JP2006117517A - Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide - Google Patents

Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide Download PDF

Info

Publication number
JP2006117517A
JP2006117517A JP2005279125A JP2005279125A JP2006117517A JP 2006117517 A JP2006117517 A JP 2006117517A JP 2005279125 A JP2005279125 A JP 2005279125A JP 2005279125 A JP2005279125 A JP 2005279125A JP 2006117517 A JP2006117517 A JP 2006117517A
Authority
JP
Japan
Prior art keywords
lithium
transition metal
compound
water
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005279125A
Other languages
Japanese (ja)
Other versions
JP4496150B2 (en
Inventor
Nariaki Moriyama
斉昭 森山
Takuya Matsubara
拓也 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2005279125A priority Critical patent/JP4496150B2/en
Publication of JP2006117517A publication Critical patent/JP2006117517A/en
Application granted granted Critical
Publication of JP4496150B2 publication Critical patent/JP4496150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an industrially advantageous manufacturing method capable of easily obtaining a homogeneous lithium-transition metal complex oxide even with a common drying method in a wet process by subsequent heating and firing. <P>SOLUTION: The method for manufacturing the lithium-transition metal complex oxide characteristically comprises a step of reacting a transition metal complex carbonate containing nickel as an essential ingredient and at least one kind of transition metal selected from among cobalt, manganese, iron, copper, zinc, and chromium with a water-soluble lithium compound in a water-based solvent liquid under ordinary pressure, subsequently a first process of obtaining a lithium-transition metal complex oxide precursor composition by solid-liquid separation, and a second process of obtaining the lithium-transition metal complex oxide by heating and firing the precursor composition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム電池の電極材料などに有用な化合物である、遷移金属として少なくともニッケルを含むリチウム・遷移金属複合酸化物を、工業的有利に製造する方法、ならびにその方法で得られたリチウム・遷移金属複合酸化物を用いてなるリチウム電池に関する。   The present invention relates to a method for industrially advantageously producing a lithium / transition metal composite oxide containing at least nickel as a transition metal, which is a useful compound for an electrode material of a lithium battery, and the lithium / lithium obtained by the method. The present invention relates to a lithium battery using a transition metal composite oxide.

リチウム二次電池は、エネルギー密度が高く、充放電サイクル特性に優れていることから、急速に普及している。リチウム二次電池の電極活物質には、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム等が用いられており、近年、ニッケル、コバルト、マンガン、鉄、銅、亜鉛、クロム等の遷移金属を複合化したリチウム・遷移金属複合酸化物も提案されている。中でも、遷移金属の少なくとも1種がニッケルである前記の複合酸化物は、特徴的な電池特性を示すことがわかっている。例えば、高容量且つ熱安定性に優れた層状リチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト複合酸化物及びリチウム・ニッケル・マンガン・コバルト複合酸化物や、高電位で充放電可能なスピネル型リチウム・ニッケル・マンガン複合酸化物などの材料が注目されている。   Lithium secondary batteries are rapidly spreading because of their high energy density and excellent charge / discharge cycle characteristics. Lithium secondary battery electrode active materials include lithium cobaltate, lithium nickelate, lithium manganate, and lithium titanate. Recently, nickel, cobalt, manganese, iron, copper, zinc, chromium, etc. Lithium / transition metal composite oxides composited with transition metals have also been proposed. Among these, it has been found that the above complex oxide in which at least one of the transition metals is nickel exhibits characteristic battery characteristics. For example, layered lithium / nickel / manganese composite oxides with high capacity and excellent thermal stability, lithium / nickel / cobalt composite oxides and lithium / nickel / manganese / cobalt composite oxides, and spinels that can be charged and discharged at high potential. Materials such as type lithium / nickel / manganese composite oxides are attracting attention.

遷移金属として少なくともニッケルを含むリチウム遷移金属複合酸化物の製造方法としては、リチウム化合物と遷移金属化合物とを混合した後、加熱焼成する方法、所謂混合焼成法が知られている。また、リチウム化合物と遷移金属化合物とを媒液中で反応させた後、反応生成物を加熱焼成する方法、所謂湿式法も知られている。前記の混合焼成法では、生成物の結晶相や化学組成が不均一となりやすい。そのため、例えば、焼成時にホウ素等のフラックスを添加して焼成する技術(特許文献1参照)が知られている。また、湿式法としては、例えば、ニッケル化合物を含む複数の遷移金属化合物を水酸化ナトリウム等のアルカリと湿式で反応させて特定の組成の複合塩基性金属塩を得、この複合塩基性金属塩と水溶性リチウム化合物を、水系媒液中で反応させた後、反応生成物を含むスラリーを噴霧乾燥し、加熱焼成する方法(特許文献2)が知られている。   As a method for producing a lithium transition metal composite oxide containing at least nickel as a transition metal, a so-called mixed firing method is known in which a lithium compound and a transition metal compound are mixed and then heated and fired. There is also known a so-called wet method, in which a lithium compound and a transition metal compound are reacted in a liquid medium and then the reaction product is heated and fired. In the mixed firing method, the crystal phase and chemical composition of the product tend to be non-uniform. Therefore, for example, a technique (see Patent Document 1) is known in which a flux such as boron is added during firing. In addition, as a wet method, for example, a plurality of transition metal compounds including a nickel compound are reacted with an alkali such as sodium hydroxide in a wet manner to obtain a complex basic metal salt having a specific composition. There is known a method (Patent Document 2) in which a water-soluble lithium compound is reacted in an aqueous medium, and then a slurry containing a reaction product is spray-dried and heated and fired.

特開2003−146662号公報(第1及び2頁)JP 2003-14662 A (first and second pages) 特開平10−69910号公報(第1、2及び6頁)JP-A-10-69910 (pages 1, 2 and 6)

特許文献2記載の方法は、複合塩基性金属塩と水溶性リチウム化合物とを湿式で反応させる方法であるが、得られる反応生成物は棚式乾燥等の時間のかかる通常の乾燥法では、表面にリチウムが移行し、不均一な組成物となり、焼成によっても均一なリチウム・遷移金属複合酸化物が得られないため、乾燥を噴霧乾燥法によって行うことに特徴を有する方法である。しかしながら、この方法で大量生産するには大規模な噴霧乾燥設備を要するため、大量生産には不向きである。そこで、本発明は、湿式法において通常の乾燥方法によっても、その後の加熱焼成により容易に均質なリチウム・遷移金属複合酸化物の得られる工業的に有利な製造方法を提供することを課題とする。   The method described in Patent Document 2 is a method in which a complex basic metal salt and a water-soluble lithium compound are reacted in a wet manner. However, the reaction product obtained is a surface of a normal drying method such as shelf drying. Lithium migrates to form a heterogeneous composition, and a uniform lithium / transition metal composite oxide cannot be obtained even by firing. However, mass production by this method requires a large-scale spray-drying facility, which is not suitable for mass production. Therefore, an object of the present invention is to provide an industrially advantageous production method in which a homogeneous lithium / transition metal composite oxide can be easily obtained by subsequent heating and firing even by a normal drying method in a wet method. .

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、ニッケルを含む複数の特定種の遷移金属を含む遷移金属複合炭酸塩、特に、これら遷移金属から特定の方法で得られる遷移金属複合炭酸塩は、水系において水溶性リチウム化合物との反応性に富み、しかもリチウムとの反応によって得られる前駆体組成物は通常の乾燥方法によっても、その後の加熱焼成により容易に均質なリチウム・遷移金属複合酸化物の得られることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have obtained transition metal composite carbonates containing a plurality of specific types of transition metals including nickel, in particular, obtained from these transition metals by a specific method. The transition metal composite carbonate is rich in reactivity with water-soluble lithium compounds in an aqueous system, and the precursor composition obtained by reaction with lithium can be easily transformed into homogeneous lithium by a subsequent drying method or by subsequent heating and firing. -The present inventors have found that a transition metal complex oxide can be obtained and completed the present invention.

即ち、本発明は、ニッケルを必須成分とし、さらにコバルト、マンガン、鉄、銅、亜鉛、クロムから選ばれる少なくとも一種の遷移金属とを含む遷移金属複合炭酸塩と水溶性リチウム化合物とを水系媒液中で常圧下で反応させた後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る第一の工程、該前駆体組成物を加熱焼成してリチウム・遷移金属複合酸化物を得る第二の工程を含むことを特徴とするリチウム・遷移金属複合酸化物の製造方法である。   That is, the present invention provides an aqueous medium solution of a transition metal composite carbonate containing nickel as an essential component and further containing at least one transition metal selected from cobalt, manganese, iron, copper, zinc, and chromium, and a water-soluble lithium compound. The first step of obtaining a lithium / transition metal composite oxide precursor composition by solid-liquid separation after reacting under normal pressure in the lithium / transition metal composite oxide by heating and firing the precursor composition A process for producing a lithium-transition metal composite oxide, comprising a second step of obtaining

本発明のリチウム・遷移金属複合酸化物の製造方法は、湿式法において通常の乾燥方法によっても、その後の加熱焼成により容易に均質なリチウム・遷移金属複合酸化物の得られる工業的に有利な製造方法である。また、得られた複合酸化物を電極活物質として用いると、電池特性が優れたリチウム電池が得られる。   The method for producing a lithium / transition metal composite oxide according to the present invention is an industrially advantageous production in which a homogeneous lithium / transition metal composite oxide can be easily obtained by subsequent heating and firing even by a usual drying method in a wet method. Is the method. Further, when the obtained composite oxide is used as an electrode active material, a lithium battery having excellent battery characteristics can be obtained.

本発明は、リチウム・遷移金属複合酸化物の製造方法であって、ニッケルを必須成分とし、さらにコバルト、マンガン、鉄、銅、亜鉛、クロムから選ばれる少なくとも一種の遷移金属とを含む遷移金属複合炭酸塩と水溶性リチウム化合物とを水系媒液中で常圧下で反応させた後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る第一の工程、該前駆体組成物を加熱焼成してリチウム・遷移金属複合酸化物を得る第二の工程を含むことを特徴とする。   The present invention is a method for producing a lithium / transition metal composite oxide, comprising nickel as an essential component and further containing at least one transition metal selected from cobalt, manganese, iron, copper, zinc, and chromium. A first step of reacting a carbonate and a water-soluble lithium compound in an aqueous medium solution under normal pressure, followed by solid-liquid separation to obtain a lithium / transition metal composite oxide precursor composition, the precursor composition; And a second step of obtaining a lithium / transition metal composite oxide by heating and baking.

先ず、第一の工程では、ニッケルを必須成分とし、さらにコバルト、マンガン、鉄、銅、亜鉛、クロムから選ばれる少なくとも一種の遷移金属とを含む遷移金属複合炭酸塩と水溶性リチウム化合物とを水系媒液中で常圧下で反応させた後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る。第一の工程で用いる遷移金属複合炭酸塩としては、水系媒液中で、コバルトイオン、マンガンイオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオンから選ばれる少なくとも一種の遷移金属イオン及びニッケルイオンを、少なくとも炭酸イオンと反応させて得た遷移金属複合炭酸塩を用いると水系において水溶性リチウム化合物との反応性に富むため好ましい。炭酸イオンと反応させる方法としては、(1)水溶性コバルト化合物、水溶性マンガン化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物及び水溶性ニッケル化合物を水系媒液中で塩基性炭酸化合物を含む塩基性化合物で中和する方法、あるいは、(2)水溶性コバルト化合物、水溶性マンガン化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物及び水溶性ニッケル化合物を水系媒液中で、炭酸ガスを吹き込みながら塩基性化合物で中和する方法が好ましい。用いるニッケル及び前記遷移金属の水溶性化合物としては、これらの硫酸塩、塩化物、硝酸塩等が挙げられ、塩基性炭酸化合物としては炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸アンモニウム、炭酸水素アンモニウム等が挙げられる。また、(1)の方法において用いる塩基性化合物として塩基性炭酸化合物のほかに塩基性水酸化物を併用してもよい。その場合、塩基性水酸化物としては水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物を用いることが出来る。(2)の方法において用いる塩基性化合物としては、塩基性炭酸化合物、塩基性水酸化物等が挙げられ、特に塩基性炭酸化合物を用いて炭酸ガスと併用すると、重質な遷移金属複合炭酸塩が生成されるので好ましい。   First, in the first step, a transition metal composite carbonate containing nickel as an essential component and further containing at least one transition metal selected from cobalt, manganese, iron, copper, zinc, and chromium and a water-soluble lithium compound are aqueous. After reacting under normal pressure in a liquid medium, solid-liquid separation is performed to obtain a lithium / transition metal composite oxide precursor composition. The transition metal composite carbonate used in the first step includes at least one transition metal ion selected from cobalt ions, manganese ions, iron ions, copper ions, zinc ions, and chromium ions and nickel ions in an aqueous medium. It is preferable to use a transition metal composite carbonate obtained by reacting at least with a carbonate ion because it is highly reactive with a water-soluble lithium compound in an aqueous system. As a method of reacting with carbonate ions, (1) at least one water-soluble transition selected from water-soluble cobalt compounds, water-soluble manganese compounds, water-soluble iron compounds, water-soluble copper compounds, water-soluble zinc compounds, and water-soluble chromium compounds. A method of neutralizing a metal compound and a water-soluble nickel compound with a basic compound containing a basic carbonate compound in an aqueous medium, or (2) a water-soluble cobalt compound, a water-soluble manganese compound, a water-soluble iron compound, a water-soluble A method in which at least one water-soluble transition metal compound and water-soluble nickel compound selected from a copper compound, a water-soluble zinc compound, and a water-soluble chromium compound is neutralized with a basic compound in an aqueous medium while blowing carbon dioxide gas is preferable. . Examples of the water-soluble compounds of nickel and the transition metal used include these sulfates, chlorides, nitrates, etc., and basic carbonate compounds include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium carbonate, Examples include ammonium bicarbonate. In addition to the basic carbonate compound, a basic hydroxide may be used in combination as the basic compound used in the method (1). In that case, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide can be used as the basic hydroxide. Examples of the basic compound used in the method (2) include a basic carbonate compound, a basic hydroxide, and the like. Particularly, when a basic carbonate compound is used in combination with carbon dioxide gas, a heavy transition metal composite carbonate is used. Is preferable.

(1)の方法において、ニッケル及び前記遷移金属の水溶性化合物と塩基性炭酸化合物を含む塩基性化合物との反応は、ニッケル及び前記遷移金属の水溶性化合物の水溶液中に塩基性炭酸化合物を含む塩基性化合物の水溶液を添加して行っても、その逆の添加順序でもよく、あるいは、水系媒液中にニッケル及び遷移金属の水溶性化合物、塩基性炭酸化合物を含む塩基性化合物の各水溶液を並行添加して行ってもよい。また、(2)の方法においても、ニッケル及び前記遷移金属の水溶性化合物の水溶液中に炭酸ガスを通気しながら塩基性水酸化物を含む塩基性化合物の水溶液を添加しても、逆に、塩基性水酸化物を含む塩基性化合物の水溶液中に炭酸ガスを通気しながらニッケル及び前記遷移金属の水溶性化合物の水溶液を添加してもよく、あるいは、水系媒液中に炭酸ガスを通気しながらニッケル及び前記遷移金属の水溶性化合物、塩基性水酸化物を含む塩基性化合物の各水溶液とを並行添加して行ってもよい。特に、(1)、(2)いずれの方法でも、並行添加を行うと、粒度分布が整った遷移金属複合炭酸塩が得られ易く、このものを用いると電池特性が優れたリチウム・遷移金属複合酸化物が得られ易いので好ましい。並行添加は、1〜20時間かけて徐々に行うと、一層粒度分布が整ったものが得られ易いので好ましく、3〜12時間の範囲が更に好ましい。反応温度は、いずれの方法でも、室温以上90℃以下の範囲であると、反応が進み易いので好ましく、45〜80℃の範囲が更に好ましい。(1)の方法における塩基性炭酸化合物は、ニッケル及び前記遷移金属の水溶性化合物の中和当量から2.5倍当量の範囲で用いるのが好ましい。塩基性水酸化物を併用する場合は、塩基性炭酸化合物と同当量以下の量を用いるのが好ましい。塩基性水酸化物の使用量が塩基性炭酸化合物と同当量より多くなると、遷移金属複合炭酸塩以外にも、遷移金属水酸化物が副生しやすくなる。(2)の方法においては、塩基性化合物を、ニッケル及び前記遷移金属の水溶性化合物の中和当量から2.5倍当量の範囲で用いるのが好ましく、炭酸ガスの使用量は、ニッケル及び前記遷移金属が炭酸塩を形成するのに必要な化学量論量以上であれば、特に制限は無い。   In the method of (1), the reaction between the water-soluble compound of nickel and the transition metal and the basic compound containing a basic carbonate compound includes a basic carbonate compound in the aqueous solution of the water-soluble compound of nickel and the transition metal. An aqueous solution of a basic compound may be added or vice versa, or each aqueous solution of a basic compound containing nickel and transition metal water-soluble compounds and basic carbonic acid compounds in an aqueous medium solution. You may carry out by adding in parallel. Also in the method (2), even if an aqueous solution of a basic compound containing a basic hydroxide is added to the aqueous solution of the water-soluble compound of nickel and the transition metal while a carbon dioxide gas is passed, An aqueous solution of a water-soluble compound of nickel and the transition metal may be added while aeration of carbon dioxide gas in an aqueous solution of a basic compound containing a basic hydroxide, or carbon dioxide gas may be aerated in an aqueous medium. However, nickel and the transition metal water-soluble compound, and each aqueous solution of a basic compound containing a basic hydroxide may be added in parallel. In particular, in any of the methods (1) and (2), when parallel addition is performed, a transition metal composite carbonate having a uniform particle size distribution can be easily obtained. Since an oxide is easy to be obtained, it is preferable. When the parallel addition is gradually performed over 1 to 20 hours, a product with a more uniform particle size distribution is easily obtained, and the range of 3 to 12 hours is more preferable. In any method, the reaction temperature is preferably in the range of room temperature to 90 ° C. because the reaction easily proceeds, and the range of 45 to 80 ° C. is more preferable. The basic carbonic acid compound in the method (1) is preferably used in the range of neutralization equivalent to 2.5 times equivalent of nickel and the water-soluble compound of the transition metal. When a basic hydroxide is used in combination, it is preferable to use an amount equal to or less than that of the basic carbonate compound. When the usage-amount of a basic hydroxide becomes more than the same equivalent as a basic carbonate compound, a transition metal hydroxide will become easy to byproduce besides a transition metal composite carbonate. In the method (2), it is preferable to use the basic compound in a range of neutralization equivalent to 2.5 times equivalent of nickel and the water-soluble compound of the transition metal. There is no particular limitation as long as the transition metal is more than the stoichiometric amount necessary for forming the carbonate.

水溶性ニッケル化合物と前記遷移金属の水溶性化合物の配合割合は、目的とするリチウム・遷移金属複合酸化物の組成に応じて適宜設定することができる。例えば、リチウム・ニッケル・マンガン複合酸化物であれば、Mn/Ni=1/9〜9(モル比)、リチウム・ニッケル・コバルト複合酸化物であれば、Co/Ni=1/9〜9(モル比)、リチウム・ニッケル・マンガン・コバルト複合酸化物であれば、Mn/Ni=0.1〜8、Co/Ni=0.05〜9(何れもモル比)に設定することにより、所望の組成のリチウム・遷移金属複合酸化物を得ることができる。   The mixing ratio of the water-soluble nickel compound and the water-soluble compound of the transition metal can be appropriately set according to the composition of the target lithium / transition metal composite oxide. For example, in the case of a lithium / nickel / manganese composite oxide, Mn / Ni = 1/9 to 9 (molar ratio), and in the case of a lithium / nickel / cobalt composite oxide, Co / Ni = 1/9 to 9 ( In the case of a lithium / nickel / manganese / cobalt composite oxide, Mn / Ni = 0.1 to 8 and Co / Ni = 0.05 to 9 (all in molar ratio) A lithium / transition metal composite oxide having the following composition can be obtained.

上記方法で得られる遷移金属複合炭酸塩は、炭酸ニッケル、炭酸マンガン、炭酸コバルトと同様の六方晶の結晶構造を有する化合物であり、粉末X線回折を測定することにより確認することができる。   The transition metal composite carbonate obtained by the above method is a compound having a hexagonal crystal structure similar to nickel carbonate, manganese carbonate, and cobalt carbonate, and can be confirmed by measuring powder X-ray diffraction.

次いで、前記複合炭酸塩と水溶性リチウム化合物とを、水系媒液中で、常圧下で反応させた後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る。上記方法で得られる遷移金属複合炭酸塩は水溶性リチウム化合物との反応性に富んでいるため、反応温度は常圧で反応が行える100℃未満であれば特に制限は無く、遷移金属元素の種類に応じて適宜設定するが、通常は、室温以上90℃未満の範囲の温度が好ましく、室温以上60℃以下の範囲が更に好ましい。水溶性リチウム化合物としては、水酸化リチウム、硝酸リチウム、硫酸リチウム等が挙げられ、中でも水酸化リチウムは該化合物との反応性に優れているので、これを用いるのが好ましい。水溶性リチウム化合物の添加量はLi成分が、複合炭酸塩に含まれる遷移金属成分に対してモル比で0.5〜1.5に相当する量に設定すれば所望のリチウム・遷移複合酸化物を得ることが出来る。   Next, the composite carbonate and the water-soluble lithium compound are reacted in an aqueous medium solution under normal pressure, and then solid-liquid separated to obtain a lithium / transition metal composite oxide precursor composition. Since the transition metal composite carbonate obtained by the above method is rich in reactivity with a water-soluble lithium compound, there is no particular limitation as long as the reaction temperature is less than 100 ° C. at which the reaction can be performed at normal pressure. The temperature is appropriately set depending on the temperature, but usually, a temperature in the range of room temperature to less than 90 ° C is preferable, and a range of room temperature to 60 ° C is more preferable. Examples of the water-soluble lithium compound include lithium hydroxide, lithium nitrate, lithium sulfate and the like. Among them, lithium hydroxide is excellent in reactivity with the compound, and thus it is preferable to use this. The amount of the water-soluble lithium compound added is the desired lithium / transition composite oxide if the Li component is set to an amount corresponding to a molar ratio of 0.5 to 1.5 with respect to the transition metal component contained in the composite carbonate. Can be obtained.

反応後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る。固液分離は通常のろ過・乾燥法、減圧乾燥法、蒸発乾固法、凍結乾燥法、噴霧乾燥法等、特に制限は無いが、通常のろ過・乾燥法を用いてでも、その後の加熱焼成により容易に均質なリチウム・遷移金属複合酸化物の得られるので、工業的に有利な方法であり好ましい。   After the reaction, solid-liquid separation is performed to obtain a lithium / transition metal composite oxide precursor composition. Solid-liquid separation is not particularly limited, such as normal filtration / drying method, vacuum drying method, evaporation / drying method, freeze-drying method, spray drying method, etc. Thus, a homogeneous lithium-transition metal composite oxide can be easily obtained, which is an industrially advantageous method and is preferable.

また、前記複合炭酸塩と水溶性リチウム化合物との反応は、前記複合炭酸塩に含まれる炭酸成分と、リチウム化合物に含まれるリチウムとが反応して炭酸リチウムを生成させ、一方で、ニッケル及び前記遷移金属が、ニッケルと前記遷移金属との複合水酸化物を生成させるものと推測され、前駆体組成物は、これら炭酸リチウムと複合水酸化物とを含む組成物であり、粉末X線回折を測定することにより確認することができる。   In addition, the reaction between the composite carbonate and the water-soluble lithium compound causes the carbonate component contained in the composite carbonate and lithium contained in the lithium compound to react to produce lithium carbonate, while nickel and the lithium The transition metal is presumed to form a composite hydroxide of nickel and the transition metal, and the precursor composition is a composition containing these lithium carbonate and composite hydroxide, and the powder X-ray diffraction is This can be confirmed by measuring.

第二の工程では、前記第一の工程で得られた前駆体組成物を加熱焼成してリチウム・遷移金属複合酸化物を得る。加熱焼成温度は、目的とする複合酸化物に応じて適宜選択することができる。例えば、前記のリチウム・ニッケル・マンガン複合酸化物、リチウム・ニッケル・コバルト複合酸化物、リチウム・ニッケル・マンガン・コバルト複合酸化物等であれば、概ね700〜1100℃の範囲が好ましい。粒子の焼結を防ぐためには、1000℃以下とするのが好ましいので、より好ましい加熱焼成温度は700〜1000℃の範囲である。また加熱時間は1〜20時間であればよく、3〜10時間であれば更に好ましい。加熱焼成後、得られた複合酸化物が焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマミル、ピンミルなどを用いて粉砕してもよい。   In the second step, the precursor composition obtained in the first step is heated and fired to obtain a lithium / transition metal composite oxide. The heating and firing temperature can be appropriately selected according to the target composite oxide. For example, in the case of the above lithium / nickel / manganese composite oxide, lithium / nickel / cobalt composite oxide, lithium / nickel / manganese / cobalt composite oxide, etc., the range of about 700 to 1100 ° C. is preferable. In order to prevent the sintering of the particles, it is preferable to set the temperature to 1000 ° C. or lower, and thus a more preferable heating and baking temperature is in the range of 700 to 1000 ° C. The heating time may be 1 to 20 hours, and more preferably 3 to 10 hours. If the obtained composite oxide is sintered and agglomerated after heating and firing, it may be pulverized using a flake crusher, a hammer mill, a pin mill, or the like, if necessary.

本発明で得られるリチウム・遷移金属複合酸化物としては、例えば、リチウム・ニッケル・マンガン複合酸化物(LiNiMn1−x(0.1≦x≦0.9、より好ましくは0.2≦x≦0.85)またはLiNiMn2−y(0.2≦y<1.0、より好ましくは0.3≦y≦0.8))、リチウム・ニッケル・コバルト複合酸化物(LiNiCo1−z(0.1≦z≦0.9、より好ましくは0.2≦z≦0.85))、リチウム・ニッケル・マンガン・コバルト複合酸化物(LiNiMnCo1−p−q(0.1≦p≦0.9、0<q≦0.8、p+q<1、より好ましくは0.2≦p≦0.85、0.2≦q≦0.8、0.4≦p+q<1))が挙げられる。上記複合酸化物において、リチウムとニッケル及び遷移金属のモル比は特に上記組成に限定されるものではなく、コバルト、マンガン、鉄、銅、亜鉛、クロムから選ばれる少なくとも一種の遷移金属をMで表すと、Li/(Ni+M)=0.8〜1.5の範囲、より好ましくは0.9〜1.3の範囲の層状化合物、Li/(Ni+M)=0.5〜0.8の範囲、より好ましくは0.5〜0.75の範囲のスピネル型化合物が得られる。また、電池特性を改良する目的で、リチウム、ニッケル及び前記遷移金属以外の異種元素を、その結晶格子中にドープすることができる。異種元素としては、例えば熱安定性を改良する目的ではAl、Ti、Zr等が挙げられ、またサイクル特性を改良する目的ではMg、Ca、Al、B等が挙げられる。異種元素をドープする方法は、例えば、リチウム・遷移金属複合酸化物の表面に異種金属の化合物を沈着させた後、加熱焼成する等の公知の方法に従ってもよい。あるいは、本発明の第一の工程において、異種元素の水溶性化合物を添加してもよい。また、複合酸化物の粒子表面に、異種元素を酸化物、複合酸化物等の形態で被覆することもできる。 Examples of the lithium / transition metal composite oxide obtained in the present invention include a lithium / nickel / manganese composite oxide (LiNi x Mn 1-x O 2 (0.1 ≦ x ≦ 0.9, more preferably 0.8. 2 ≦ x ≦ 0.85) or LiNi y Mn 2−y O 4 (0.2 ≦ y <1.0, more preferably 0.3 ≦ y ≦ 0.8)), lithium / nickel / cobalt composite oxidation (LiNi z Co 1-z O 2 (0.1 ≦ z ≦ 0.9, more preferably 0.2 ≦ z ≦ 0.85)), lithium / nickel / manganese / cobalt composite oxide (LiNi p Mn q Co 1-p-q O 2 (0.1 ≦ p ≦ 0.9, 0 <q ≦ 0.8, p + q <1, more preferably 0.2 ≦ p ≦ 0.85, 0.2 ≦ q ≦ 0.8, 0.4 ≦ p + q <1)). In the composite oxide, the molar ratio of lithium to nickel and the transition metal is not particularly limited to the above composition, and at least one transition metal selected from cobalt, manganese, iron, copper, zinc, and chromium is represented by M. Li / (Ni + M) = 0.8 to 1.5, more preferably a layered compound in the range of 0.9 to 1.3, Li / (Ni + M) = 0.5 to 0.8, More preferably, a spinel compound in the range of 0.5 to 0.75 is obtained. Further, for the purpose of improving battery characteristics, different elements other than lithium, nickel and the transition metal can be doped into the crystal lattice. Examples of the different elements include Al, Ti, Zr and the like for the purpose of improving the thermal stability, and Mg, Ca, Al, B and the like for the purpose of improving the cycle characteristics. The method of doping the different element may be a known method such as, for example, depositing a compound of a different metal on the surface of the lithium / transition metal composite oxide and then baking it. Or you may add the water-soluble compound of a different element in the 1st process of this invention. In addition, the surface of the composite oxide particles can be coated with a different element in the form of an oxide, composite oxide or the like.

次に、本発明はリチウム電池であって、前記製造方法で得られたリチウム・遷移金属複合酸化物を正極活物質として用いることを特徴とする。リチウム電池用正極は、前記複合酸化物にカーボンブラックなどの導電材とフッ素樹脂などのバインダを加え、適宜成形または塗布して得られる。リチウム電池は前記の正極、負極及び電解液とからなる。負極材料としては、金属リチウム、リチウム合金など、あるいはグラファイト、コークスなどの炭素系材料などが用いられる。また、電解液には、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、などの溶媒にLiPF、LiClO、LiCFSO、LiN(CFSO、LiBFなどのリチウム塩を溶解させたものなど常用の材料を用いることができる。 Next, the present invention is a lithium battery, wherein the lithium / transition metal composite oxide obtained by the above production method is used as a positive electrode active material. The positive electrode for a lithium battery is obtained by adding a conductive material such as carbon black and a binder such as a fluororesin to the composite oxide, and molding or applying the material appropriately. The lithium battery is composed of the positive electrode, the negative electrode, and the electrolytic solution. As the negative electrode material, metallic lithium, lithium alloy or the like, or carbon-based material such as graphite or coke is used. In addition, the electrolyte includes a solvent such as propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , Conventional materials such as those in which a lithium salt such as LiBF 4 is dissolved can be used.

以下に本発明の実施例を示すが、これらは本発明を限定するものではない。   Examples of the present invention are shown below, but these do not limit the present invention.

実施例1
(第一の工程)
複合炭酸塩の調製
硫酸ニッケル及び硫酸マンガンの混合水溶液(ニッケルイオン、マンガンイオン換算でそれぞれ1.2モル)800ミリリットルと、炭酸ナトリウム水溶液(炭酸イオン換算で3.2モル)1000ミリリットルとを、50℃の温度の純水600ミリリットル中に、温度を維持し撹拌しながら6時間かけて並行添加して中和し、ろ別した後、純水で洗浄してニッケルとマンガンが1:1のモル比で含まれる複合炭酸塩(試料a)を得た。
Example 1
(First step)
Preparation of composite carbonate 50 ml of a mixed aqueous solution of nickel sulfate and manganese sulfate (1.2 mol each in terms of nickel ion and manganese ion) and 1000 ml of an aqueous sodium carbonate solution (3.2 mol in terms of carbonate ion) In 600 milliliters of pure water at a temperature of 0 ° C., neutralize by adding in parallel over 6 hours while maintaining the temperature, and after filtering and washing with pure water, the molar ratio of nickel and manganese is 1: 1. A composite carbonate (sample a) contained in a ratio was obtained.

前駆体組成物の調製
ニッケル及びマンガンの合量換算で100gに相当する複合炭酸塩(試料a)を、純水に分散させて400ミリリットルのスラリーとした。このスラリーに攪拌しながら水酸化リチウム(一水塩)84gを室温下、常圧下で添加し1時間攪拌した後、沈澱物をろ過・乾燥して前駆体組成物(試料a’)を得た。
Preparation of Precursor Composition A composite carbonate (sample a) corresponding to 100 g in terms of the total amount of nickel and manganese was dispersed in pure water to make a 400 milliliter slurry. While stirring this slurry, 84 g of lithium hydroxide (monohydrate) was added at room temperature and normal pressure and stirred for 1 hour, and then the precipitate was filtered and dried to obtain a precursor composition (sample a ′). .

(第二の工程:前駆体組成物の加熱焼成)
前駆体組成物(試料a’)を、大気中850℃の温度で10時間加熱焼成を行い、リチウム・ニッケル・マンガン複合酸化物(試料A)を得た。
(Second step: Heat firing of the precursor composition)
The precursor composition (sample a ′) was heated and fired at a temperature of 850 ° C. in the atmosphere for 10 hours to obtain a lithium / nickel / manganese composite oxide (sample A).

実施例2
実施例1において、第1の工程で炭酸ナトリウム水溶液に替えて、炭酸ナトリウム及び水酸化ナトリウム混合水溶液(炭酸イオン換算で2.4モル、水酸イオン換算で1.6モル)を用いて複合炭酸塩を調製したこと以外は実施例1と同様にし、複合炭酸塩(試料b)、前駆体組成物(試料b’)、複合酸化物(試料B)を得た。
Example 2
In Example 1, it replaced with sodium carbonate aqueous solution at the 1st process, and mixed carbonate using sodium carbonate and sodium hydroxide mixed solution (2.4 mol in carbonate ion conversion, 1.6 mol in hydroxide ion conversion). A composite carbonate (sample b), a precursor composition (sample b ′), and a composite oxide (sample B) were obtained in the same manner as in Example 1 except that the salt was prepared.

実施例3
(第一の工程)
複合炭酸塩の調製
50℃の温度の純水600ミリリットル中に、炭酸ガスを毎分1リットルの流量で吹込みながら、硫酸ニッケル及び硫酸マンガンの混合水溶液(ニッケルイオン、マンガンイオン換算でそれぞれ1.2モル)800ミリリットルと、炭酸ナトリウム水溶液(炭酸イオン換算で3.2モル)1000ミリリットルとを、温度を維持し攪拌しながら6時間かけて並行添加して中和し、ろ別した後、純水で洗浄してニッケルとマンガンが1:1のモル比で含まれる複合炭酸塩(試料c)を得た。
Example 3
(First step)
Preparation of Composite Carbonate A mixed aqueous solution of nickel sulfate and manganese sulfate (1. each in terms of nickel ion and manganese ion, respectively) while blowing carbon dioxide into 600 ml of pure water at a temperature of 50 ° C. at a flow rate of 1 liter per minute. 2 mol) 800 ml and sodium carbonate aqueous solution (3.2 mol in terms of carbonate ion) 1000 ml while maintaining the temperature and stirring in parallel over 6 hours to neutralize and filter, Washing with water gave a composite carbonate (sample c) containing nickel and manganese in a molar ratio of 1: 1.

前駆体組成物の調製
ニッケル及びマンガンの合量換算で100gに相当する複合炭酸塩(試料c)を、純水に分散させて400ミリリットルのスラリーとし、実施例1と同様にして前駆体組成物(試料c’)を得た。
Preparation of Precursor Composition A composite carbonate (sample c) corresponding to 100 g in terms of the total amount of nickel and manganese is dispersed in pure water to make a 400 ml slurry, and the precursor composition is the same as in Example 1. (Sample c ′) was obtained.

(第二の工程:前駆体組成物の加熱焼成)
前駆体組成物(試料c’)を実施例1と同様に加熱焼成し、リチウム・ニッケル・マンガン複合酸化物(試料C)を得た。
(Second step: Heat firing of the precursor composition)
The precursor composition (sample c ′) was heated and fired in the same manner as in Example 1 to obtain a lithium / nickel / manganese composite oxide (sample C).

実施例4
(第一の工程)
複合炭酸塩の調製
硫酸ニッケル、硫酸コバルト及び硫酸マンガンの混合水溶液(ニッケルイオン、コバルトイオン、マンガンイオン換算でそれぞれ0.8モル)800ミリリットルと、炭酸ナトリウム水溶液(炭酸イオン換算で3.2モル)1000ミリリットルとを、50℃の温度の純水600ミリリットル中に、温度を維持し撹拌しながら6時間かけて並行添加して中和し、濾過・洗浄してニッケルとコバルトとマンガンが1:1:1のモル比で含まれる複合炭酸塩(試料d)を得た。
Example 4
(First step)
Preparation of complex carbonate 800 ml of mixed aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate (0.8 mol each in terms of nickel ion, cobalt ion and manganese ion) and aqueous sodium carbonate solution (3.2 mol in terms of carbonate ion) Add 1000 milliliters to 600 milliliters of pure water at a temperature of 50 ° C. while maintaining the temperature and stirring for 6 hours to neutralize, neutralize, filter and wash to obtain nickel, cobalt, and manganese in a 1: 1 ratio. A complex carbonate (sample d) contained in a molar ratio of 1 was obtained.

前駆体組成物の調製
ニッケル、コバルト及びマンガンの合量換算で100gに相当する複合炭酸塩(試料d)を、純水に分散させて400ミリリットルのスラリーとした。このスラリーに攪拌しながら水酸化リチウム(一水塩)80gを室温下、常圧下で添加し、1時間攪拌した後、濾過・乾燥して前駆体組成物(試料d’)を得た。
Preparation of Precursor Composition A composite carbonate (sample d) corresponding to 100 g in terms of the total amount of nickel, cobalt and manganese was dispersed in pure water to form a 400 ml slurry. While stirring the slurry, 80 g of lithium hydroxide (monohydrate) was added at room temperature and normal pressure, stirred for 1 hour, filtered and dried to obtain a precursor composition (sample d ′).

(第二の工程:前駆体組成物の加熱焼成)
前駆体組成物(試料d’)を実施例1と同様に加熱焼成し、リチウム・ニッケル・コバルト・マンガン複合酸化物(試料D)を得た。
(Second step: Heat firing of the precursor composition)
The precursor composition (sample d ′) was heated and fired in the same manner as in Example 1 to obtain a lithium / nickel / cobalt / manganese composite oxide (sample D).

比較例1
実施例1において、第1の工程の炭酸ナトリウム水溶液に替えて、水酸化ナトリウム水溶液(水酸イオン換算で4.8モル)を用いたこと以外は実施例1と同様にしてニッケルとマンガンを1:1のモル比で含む複合水酸化物(試料e)を調製した。次いで、ニッケル及びマンガンの合量換算で100gに相当する試料eを、純水に分散させて1000ミリリットルのスラリーとし、第2の工程と同様に水酸化リチウムを添加、攪拌後、ろ過・乾燥した。得られた乾燥物を分析したところ、リチウム化合物はほとんど含まれていないことが判った。
Comparative Example 1
In Example 1, nickel and manganese were added in the same manner as in Example 1 except that a sodium hydroxide aqueous solution (4.8 mol in terms of hydroxide ion) was used instead of the sodium carbonate aqueous solution in the first step. A composite hydroxide (sample e) containing a molar ratio of 1 was prepared. Next, sample e corresponding to 100 g in terms of the total amount of nickel and manganese was dispersed in pure water to form a 1000 ml slurry, and lithium hydroxide was added, stirred, filtered and dried in the same manner as in the second step. . When the obtained dried product was analyzed, it was found that the lithium compound was hardly contained.

比較例2
比較例1で得られた複合水酸化物(試料e)を、濾過・乾燥した後、ニッケル及びマンガンの合量換算で50gに相当する試料eに、水酸化リチウム(一水塩)42gをサンプルミルを用いて混合し、この混合物を大気中850℃で10時間加熱焼成し、リチウム・ニッケル・マンガン複合酸化物(試料E)を得た。
Comparative Example 2
After filtering and drying the composite hydroxide obtained in Comparative Example 1 (sample e), 42 g of lithium hydroxide (monohydrate) is sampled on sample e corresponding to 50 g in terms of the total amount of nickel and manganese. The mixture was mixed using a mill, and the mixture was heated and fired at 850 ° C. for 10 hours in the atmosphere to obtain a lithium / nickel / manganese composite oxide (sample E).

評価1:充放電容量の評価
実施例1〜4及び比較例2で得られたリチウム・遷移金属複合酸化物(試料A〜E)を正極活物質とした場合のリチウムニ次電池の充放電特性を評価した。電池の形態や測定条件について説明する。
Evaluation 1: Evaluation of charge / discharge capacity The charge / discharge characteristics of the lithium secondary battery when the lithium / transition metal composite oxides (samples A to E) obtained in Examples 1 to 4 and Comparative Example 2 were used as the positive electrode active material. evaluated. The battery configuration and measurement conditions will be described.

試料A〜Eと、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリ四フッ化エチレン樹脂を重量比で100:10:3で混合し、乳鉢で練り合わせ、直径10mmの円形に成型してペレット状とした。ペレットの重量は10mgであった。このペレットに直径10mmに切り出したアルミニウム製のメッシュを重ね合わせ、14.7MPaでプレスして作用極とした。   Samples A to E, acetylene black powder as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed at a weight ratio of 100: 10: 3, kneaded in a mortar, and molded into a circle with a diameter of 10 mm. To form a pellet. The weight of the pellet was 10 mg. An aluminum mesh cut to a diameter of 10 mm was superimposed on this pellet and pressed at 14.7 MPa to obtain a working electrode.

この作用極を120℃で4時間真空乾燥した後、露点−70℃以下のグローブボックス中で、密閉可能なコイン型評価用セルに正極として組み込んだ。評価用セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径14mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。 This working electrode was vacuum-dried at 120 ° C. for 4 hours and then incorporated as a positive electrode in a sealable coin-type evaluation cell in a glove box having a dew point of −70 ° C. or lower. The evaluation cell used was made of stainless steel (SUS316) and had an outer diameter of 20 mm and a height of 3.2 mm. As the negative electrode, a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 14 mm was used. As the non-aqueous electrolyte, a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.

作用極は評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液をスポイドで滴下した。さらにその上に負極及び厚み調整用の0.5mm厚スペーサーとスプリング(ともにSUS316製)をのせ、ポリプロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封した。   The working electrode was placed in the lower can of the evaluation cell, a porous polypropylene film was placed thereon as a separator, and a non-aqueous electrolyte was dropped from above with a dropoid. Furthermore, a negative electrode, a 0.5 mm thick spacer for adjusting the thickness, and a spring (both made of SUS316) were put thereon, and an upper can with a polypropylene gasket was put on the outer peripheral edge portion and sealed.

充放電容量の測定は、電圧範囲を2.5V〜4.3V及び2.5V〜4.5Vに設定し、充放電電流を0.45mA(約3サイクル/日)に設定して、定電流定電圧法で行った。   The charge / discharge capacity is measured by setting the voltage range to 2.5V to 4.3V and 2.5V to 4.5V, and setting the charge / discharge current to 0.45 mA (about 3 cycles / day). The constant voltage method was used.

試料A〜Eの放電容量を表1に示す。本発明で得られたリチウム・遷移金属複合酸化物は放電容量が高いことが分かる。   Table 1 shows the discharge capacities of the samples A to E. It can be seen that the lithium-transition metal composite oxide obtained in the present invention has a high discharge capacity.

Figure 2006117517
Figure 2006117517

評価2:レート特性の評価
実施例1及び4で得られたリチウム・遷移金属複合酸化物(試料A、D)を正極活物質とした場合のリチウムニ次電池のレート特性を評価した。電池の形態や測定条件について説明する。
Evaluation 2: Evaluation of rate characteristic The rate characteristic of the lithium secondary battery when the lithium / transition metal composite oxides (samples A and D) obtained in Examples 1 and 4 were used as the positive electrode active material was evaluated. The battery configuration and measurement conditions will be described.

試料A及びDと、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリフッ化ビニリデン粉末をN−メチル−2−ピロリドン中で混練し、試料と導電剤及び結着剤が重量比で100:10:10の割合で混合されたペーストを調製した。このペーストをアルミ箔上に塗布し、120℃で脱溶媒した後、直径10mmの円形に打ち抜き、14.7MPaでプレスして作用極とした。この作用極を用いた以外は、評価1と同様にして電池を作製した。   Samples A and D, acetylene black powder as a conductive agent, and polyvinylidene fluoride powder as a binder were kneaded in N-methyl-2-pyrrolidone, and the sample, the conductive agent, and the binder were 100 by weight. A paste mixed at a ratio of 10:10 was prepared. This paste was applied onto an aluminum foil, desolvated at 120 ° C., punched into a circle with a diameter of 10 mm, and pressed at 14.7 MPa to obtain a working electrode. A battery was fabricated in the same manner as in Evaluation 1, except that this working electrode was used.

電圧範囲を2.5V〜4.3Vに設定し、充電電流を40mA/g、放電電流を40mA/gとした時の放電容量C、充電電流を40mA/g、放電電流を320mA/gとした時の放電容量Cを測定し、(C/C)×100(%)(容量維持率)をレート特性とした。 When the voltage range is set to 2.5 V to 4.3 V, the charging current is 40 mA / g, the discharging current is 40 mA / g, the discharging capacity C 1 , the charging current is 40 mA / g, and the discharging current is 320 mA / g. The discharge capacity C 2 was measured, and (C 2 / C 1 ) × 100 (%) (capacity maintenance ratio) was defined as a rate characteristic.

試料A及びDのレート特性を表2に示す。 Table 2 shows the rate characteristics of Samples A and D.

Figure 2006117517
Figure 2006117517

評価3:X線回折の測定
実施例1、比較例1で得られた複合炭酸塩若しくは複合水酸化物(試料a、e)の粉末X線回折(X線:Cu−Kα)の測定結果を図1、2に示す。試料aでは、既知の炭酸ニッケル、炭酸マンガンと同様の六方晶系の炭酸塩の生成を示す回折ピークのみが認められ、本発明で得られる複合炭酸塩が均一な結晶相を有することが判る。一方、試料eでは、六方晶系として知られる水酸化ニッケル、水酸化マンガンに類似した回折ピーク(水酸化物と推測される)の他に、マンガン酸化物(Mn)に帰属される回折ピークも認められ、不均一な結晶相であることがわかる。尚、実施例2〜4で得られた試料b〜dについても同様にしてX線回折を測定したところ、試料aと同様な複合炭酸塩が得られていることを確認した。
Evaluation 3: Measurement of X-ray diffraction Measurement results of powder X-ray diffraction (X-ray: Cu-Kα) of the composite carbonate or composite hydroxide (samples a and e) obtained in Example 1 and Comparative Example 1 are shown. Shown in FIGS. In sample a, only a diffraction peak showing the formation of a hexagonal carbonate similar to known nickel carbonate and manganese carbonate is recognized, and it can be seen that the composite carbonate obtained in the present invention has a uniform crystal phase. On the other hand, sample e belongs to manganese oxide (Mn 3 O 4 ) in addition to diffraction peaks similar to nickel hydroxide and manganese hydroxide (presumed to be hydroxides) known as hexagonal systems. A diffraction peak is also observed, indicating that the crystal phase is inhomogeneous. In addition, when X-ray diffraction was similarly measured about the samples b-d obtained in Examples 2-4, it confirmed that the same composite carbonate as the sample a was obtained.

また、実施例1で得られた前駆体組成物(試料a’)の粉末X線回折の測定結果を図3に示す。六方晶系の水酸化物に由来すると考えられるブロードな回折ピークと、炭酸リチウムの生成を示す鋭い回折ピークが認められ、本発明の第一の工程で得られる前駆体組成物は、ニッケル・マンガン複合水酸化物と炭酸リチウムを含む組成物であることがわかる。尚、試料b’〜d’についても同様にしてX線回折を測定したところ、試料a’と同様な組成物が得られていることを確認した。   Moreover, the measurement result of the powder X-ray diffraction of the precursor composition (sample a ') obtained in Example 1 is shown in FIG. A broad diffraction peak believed to be derived from a hexagonal hydroxide and a sharp diffraction peak indicating the formation of lithium carbonate were observed, and the precursor composition obtained in the first step of the present invention was nickel manganese It turns out that it is a composition containing a composite hydroxide and lithium carbonate. Incidentally, when X-ray diffraction was measured in the same manner for the samples b 'to d', it was confirmed that the same composition as that of the sample a 'was obtained.

更に、実施例1及び比較例2で得られた複合酸化物(試料A、E)の粉末X線回折の測定結果を図4、5に示す。試料Aでは、既知のコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)と同様の、層状岩塩型の結晶相の生成を示す回折ピークが認められ、均一な結晶相を有することが判る。一方、試料Eでは層状岩塩型の結晶相の他に、単斜晶系のリチウム・マンガン複合酸化物(LiMnO)の生成を示す回折ピークが認められ、不均一な結晶相であることがわかる。尚、実施例2〜4で得られた試料B〜Dについても同様にしてX線回折を測定したところ、試料Aと同様な結晶相が得られていることを確認した。また、試料A〜Eについてリチウムの分析を行ったところ、リチウムとニッケル及び遷移金属とのモル比(Li/(Ni+M))は、いずれも1.02〜1.10の範囲であった。 Furthermore, the measurement results of the powder X-ray diffraction of the composite oxides (samples A and E) obtained in Example 1 and Comparative Example 2 are shown in FIGS. In sample A, diffraction peaks indicating the formation of layered rock salt type crystal phases similar to known lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ) are observed, and it can be seen that sample A has a uniform crystal phase. . On the other hand, in Sample E, in addition to the layered rock-salt type crystal phase, a diffraction peak indicating the formation of monoclinic lithium-manganese composite oxide (Li 2 MnO 3 ) was observed, and the crystal phase was inhomogeneous. I understand. In addition, when X-ray diffraction was similarly measured about the samples B-D obtained in Examples 2-4, it was confirmed that the same crystal phase as the sample A was obtained. Moreover, when lithium was analyzed about sample AE, the molar ratio (Li / (Ni + M)) of lithium, nickel, and a transition metal was all in the range of 1.02-1.10.

本発明で得られたリチウム・遷移金属複合酸化物は、高容量のリチウム電池に有用である。   The lithium / transition metal composite oxide obtained in the present invention is useful for a high-capacity lithium battery.

実施例1で得られた複合炭酸塩(試料a)のX線回折チャートである。2 is an X-ray diffraction chart of the composite carbonate (sample a) obtained in Example 1. FIG. 比較例1で得られた複合水酸化物(試料e)のX線回折チャートである。2 is an X-ray diffraction chart of a composite hydroxide (sample e) obtained in Comparative Example 1. 実施例1で得られた前駆体組成物(試料a’)のX線回折チャートである。2 is an X-ray diffraction chart of a precursor composition (sample a ′) obtained in Example 1. FIG. 実施例1で得られた複合酸化物(試料A)のX線回折チャートである。2 is an X-ray diffraction chart of a composite oxide (sample A) obtained in Example 1. FIG. 比較例2で得られた複合酸化物(試料E)のX線回折チャートである。4 is an X-ray diffraction chart of a composite oxide (sample E) obtained in Comparative Example 2.

Claims (8)

ニッケルを必須成分とし、さらにコバルト、マンガン、鉄、銅、亜鉛、クロムから選ばれる少なくとも一種の遷移金属とを含む遷移金属複合炭酸塩と水溶性リチウム化合物とを水系媒液中で常圧下で反応させた後、固液分離してリチウム・遷移金属複合酸化物前駆体組成物を得る第一の工程、該前駆体組成物を加熱焼成してリチウム・遷移金属複合酸化物を得る第二の工程を含むことを特徴とするリチウム・遷移金属複合酸化物の製造方法。 A transition metal composite carbonate containing nickel as an essential component and further containing at least one transition metal selected from cobalt, manganese, iron, copper, zinc and chromium and a water-soluble lithium compound are reacted in an aqueous medium at normal pressure. First step of obtaining a lithium / transition metal composite oxide precursor composition by solid-liquid separation, and second step of obtaining a lithium / transition metal composite oxide by heating and firing the precursor composition A method for producing a lithium / transition metal composite oxide, comprising: 第一の工程で用いる遷移金属複合炭酸塩を、コバルトイオン、マンガンイオン、鉄イオン、銅イオン、亜鉛イオン、クロムイオンから選ばれる少なくとも一種の遷移金属イオン及びニッケルイオンを水系媒液中で少なくとも炭酸イオンと反応させて得ることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The transition metal composite carbonate used in the first step is at least carbonic acid in an aqueous medium with at least one transition metal ion and nickel ion selected from cobalt ion, manganese ion, iron ion, copper ion, zinc ion and chromium ion. The method for producing a lithium / transition metal composite oxide according to claim 1, which is obtained by reacting with ions. 第一の工程で用いる遷移金属複合炭酸塩を、水溶性コバルト化合物、水溶性マンガン化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物及び水溶性ニッケル化合物を水系媒液中で塩基性炭酸化合物を含む塩基性化合物で中和して得ることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The transition metal composite carbonate used in the first step is at least one water-soluble compound selected from a water-soluble cobalt compound, a water-soluble manganese compound, a water-soluble iron compound, a water-soluble copper compound, a water-soluble zinc compound, and a water-soluble chromium compound. The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the transition metal compound and the water-soluble nickel compound are obtained by neutralizing with a basic compound containing a basic carbonate compound in an aqueous medium. . 第一の工程で用いる遷移金属複合炭酸塩を、水溶性コバルト化合物、水溶性マンガン化合物、水溶性鉄化合物、水溶性銅化合物、水溶性亜鉛化合物、水溶性クロム化合物から選ばれる少なくとも一種の水溶性遷移金属化合物及び水溶性ニッケル化合物を水系媒液中で、炭酸ガスを吹き込みながら塩基性化合物で中和して得ることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The transition metal composite carbonate used in the first step is at least one water-soluble compound selected from a water-soluble cobalt compound, a water-soluble manganese compound, a water-soluble iron compound, a water-soluble copper compound, a water-soluble zinc compound, and a water-soluble chromium compound. The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the transition metal compound and the water-soluble nickel compound are obtained by neutralizing with a basic compound in an aqueous medium while blowing carbon dioxide. . 塩基性化合物として、更に塩基性水酸化物を用いることを特徴とする請求項3に記載のリチウム・遷移金属複合酸化物の製造方法。 4. The method for producing a lithium / transition metal composite oxide according to claim 3, wherein a basic hydroxide is further used as the basic compound. 第一の工程において用いる水溶性リチウム化合物が水酸化リチウムであることを特徴とする請求項1に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 1, wherein the water-soluble lithium compound used in the first step is lithium hydroxide. 第一の工程で得られる前駆体組成物が、遷移金属複合水酸化物と炭酸リチウムを含む組成物であることを特徴とする請求項6に記載のリチウム・遷移金属複合酸化物の製造方法。 The method for producing a lithium / transition metal composite oxide according to claim 6, wherein the precursor composition obtained in the first step is a composition containing a transition metal composite hydroxide and lithium carbonate. 請求項1記載の製造方法で得られるリチウム・遷移金属複合酸化物を正極活物質として用いることを特徴とするリチウム電池。

A lithium battery using the lithium / transition metal composite oxide obtained by the production method according to claim 1 as a positive electrode active material.

JP2005279125A 2004-09-27 2005-09-27 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide Active JP4496150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279125A JP4496150B2 (en) 2004-09-27 2005-09-27 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004280060 2004-09-27
JP2005279125A JP4496150B2 (en) 2004-09-27 2005-09-27 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide

Publications (2)

Publication Number Publication Date
JP2006117517A true JP2006117517A (en) 2006-05-11
JP4496150B2 JP4496150B2 (en) 2010-07-07

Family

ID=36535762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279125A Active JP4496150B2 (en) 2004-09-27 2005-09-27 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide

Country Status (1)

Country Link
JP (1) JP4496150B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032754A1 (en) * 2006-09-12 2008-03-20 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
JP2008098154A (en) * 2006-09-12 2008-04-24 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary battery
WO2009005164A1 (en) * 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2009179544A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
JP2009179545A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
JP2009205893A (en) * 2008-02-27 2009-09-10 Nippon Chem Ind Co Ltd Lithium nickel manganese cobalt complex oxide for lithium secondary battery positive electrode active material, its manufacturing method, and lithium secondary battery
WO2014208453A1 (en) * 2013-06-27 2014-12-31 旭硝子株式会社 Carbonic acid compound, method for producing same, and method for producing positive electrode active material for lithium ion secondary batteries
WO2017033895A1 (en) * 2015-08-24 2017-03-02 住友金属鉱山株式会社 Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
CN110697802A (en) * 2019-11-06 2020-01-17 联动天翼新能源有限公司 Shell-core structured carbonate ternary precursor and preparation method thereof
CN113387392A (en) * 2021-06-09 2021-09-14 南昌大学 Preparation method of sodium manganese oxide and application of sodium manganese oxide in super capacitor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171910A (en) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JP2002313338A (en) * 2001-04-16 2002-10-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2005097087A (en) * 2003-07-18 2005-04-14 Tosoh Corp New lithium-nickel-manganese multiple oxide and its manufacturing method
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171910A (en) * 1994-12-16 1996-07-02 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JPH11130438A (en) * 1997-08-18 1999-05-18 Agency Of Ind Science & Technol Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery
JPH11307094A (en) * 1998-04-20 1999-11-05 Chuo Denki Kogyo Co Ltd Lithium secondary battery positive electrode active material and lithium secondary battery
JP2002313338A (en) * 2001-04-16 2002-10-25 Sumitomo Metal Mining Co Ltd Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it
WO2004064180A1 (en) * 2003-01-08 2004-07-29 Nikko Materials Co., Ltd. Material for positive electrode of lithium secondary battery and process for producing the same
JP2005097087A (en) * 2003-07-18 2005-04-14 Tosoh Corp New lithium-nickel-manganese multiple oxide and its manufacturing method
JP2005285572A (en) * 2004-03-30 2005-10-13 Nikko Materials Co Ltd Precursor for lithium-ion secondary battery anode material, its manufacturing method, and manufacturing method of anode material using it

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032754A1 (en) * 2006-09-12 2008-03-20 Sumitomo Chemical Company, Limited Lithium composite metal oxides and nonaqueous-electrolyte secondary cell
JP2008098154A (en) * 2006-09-12 2008-04-24 Sumitomo Chemical Co Ltd Lithium composite metal oxide and nonaqueous electrolyte secondary battery
US9178247B2 (en) 2006-09-12 2015-11-03 Sumitomo Chemical Company, Limited Lithium composite metal oxide and nonaqueous electrolyte secondary battery
WO2009005164A1 (en) * 2007-07-03 2009-01-08 Sumitomo Chemical Company, Limited Lithium composite metal oxide
JP2009032655A (en) * 2007-07-03 2009-02-12 Sumitomo Chemical Co Ltd Lithium composite metal oxide
US8440353B2 (en) 2007-07-03 2013-05-14 Sumitomo Chemical Company, Limited Lithium mixed metal oxide
US8066915B2 (en) 2008-02-01 2011-11-29 Nippon Chemical Industrial Co., Ltd. Composite carbonate and method for producing the same
JP2009179544A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
US7879266B2 (en) 2008-02-01 2011-02-01 Nippon Chemical Industrial Co., Ltd. Composite carbonate and method for producing the same
US7897069B2 (en) 2008-02-01 2011-03-01 Nippon Chemical Industrial Co., Ltd. Composite carbonate and method for producing the same
JP2009179545A (en) * 2008-02-01 2009-08-13 Nippon Chem Ind Co Ltd Composite carbonate and method for producing the same
KR101451441B1 (en) 2008-02-01 2014-10-15 니폰 가가쿠 고교 가부시키가이샤 Carbonate composite and process for porducing thereof
JP2009205893A (en) * 2008-02-27 2009-09-10 Nippon Chem Ind Co Ltd Lithium nickel manganese cobalt complex oxide for lithium secondary battery positive electrode active material, its manufacturing method, and lithium secondary battery
US7838148B2 (en) 2008-02-27 2010-11-23 Nippon Chemical Industrial Co., Ltd. Lithium nickel manganese cobalt composite oxide used as cathode active material for lithium rechargeable battery, manufacturing method thereof, and lithium rechargeable battery
WO2014208453A1 (en) * 2013-06-27 2014-12-31 旭硝子株式会社 Carbonic acid compound, method for producing same, and method for producing positive electrode active material for lithium ion secondary batteries
JPWO2014208453A1 (en) * 2013-06-27 2017-02-23 旭硝子株式会社 Carbonate compound, method for producing the same, and method for producing positive electrode active material for lithium ion secondary battery
WO2017033895A1 (en) * 2015-08-24 2017-03-02 住友金属鉱山株式会社 Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JPWO2017033895A1 (en) * 2015-08-24 2018-06-14 住友金属鉱山株式会社 Manganese nickel composite hydroxide and method for producing the same, lithium manganese nickel composite oxide and method for producing the same, and non-aqueous electrolyte secondary battery
US10559823B2 (en) 2015-08-24 2020-02-11 Sumitomo Metal Mining Co., Ltd. Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
CN110697802A (en) * 2019-11-06 2020-01-17 联动天翼新能源有限公司 Shell-core structured carbonate ternary precursor and preparation method thereof
CN113387392A (en) * 2021-06-09 2021-09-14 南昌大学 Preparation method of sodium manganese oxide and application of sodium manganese oxide in super capacitor

Also Published As

Publication number Publication date
JP4496150B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP4768562B2 (en) Lithium / transition metal composite oxide, method for producing the same, and lithium battery using the same
KR100935987B1 (en) Nonaqueous electrolyte secondary battery
JP3983745B2 (en) Lithium transition metal oxides for lithium batteries
KR101368855B1 (en) Lithium manganese compounds and methods of making the same
CN112262109A (en) O3/P2 mixed phase sodium-containing doped layered oxide material
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP5069007B2 (en) Method for producing lithium / transition metal composite oxide
JP2000294242A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacture therefor and nonaqueous electrolyte secondary battery
JP4900888B2 (en) Lithium transition metal oxides for lithium batteries
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2004323331A (en) Lithium-nickel-manganese compound oxide, its manufacturing method and its application
JP5657970B2 (en) Lithium / transition metal composite oxide and lithium battery using the same
JP2003017049A (en) Lithium transition-metal compound oxide for positive electrode active material for lithium secondary battery, and manufacturing method thereof
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
KR20040092245A (en) 5V spinel complex-oxide prepared by ultrasonic spray pyrolysis methode, method for preparing the same, and lithium secondary batteries using the same
JP4769998B2 (en) Method for producing lithium manganese composite oxide
JP2002308627A (en) Method of manufacturing spinel type lithium manganate
JPH08217451A (en) Needle manganese complex oxide, production and use thereof
JPH10233212A (en) Electrode active material for nonaqueous battery
JP4560168B2 (en) Method for producing composite oxide for non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R151 Written notification of patent or utility model registration

Ref document number: 4496150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250