JPH08171910A - Manufacture of positive electrode active material for lithium secondary battery - Google Patents

Manufacture of positive electrode active material for lithium secondary battery

Info

Publication number
JPH08171910A
JPH08171910A JP6313140A JP31314094A JPH08171910A JP H08171910 A JPH08171910 A JP H08171910A JP 6313140 A JP6313140 A JP 6313140A JP 31314094 A JP31314094 A JP 31314094A JP H08171910 A JPH08171910 A JP H08171910A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
active material
electrode active
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6313140A
Other languages
Japanese (ja)
Other versions
JP3008793B2 (en
Inventor
Junichi Yamaura
純一 山浦
Kazuhiro Okamura
一広 岡村
Yoshiaki Nitta
芳明 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6313140A priority Critical patent/JP3008793B2/en
Priority to US08/573,505 priority patent/US5626635A/en
Priority to EP95119801A priority patent/EP0720247B1/en
Priority to DE69502690T priority patent/DE69502690T2/en
Publication of JPH08171910A publication Critical patent/JPH08171910A/en
Application granted granted Critical
Publication of JP3008793B2 publication Critical patent/JP3008793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To make a crystal structure to be of a single phase, and thereby obtain an oxide high in crystal finishing degree by mixing coprecipitated hydrooxide which is obtained by adding alkali solution to the mixed water solution of manganese salts and nickel salts, with lithium compounds, and thereby sintering a products thus obtained at a specified temperature. CONSTITUTION: In the manufacture of a composite oxide for positive electrode active material indicated by a formula, alkali water solution is added first to the mixed water solution of manganese salt and nickel salt the amounts of which are divided by a specified volumetric ratio, so as to be coprecipitated, the product is then filtered and cleaned with water, and a manganese nickel hydrooxide is thereby obtained thereafter. It is proved by a X ray diffraction that the product is roughly of a single phase, and thereby its crystal finishing degree is high. Next, a specified amount of a lithium compound such as lithium hydrooxide and the like is mixed to the aforesaid composite hydrooxide so as to be sintered, and a composite oxide containing lithium with a crystal structure in which Li is easily moved, is thereby obtained. Furthermore, since its sintering temperature is set to be 600 to 800 deg.C, there occurs no disturbance in a crystal structure. By this constitution, the positive electrode active material can be obtained, which is high in capacity and excellent in cyclic characteristics. (in the formula, x is defined by 0.95>=x>=0.70).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池の、と
くにその正極活物質の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a method for producing a positive electrode active material thereof.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for small and lightweight secondary batteries having high energy density as power sources for driving these electronic devices. From this point of view, non-aqueous secondary batteries, particularly lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density.

【0003】このような中でLiCoO2を正極に、炭
素材料を負極に用いた電池が開発されている。LiCo
2の作動電位はLiに対して4Vと高いため電池電圧
が高くなるとともに、負極に炭素材を用いてインターカ
レーション反応を利用しているため金属Liを負極に用
いた場合の課題であったデンドライト状Liが負極上に
析出することはなく電池の安全性を向上させることがで
きる。
Under such circumstances, a battery using LiCoO 2 as a positive electrode and a carbon material as a negative electrode has been developed. LiCo
Since the operating potential of O 2 is as high as 4 V with respect to Li, the battery voltage becomes high, and since a carbon material is used for the negative electrode and an intercalation reaction is used, this is a problem when using metallic Li for the negative electrode. The dendrite-like Li does not deposit on the negative electrode, and the safety of the battery can be improved.

【0004】しかし、Coの資源の問題とコストの問題
から、LiCoO2に代わるリチウム含有複合酸化物の
開発が進んでおりLiNiO2などが注目されはじめ
た。LiNiO2ならびにLiCoO2をはじめとするこ
の種のリチウム含有複合酸化物はいずれも高い電位を示
し、かつインターカレーション反応の利用できる同じ六
方晶系の結晶構造をもつ層状化合物であるため、正極活
物質材料としてその期待が大きい。このような観点か
ら、例えばLixNiO2(米国特許第4302518
号)、LiyNi2-y2(特開平2−40861号公
報)などのLiNiO2に係るもの、あるいはLiyNi
xCo1-x2(特開昭63−299056号公報)やL
yNi1-xx2(但し、MはTi,V,Mn,Feの
いずれか)などのLiNiO2のNiの一部を他の金属
に置換したリチウム含有複合酸化物が提案されている。
その他、Axyz2(但し、Aはアルカリ金属、Mは
遷移金属、NはAl,In,Snの一種)(特開昭62
−90863号公報)やLixyz2)(但し、Mは
Fe,Co,Niの中から選ばれた少なくとも一種で、
NはTi,V,Cr,Mnの中から選ばれた少なくとも
一種)(特開平4−267053号公報)などのリチウ
ム含有複合酸化物も提案されている。そしてこれらの活
物質材料を用いて4V級の放電電位をもった高エネルギ
ー密度のリチウム二次電池の開発が進められている。
However, due to the problem of Co resources and cost, development of lithium-containing composite oxides replacing LiCoO 2 is progressing, and LiNiO 2 and the like have begun to be noticed. Lithium-containing composite oxides of this kind such as LiNiO 2 and LiCoO 2 both show a high electric potential and are layered compounds having the same hexagonal crystal structure that can be used for the intercalation reaction, so that they are positive electrode active materials. The expectation is great as a material. From such a viewpoint, for example, Li x NiO 2 (US Pat. No. 4,302,518) is used.
No.), Li y Ni 2-y O 2 ( Japanese Patent Laid-Open No. 2-40861) as according to LiNiO 2, such as, or Li y Ni
x Co 1-x O 2 (JP-A-63-299056) and L
A lithium-containing composite oxide in which a part of Ni of LiNiO 2 , such as i y Ni 1-x M x O 2 (where M is Ti, V, Mn, or Fe) is substituted with another metal, has been proposed. ing.
Other, A x M y N z O 2 ( where, A is an alkali metal, M is a transition metal, N represents Al, In, one Sn) (JP 62
-90863 JP) and Li x M y N z O 2 ) ( where, M is Fe, Co, at least one selected from among Ni,
A lithium-containing composite oxide such as N (at least one selected from Ti, V, Cr, and Mn) (JP-A-4-267053) is also proposed. Further, development of a high energy density lithium secondary battery having a discharge potential of 4 V class using these active material materials is in progress.

【0005】[0005]

【発明が解決しようとする課題】これらのリチウム含有
複合酸化物の中でLiNiO2はリチウムに対し4Vの
作動電位を示すので、正極活物質として用いると高エネ
ルギー密度を有する二次電池が実現できる。しかし、電
池の充放電サイクルの経過にともなって電池容量が劣化
し、50サイクル目では初期容量の65%まで低下し、
良好な充放電サイクル特性が得られないという課題があ
った。
Among these lithium-containing composite oxides, LiNiO 2 exhibits an operating potential of 4 V with respect to lithium. Therefore, when used as a positive electrode active material, a secondary battery having high energy density can be realized. . However, the battery capacity deteriorates with the passage of the charge / discharge cycle of the battery, and at the 50th cycle, it decreases to 65% of the initial capacity,
There is a problem that good charge / discharge cycle characteristics cannot be obtained.

【0006】このような課題に対し、上記に示すような
Niの一部を他の金属に置換したリチウム複合酸化物や
多種の金属元素を同時に含むものなどが提案されてき
た。しかし、LiNiO2のNiの一部を他の金属に置
換したものはサイクル可逆性が向上する一方、放電容量
が小さくなり、かつ放電電圧も低くなる傾向にあり、本
来要望されている高電圧、高エネルギー密度という特徴
を減ずる結果となった。これらの中でNiの一部をMn
に置換したものはサイクル可逆性、放電容量、放電電圧
のいずれも他のリチウム含有複合酸化物に比べると比較
的良好であった。
[0006] In response to such problems, there have been proposed lithium composite oxides in which a part of Ni is replaced with other metals as described above and those containing various metal elements at the same time. However, the one obtained by substituting a part of Ni of LiNiO 2 with another metal has improved cycle reversibility, but tends to have a small discharge capacity and a low discharge voltage. As a result, the feature of high energy density is reduced. Of these, part of Ni is Mn
The lithium-containing composite oxides that had been substituted for had relatively good cycle reversibility, discharge capacity and discharge voltage as compared with other lithium-containing composite oxides.

【0007】ここで、LiNiO2のNiの一部をMn
に置換した活物質の合成は、水酸化リチウムなどのLi
化合物と水酸化ニッケルなどのNi化合物に二酸化マン
ガンや硝酸マンガンなどのMn化合物を加えて焼成する
方法(以後、複合式合成法と呼ぶ)が一般的であった。
この混合焼成法ではNiの一部をMnに確実に置換する
ためには少なくとも800℃以上の焼成温度が必要で、
この温度以下ではX線回折を見る限り置換反応は完結し
ておらず、単一相を有する結晶完成度の高い化合物は得
られなかった。
Here, a part of Ni of LiNiO 2 is replaced with Mn.
Synthesis of active materials substituted with
A method of adding a Mn compound such as manganese dioxide or manganese nitrate to a compound and a Ni compound such as nickel hydroxide and firing the mixture (hereinafter, referred to as a composite synthesis method) is generally used.
In this mixed calcination method, a calcination temperature of at least 800 ° C. or higher is required to surely replace a part of Ni with Mn.
Below this temperature, the substitution reaction was not completed as far as X-ray diffraction was observed, and a compound having a single phase and high crystal perfection could not be obtained.

【0008】しかし、800℃以上の高温で合成すると
結晶中でLiの入るべきサイトにNiやMnが入り込ん
でしまい、結晶構造が乱れてしまいサイクル可逆性や放
電容量が低下していた。このようにLiNiO2を基本
にするリチウム含有複合酸化物を高温で焼成することは
あまり好ましくなかった。
However, when synthesized at a high temperature of 800 ° C. or higher, Ni and Mn enter into the site where Li should enter in the crystal, and the crystal structure is disturbed, and the cycle reversibility and discharge capacity are lowered. Thus, it was not very preferable to calcine the LiNiO 2 -based lithium-containing composite oxide at a high temperature.

【0009】本発明は、このような課題を解決するもの
であり、Niの一部をMnに確実に置換して一般式Li
NixMn(1-x)2で表わされるリチウム含有複合酸化
物の結晶構造をほぼ単一相とし、結晶完成度が高く結晶
の崩壊がなく結晶内でLiが移動し易い安定した結晶場
を得ることができる製造法を提供するものである。
The present invention is intended to solve such a problem, in which a part of Ni is surely replaced by Mn to obtain the general formula Li.
A stable crystal field in which the crystal structure of the lithium-containing composite oxide represented by Ni x Mn (1-x) O 2 is almost a single phase, the crystal perfection is high, the crystal does not collapse, and Li easily moves in the crystal. The present invention provides a manufacturing method capable of obtaining

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明のリチウム二次電池用正極活物質の製造方法
は、リチウムとニッケルおよびマンガン組成よりなる複
合酸化物で、一般式LiNixMn(1-x)2で表わさ
れ、式中のx値を0.95≧x≧0.70とする正極活
物質の製造方法であり、マンガン塩とニッケル塩との混
合水溶液にアルカリ溶液を加えてマンガンとニッケルの
水酸化物を共沈させることによってマンガンとニッケル
の複合水酸化物を得た後、水酸化リチウムなどのリチウ
ム化合物と混合し、この混合物を600℃以上800℃
以下の温度範囲で焼成するものである。
In order to solve the above-mentioned problems, a method for producing a positive electrode active material for a lithium secondary battery according to the present invention is a compound oxide composed of lithium, nickel and manganese, and has a general formula LiNi x. A method for producing a positive electrode active material represented by Mn (1-x) O 2 in which the x value in the formula is 0.95 ≧ x ≧ 0.70, in which a mixed aqueous solution of a manganese salt and a nickel salt is treated with an alkali. After adding a solution and coprecipitating hydroxides of manganese and nickel to obtain a composite hydroxide of manganese and nickel, the mixture is mixed with a lithium compound such as lithium hydroxide, and the mixture is heated to 600 ° C or higher and 800 ° C.
Firing is performed in the following temperature range.

【0011】[0011]

【作用】本発明の製造法では、マンガン塩とニッケル塩
との混合溶液にアルカリ溶液を加えてマンガンとニッケ
ルの水酸化物を共沈させることによりニッケルとマンガ
ンの複合水酸化物(以下、Ni・Mn複合水酸化物)を
得ているので、結晶構造がNiの一部をMnで確実に置
換した固溶体レベルに至っており、X線回折でもほとん
ど単一相になっていて結晶完成度が極めて高いものとな
っている。
In the manufacturing method of the present invention, an alkaline solution is added to a mixed solution of a manganese salt and a nickel salt to coprecipitate manganese and a hydroxide of nickel, and thus a composite hydroxide of nickel and manganese (hereinafter referred to as Ni -Mn compound hydroxide), the crystal structure has reached a solid solution level in which Ni is partly replaced by Mn, and the crystal perfection is extremely single phase even in X-ray diffraction. It is expensive.

【0012】そして、このNi・Mn複合水酸化物にL
i塩を加えて焼成すると、結晶内でLiが移動し易い結
晶構造を有するリチウム含有複合酸化物を得ることがで
きる。さらに本発明では焼成温度を600℃〜800℃
としているので結晶構造の乱れはない。
Then, L is added to the Ni / Mn composite hydroxide.
When an i salt is added and fired, a lithium-containing composite oxide having a crystal structure in which Li easily moves within the crystal can be obtained. Further, in the present invention, the firing temperature is 600 ° C to 800 ° C.
Therefore, there is no disorder in the crystal structure.

【0013】また、NiとMnの混合原子価状態を形成
して安定した結晶構造を得るためには、少なくともNi
のMnへの置換数は0.05以上必要である。しかし、
NiのMnへの置換数が0.30を超えると結晶の歪み
の増大や結晶構造の崩れの発生、および混合原子価状態
の不釣り合いでLiが動き難い状況を作り出して活物質
の容量低下が著しくなる。
In order to form a mixed valence state of Ni and Mn and obtain a stable crystal structure, at least Ni
The number of substitutions of Mn with Mn is required to be 0.05 or more. But,
If the substitution number of Ni for Mn exceeds 0.30, the strain of the crystal increases, the crystal structure collapses, and the imbalance of the mixed valence state creates a situation in which Li is hard to move, and the capacity of the active material decreases. It will be noticeable.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照にしなが
ら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】まず、本発明のNi・Mn複合水酸化物の
共沈による製造法を説明する。市販試薬の硫酸ニッケル
を水に加え、飽和状態の硫酸ニッケル水溶液を作成し、
これに所定量(目的のMn/Ni比に合わせて)の硫酸
マンガンを加え、さらに水を加えて調整して硫酸ニッケ
ルおよび硫酸マンガンを含む飽和水溶液を作成した。次
いで、攪拌しながらこの水溶液に水酸化ナトリウムを溶
解したアルカリ水溶液をゆっくりと加えていくと、Ni
とMnの水酸化物の沈殿(共沈)が同時に始まった。十
分にアルカリ溶液を加えて沈殿が終了したのを見極めた
後、濾過して沈殿物を回収し水洗した。pHを測定しな
がら水洗を繰り返し、残存アルカリがほぼ無くなったの
を見極めた後、熱風空気(100℃に設定した熱風乾燥
器を用いた)で乾燥させた。
First, a method for producing the Ni / Mn composite hydroxide of the present invention by coprecipitation will be described. Add nickel sulfate, a commercially available reagent, to water to create a saturated nickel sulfate aqueous solution,
A predetermined amount (according to the target Mn / Ni ratio) of manganese sulfate was added thereto, and water was further added to adjust the concentration to prepare a saturated aqueous solution containing nickel sulfate and manganese sulfate. Then, an alkaline aqueous solution in which sodium hydroxide was dissolved was slowly added to this aqueous solution while stirring,
And precipitation of Mn hydroxide (coprecipitation) started simultaneously. After sufficiently adding an alkaline solution to determine that the precipitation was completed, the precipitate was collected by filtration and washed with water. Washing with water was repeated while measuring the pH, and after confirming that the residual alkali had almost disappeared, it was dried with hot air (using a hot air dryer set to 100 ° C.).

【0016】このようにして得られたNi・Mn複合水
酸化物のX線回折パターンはきわめて単一相に近いもの
であり、元素分析の結果、ほぼ目的の比率でMnとNi
を含んでいた。
The X-ray diffraction pattern of the Ni / Mn composite hydroxide thus obtained is very close to that of a single phase, and as a result of elemental analysis, Mn and Ni were almost in a desired ratio.
Was included.

【0017】なお、本実施例では共沈原材料のNi源と
して硫酸ニッケル、マンガン源として硫酸マンガンを用
いたが、ニッケル源として硝酸ニッケル、マンガン源と
して硝酸マンガンなど、基本的には水溶液を作りうる塩
であればいずれも使用可能である。また、アルカリ溶液
としては水酸化ナトリウム水溶液を用いたが、水酸化カ
リウム水溶液、水酸化リチウム水溶液など他のアルカリ
溶液であっても良い。
In this embodiment, nickel sulfate and manganese sulfate were used as the Ni source and the manganese source of the coprecipitation raw material, but nickel nitrate as the nickel source and manganese nitrate as the manganese source can be basically prepared as an aqueous solution. Any salt can be used. Although the sodium hydroxide aqueous solution was used as the alkaline solution, other alkaline solutions such as a potassium hydroxide aqueous solution and a lithium hydroxide aqueous solution may be used.

【0018】次いで、Li化合物との焼成工程を説明す
る。Li化合物としては水酸化リチウムを用い、上記共
沈で得られたNi・Mn複合水酸化物にMnとNiの原
子数の和とLiの原子数が等量になるように加えてボー
ルミルで粉砕しながら十分混合し、この複合物をアルミ
ナ製るつぼに入れ酸素中において550℃で20時間で
1段目の焼成をした後、750℃で2時間で2段目の焼
成をした。焼成後室温までゆっくりと冷却し、粉砕した
ものを正極活物質粉末とした。
Next, the firing process with the Li compound will be described. Lithium hydroxide was used as the Li compound, and the Ni / Mn composite hydroxide obtained by the above coprecipitation was added so that the sum of the atomic numbers of Mn and Ni and the atomic number of Li were equal, and then pulverized with a ball mill. While thoroughly mixing, the composite was placed in an alumina crucible and baked in oxygen at 550 ° C. for 20 hours for the first step, and then at 750 ° C. for 2 hours for the second step. After firing, the mixture was slowly cooled to room temperature and pulverized to obtain a positive electrode active material powder.

【0019】Mn/Ni比の異なるいくつかのMn・N
i複合水酸化物について合成を試みた結果、活物質の組
成を示す一般式LiNixMn(1-x)2のx値が0.7
以上であるとこのリチウム含有複合酸化物のX線回折パ
ターンが単一相で得られた。しかし、x値が0.7未満
になるとX線パターンはほぼ単一相ではあるものの、ピ
ーク強度が弱まり結晶性が低下する傾向があった。さら
に、x値が0.5を下回ると、六方晶系の層状構造が崩
れていた。
Several Mn.N having different Mn / Ni ratios
As a result of an attempt to synthesize the i composite hydroxide, the x value of the general formula LiNi x Mn (1-x) O 2 showing the composition of the active material was 0.7.
With the above, an X-ray diffraction pattern of this lithium-containing composite oxide was obtained in a single phase. However, when the x value is less than 0.7, although the X-ray pattern is almost a single phase, the peak intensity is weakened and the crystallinity tends to be lowered. Furthermore, when the x value was less than 0.5, the hexagonal layered structure was broken.

【0020】そして、この正極活物質100重量部に対
してアセチレンブラックを5重量部加え十分に混合した
後、この混合物をN−メチルピロリジノン(NMP)の
溶媒に結着剤のポリフッ化ビニリデン(PVDF)を溶
解した液で練りペーストとした。なお、PVDFの量は
正極活物質100重量部に対して4重量部となるように
調整した。次いで、このペーストをアルミ箔の片面に塗
着した後、乾燥して圧延し極板とした。図1は本発明の
実施例に用いたコイン形リチウム二次電池の縦断面図で
ある。図1において、正極1は前記極板を円板状に打ち
抜いたもので、正極ケース2の内側に設置したものであ
る。また、負極3は金属リチウムをステンレス鋼製ネッ
ト5上に圧着したもので、封口板4の内側にスポット溶
接されている。正極1と負極3の間にはポリプロピレン
製セパレータ6が配されており電解液7が注液されてい
る。また、ポリプロピレン製ガスケット8を介して密封
した。なお、電解液には1モルの六フッ化リン酸リチウ
ム(LiPF6)を炭酸エチレン(EC)と炭酸ジエチ
ル(DEC)の混合溶媒中に溶かしたものを用いた。
Then, 5 parts by weight of acetylene black was added to 100 parts by weight of the positive electrode active material and mixed well, and then the mixture was mixed with a solvent of N-methylpyrrolidinone (NMP) and polyvinylidene fluoride (PVDF) as a binder. ) Was dissolved to form a paste. The amount of PVDF was adjusted to 4 parts by weight with respect to 100 parts by weight of the positive electrode active material. Next, this paste was applied on one side of an aluminum foil, dried and rolled to obtain an electrode plate. FIG. 1 is a vertical sectional view of a coin-type lithium secondary battery used in an example of the present invention. In FIG. 1, the positive electrode 1 is obtained by punching the electrode plate into a disk shape and is installed inside the positive electrode case 2. The negative electrode 3 is formed by pressure-bonding metallic lithium on a stainless steel net 5, and is spot-welded inside the sealing plate 4. A polypropylene separator 6 is arranged between the positive electrode 1 and the negative electrode 3, and an electrolytic solution 7 is injected. In addition, it was sealed via a polypropylene gasket 8. The electrolyte used was one mol of lithium hexafluorophosphate (LiPF 6 ) dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC).

【0021】そして、一般式LiNixMn(1-x)2
表わされる正極活物質のxの値を0.1,0.2,0.
3,0.4,0.5,0.6,0.7,0.8,0.
9,0.95,1.0とし、これらを用いて上記と同様
の方法でコイン形電池を作製した。なお、x=1.0は
Mnを含まないLiNiO2である。ついで、これらの
電池を用いて充放電サイクル寿命試験を行った。充放電
条件は、室温(20℃)で正極に対して0.5mA/c
2の定電流で充放電し、充電終止電圧を4.3V、放
電終止電圧を3.0Vとして行った。
The value of x of the positive electrode active material represented by the general formula LiNi x Mn (1-x) O 2 is 0.1, 0.2, 0.
3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.
9, 0.95, 1.0, and these were used to produce a coin-type battery in the same manner as above. In addition, x = 1.0 is LiNiO 2 containing no Mn. Then, a charge / discharge cycle life test was performed using these batteries. Charge / discharge conditions are 0.5 mA / c to the positive electrode at room temperature (20 ° C)
Charging and discharging were performed at a constant current of m 2 , and the final charging voltage was 4.3 V and the final discharging voltage was 3.0 V.

【0022】図2は充放電サイクル試験の結果で、x=
0.1〜0.4の範囲の正極活物質は初期容量が50〜
80mAh/gと小さく、かつサイクル劣化も大きく、
50サイクル目で初期容量の50%まで低下し、その後
も劣化が進んだ。
FIG. 2 shows the result of the charge / discharge cycle test, where x =
The positive electrode active material in the range of 0.1 to 0.4 has an initial capacity of 50 to
80mAh / g and small cycle deterioration
At the 50th cycle, the capacity decreased to 50% of the initial capacity, and the deterioration continued thereafter.

【0023】x=0.5〜0.6の範囲の正極活物質は
初期容量が110〜120mAh/gであったが、サイ
クル劣化が大きく、50サイクル目で初期容量の70%
まで低下し、その後も劣化が進んだ。
The positive electrode active material in the range of x = 0.5 to 0.6 had an initial capacity of 110 to 120 mAh / g, but the cycle deterioration was large, and 70% of the initial capacity at the 50th cycle.
It deteriorated even after that.

【0024】x=0.7〜0.95の範囲の正極活物質
は初期容量が140〜150mAh/gと大きく、かつ
サイクル劣化も小さく、50サイクル目で初期容量の9
0%を維持しているとともにそれ以後のサイクルの繰り
返しにおいても容量低下がほとんど見られなかった。と
ころが、x=1.0でMnを含まない正極活物質は初期
容量こそ150mAh/g以上のものが得られるものの
サイクル劣化は大きく、50サイクル目で初期容量の6
5%まで低下し、その後も劣化が進んだ。
The positive electrode active material in the range of x = 0.7 to 0.95 has a large initial capacity of 140 to 150 mAh / g and a small cycle deterioration.
While maintaining 0%, there was almost no decrease in capacity even after repeated cycles. However, although the positive electrode active material having x = 1.0 and containing no Mn has an initial capacity of 150 mAh / g or more, the cycle deterioration is large, and at the 50th cycle, the initial capacity is 6 mA.
It dropped to 5% and continued to deteriorate.

【0025】以上の結果からも明らかなように、共沈に
より調整したNi・Mn複合水酸化物を用いて合成した
活物質LiNixMn(1-x)2におけるxの値は0.7
〜0.95の範囲のものが好ましい。
As is clear from the above results, the value of x in the active material LiNi x Mn (1-x) O 2 synthesized using the Ni-Mn composite hydroxide prepared by coprecipitation is 0.7.
Those in the range of to 0.95 are preferable.

【0026】次に、一般式LiNixMn(1-x)2で表
わされる正極活物質のxの値が0.70〜0.95の範
囲のものについて焼成温度を変える検討を行った。1段
目の焼成である550℃20時間の工程は上記と同様に
行い、その後の焼成について焼成温度を550℃、60
0℃、650℃、700℃、750℃、800℃、85
0℃、900℃とした。そして、これらの正極活物質を
用いて上記と同様の電池を構成し、上記と同様の条件の
充放電サイクル試験を行った。図3にこの結果を示す。
なお、上記式中のx値は0.8とした。
Next, studies were conducted to change the firing temperature for the positive electrode active material represented by the general formula LiNi x Mn (1-x) O 2 having a value of x in the range of 0.70 to 0.95. The step of 550 ° C. for 20 hours, which is the first step of firing, is performed in the same manner as above, and the firing temperature is 550 ° C. and 60 for the subsequent firing.
0 ° C, 650 ° C, 700 ° C, 750 ° C, 800 ° C, 85
The temperature was 0 ° C. and 900 ° C. Then, a battery similar to the above was constructed using these positive electrode active materials, and a charge / discharge cycle test under the same conditions as the above was conducted. This result is shown in FIG.
The x value in the above formula was 0.8.

【0027】図3からも明らかなように、焼成温度を6
00℃〜800℃として合成した活物質が初期容量、な
らびにサイクル特性も良好で、550℃のものは初期容
量、サイクル性とともに不十分で、850℃〜900℃
のものは初期容量が若干小さくなり、サイクル劣化も大
きくなった。
As is clear from FIG. 3, the firing temperature is 6
The active material synthesized at 00 ° C to 800 ° C has good initial capacity and cycle characteristics, and the one having a temperature of 550 ° C has insufficient initial capacity and cycleability, and 850 ° C to 900 ° C.
However, the initial capacity was slightly smaller and the cycle deterioration was larger.

【0028】以上の結果より、正極活物質の焼成温度は
600℃〜800℃が良いが、800℃になるとサイク
ル劣化が若干大きくなり、初期容量も若干小さめにな
り、600℃になると初期容量は良好なもののサイクル
劣化が若干大きくなるので、650℃〜750℃が好ま
しい。
From the above results, it is preferable that the baking temperature of the positive electrode active material is 600 ° C. to 800 ° C. However, at 800 ° C., cycle deterioration becomes a little larger and the initial capacity becomes a little smaller. 650 ° C to 750 ° C is preferable because the cycle deterioration is slightly increased although it is good.

【0029】本実施例では、x値が0.8の場合のもの
について述べたが、x値が0.70〜0.95の範囲の
ものについてそれぞれ同様の焼成温度に関する検討を行
った結果、x=0.8の場合と同様の傾向を示す結果が
得られた。
In the present embodiment, the case where the x value is 0.8 has been described. As a result of conducting the same study on the firing temperature for the case where the x value is in the range of 0.70 to 0.95, The result showing the same tendency as in the case of x = 0.8 was obtained.

【0030】従来の混合式合成法を用いて、LiNi
0.8Mn0.22の組成を有する正極活物質を合成した。
まず、水酸化ニッケルと水酸化リチウムと水酸化マンガ
ンとをNi:Mn:Liの原子比が0.8:0.2:
1.0となるように秤量し、ボールミルで粉砕しながら
混合し、混合物をアルミナるつぼに入れ酸素中において
550℃,20時間で1段目の焼成をした後、750
℃,2時間で2段目の焼成をした。焼成後室温までゆっ
くりと冷却し、粉砕したものを正極活物質とした。この
活物質のX線回折パターンは単一相にならず、複数相が
存在するものとなった。そこで、2段目の焼成温度を6
50℃〜900℃の範囲で変える検討を行った結果、焼
成温度を800℃以上にすることによって単一相が得ら
れるようになった。
Using the conventional mixed synthesis method, LiNi
A positive electrode active material having a composition of 0.8 Mn 0.2 O 2 was synthesized.
First, nickel hydroxide, lithium hydroxide, and manganese hydroxide having an atomic ratio of Ni: Mn: Li of 0.8: 0.2:
Weighed so as to be 1.0, mixed while pulverizing with a ball mill, put the mixture in an alumina crucible and baked the first stage in oxygen at 550 ° C. for 20 hours, and then 750
The second step was baked at 2 ° C for 2 hours. After firing, the product was slowly cooled to room temperature and pulverized to obtain a positive electrode active material. The X-ray diffraction pattern of this active material did not have a single phase, but had a plurality of phases. Therefore, the firing temperature for the second step is set to 6
As a result of studying changing the temperature in the range of 50 ° C. to 900 ° C., a single phase can be obtained by setting the firing temperature to 800 ° C. or higher.

【0031】図4は上記各温度によって作成した活物質
を用いて上記と同様の充放電サイクル試験を行った結果
であるが、焼成温度を650℃〜750℃とした正極活
物質は単一相の結晶構造が得られなく、初期容量も小さ
いとともにサイクル劣化が著しく、ほとんど50サイク
ル時点で初期容量の50%以下に低下し、その後も劣化
が進んだ。
FIG. 4 shows the results of the same charge / discharge cycle test as described above using the active material prepared at each of the above temperatures. The positive electrode active material having a firing temperature of 650 ° C. to 750 ° C. has a single phase. No crystal structure was obtained, the initial capacity was small, and the cycle deterioration was remarkable. At almost 50 cycles, the capacity decreased to 50% or less of the initial capacity, and the deterioration proceeded thereafter.

【0032】一方、800℃以上の焼成温度で合成した
活物質は結晶構造が単一相となり、50サイクル時点で
初期容量の80%を維持するが、容量値が100mAh
/g以下になりさらに減少した。
On the other hand, the active material synthesized at a firing temperature of 800 ° C. or higher has a single-phase crystal structure and maintains 80% of the initial capacity at the time of 50 cycles, but the capacity value is 100 mAh.
/ G or less and further decreased.

【0033】[0033]

【発明の効果】以上のように本発明のリチウム二次電池
用正極活物質の製造法では、ニッケル塩とマンガン塩と
の混合溶液にアルカリ溶液を加えてニッケルとマンガン
の水酸化物を共沈させることによりニッケルとマンガン
の複合水酸化物(以下、Ni・Mn複合酸化物)を得て
いるので、結晶構造がNiの一部をMnで確実に置換し
た固溶体レベルに至っており、X線回折でもほとんど単
一相になっていて結晶完成度が極めて高いものとなって
いる。そして、このNi・Mn複合水酸化物にLi塩を
加えて焼成すると、結晶内でLiが移動し易い結晶構造
を有するリチウム含有複合酸化物を得ることができ、容
量が大きくサイクル特性に優れた正極活物質を得ること
ができる。
As described above, in the method for producing a positive electrode active material for a lithium secondary battery of the present invention, an alkaline solution is added to a mixed solution of a nickel salt and a manganese salt to coprecipitate a hydroxide of nickel and manganese. By doing so, a composite hydroxide of nickel and manganese (hereinafter referred to as Ni / Mn composite oxide) is obtained, so that the crystal structure reaches a solid solution level in which a part of Ni is surely replaced by Mn, and X-ray diffraction However, it is almost a single phase and the degree of crystal perfection is extremely high. Then, when a Li salt is added to the Ni / Mn composite hydroxide and baked, a lithium-containing composite oxide having a crystal structure in which Li easily moves within the crystal can be obtained, and the capacity is large and the cycle characteristics are excellent. A positive electrode active material can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例に用いたコイン形リチウム二次電池の
断面図
FIG. 1 is a sectional view of a coin-type lithium secondary battery used in this example.

【図2】x値を変化させたときの正極活物質の容量とサ
イクル数との関係を示す図
FIG. 2 is a graph showing the relationship between the capacity of the positive electrode active material and the number of cycles when the x value is changed.

【図3】焼成温度を変化させたときの正極活物質の容量
とサイクル数との関係を示す図
FIG. 3 is a diagram showing the relationship between the capacity of the positive electrode active material and the number of cycles when the firing temperature is changed.

【図4】従来の製造法により合成した正極活物質の容量
とサイクル数との関係を示す図
FIG. 4 is a diagram showing the relationship between the capacity and the number of cycles of a positive electrode active material synthesized by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 正極 2 正極ケース 3 負極 4 封口板 5 ステンレス鋼製ネット 6 セパレータ 7 電解液 8 ガスケット 1 Positive Electrode 2 Positive Electrode Case 3 Negative Electrode 4 Sealing Plate 5 Stainless Steel Net 6 Separator 7 Electrolyte 8 Gasket

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムとニッケルおよびマンガンを含む
リチウム含有複合酸化物で、一般式LiNixMn(1-x)
2で表わされる式中のx値を0.95≧x≧0.70
とする正極活物質の製造方法であり、マンガン塩とニッ
ケル塩との混合水溶液にアルカリ溶液を加えてマンガン
とニッケルの水酸化物を共沈させることによってマンガ
ンとニッケルの複合水酸化物を得た後、水酸化リチウム
などのリチウム化合物と混合し、この混合物を焼成する
ことを特徴とするリチウム二次電池用正極活物質の製造
法。
1. A lithium-containing composite oxide containing lithium, nickel and manganese, which has a general formula of LiNi x Mn (1-x).
The x value in the formula represented by O 2 is 0.95 ≧ x ≧ 0.70
And a method for producing a positive electrode active material, wherein an alkali solution is added to a mixed aqueous solution of manganese salt and nickel salt to coprecipitate hydroxide of manganese and nickel to obtain a composite hydroxide of manganese and nickel. Then, a method for producing a positive electrode active material for a lithium secondary battery, which comprises mixing with a lithium compound such as lithium hydroxide and firing the mixture.
【請求項2】マンガンとニッケルの複合水酸化物とリチ
ウム化合物との混合物を、600℃以上800℃以下で
焼成する請求項1記載のリチウム二次電池用正極活物質
の製造法。
2. The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein a mixture of a composite hydroxide of manganese and nickel and a lithium compound is fired at 600 ° C. or higher and 800 ° C. or lower.
JP6313140A 1994-12-16 1994-12-16 Manufacturing method of positive electrode active material for lithium secondary battery Expired - Fee Related JP3008793B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6313140A JP3008793B2 (en) 1994-12-16 1994-12-16 Manufacturing method of positive electrode active material for lithium secondary battery
US08/573,505 US5626635A (en) 1994-12-16 1995-12-15 Processes for making positive active material for lithium secondary batteries and secondary batteries therefor
EP95119801A EP0720247B1 (en) 1994-12-16 1995-12-15 Manufacturing processes of positive active materials for lithium secondary batteries and lithium secondary batteries comprising the same
DE69502690T DE69502690T2 (en) 1994-12-16 1995-12-15 Process for the production of positive active material for lithium secondary batteries and secondary cells containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313140A JP3008793B2 (en) 1994-12-16 1994-12-16 Manufacturing method of positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08171910A true JPH08171910A (en) 1996-07-02
JP3008793B2 JP3008793B2 (en) 2000-02-14

Family

ID=18037585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313140A Expired - Fee Related JP3008793B2 (en) 1994-12-16 1994-12-16 Manufacturing method of positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3008793B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020571A1 (en) * 1996-11-07 1998-05-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing positive active material for nonaqueous electrolyte secondary cells
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
WO2000013250A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
JP2008115075A (en) * 2001-11-22 2008-05-22 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using the same
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2013147537A1 (en) 2012-03-31 2013-10-03 한양대학교 산학협력단 Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
US8865348B2 (en) 2006-03-30 2014-10-21 Industry-University Cooperation Foundation, Hanyang University Positive active material comprising a continuous concentration gradient of a metal composition for lithium battery, method of preparing the same, and lithium battery including the same
WO2015111658A1 (en) * 2014-01-22 2015-07-30 帝人株式会社 Positive electrode active material, positive electrode material using same, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
KR20160055138A (en) 2013-09-13 2016-05-17 미쓰이금속광업주식회사 Positive electrode material for lithium-ion cell
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
KR20180098787A (en) 2017-02-27 2018-09-05 한남대학교 산학협력단 A transition metal composite precursor and cathode materials for secondary battery
KR20180098785A (en) 2017-02-27 2018-09-05 한남대학교 산학협력단 A transition metal composite precursor and cathode materials for secondary battery
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
WO2019172193A1 (en) * 2018-03-07 2019-09-12 日立金属株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242134B1 (en) 1996-11-07 2001-06-05 Matsushita Electric Industrial Co., Ltd. Method of producing positive active material for non-aqueous electrolyte secondary batteries
WO1998020571A1 (en) * 1996-11-07 1998-05-14 Matsushita Electric Industrial Co., Ltd. Method of manufacturing positive active material for nonaqueous electrolyte secondary cells
WO1998029915A1 (en) * 1996-12-25 1998-07-09 Mitsubishi Denki Kabushiki Kaisha Anode active material, its producing process, and lithium ion secondary cell using the anode active material
US6383235B1 (en) 1997-09-26 2002-05-07 Mitsubishi Denki Kabushiki Kaisha Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
US6682850B1 (en) 1998-08-27 2004-01-27 Nec Corporation Nonaqueous electrolyte solution secondary battery using lithium-manganese composite oxide for positive electrode
WO2000013250A1 (en) * 1998-08-27 2000-03-09 Nec Corporation Nonaqueous electrolyte secondary cell
JP2007012629A (en) * 2000-07-27 2007-01-18 Matsushita Electric Ind Co Ltd Positive active material and nonaqueous electrolyte secondary battery containing this
US6551744B1 (en) 2000-07-27 2003-04-22 Matsushita Electric Industrial Co., Ltd. Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2002042813A (en) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd Positive electrode active material and non-aqueous electrolyte secondary battery using the same
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2008120679A (en) * 2000-11-16 2008-05-29 Hitachi Maxell Ltd Lithium-containing compound oxide, method for producing the same, and nonaqueous secondary battery
US7592100B2 (en) 2001-03-22 2009-09-22 Panasonic Corporation Positive-electrode active material and nonaqueous-electrolyte secondary battery containing the same
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7579114B2 (en) 2001-09-13 2009-08-25 Panasonic Corporation Method of preparing positive electrode active material
US7670723B2 (en) 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2008115075A (en) * 2001-11-22 2008-05-22 Hitachi Maxell Ltd Composite oxide containing lithium and nonaqueous secondary battery using the same
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US8241790B2 (en) 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8153297B2 (en) 2002-08-05 2012-04-10 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP4496150B2 (en) * 2004-09-27 2010-07-07 石原産業株式会社 Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2006117517A (en) * 2004-09-27 2006-05-11 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium-transition metal complex oxide and lithium cell using the lithium-transition metal complex oxide
US10454106B2 (en) 2004-12-31 2019-10-22 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Double-layer cathode active materials for lithium secondary batteries, method for preparing the active materials, and lithium secondary batteries using the active materials
US8865348B2 (en) 2006-03-30 2014-10-21 Industry-University Cooperation Foundation, Hanyang University Positive active material comprising a continuous concentration gradient of a metal composition for lithium battery, method of preparing the same, and lithium battery including the same
US10367197B2 (en) 2006-03-30 2019-07-30 Industry-University Cooperation Foundation Hanyang University Positive active material composition for lithium battery, method of preparing the same, and lithium battery including the same
US7927741B2 (en) 2007-01-26 2011-04-19 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
JP2010030808A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide having layer structure
US10263244B2 (en) 2011-11-25 2019-04-16 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide having layered structure
WO2013147537A1 (en) 2012-03-31 2013-10-03 한양대학교 산학협력단 Method for preparing cathode active material precursor for lithium secondary battery, cathode active material precursor for lithium secondary battery prepared thereby, and cathode active material for lithium secondary battery containing same
US9640794B2 (en) 2012-04-27 2017-05-02 Mitsui Mining & Smelting Co., Ltd. Lithium transition metal oxide having layered structure
KR20150103103A (en) 2013-03-04 2015-09-09 미쓰이금속광업주식회사 Lithium metal composite oxide powder
US9391313B2 (en) 2013-03-04 2016-07-12 Mitsui Mining & Smelting Co., Ltd. Lithium metal composite oxide powder
KR20160055138A (en) 2013-09-13 2016-05-17 미쓰이금속광업주식회사 Positive electrode material for lithium-ion cell
WO2015111658A1 (en) * 2014-01-22 2015-07-30 帝人株式会社 Positive electrode active material, positive electrode material using same, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20180098787A (en) 2017-02-27 2018-09-05 한남대학교 산학협력단 A transition metal composite precursor and cathode materials for secondary battery
KR20180098785A (en) 2017-02-27 2018-09-05 한남대학교 산학협력단 A transition metal composite precursor and cathode materials for secondary battery
WO2019172193A1 (en) * 2018-03-07 2019-09-12 日立金属株式会社 Positive electrode active material for lithium-ion secondary cell, and lithium-ion secondary cell
JPWO2019172193A1 (en) * 2018-03-07 2021-02-25 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries and lithium ion secondary batteries
US11949100B2 (en) 2018-03-07 2024-04-02 Proterial, Ltd. Cathode active material used for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP3008793B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
JP3008793B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JP3606289B2 (en) Cathode active material for lithium battery and method for producing the same
US5626635A (en) Processes for making positive active material for lithium secondary batteries and secondary batteries therefor
US7488465B2 (en) Solid state synthesis of lithium ion battery cathode material
JP4523807B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP2000133262A (en) Nonaqueous electrolyte secondary battery
JPH11307094A (en) Lithium secondary battery positive electrode active material and lithium secondary battery
JPH05283076A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JPH08273665A (en) Positive electrode material for lithium secondary battery and its manufacture and lithium secondary battery using it
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
US20010008730A1 (en) Positive electrode for lithium battery
JP2003068305A (en) Negative material for secondary lithium battery and its manufacturing method
JP3232943B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
EP0734085B1 (en) Spinel-type lithium manganese oxide as a cathode active material for nonaqueous electrolyte lithium secondary batteries
JP2020524384A (en) Method for manufacturing positive electrode active material
JP3185609B2 (en) Manufacturing method of positive electrode active material for lithium secondary battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP3487941B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte battery
JP2000154022A (en) Lithium manganese double oxide, its production and its use
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
JP3746099B2 (en) Cathode active material for lithium battery and method for producing the same
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
KR102618005B1 (en) Method for manufacturing positive electrode active material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees