド部22が、飽和吸水率が1.8%未満のポリマーを主たる成分とすることが好ましい。そして、より好ましくは、アウターコア部24が1.5%未満の飽和吸水率、さらに好ましくは1.0%未満の飽和吸水率であるポリマーにより形成されることである。なお、ここでの飽和吸水率は、ASTMによるD570により基づく値であり、具体的には、23℃の水中にサンプルを1週間浸漬したときの吸水率を測定した値である。くわえて、コア部21および(または)クラッド部22がフッ素系樹脂からなることが好ましい。コア部21およびクラッド部22に用いられるポリマーに関しての詳細は、後で説明する。
コア部21の材料例としては、(メタ)アクリル酸エステル類(フッ素不含(メタ)アクリル酸エステル(a),含フッ素(メタ)アクリル酸エステル(b)),スチレン系化合物(c),ビニルエステル類(d)、主鎖環状含フッ素ポリマー形成モノマー類(e)、ポリカーボネート類の原料であるビスフェノールAなどを重合性化合物として用いて重合させたものとすることができる。そして、クラッド部形成ポリマーとしては、ポリフッ化ビニリデン(PVDF)も好ましい。これらを原料として、各々を重合させたホモポリマー、あるいはこれらのうち2種以上を組み合わせて重合させた共重合体、および上記のホモポリマーや共重合体の各種組み合わせによる混合物も例として挙げることができる。混合物を用いる場合においては、上記沸点Tbは、混合物を構成する複数の原料化合物の沸点の中で最も低い温度、もしくは共沸混合物を成すことにより沸点が下がるときには沸点下降後の温度として定義される。また、混合物を原料として得られた共重合体およびブレンドポリマーの場合には、各共重合体またはブレンドポリマーのガラス転移点を上記Tgとして定義する。そして、これらのうち、(メタ)アクリル酸エステル類または含フッ素ポリマーを成分として含むものが光伝送体を構成する上でより好ましい。次に、上記の例について、より詳細に示す。
上記の(a)フッ素不含メタクリル酸エステルおよびフッ素不含アクリル酸エステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸−tert−ブチル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸シクロヘキシル、メタクリル酸ジフェニルメチル、トリシクロ[5・2・1・02,6 ]デカニルメタクリレート、アダマンチルメタクリレート、イソボルニルメタクリレート、ノルボニルメタクリレートなどが挙げられ、アクリル酸メチル、アクリル酸エチル、アクリル酸−tert−ブチル、アクリル酸フェニルなどが挙げられる。
また、(b)含フッ素アクリル酸エステルおよび含フッ素メタクリル酸エステルとしては、2,2,2−トリフルオロエチルメタクリレート、2,2,3,3−テトラフルオロプロピルメタクリレート、2,2,3,3,3−ペンタフルオロプロピルメタクリレート、1 −トリフルオロメチル−2,2,2−トリフルオロエチルメタクリレート、2,2,3,3,4,4,5,5−オクタフルオロペンチルメタクリレート、2,2,3,3,4,4−ヘキサフルオロブチルメタクリレートなどが挙げられる。
さらに、(c)スチレン系化合物としては、スチレン、α−メチルスチレン、クロロスチレン、ブロモスチレンなどが挙げられ、(d)ビニルエステル類としては、ビニルアセテート、ビニルベンゾエート、ビニルフェニルアセテート、ビニルクロロアセテートなど、(e)主鎖環状含フッ素ポリマー形成モノマー類としては、モノマーとして環状構造を有する、または環化重合することによって、非晶質の主鎖に環状構造を有する含フッ素重合体を形成するポリマーを形成するものであり、ポリパーフルオロブタニルビニルエーテルや特開平8−334634号などに例示される、主鎖に脂肪環もしくは複素環を有するようなポリマーを形成するモノマー、および特願2004−186199号に例示されるものなどが挙げられる。もちろん、これらに限定されるものではなく、重合性化合物の単独あるいは共重合体からなるポリマーの屈折率が、光伝送体に成形されたときに所定の屈折率分布を成形体のなかで有するように、種類や組成比を決定することが好ましい。
また、クラッド部22を形成する好ましいポリマーとしては、上記の各種化合物の他に以下のものを例示することができる。例えば、メチルメタクリレート(MMA)とトリフルオロエチルメタクリレート(FMA)やヘキサフルオロイソプロピルメタクリレートなどのフッ化(メタ)アクリレートとの共重合体を挙げることができる。また、MMAと,tert−ブチルメタクリレートなどの分岐を有する(メタ)アクリレート、イソボルニルメタクリレート、ノルボルニルメタクリレート、トリシクロデカニルメタクリレートなどの脂環式(メタ)アクリレートなどとの共重合体がある。さらにはポリカーボネート(PC)、ノルボルネン系樹脂(例えば、ZEONEX(登録商標:日本ゼオン(株)製))、ファンクショナルノルボルネン系樹脂(例えば、ARTON(登録商標:JSR製)など)、フッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)など)を用いることもできる。また、フッ素樹脂の共重合体(例えば、PVDF系共重合体)や、テトラフルオロエチレンパーフルオロ(アルキルビニルエーテル(PFA)ランダム共重合体、クロロトリフルオロエチレン(CTFE)共重合体などを用いることもできる。
なお、これらのポリマーが水素原子(H)を含んでいる場合には、その水素原子が重水素原子(D)に置換されていることが好ましく、これにより伝送損失の低減、特に近赤外領域の波長における伝送損失の低減を図ることができる。
さらに、POF11を近赤外光用途に用いるためには、ポリマーを構成するC−H結合に起因した吸収損失が起こるために、特許3332922号公報や特開2003−192708号公報などに記載されているような、C−H結合の水素原子を重水素原子やフッ素などで置換したポリマーを用いることで、この伝送損失を生じる波長域を長波長化することができ、伝送信号光の損失を軽減することができる。このようなポリマーとしては、例えば、重水素化ポリメチルメタクリレート(PMMA−d8)、ポリトリフルオロエチルメタクリレート(P3FMA)、ポリヘキサフルオロイソプロピル2−フルオロアクリレート(HFIP 2−FA)などを例示することができる。なお、原料となる化合物は、重合後の透明性を損なわないためにも、不純物や散乱源となる異物は重合前に十分に除去されることが望ましい。
また、コア部21とクラッド部22とを形成するポリマーは、糸状に押出成形して後述のように好適に延伸できるという観点から、重量平均分子量が1万〜100万であることが好ましく、より好ましくは3万〜50万である。さらに、延伸に対する適性は、分子量分布(MWD:重量平均分子量/数平均分子量)にも関係している。MWDが大きすぎる場合には、極端に分子量の大きい成分が混在しているときに延伸性が悪くなり、延伸が不可能となることもある。したがって、好ましいMWDの範囲は4以下であり、より好ましい範囲は3以下である。
重合性化合物を重合させてポリマーとする場合においては、重合開始剤を使用する場合がある。重合開始剤としては、例えば、ラジカルを生成するものが各種ある。例えばラジカルを生成するものとして、過酸化ベンゾイル(BPO)、tert−ブチルパーオキシ−2−エチルヘキサネート(PBO)、ジ−tert−ブチルパーオキシド(PBD)、tert−ブチルパーオキシイソプロピルカーボネート(PBI)、n−ブチル−4,4−ビス(tert−ブチルパーオキシ)バラレート(PHV)などのパーオキサイド系化合物が挙げられる。また、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス(2−メチルプロパン)、2,2’−アゾビス(2−メチルブタン)、2,2’−アゾビス(2−メチルペンタン)、2,2’−アゾビス(2,3−ジメチルブタン)、2,2’−アゾビス(2−メチルヘキサン)、2,2’−アゾビス(2,4−ジメチルペンタン)、2,2’−アゾビス(2,3,3−トリメチルブタン)、2,2’−アゾビス(2,4,4−トリメチルペンタン)、3,3’−アゾビス(3−メチルペンタン)、3,3’−アゾビス(3−メチルヘキサン)、3,3’−アゾビス(3,4−ジメチルペンタン)、3,3’−アゾビス(3−エチルペンタン)、ジメチル−2,2’−アゾビス(2−メチルプロピオネート)、ジエチル−2,2’−アゾビス(2−メチルプロピオネート)、ジ−tert−ブチル−2,2’−アゾビス(2−メチルプロピオネート)などのアゾ系化合物が挙げられる。なお、重合開始剤は、これらに限定されるものではなく、また、2種類以上を併用してもよい。
ポリマーとしたときの機械特性や熱物性などの各種物性値を全体にわたって均一に保つために、重合度の調整を行うことが好ましい。重合度の調整のためには、連鎖移動剤を使うことができる。連鎖移動剤については、併用する重合性モノマーの種類に応じて、適宜、種類および添加量を選択できる。各モノマーに対する連鎖移動剤の連鎖移動定数は、例えば、ポリマーハンドブック第3版(J.BRANDRUPおよびE.H.IMMERGUT編、JOHN WILEY&SON発行)を参照することができる。また、該連鎖移動定数は大津隆行、木下雅悦共著「高分子合成の実験法」化学同人、昭和47年刊を参考にして、実験によっても求めることができる。
連鎖移動剤としては、アルキルメルカプタン類(例えば、n−ブチルメルカプタン、n−ペンチルメルカプタン、n−オクチルメルカプタン、n−ラウリルメルカプタン、tert−ドデシルメルカプタンなど)、チオフェノール類(チオフェノール、m−ブロモチオフェノール、p−ブロモチオフェノール、m−トルエンチオール、p−トルエンチオールなど)などを用いることが好ましい。特に、n−オクチルメルカプタン、n−ラウリルメルカプタン、tert−ドデシルメルカプタンのアルキルメルカプタンを用いるのが好ましい。また、C−H結合の水素原子が重水素原子やフッ素原子で置換された連鎖移動剤を用いることもできる。なお、連鎖移動剤は勿論これらに限定されるものではなく、これら連鎖移動剤は2種類以上を併用してもよい。
前述した重合開始剤や連鎖移動剤、屈折率調整剤の各添加量については、用いるコア部用の重合性化合物の種類などに応じて、好ましい範囲を適宜決定することができる。本実施形態においては、重合開始剤は、コア部用の重合性化合物に対して、0.005〜0.050質量%となるように添加しており、この添加率を0.010〜0.020質量%とすることがより好ましい。また、前記連鎖移動剤は、コア部用の重合性化合物に対して、0.10〜0.40質量%となるように添加しており、この添加率を0.15〜0.30質量%とすることがより好ましい。
その他、コア部、クラッド部もしくはそれらの一部には、光伝送性能を低下させない範囲で、その他の添加剤を添加することができる。例えば、コア部もしくはその一部に耐候性や耐久性などを向上させる目的で、安定剤を添加することができる。また、光伝送性能の向上を目的として、光信号増幅用の誘導放出機能化合物を添加することもできる。該化合物を添加することにより、減衰した信号光を励起光により増幅することができ、伝送距離が向上するので、例えば、光伝送リンクの一部にファイバ増幅器として使用することができる。これらの添加剤も、前記原料となる各種重合性化合物に添加した後、重合することによって、コア部、クラッド部もしくはそれらの一部に含有させることができる。
さらに、アウターコア部24とインナーコア部25とを形成する各ポリマーのうち少なくともいずれか一方に、屈折率調整剤(ドーパント)を各所定量混合する。このドーパントとしては、非重合性の化合物が好ましい。インナーコア部25のみにドーパントを添加する場合には、この添加率は、インナーコア部25の主成分となるポリマーに対して0.01重量%以上25重量%以下とすることが好ましく、1重量%以上20重量%以下とすることがより好ましい。これにより、断面円形の径方向における屈折率分布係数を上記のような好ましい範囲により制御しやすくなる。
本実施形態においては、ドーパントとしては高屈折率で分子体積が大きく、重合に関与せず、溶融状態のポリマー中で所定の拡散速度を有する低分子化合物を用い、これを添加することによりコア部の径方向における屈折率を変化させている。ドーパントは、モノマーに限定されず、オリゴマー(ダイマー、トリマーなどを含む)であってもよい。したがって、モノマーの状態ではインナーコア部用モノマーやインナーコア部との重合反応性を有していても、これがオリゴマーとなったときにはこれらと重合しないものであればこのようなオリゴマーをドーパントとすることができる。
そしてドーパントとしての具体的な例としては、安息香酸ベンジル(BEN)、硫化ジフェニル(DPS)、リン酸トリフェニル(TPP)、フタル酸ベンジル−n−ブチル(BBP)、フタル酸ジフェニル(DPP)、ジフェニル(DP)、ジフェニルメタン(DPM)、リン酸トリクレジル(TCP)、ジフェニルスルホキシド(DPSO)などが挙げられ、中でも、BEN、DPS、TPP、DPSOが好ましい。ドーパントの、コア部21における濃度および分布を調整することによって、POF11の屈折率を所望の値に変化させることができる。
コア部21、クラッド部22には、光伝送性能を低下させない範囲で、その他の添加剤を添加することができる。例えば、コア部21もしくはその一部に耐候性や耐久性などを向上させる目的で、安定剤を添加することができる。また、光伝送性能の向上を目的として、光信号増幅用の誘導放出機能化合物を添加することもできる。このような化合物を添加することにより、減衰した信号光を励起光により増幅することができ、伝送距離が向上するので、例えば、光伝送リンクの一部にファイバ増幅器として使用することができる。
以下の説明においては、クラッド部22用のポリマーを第1原料、アウターコア部24を形成するポリマーを第2原料、ポリマーとドーパントとの混合物であって、インナーコア部25を形成するものを第3原料と称する。第1〜第3原料中に含まれるポリマーはペレット状でも粉末状でもよいが、以下の溶融押出工程13に用いる前に、乾燥処理を施すことが好ましく、これにより、成形体における気泡や割れの発生などを防ぐことができる。
また、各ポリマーを製造するための重合工程と、次に説明する溶融押出工程13とを連続させて、重合されて溶融状態にある各ポリマーをそのまま溶融押出工程13に供してもよい。この場合、ドーパントは、溶融押出工程13への送り中や、溶融押出をするための押出機本体(図示しない)の混練部などで溶融ポリマー中に添加してもよい。
図4はPOF製造ライン40を示す概略図である。ただし、本発明において、POF11の製造方法は、図4に示す様態に限定されない。POF製造ライン40は、複数の押出機(図示しない)が取り付けられた押出ダイ41を有する溶融押出装置42と、押出ダイ41から押出されたPOF原糸12を冷却する冷却装置43と、張力を調整しながら冷却されたPOF原糸12を引き取る低速ゴデットロール44と、POF原糸12を加熱する加熱機45と、加熱機45で加熱延伸されることで作製されたPOF11を、加熱機45から引き取る高速ゴデットロール46と、それを冷却する冷却機47と巻取機48からなる。また、図4においては、第1、第2、第3原料にそれぞれ符号50、51、52を付している。
押出ダイ41は、同心円状に複層形成された繊維状の成形体を製造することができる周知のものであればよく、特に限定されない。本実施形態で用いた押出ダイ41は、第1ダイ本体53と第2ダイ本体54と第3ダイ本体55とが一体的に組み立てられたものであり、これら各ダイ本体53〜55には、インナーコア部形成流路56とアウターコア部形成流路57とクラッド部形成流路58とが、それぞれ形成されている。インナーコア部形成流路56には、第3原料52が供給される。また、アウターコア部形成流路57には、第2原料51が供給される。インナーコア部形成流路56とアウターコア部形成流路57とは、第1ダイ本体53と第2ダイ本体54との境界付近で合流するように設けられている。同様に、クラッド部形成流路58には第1原料50が供給される。クラッド部形成流路58は、第2ダイ本体54と第3ダイ本体55との境界付近で、インナーコア部の外周がアウターコア部で覆われた2層構造の外周に合流するように設けられている。各流路56〜58が合流されてなる拡散部60の下端部は、下端に向かうにしたがって、流路径が小さくなるテーパー状とされている。なお、図4では、POF原糸12が下方向に押し出されるように押出ダイ41を示しているが、押出ダイ41の向きはこの状態に限定されず、例えば横向きにしてPOF原糸12が水平方向などの角度で押し出されてもよい。
拡散部60を有する第3ダイ本体55の外周部には、複数のヒータからなる温度制御部(図示しない)が設けられており、拡散部60が加熱されるようになっている。この加熱により、ドーパントの拡散が徐々に進行し、図3に示すような径方向における屈折率変化をPOF原糸12に発現させることができる。
冷却装置43としては、連続搬送されているPOF原糸12を、連続的に冷却することができるものが好ましく、本実施形態では、簡易的かつ十分な冷却を得られる点で、水槽を用いている。しかし、冷却装置43としては、この様態に限定されるものではなく、例えば、冷媒を通過させることができるジャケットを備えたパイプを冷却装置43として用いて、このパイプ中に被冷却物を通すことで、これを冷却させることもできるし、風を被冷却物に吹き付ける送風機構を用いることもできる。なお、本実施形態においては、POF原糸12の溶融押出における張力を微調整するために、シフト機構を有するガイドプーリ61を水槽中に設けている。しかし、このガイドプーリ61の使用について本発明は限定せず、また、用いる場合であってもこのガイドプーリ61と水槽との相対位置については特に限定されないし、ガイドプーリ61に代えてローラなどを用いてもよい。
また図示しないが、冷却装置43の下流に第1外径測定機を設けて、連続的に搬送されるPOF原糸12の外径を連続的、かつ非接触で測定することが好ましい。第1外径測定機としては、市販の各種測定機を用いることができる。このように、POF原糸12の外径を連続的に測定しながら、作業を行うと、所望の外径のPOF11を効率よく作製することができる。
冷却されたPOF原糸12は、低速ゴデットロール44で巻きかけられて冷却装置43から引き取られた後に、加熱機45内に搬送される。加熱機45の内部には、POF原糸12をその走行方向に沿って加熱することができるヒータ(図示しない)が備えられており、このヒータは、POF原糸12の搬送方向に沿って温度を変化させることができる。このようにPOF原糸12を加熱すると、この中に含有するドーパントの拡散を充分に行うことができる。ただし、本発明においては、POF原糸12の加熱方法は、ヒータや加熱気体を吹き付ける方法に限定されない。例えば、赤外線や近赤外線の輻射加熱式などの加熱手段を加熱機45に代えて用いてもよい。また、加熱機45内で加熱されている間に、POF原糸12には、張力が与えられる。これにより、POF原糸12は加熱延伸されてPOF11となる。このときPOF原糸12に付与される張力は、低速ゴデットロール44や高速ゴデットロール46の駆動速度および、巻取機48などにより調整される。
加熱機45により加熱されたPOF11は、さらに高速ゴデットロール46に巻き掛けられながら引き取られた後に、冷却機47により冷却される。本実施形態では、冷却機47としては、POF11を挟み込むようにして、1対の送風ダクトを設け、ここから加熱延伸された部分に風を吹き付けている。こうした場合には、効率よくPOF11を冷却させることができるとともに、製造ラインの短縮化をも図ることができる。なお、本実施形態では、冷却機47として送風ダクトを加熱機45の下流側に配しているが、これに代えて、送風ダクトを加熱機45内であってヒータ(図示しない)の下流に設けてもよい。ただし、冷却方法は、本実施形態のような冷風吹き付けによる方法に限定されず、公知の各種冷却方法を適用してよく、例えば、冷媒を通したジャケットを有する管内に溶融部分を通過させる方法などがある。
冷却機47により冷却されたPOF11は、巻取テンションを制御されながら巻取機48により巻き取られる。巻取機48には複数のガイドプーリ62が配されており、これにより支持されながら搬送された後に巻取ローラ63で巻き取られる。なお、巻取ローラ63で巻き取られたPOF11においては、その後に、恒温槽(図示しない)を用いて一定時間加熱を行うと、POF11中に含まれるドーパントの拡散を充分に行うことができるので、より好ましい。また、本実施形態においては、POF製造ライン40として、溶融押出装置42でPOF原糸12を作製する工程と、加熱機45により加熱する間に張力を付与することで、POF原糸12を加熱延伸してPOF11を作製する加熱延伸工程とを連続工程として示したが、この2つの工程の連続性については、特に限定されるものではなく、例えば、POF原糸12を一旦ボビンに巻き取り、それを巻きほどきながら加熱延伸させてPOF11を作製する方法もある。
本発明においては、加熱延伸後に巻取機48で巻き取られたPOF11において、図2に示すように、クラッド部22の外径をD1、アウターコア部24の外径をD2、インナーコア部25の外径をD3としたとき、その構造が下記の式(A)を満たすように調整される。好ましくは、下記の式(B)であり、より好ましくは下記の式(C)を満たすことである。被覆前において、POF11の構造がこれらの式を満たす場合には、後述するように、その外周を被覆材で被覆しても、POF11に対する熱ダメージを抑えることができるので、それ自身の伝送損失の上昇を抑制することができる。式(A)〜(C)において、コア部21を形成する層が複数ある場合には、最外層のコア部(図2ではアウターコア部24)の外径の値を用いる。
(A) クラッド部の外径D1≧コア部の外径D2×1.5
(B) クラッド部の外径D1≧コア部の外径D2×1.8
(C) クラッド部の外径D1≧コア部の外径D2×2.0
本実施形態では、POF原糸12を共押し出しによる溶融押出方法を用いて作製したが、特に限定はされない。例えば、繊維状重合体は、プリフォームをPOFよりも太い繊維状に加熱延伸されて得られたものであってもよい。この方法によると、プリフォームを1度の溶融延伸でPOFとする方法よりも、機械的強度が大きく、外径の変動幅が小さいPOFが得られ、さらにPOFが巻かれたボビンでの経時的な巻き締まりが抑制されるという効果がある。
本発明によるPOFは、曲げ、耐候性の向上,吸湿による性能低下抑制,引張強度の向上,耐踏付け性付与,難燃性付与,薬品による損傷からの保護,外部光線によるノイズ防止,着色などによる商品価値の向上などを目的として、通常、その表面に1層以上の保護層を被覆して使用される。
保護層の形成方法について以下に説明する。図5に、POF11を被覆してプラスチック光ケーブルを作製する被覆工程70を示す。被覆工程70は、POF11を送り出す送出機71を有する送線部72と、POF11の外周を被覆材で被覆する被覆部73と、外周が被覆されることで得られるプラスチック光ケーブル17を冷却する冷却部75と、これを引き取る引取部76と、巻取機83を有する巻取部78からなる。
被覆工程70において、POF11からプラスチック光ケーブル17が作製される流れについて説明する。POF11は、送線部72に備えられている送出機71から、複数のガイドプーリ100により支持されながら、所定の張力で連続して被覆部73に送出される。このとき、送線部72の内部には、その内部の温度が所定の温度になるように調節することができる温度調節設備(図示しない)が設けられていることが好ましい。送線部72内の温度は、POF11を構成する成分のTg以下の温度であることが好ましい。このような場合には、POF11の形状を変化させることなく、またひびや割れが生じることを抑制しながら送り出すことができる。
送線部72より搬送されたPOF11は、被覆部73においてその外周が被覆されて、プラスチック光ケーブル17となる。被覆部73内には、被覆装置(図示しない)が設けられており、これにより、POF11の外周が被覆材で被覆される。POF11は、被覆部73の内部を連続かつ、張力が調整されながら搬送される。このとき張力は、送出機71からの送り出し張力や、温度、速度、などを調整されることで制御される。このように被覆時において、張力を調整することで、その伸び率を調整する。好ましくは、延伸前のPOF11の長手方向の長さに対して、その伸び率が、1%以下になるようにすることであり、より好ましくは、0.5%以下であり、特に好ましくは、0.1%以下である。この伸び率を測定する方法としては、例えば、被覆前のPOF11に任意に2箇所マーキングを行い、被覆後においてこれらのマーキング位置がどの程度変化したかについて測定を行い、測定値を基にして伸び率を算出する方法が挙げられる。ただし、本発明においては、伸び率の測定方法に関しては特に限定されない。このように、POF11の伸び率を調整した場合には、POF11の変形を抑制することができるとともに、熱と張力とによる屈折率分布のプロファイルがひずむことが防止される。これによって、被覆時においてPOF11の伝送損失の上昇を抑制することができる。なお、被覆部73の内部においては、被覆装置(図示しない)の下流に延伸装置(図示しない)を設けて、これらを直結させて、被覆と延伸とを同時に(または、延伸直後に)行ってもよい。被覆については、後で詳細に説明する。
送線部72と被覆部73の間に、冷却手段(図示しない)を設けてPOF11の温度を冷却することが好ましい。このとき用いる冷却手段は、特に限定されないが、POF11の温度が、5℃〜35℃まで冷却されるようにする。このように、被覆材を被覆して保護層を形成する前にPOF11を冷却すると、被覆する際の熱ダメージを低減することができるため好ましいが、この冷却手段は、省略することもできる。
外周が被覆材で被覆されたプラスチック光ケーブル17は、冷却部75に送られて冷却される。本実施形態においては、冷却部75として水槽を設けて、冷水により冷却する。このように水冷によりプラスチック光ケーブル17を冷却する場合には、図5に示すように、冷却部75の下流に水分除去装置80を設けて、プラスチック光ケーブル17の水分を除去する。本実施形態においては、プラスチック光ケーブル17の冷却方法として、水槽を用いたが、特に限定されず、他の冷却方法を用いることができる。例えば、送風機を設けた筐体を用いて、その内部にプラスチック光ケーブル17を通過させる間に、直接送風して冷却させてもよい。
冷却されたプラスチック光ケーブル17は、複数のガイドプーリ81と引き取りローラ82が備えられている引取部76に搬送された後に、巻取部78に送り込まれて、その内部に備えられている巻取機83で巻き取られる。なお、図5では、POF11を送出機71から供給する形態を示したが、本発明に用いられる被覆工程70は、この形態に限定されるものではなく、公知である電気ケーブルや石英ガラス製光ファイバと同様な被覆ラインを用いてもよい。
図6に、被覆部73の内部に備えられている被覆装置の概略図を示す。被覆装置90は、被覆材91の通路となる被覆材流路92と吐出口93とを有する。送線部72から送出されたPOF11は、所定の張力で被覆装置90の内部へ連続して送りこまれる。POF11は吐出口93付近において、被覆材91がその外周に被覆されて、保護層94が形成されプラスチック光ケーブル17となる。
被覆材91は、温度調節機が備えられたタンク(図示しない)内に貯蔵されている。このタンク内の温度は、被覆材91の種類により異なるが、被覆材91が所望の流動性を発現することができる粘度を示すような溶融状態に保持できる温度であることが好ましい。また、被覆材流路92内も、同様にして所望の温度に調整されていることが好ましい。そのために、被覆装置90の内部には、温度調節機(図示しない)が設けて、これにより内部の温度を調整することが好ましい。POF11の外周に被覆材91を被覆するとき、その被覆材91の温度(被覆温度)は、POF11に移動する熱量を低減するためにもできるかぎり低くすることが好ましい。例えば、ポリエチレンを被覆材91として用いる場合には、被覆温度を140℃以下とすることが好ましく、より好ましく130℃以下とすることである。なお、被覆温度の下限値は、特に限定されるものではないが、被覆材91が流動性を有する温度以上とする必要がある。例えば、被覆材91として、低密度ポリエチレンを用いる場合には、110℃〜130℃であることが好ましい。
また、被覆時におけるPOF11の伸び率が、1%以下であることが好ましく、より好ましくは、0.5%以下であり、特に好ましくは、0.1%以下である。このように、伸び率を調整した場合には、POF11の変形を抑制することができるとともに、熱と張力とによる屈折率分布のプロファイルがひずむことを防止する。被覆時においてPOF11の伝送損失の上昇を抑制することができる。なお、被覆部73の内部においては、被覆装置(図示しない)の下流に延伸装置(図示しない)を設けて、これらを直結させて、被覆と延伸とを同時に(または、延伸直後に)行ってもよい。
被覆時におけるPOF11の形態などは、特に限定されるものではないが(図2参照)、その直径D(最外層クラッド部22の外径に等しい)(μm)が、200μm以上1500μm以下のものを用いることが好ましく、より好ましくは200μm以上800μm以下のものを用いることである。また、コア部21およびクラッド部22の外径D1〜D3に関しては、上述の式(A)〜(C)を満たしていることが好ましい。
POF11の搬送速度も特に限定されるものではないが、10m/min以上100m/min以下の範囲であることが好ましい。10m/min未満であると、生産性が悪化して、コストが高くなってしまう。また、被覆装置90の内部は、被覆材91の流動性を保持するなどの目的から、加熱されているが、被覆装置90内を通過する時間が長くなると、その放射熱によりPOF11に熱ダメージが生じるおそれがある。したがって、搬送速度は10m/min以上であることが好ましい。また、搬送速度を100m/minより速くすると被覆材である被覆材91とPOF11との密着性が劣り、被覆材91の剥離や樹脂の結晶化による機械的特性の変化などの問題が生じるおそれがある。
吐出口93において、その外周に被覆材91が被覆されることで保護層94が形成されたPOF11は、プラスチック光ケーブル17として、冷却部75へ送出されて、冷却される(図5参照)。被覆材91を被覆する際に、流路92に流し込む被覆材91の量(流動量)は、所望の保護層の厚みや形状、また被覆材の種類などに応じて適宜決定した値を用いればよく、特に限定はされない。
以上のような被覆装置90を用いて被覆を行うと、POF11の外周に対する被覆材91の被覆を容易に行うことができ、かつPOF11への熱ダメージや保護層形成不良などのトラブルの発生を防止できる。また、被覆時の保護層94の厚みTc (μm)が100μm以上500μm以下となるよう被覆することが好ましい。この場合には、POF11に過大な応力がかかることが無くなる。なお、固化した保護層94は、その素材によっては収縮が生じる場合がある。
被覆材91としては、熱可塑性樹脂を用いることが好ましい。ただし、POF11に熱的ダメージ(例えば、変形,変性,熱分解など)を与えないものを選択する。好ましくは、POF11を形成する材料のガラス転移温度Tg(℃)以下であり、かつ(Tg−50)℃以上で硬化できる熱可塑性樹脂を用いることである。生産コストの低減のためには、成形時間(材料が硬化する時間)が1秒以上10分以下、好ましくは1秒以上5分以下であるものを用いることがより好ましい。なお、POF11が複数のポリマーから形成される場合には、それら各ポリマーのガラス転移温度のなかで、最も低い温度のガラス転移温度をTg(℃)とみなす。また、POF11を構成するポリマーが、ガラス転移温度を持たない場合には、相転移温度(例えば、融点など)の最も低いものをTg(℃)とみなす。
前記熱可塑性樹脂としては、例えば、ポリエチレン(PE)ポリプロピレン(PP)、塩化ビニル(PVC)、エチレン酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)、ポリエステル、ナイロンなどが挙げられる。また、前記被覆材として、各種エラストマーを用いることもできる。前記エラストマーを被覆材として用いた場合には、その高弾性により、曲げなどの機械的な特性付与を行うことができる。前記エラストマーとしては、例えば、イソプレン系ゴム、ブタジエン系ゴム、ジエン系特殊ゴムなどの各種ゴムや、室温においては流動性を示すが、加熱によりその流動性が消失して硬化するポリジエン系やポリオレフィン系などの液状ゴム、または、室温ではゴム弾性を示すが、高温においては可塑化されて成形が容易となる物質群である各種熱可塑性エラストマー(TPE)などが挙げられる。さらに、ポリマー前駆体と反応剤などとを混合した液を熱硬化させるものも用いることができる。例えば、国際公開第95/26374号パンフレットに記載されているNCO基含有ウレタンプレポリマーと20μm以下の固形アミンとからなる1液型熱硬化性ウレタン組成物なども用いることもできる。
被覆材91は、POF11に用いられているポリマーのガラス転移温度Tg以下において成形することが可能なものであれば、特に限定されず、各材料間もしくは上記以外の共重合体や混合ポリマーとして組み合わせて用いることもできる。その他には、性能を改善する目的で難燃剤、酸化防止剤、ラジカル捕獲剤、滑剤などの添加剤や、無機化合物または有機化合物からなる各種フィラを用いることもできる。
また、本実施形態においては、POF11の外周を被覆材91で被覆したものをプラスチック光ケーブル17とした様態を示したが、POF11をそのまま束ねて被覆したものを光ケーブルとして称する場合もある。したがって、被覆の形態としては、被覆材とPOFとの界面が全周にわたって接している状態において被覆されている密着型被覆と、被覆材とPOFとの界面に空隙を有するルース型被覆とがある。ルース型被覆において、例えば、コネクタとの接続部において保護層を剥離した場合には、その端面の空隙から水分が浸入して長手方向に拡散されるおそれがあるため、密着型被覆とルース型被覆とを比較した場合には、通常は密着型被覆であることが好ましい。
しかし、ルース型被覆の場合には、被覆材とPOFとが密着していないので、光ケーブルにかかる応力や、熱をはじめとするダメージの多くを保護層で緩和させることができる。そのため、POFにかかるダメージを軽減させることができることから、用途によっては好ましく用いることができる。水分の伝播については、空隙部に流動性を有するゲル状の半固体や粉粒体を充填させることにより、端面からの水分伝播を防止できる。また、これらの半固体や粉粒体に対して、耐熱や機械的機能の向上などの水分伝播防止と異なる機能を付与することにより、より高い性能の被覆を形成することができる。なお、ルース型被覆を作製するには、クロスヘッドダイの押出し口ニップルの位置を調整して、さらに減圧装置を加減することにより空隙層を作ることができる。前記空隙層の厚みは、前記ニップル厚みと前記空隙層を加圧/減圧することにより調整することが可能である。
本発明によるPOFは、必要に応じて上記の保護層を1次保護層とし、外周にさらに2次(または多層)保護層を設けてもよい。前記1次保護層が十分な厚みを有している場合には、前記1次保護層の存在により熱ダメージを低減することができることから、2次保護層の素材における硬化温度の制限は、前記1次保護層を被覆する場合に比べて、緩和することができる。前記2次保護層には被覆用素材において説明したように、難燃剤、紫外線吸収剤、酸化防止剤、ラジカル捕獲剤、滑剤などの添加剤を導入してもよい。
以下、実施例を示し、本発明を具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。
〔実施例1〕
図1に示す工程に基づき、POF製造ライン40(図4参照)を用いてPOF原糸12を作製後、それを被覆工程70(図5参照)に送り込んで、外周を被覆材で被覆してプラスチック光ケーブル17とした。溶融押出装置42としては、3台のスクリュー押出機(φ16mm)からなる3層共押出紡糸装置を用いた。クラッド部22を形成する第1原料としてはPVDFを100重量部、アウターコア部24を形成する第2原料としてはPMMAを100重量部、インナーコア部25を形成する第3原料としてはPMMA+DPS(20%)を100重量部それぞれ用いた。これらの各原料を押出機から流路に押出す際の押出温度は、それぞれ、230℃、240℃、210℃とし、クラッド部22の外径D1が1mmのPOF原糸12を押出した。このPOF原糸12のアウターコア部24の外径D2は500μm、インナーコア部25の外径D3は250μmであった。
冷却装置43として水槽を用いてPOF原糸12を冷却した後、低速ゴデットロール44により5m/分の速度で引き取り、さらに、加熱機45として150℃に調整したオーブンを用いて加熱しながら、高速ゴデットロール46により9m/分の速度で延伸しながら引き取りPOF11とした後に、さらに巻取機48で巻き取った。このとき得られたPOF11は、クラッド部22の外径D1が約750μm、アウターコア部24の外径D2が約420μm、インナーコア部25の外径D3が約187μmであった。このとき、コア部21の外径とクラッド部22との外径は、クラッド部22の外径D1≧コア部21の外径D2×1.5を満足する。また、実施例1においては、巻き取った後のPOF11を、190℃の恒温槽で5分間加熱した後、室温で自然冷却させた。
作製したPOF11を、送出機71(図5参照)を用いて、0.49Nの張力で連続して被覆部73に送り込んだ後に、被覆装置(φ30mmスクリュー押出機;図示しない)を用いて被覆材91をその外周に被覆させてプラスチック光ケーブル17を作製した。このとき、被覆材91としては、LDPE(MFR=50)を用いて、被覆温度を130℃、20m/分の被覆条件で、被覆後のクラッド部22の外径D1が1.2mmとなるように被覆した。外周を被覆材で被覆したプラスチック光ケーブル17を、冷却部75に送り込んで、冷却させた。このとき、冷却手段としては、15℃の水を入れた水槽を用いた。冷却した後、プラスチック光ケーブル17を引取部76に送り込み、続いて、巻取機83で巻き取った。巻取時の張力は、0.98Nとなるように調整した。なお、被覆前後でのPOF11の伸び率は0.1%〜0.3%であった。
〔比較例1〕
実施例1と同じ材料,製造方法(条件、装置を含む)を用いてプラスチック光ケーブル17を作製した。ただし、押出ダイ41からは、クラッド部22の外径D1が1mmであり、アウターコア部24の外径D2が600μm、インナーコア部25の外径D3が300μmのPOF原糸12を押し出した。押出されたPOF原糸12は加熱延伸されてPOF11とした。巻取機48で巻き取った際には、クラッド部22の外径D1が約750μm、アウターコア部24の外径D2が約502μm、インナーコア部25の外径D3が約224μmであった。なお、被覆前後でのPOF11の伸び率は、0.3%〜0.8%であった。
〔比較例2〕
実施例1と同じ材料,製造方法(条件、装置を含む)を用いてプラスチック光ケーブル17を作製した。押出ダイ41からは、実施例1と同形のPOF11を作製した。ただし、被覆工程70では、実施例1と同じ被覆材91および被覆速度を用いたが、被覆温度を140℃と変更して被覆した。なお、被覆前後でのPOF11の伸び率は2.0%〜4.0%であった。
〔評価方法〕
被覆時のPOF11の伝送損失を、カットバック法により測定した。このとき、伝送損失が200dB/km以下であれば、実用上問題ないレベル(○)とし、同等あるいは若干劣るレベル(△)、使用不可能なレベル(×)の3段階で判断・評価した。
表1に、本発明により実施した実施例1、比較例1、比較例2の評価結果を示す。
Figure 2006126701
表1からも明らかなように、実施例1では、D1=750μm,D2=420μmでああり、D1≧D2×1.5を満たすPOF11を用いて、その伸び率が1%以下(0.1%〜0.3%)になるようにしてプラスチック光ケーブル17を作製した。その結果、被覆時の伝送損失の値が140〜160dB/kmであり、実用上問題ないレベル(○)であることを確認した。比較例1では、D1=750μm,D2=502μmであり、D1≦D2×1.5となるようなコア部22の外径が大きいPOF11を用いて、被覆時における伸び率が0.3〜0.8%になるようにしてプラスチック光ケーブル17を作製した。その結果、被覆時の伝送損失の値が200〜230dB/kmとなり、200dB/km以上ではあるが、実用上若干の問題が残るレベル(△)であることを確認した。さらに、比較例2では、実施例1と同様にしてD1が750μmで、D2が420μmであるために、D1≧D2×1.5を充足するが、被覆時においてPOF11の伸び率が2.0〜4.0%となるように、被覆時において伸び率が大きくなるようにして被覆を行い、プラスチック光ケーブル17を作製した。その結果、被覆時の伝送損失の値が230〜250dB/kmとなり、実用上使用できないレベル(×)であることを確認した。以上より、POF11の外周を被覆材で被覆してプラスチック光ケーブル17を製造する際において、伝送損失の上昇を抑制し、かつ施工性の優れたプラスチック光ケーブル17を製造するためには、クラッド部22の外径D1≧コア部21の外径D2×1.5を充足するPOF11を用いて、被覆時におけるその伸び率を1%以下にすることが有効であることを確認することができた。
本発明を実施したプラスチック光ケーブルを製造するフロー図である。 POFの断面図である。 図2のPOFの断面径方向における屈折率を示す図である。 本発明でのPOF製造ラインの概略図である。 本発明での被覆工程の概略図である。 本発明での被覆装置の概略図である。
符号の説明
11 プラスチック光ファイバ
12 POF原糸
17 プラスチック光ケーブル
18 被覆工程
21 コア部
22 クラッド部
24 アウターコア部
25 インナーコア部
40 POF製造ライン
42 溶融押出装置
70 被覆工程
73 被覆部
90 被覆装置


Claims (3)

  1. コア部と、このコア部よりも屈折率が低いクラッド部とを有するプラスチック光ファイバへ樹脂を被覆するプラスチック光ファイバの被覆方法において、
    前記クラッド部の外径をD1、前記コア部の外径をD2としたときに、
    D1≧D2×1.5の関係を満たし、前記プラスチック光ファイバの伸び率を1%以下として被覆を行うことを特徴とするプラスチック光ファイバの被覆方法。
  2. 前記コア部が、中央部に向かうにしたがい、その屈折率が次第に高くなる分布を有することを特徴とする請求項1記載のプラスチック光ファイバの被覆方法。
  3. 前記コア部および/またはクラッド部が、(メタ)アクリル酸エステルよりなる重合体を主成分とすることを特徴とする請求項1または2記載のプラスチック光ファイバの被覆方法。

JP2004317770A 2004-11-01 2004-11-01 プラスチック光ファイバの被覆方法 Pending JP2006126701A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004317770A JP2006126701A (ja) 2004-11-01 2004-11-01 プラスチック光ファイバの被覆方法
PCT/JP2005/020328 WO2006049266A1 (en) 2004-11-01 2005-10-31 Method and apparatus for producing plastic optical fiber, and method and apparatus for coating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317770A JP2006126701A (ja) 2004-11-01 2004-11-01 プラスチック光ファイバの被覆方法

Publications (1)

Publication Number Publication Date
JP2006126701A true JP2006126701A (ja) 2006-05-18

Family

ID=36721490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317770A Pending JP2006126701A (ja) 2004-11-01 2004-11-01 プラスチック光ファイバの被覆方法

Country Status (1)

Country Link
JP (1) JP2006126701A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175362A (ja) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルの製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272518A (ja) * 1987-04-30 1988-11-10 Tatsuta Electric Wire & Cable Co Ltd プラスチツク光フアイバ−への保護層成形法
JPH11174242A (ja) * 1997-12-15 1999-07-02 Kurabe Ind Co Ltd プラスチック光ファイバ
JP2003270453A (ja) * 2002-03-18 2003-09-25 Fuji Photo Film Co Ltd プラスチック光ファイバケーブル及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272518A (ja) * 1987-04-30 1988-11-10 Tatsuta Electric Wire & Cable Co Ltd プラスチツク光フアイバ−への保護層成形法
JPH11174242A (ja) * 1997-12-15 1999-07-02 Kurabe Ind Co Ltd プラスチック光ファイバ
JP2003270453A (ja) * 2002-03-18 2003-09-25 Fuji Photo Film Co Ltd プラスチック光ファイバケーブル及びその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175362A (ja) * 2008-01-23 2009-08-06 Mitsubishi Rayon Co Ltd プラスチック光ファイバケーブルの製造方法

Similar Documents

Publication Publication Date Title
US7460756B2 (en) Plastic optical fiber and method for manufacturing the same
JP2006208551A (ja) プラスチック光ファイバ素線の製造方法およびその製造設備
US7509018B2 (en) Plastic optical fiber and production method thereof
US20070259107A1 (en) Method and Apparatus for Coating Plastic Optical Fiber with Resin
US20070154633A1 (en) Method and device for coating plastic optical fiber with resin
US20090098401A1 (en) Plastic optical fiber preform and production method thererof
US20080277810A1 (en) Method and Apparatus for Manufacturing Plastic Optical Fiber
US7228038B2 (en) Plastic optical fibers and processes for producing them
JP2006163031A (ja) プラスチック光学部材の製造方法及び製造装置
JP2006126701A (ja) プラスチック光ファイバの被覆方法
JP2006058774A (ja) 光ファイバケーブル及びその製造方法
JP2006058775A (ja) プラスチック光ファイバの被覆方法
JP2005321720A (ja) 光学部材用クラッドパイプの製造方法及び装置
JP2006163007A (ja) プラスチック光ファイバの製造方法及び製造装置
JP2005321761A (ja) プラスチック光ファイバの被覆方法及び装置
JP2005258218A (ja) プラスチック光ファイバ用クラッドパイプの製造方法及び装置
JP2005292668A (ja) プラスチック光ファイバの製造方法
JP2006215415A (ja) プラスチック光ファイバケーブル
JP2006123432A (ja) 連続成形装置及び連続成形方法
JP2007086250A (ja) プラスチック光学材料の製造方法
JP2005321721A (ja) プラスチック光ファイバの製造装置及び製造方法
WO2006049266A1 (en) Method and apparatus for producing plastic optical fiber, and method and apparatus for coating the same
JP2005292667A (ja) プラスチック光ファイバ及びその製造方法
JP2004191925A (ja) プラスチック光学部材用プリフォームとその製造方法、およびプラスチック光ファイバ
JP2006126703A (ja) プラスチック光学部材の製造方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630