JP2004323331A - Lithium-nickel-manganese compound oxide, its manufacturing method and its application - Google Patents

Lithium-nickel-manganese compound oxide, its manufacturing method and its application Download PDF

Info

Publication number
JP2004323331A
JP2004323331A JP2003123748A JP2003123748A JP2004323331A JP 2004323331 A JP2004323331 A JP 2004323331A JP 2003123748 A JP2003123748 A JP 2003123748A JP 2003123748 A JP2003123748 A JP 2003123748A JP 2004323331 A JP2004323331 A JP 2004323331A
Authority
JP
Japan
Prior art keywords
lithium
nickel
composite oxide
manganese composite
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003123748A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
康浩 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2003123748A priority Critical patent/JP2004323331A/en
Publication of JP2004323331A publication Critical patent/JP2004323331A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-nickel-manganese compound for improving the output characteristics which is a problem about LiNi<SB>0.5</SB>Mn<SB>0.5</SB>O<SB>2</SB>and to provide a lithium ion secondary cell using the compound. <P>SOLUTION: The lithium-nickel-manganese compound oxide is expressed by general formula of Li<SB>1+α-β</SB>A<SB>β</SB>Ni<SB>0.5</SB>Mn<SB>0.5</SB>O<SB>2</SB>(α≥0 and β>0) with α and β satisfying the relation of 1.00≤1+α≤1.25 and 0<β/(1+α)≤0.20, wherein A represents at least one element selected from alkali metals and alkaline earth metals. The compound has a layer rock salt structure in a single phase and has the ratio c/a of the c axis length to the a axis length in the range of ≥4.945 and ≤4.980 as the lattice constant attributed to the hexagonal system. In particular, the alkali metal or alkaline earth metal is at least one kind of metal selected from a group comprising sodium, potassium and magnesium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は二次電池用正極活物質等に使用されるリチウム−ニッケル−マンガン複合酸化物及びその製造方法並びにその用途に関するものである。
【0002】
【従来の技術】
近年、AV機器、携帯電話、パソコンなどの小型化、コードレス化が急速に進んでおり、これらの駆動用電源としてLiCoO,LiNiO,LiMnなどが研究されてきた。しかしながら、いずれも電気化学容量、安全性、コスト全てを満足する材料とは言い難いものがあり、最近ではLiNi0.5Mn0.5のようなLi−Ni−Mn複合酸化物が高エネルギー密度、安全性、コストを満足する材料として開示されている(例えば、非特許文献1)。前記LiNi0.5Mn0.5は従来のLiNiOのNiをMnで置換したLiNi1−XMn系材料とは基本的に発想が異なる。すなわち、LiNiOやLiMnOが有する特性をNiとMnとの置換により改良するのではなく、Ni,Mnとを均一に分散させて固溶体を形成することで新たな機能を発現することが開示されている(特許文献1)。
【0003】
しかしながら、本発明者らがLiNi0.5Mn0.5を用いた正極材料の電気化学特性につき詳細に評価した結果、従来のLiCoO,LiNiO,LiMnなどに比し出力特性に問題があることが明らかになった。また、前記LiNi0.5Mn0.5のXRDパターンのリートベルト(Rietveld)解析結果によるとカチオンミキシングを生じているという開示(非特許文献2)もあり、これらの構造不整が出力特性等に影響するとの考え方も可能である。
【0004】
上記の課題に対して本発明は、LiNi0.5Mn0.5におけるLi層の一部を異種元素、アルカリ金属又はアルカリ土類金属に置換してなるLi−Ni−Mn複合酸化物であり、当該組成により出力特性の改善が達成されるものである。
【0005】
従来、Liを異種元素で置換する発明は幾つか見受けられるが、本発明とは組成が基本的に異なったり、十分な実施例が記載されていない。すなわち、Coを主体とした化合物が開示されている(特許文献2)が、実施例にはLi−Ni−Mn化合物の記載がない。また、Li−Ni−Me化合物(Me;Co,Mn,Al,Cr,Fe,V,Ti,Ga)におけるLiのアルカリ金属置換が請求項中に開示されている(特許文献3および特許文献4)が、明細書にはLiのアルカリ金属置換に関する実施例およびLi1−XNi0.5Mn0.5組成に関する実施例が記載されていない。
【0006】
【特許文献1】特開平2002−42813号公報
【特許文献2】特開平5−74451号公報
【特許文献3】特開平2001−85006号公報
【特許文献4】特開平2001−243952号公報
【非特許文献1】小槻ら第41回電池討論会予稿集(2000)460−461
【非特許文献2】中野らJournal of the Ceramic Society of Japan 111[1]33−36 (2003)
【0007】
【発明が解決しようとする課題】
本発明者らがNi−Mn複合水酸化物を原料にして合成したLiNi0.5Mn0.5の出力特性を検討した結果、スピネル構造のLiMn、LiNi0.5Mn0.5と同様な層状岩塩構造のLiCoO、LiNiOに比し明らかに出力特性が低いことが判明した。したがって、本発明が解決しようとする課題は、LiNi0.5Mn0.5においては遷移金属層(3b−site)にNi、Mnが等量含有されている構造を保ちつつ、出力特性の改善を行った新規なリチウム−ニッケル−マンガン複合酸化物、その複合酸化物からなるリチウムイオン系正極活物質、及び、その製造方法、並びにその正極活物質を使用するリチウムイオン二次電池を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するための本発明のリチウム−ニッケル−マンガン複合酸化物は、一般式Li1+ α ββNi0.5Mn0.5(α≧0、β>0)で表され、α及びβが1.00≦1+α≦1.25、0<β/(1+α)≦0.20の関係式を満足し、式中Aはアルカリ金属、アルカリ土類金属から選択される少なくとも1つの元素であり、六方晶で帰属された格子定数、a軸長、c軸長の比率c/aが4.945以上、4.980以下であり、かつ単相の層状岩塩構造であることを特徴とするものである。
【0009】
また、特にアルカリ金属又はアルカリ土類金属がナトリウム、カリウム、マグネシウムからなる群より選ばれる少なくとも1種の金属であるリチウム−ニッケル−マンガン複合酸化物が好ましい。
【0010】
以下、本発明を詳細に説明する。
【0011】
本発明のリチウム−ニッケル−マンガン複合酸化物は一般式Li1+ α ββNi0.5Mn0.5(α≧0、β>0)で表され、α及びβが1.00≦1+α≦1.25、0<β/(1+α)≦0.20の関係式を満足し、式中Aはアルカリ金属、アルカリ土類金属から選択される少なくとも1つの元素であり、六方晶で帰属された格子定数、a軸長、c軸長の比率c/aが4.945以上4.980以下を満たすものである。ここでα<0である場合、前記カチオンミキシング、すなわちLi層へのNiの移動が顕著になることから、構造不整を生じ電気化学特性の低下を招く。したがって、α≧0は必須である。また、β値はA元素の種類によるが、単相の層状岩塩構造、具体的にはR3m構造もしくはc2/m構造の単相構造であり、かつ前記構造の単相が保たれる範囲が必須である。さらに、六方晶で帰属された格子定数、a軸長、c軸長の比率c/aはAの導入により増大する。前記c/aはLiNi1/2Mn1/2のc/a4.945以上、4.980以下である。現時点で原因は定かでないが、c/aが増大、すなわちc軸長が選択的に伸長するほど出力特性が向上する傾向にある。また、c/aの上限は層状岩塩構造が保たれる範囲であることが必要である。
【0012】
さらに、本発明のリチウム−ニッケル−マンガン複合酸化物の一般式Li1+ α ββNi0.5Mn0.5で表される式中のα、βがβ=1(NaNi1/2Mn1/2)を除いて、α及びβが1.00≦1+α≦1.25、0<β/(1+α)≦0.20の関係式を満足しなければ単相の単層岩塩構造が得られないか、又は、たとえ単相の単層岩塩構造が得られても、初期放電容量が低いか、又はハイレート放電比率が低く、所望の出力特性が得られない。
【0013】
また、本発明のリチウム−ニッケル−マンガン複合酸化物の一般式Li1+ α ββNi0.5Mn0.5(α≧0、β>0)式中のAはアルカリ金属又はアルカリ土類金属であり、ナトリウム、カリウム、マグネシウムからなる群より選ばれる少なくとも1種の金属が好ましく、ナトリウムであることが更に好ましい。何故ならば、Na(1.16オングストローム)はアルカリ金属の中ではLi(0.88オングストローム)と最もイオン半径が近接しており、Liとの置換が容易だからである。
【0014】
また、本発明のリチウム−ニッケル−マンガン複合酸化物の製造方法としては、中和共沈法、粉末混合法又は固液混合方法等、種々の方法が可能であるが、例えば、イルメナイト構造ニッケル−マンガン複合酸化物と、リチウム化合物とアルカリ金属又はアルカリ土類金属の化合物とを混合し、次いで有酸素雰囲気下750℃以上1000℃以下の温度で焼成する工程から製造することが可能である。
【0015】
焼成温度は下750℃以上1000℃以下の温度範囲に設定することが必須であり、750℃未満では結晶化が十分ではなく、1000℃を超過すると構造不整を生じる傾向にある。
【0016】
また、リチウム化合物は水酸化物、酢酸塩、炭酸塩、シュウ酸塩、硝酸塩、塩化物、硫酸塩などを用いることができ、アルカリ金属又はアルカリ土類金属の化合物も水酸化物、酢酸塩、炭酸塩、シュウ酸塩、硝酸塩、塩化物、硫酸塩などを用いることが可能であるが、分解温度が低く腐食性ガスを発生しない水酸化物もしくは炭酸塩を用いることが好ましい。また、ここで用いるイルメナイト構造型ニッケル−マンガン複合酸化物がアルカリ化合物との反応性が高い。前記イルメナイト構造型ニッケル−マンガン複合酸化物は共沈操作により得られたニッケル−マンガン複合水酸化物、ニッケル−マンガン複合炭酸塩、ニッケル−マンガン複合シュウ酸塩などのニッケル−マンガン共沈物を焼成することによって得ることが可能である。その際、ニッケル−マンガン共沈物はニッケルとマンガンが固溶した均一な結晶相であることが好ましい。なぜならば、リチウム化合物と反応させるニッケル−マンガン複合酸化物は共沈法により原子レベルでの均一性が保たれることが不可欠であり、粉末混合法などの操作では結晶完成度が高く電気化学特性の良好なものは得られない傾向にある。
【0017】
イルメナイト構造ニッケル−マンガン複合酸化物とリチウム化合物、アルカリ金属化合物およびアルカリ土類金属化合物との混合方法としては乾式混合法の他、リチウム塩、アルカリ金属およびアルカリ土類の塩を水もしくはアルコール等に分散もしくは溶解させてニッケル−マンガン複合酸化物に含浸させた後、乾燥、焼成する湿式スラリーを用いる方法も有効である。なお、前記スラリーはスプレーにて噴霧、乾燥してもよい。また、焼成雰囲気は有酸素雰囲気が不可欠である。窒素やアルゴンなど無酸素雰囲気下で焼成すると酸化物の還元が生じる為、目的とする生成物は得られない。ここで有酸素雰囲気とは、空気、又は、純酸素の様に空気より酸素分圧の高い雰囲気を表す。
【0018】
【実施例】
以下、本発明を下記具体的な実施例に沿って説明するが、これ等の実施例により本発明は何等限定されるものでない。
(イルメナイト構造型ニッケル−マンガン酸化物の調製方法)
実施例1〜5及び比較例1〜6において、以下に示す方法で得られたイルメナイト構造型ニッケル−マンガン酸化物を原料として使用した。
【0019】
0.20モルの硫酸ニッケルと0.20モルの硫酸マンガンを溶解した水溶液450mlと0.80モルの水酸化ナトリウムを溶解した水溶液450mlを、1.6モル/Lのアンモニウム水溶液800mlに攪拌および窒素バブリングを行いながら同時に滴下した後、25℃にて一晩攪拌混合した。その後、純水1.5Lを攪拌しながら、1.6モル/Lのアンモニウム水溶液50mlと35%の過酸化水素水100mlと得られたニッケル−マンガンの共沈スラリーを上記順序で投入し、更に3時間攪拌を行った。その後、沈殿物をろ過分離して80℃にて一夜間乾燥し、さらに400℃で空気流中、2時間焼成した。
(充放電サイクル試験および出力特性試験方法)
実施例1〜5及び比較例1〜6で得られたリチウム−ニッケル−マンガン複合酸化物を電池の正極材料として、導電剤のポリテトラフルオロエチレンとアセチレンブラックとの混合物(商品名:TAB−2)重量比で2:1の割合で混合し、1ton/cmの圧力でメッシュ(SUS316製)上にペレット状に成型した後、150℃で減圧乾燥し電池用正極を作製した。得られた電池用正極と、金属リチウム箔(厚さ0.2mm)からなる負極、およびプロピレンカーボネートとジエチルカーボネートとの混合溶媒に六フッ化リン酸リチウムを1mol/dmの濃度で溶解した電解液を用いて電池を構成した。このようにして作製した電池を用いて定電流で電池電圧が4.3Vから2.5Vの間23℃で充放電させた。充電は0.4mA・cm−2にて行い、放電は電流密度0.4mA・cm−2および2.5mA・cm−2の定電流で2通り行った。ハイレート放電比率を放電容量比(2.5mA・cm−2/0.4mA・cm−2)で表した。以上を出力特性試験とした。さらに、電流密度0.4mA・cm−2のものについては上記条件での充放電を50サイクル繰り返した。
【0020】
実施例1
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.03、ナトリウム/アルカリ金属(原子比)が0.067となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.94Na0.06Ni0.50Mn0.50であった。X線回折パターンは、図1に示す通りで、副生相を含有しないR3m構造またはその類縁構造、即ち、単相の層状岩塩構造であった。前記粉末X線パターンを虎谷らが開発したWPPD法(H.TorayaらJ.Appl.Cryst.19,440(1986))により六方晶でパターンフィッティングを行った結果、図2に示される様に、a軸長は2.901オングストローム、c軸長は14.37オングストローム、c/aは4.953であり、以下に示す比較例1のLi1.01Ni0.50Mn0.50の格子定数に比しc軸長が選択的に伸長する傾向がみられた。
【0021】
また、放電サイクル試験を実施すると、初期放電容量(0.4mA・cm−2)147mAh/g、ハイレート放電比率85.9%であり、容量維持率(%)は93.0%であった。
【0022】
実施例2
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.03、ナトリウム/アルカリ金属(原子比)が0.017となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.82Na0.19Ni0.50Mn0.50であった。X線回折パターンは、図1に示す通りで、副生相を含有しないR3m構造またはその類縁構造、即ち、単相の層状岩塩構造であった。また、WPPD法によるX線回折パターンのフィッティングの結果、c/aは4.973であり、実施例1と同様にLiNi0.50Mn0.50の格子定数に比しc軸長が選択的に伸長する傾向がみられた。また図2に示すようにc/aはNa/(Li+Na)原子比、即ち、Na置換量に比例する傾向を示した。
【0023】
また、これを電池の正極材料として実施例1と同様な出力特性試験を行ったところ、初期放電容量(0.4mA・cm−2)149mAh/g、ハイレート放電比率92.4%であった。また、充放電サイクル試験を行った結果、容量維持率は96.1%であった。
【0024】
実施例3
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.25、ナトリウム/アルカリ金属(原子比)が0.080となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li1.13Na0.10Ni0.50Mn0.50であった。X線回折パターンは図3に示す通りで、副生相を含有しないR3m構造またはその類縁構造、即ち、単相の層状岩塩構造を示した。WPPD法によるX線回折パターンのフィッティングの結果、c/aは4.952であり、LiNi0.50Mn0.50の格子定数に比しc軸長が選択的に伸長する傾向がみられた。さらに、これを電池の正極材料として実施例1と同様な出力特性試験を行ったところ、初期放電容量(0.4mA・cm−2)142mAh/g、ハイレート放電比率98.0%であった。また、充放電サイクル試験を行った結果、容量維持率は97.9%であった。
【0025】
実施例4
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸カリウムとをアルカリ金属(カリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.02、カリウム/アルカリ金属(原子比)が0.042となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−カリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.960.04Ni0.50Mn0.50であった。X線回折パターンは図4に示す通りで、副生相を含有しないR3m構造またはその類縁構造、即ち、単相の層状岩塩構造を示した。また、WPPD法によるX線回折パターンのフィッティングの結果、c/aは4.954であり、Na置換と同様に比較例1のLi1.01Ni0.50Mn0.50の格子定数に比しc軸長が選択的に伸長する傾向がみられた。さらに、これを電池の正極材料として実施例1と同様な出力特性試験を行ったところ、初期放電容量(0.4mA・cm−2)146mAh/g、ハイレート放電比率84.7%であった。
【0026】
実施例5
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と水酸化マグネシウムとをアルカリ金属(マグネシウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.05、マグネシウム/アルカリ金属(原子比)が0.057となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−マグネシウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li1.01Mg0.05Ni0.50Mn0.50であった。X線回折パターンは図5に示す通りで、R3m構造またはその類縁構造に近い相、即ち、単相の層状岩塩構造を示した。また、WPPD法によるX線回折パターンのフィッティングの結果、c/aは4.945であり、僅かではあるがNa置換と同様に比較例1のLi1.01Ni0.50Mn0.50の格子定数に比しc軸長が選択的に伸長する傾向がみられた。さらに、これを電池の正極材料として実施例1と同様な出力特性試験を行ったところ、初期放電容量(0.4mA・cm−2)145mAh/g、ハイレート放電比率83.6%であった。
【0027】
比較例1
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物とをアルカリ金属/遷移金属(ニッケル+マンガン)原子比が1.02となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li1.01Ni0.5Mn0.5であった。X線回折パターンは図1に示す通りで、R3m構造またはその類縁構造、即ち、単相の層状岩塩構造を示した。WPPD法によるX線回折パターンのフィッティングの結果、また図2に示すようにc/aは4.941であった。また、これを電池の正極材料として実施例1と同様な出力特性試験を行ったところ、初期放電容量(0.4mA・cm−2)145mAh/g、ハイレート放電比率82.4%であった。また、実施例1と同様な充放電サイクル試験を行った結果、容量維持率は86.3%であった。
【0028】
比較例2
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.01、ナトリウム/アルカリ金属(原子比)が0.30となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.71Na0.30Ni0.50Mn0.50であった。X線回折パターンは図1に示す通りで、層状岩塩構造の混合相であった。また、実施例1と同様な出力特性試験を行った結果、初期放電容量(0.4mA・cm−2)95.5mAh/g、ハイレート放電比率49.9%であった。
【0029】
比較例3
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.02、ナトリウム/アルカリ金属(原子比)が0.50となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.50Na0.51Ni0.50Mn0.50であった。X線回折パターンは図1に示す通りで、層状岩塩構造の混合相であった。また、実施例1と同様な出力特性試験を行った結果、初期放電容量(0.4mA・cm−2)80.7mAh/g、ハイレート放電比率48.3%であった。
【0030】
比較例4
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.02、ナトリウム/アルカリ金属(原子比)が0.670となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.32Na0.68Ni0.50Mn0.50であった。X線回折パターンは図1に示す通りで、層状岩塩構造の混合相であった。また、実施例1と同様な出力特性試験を行った結果、初期放電容量(0.4mA・cm−2)29.0mAh/g、ハイレート放電比率51.1%であった。
【0031】
比較例5
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が1.51、ナトリウム/アルカリ金属(原子比)が0.110となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li1.32Na0.16Ni0.50Mn0.50であった。X線回折パターンは図6に示す通りで、若干の副生相を含有したR3mまたはその類縁構造であり、即ち、単相の層状岩塩構造を示した。また、実施例1と同様な出力特性試験を行った結果、初期放電容量(0.4mA・cm−2)118mAh/g、ハイレート放電比率93.8%であった。
【0032】
比較例6
イルメナイト構造型ニッケル−マンガン酸化物と水酸化リチウム一水和物と炭酸ナトリウムとをアルカリ金属(ナトリウム+リチウム)/遷移金属(ニッケル+マンガン)原子比が0.970、ナトリウム/アルカリ金属(原子比)が0.180となるように自動乳鉢にて1時間混合した。得られた混合物を空気流中950℃にて20時間焼成しリチウム−ナトリウム−ニッケル−マンガン複合酸化物を得た。ICP組成分析の結果、Li0.79Na0.17Ni0.50Mn0.50であった。X線回折パターンは図7に示す通りで、副生相を含有したR3mまたはその類縁構造であり、即ち、単相の層状岩塩構造を示した。実施例1と同様な出力特性試験を行った結果、初期放電容量(0.4mA・cm−2)111mAh/g、ハイレート放電比率40.9%であった。
【0033】
実施例1〜5及び比較例1〜6の化学組成、1+α値、β/(1+α)値、c/a、初期放電容量値、ハイレート放電比率、及び、容量維持率を以下の表1に示す。
【0034】
【表1】

Figure 2004323331
以上の結果から、比較例1のLi1.01Ni0.5Mn0.5の出力特性、充放電サイクル特性に比し、実施例1〜5のNa置換材料、K置換材料、およびMg置換材料では出力特性、充放電サイクル特性が改善される傾向を示した。
【0035】
【発明の効果】
本発明のリチウム−ニッケル−マンガン複合酸化物を用いることにより、Li1.01Ni0.5Mn0.5に比し高負荷での出力特性を改善したリチウム−ニッケル−マンガン複合酸化物およびこれを用いたリチウムイオン二次電池用正極活物質を提供可能である。
【図面の簡単な説明】
【図1】実施例1、2および比較例1、2、3、4に従って得られたリチウム−ニッケル−マンガン複合酸化物の粉末X線回折図を示す。
【図2】実施例1、2および比較例1に従って得られたリチウム−ニッケル−マンガン複合酸化物のNa置換量と六方晶で帰属された格子定数の比率c/a値との相関図を示す。
【図3】実施例3に従って得られたLi1.13Na0.10Ni0.50Mn0.50の粉末X線回折図を示す。
【図4】実施例4に従って得られたLi0.960.04Ni0.50Mn0.50の粉末X線回折図を示す。
【図5】実施例5に従って得られたLi1.01Mg0.05Ni0.50Mn0.50の粉末X線回折図を示す。
【図6】比較例5に従って得られたLi1.32Na0.16Ni0.50Mn0.50の粉末X線回折図を示す。
【図7】比較例6に従って得られたLi0.79Na0.17Ni0.50Mn0.50の粉末X線回折図を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lithium-nickel-manganese composite oxide used as a positive electrode active material for a secondary battery, a method for producing the same, and uses thereof.
[0002]
[Prior art]
In recent years, the miniaturization and cordlessness of AV equipment, mobile phones, personal computers, and the like have been rapidly progressing.2, LiNiO2, LiMn2O4Etc. have been studied. However, none of these materials can be said to satisfy all of electrochemical capacity, safety and cost.0.5Mn0.5O2Li-Ni-Mn composite oxides are disclosed as materials satisfying high energy density, safety and cost (for example, Non-Patent Document 1). The LiNi0.5Mn0.5O2Is a conventional LiNiO2LiNi with Mn substituted for Ni1-XMnXO2The idea is fundamentally different from system materials. That is, LiNiO2And LiMnO2It is disclosed that, instead of improving the properties possessed by Ni and Mn, a new function is exhibited by forming a solid solution by uniformly dispersing Ni and Mn (Patent Document 1). .
[0003]
However, we have found that LiNi0.5Mn0.5O2As a result of detailed evaluation of the electrochemical characteristics of the positive electrode material using2, LiNiO2, LiMn2O4It became clear that there was a problem in the output characteristics as compared with the above. In addition, the LiNi0.5Mn0.5O2According to the results of Rietveld analysis of the XRD pattern described above, there is a disclosure that cation mixing occurs (Non-Patent Document 2), and it is possible to think that these structural irregularities affect output characteristics and the like.
[0004]
In order to solve the above problems, the present invention provides LiNi0.5Mn0.5O2Is a Li-Ni-Mn composite oxide obtained by substituting a part of the Li layer with a different element, an alkali metal or an alkaline earth metal, and the composition achieves improvement in output characteristics.
[0005]
Heretofore, there have been several inventions in which Li is replaced with a different element, but the composition is fundamentally different from that of the present invention, and no sufficient example is described. That is, a compound mainly composed of Co is disclosed (Patent Document 2), but there is no description of a Li-Ni-Mn compound in Examples. Further, substitution of an alkali metal for Li in a Li—Ni—Me compound (Me; Co, Mn, Al, Cr, Fe, V, Ti, Ga) is disclosed in the claims (Patent Documents 3 and 4). ), But in the description there are examples relating to the alkali metal substitution of Li and Li1-XAXNi0.5Mn0.5O2No examples relating to the composition are given.
[0006]
[Patent Document 1] JP-A-2002-42813
[Patent Document 2] JP-A-5-74451
[Patent Document 3] JP-A-2001-85006
[Patent Document 4] JP-A-2001-243952
[Non-Patent Document 1] Proceedings of the 41st Battery Symposium on Battery (2000) 460-461
[Non-Patent Document 2] Nakano et al. Journal of the Ceramic Society of Japan 111 [1] 33-36 (2003)
[0007]
[Problems to be solved by the invention]
LiNi synthesized by the present inventors using a Ni-Mn composite hydroxide as a raw material0.5Mn0.5O2As a result of examining the output characteristics of2O4, LiNi0.5Mn0.5O2LiCoO with the same layered rock salt structure as2, LiNiO2It was found that the output characteristics were clearly lower than in the case of. Therefore, the problem to be solved by the present invention is LiNi0.5Mn0.5O2, A novel lithium-nickel-manganese composite oxide having improved output characteristics while maintaining a structure in which transition metal layer (3b-site) contains equal amounts of Ni and Mn, and a composite oxide thereof An object of the present invention is to provide a lithium ion-based positive electrode active material, a method for producing the same, and a lithium ion secondary battery using the positive electrode active material.
[0008]
[Means for Solving the Problems]
The lithium-nickel-manganese composite oxide of the present invention for solving the above-mentioned problems has a general formula Li1+ α βAβNi0.5Mn0.5O2(Α ≧ 0, β> 0), wherein α and β satisfy the relational expressions of 1.00 ≦ 1 + α ≦ 1.25, 0 <β / (1 + α) ≦ 0.20, wherein A is an alkali At least one element selected from a metal and an alkaline earth metal, wherein a ratio c / a of a lattice constant, a-axis length, and c-axis length attributed in a hexagonal crystal is 4.945 or more and 4.980 or less. And a single-phase layered rock salt structure.
[0009]
Particularly, a lithium-nickel-manganese composite oxide in which the alkali metal or alkaline earth metal is at least one metal selected from the group consisting of sodium, potassium and magnesium is preferable.
[0010]
Hereinafter, the present invention will be described in detail.
[0011]
The lithium-nickel-manganese composite oxide of the present invention has the general formula Li1+ α βAβNi0.5Mn0.5O2(Α ≧ 0, β> 0), wherein α and β satisfy the relational expressions of 1.00 ≦ 1 + α ≦ 1.25, 0 <β / (1 + α) ≦ 0.20, wherein A is an alkali At least one element selected from metals and alkaline earth metals, wherein the lattice constant, a-axis length, and c-axis length ratio c / a attributed to hexagonal crystal satisfy 4.945 or more and 4.980 or less It is. Here, when α <0, the cation mixing, that is, the movement of Ni to the Li layer becomes remarkable, so that structural irregularities are caused and the electrochemical characteristics are reduced. Therefore, α ≧ 0 is essential. Although the β value depends on the type of the element A, the β-value is a single-phase layered rock salt structure, specifically, a single-phase structure having an R3m structure or a c2 / m structure, and a range in which the single-phase structure is maintained is essential. It is. Furthermore, the ratio c / a of the lattice constant, a-axis length, and c-axis length attributed to hexagonal crystal increases with the introduction of A. The c / a is LiNi1/2Mn1/2O2C / a of 4.945 or more and 4.980 or less. Although the cause is not clear at present, the output characteristics tend to improve as c / a increases, that is, as the c-axis length is selectively extended. Further, the upper limit of c / a needs to be in a range where the layered rock salt structure is maintained.
[0012]
Further, the lithium-nickel-manganese composite oxide of the present invention has a general formula Li1+ α βAβNi0.5Mn0.5O2Α and β in the equation represented by β = 1 (NaNi1/2Mn1/2O2), If α and β do not satisfy the relational expressions of 1.00 ≦ 1 + α ≦ 1.25 and 0 <β / (1 + α) ≦ 0.20, would a single-phase single-layered rock salt structure be obtained? Or, even if a single-phase single-layered rock salt structure is obtained, a desired initial output characteristic cannot be obtained due to a low initial discharge capacity or a low high-rate discharge ratio.
[0013]
The lithium-nickel-manganese composite oxide of the present invention has the general formula Li1+ α βAβNi0.5Mn0.5O2(Α ≧ 0, β> 0) A in the formula is an alkali metal or an alkaline earth metal, preferably at least one metal selected from the group consisting of sodium, potassium and magnesium, and more preferably sodium. . Because, Na+(1.16 angstroms) is Li among the alkali metals+(0.88 angstroms) and the closest ion radius, Li+This is because replacement with is easy.
[0014]
As the method for producing the lithium-nickel-manganese composite oxide of the present invention, various methods such as a neutralization coprecipitation method, a powder mixing method and a solid-liquid mixing method are possible. It can be produced from a step of mixing a manganese composite oxide, a lithium compound and a compound of an alkali metal or an alkaline earth metal, and then firing at a temperature of 750 ° C. or more and 1000 ° C. or less in an aerobic atmosphere.
[0015]
It is essential to set the firing temperature in the lower temperature range of 750 ° C. or more and 1000 ° C. or less. If it is lower than 750 ° C., crystallization is not sufficient, and if it exceeds 1000 ° C., structural irregularity tends to occur.
[0016]
In addition, hydroxides, acetates, carbonates, oxalates, nitrates, chlorides, sulfates, and the like can be used for the lithium compound, and hydroxides, acetates, and compounds of alkali metals or alkaline earth metals can also be used. Although carbonates, oxalates, nitrates, chlorides, sulfates, and the like can be used, it is preferable to use hydroxides or carbonates that have a low decomposition temperature and do not generate corrosive gas. Moreover, the ilmenite structure type nickel-manganese composite oxide used here has high reactivity with an alkali compound. The ilmenite structure type nickel-manganese composite oxide is obtained by calcining a nickel-manganese coprecipitate such as a nickel-manganese composite hydroxide, a nickel-manganese composite carbonate, and a nickel-manganese composite oxalate obtained by a coprecipitation operation. It is possible to obtain by doing. In this case, the nickel-manganese coprecipitate is preferably a uniform crystal phase in which nickel and manganese are dissolved. This is because nickel-manganese composite oxides that react with lithium compounds must maintain uniformity at the atomic level by the coprecipitation method, and operations such as powder mixing have high crystal perfection and high electrochemical properties. Tends to not be obtained.
[0017]
As a method of mixing the ilmenite structure nickel-manganese composite oxide with a lithium compound, an alkali metal compound and an alkaline earth metal compound, in addition to a dry mixing method, a lithium salt, an alkali metal and an alkaline earth salt are converted to water or alcohol or the like. It is also effective to use a wet slurry which is dispersed or dissolved, impregnated with the nickel-manganese composite oxide, dried and fired. The slurry may be sprayed and dried by a spray. In addition, an oxygen atmosphere is essential for the firing atmosphere. When calcined in an oxygen-free atmosphere such as nitrogen or argon, the reduction of oxides occurs, and the desired product cannot be obtained. Here, the aerobic atmosphere means an atmosphere having a higher oxygen partial pressure than air, such as air or pure oxygen.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to the following specific examples, but the present invention is not limited by these examples.
(Preparation method of ilmenite structure type nickel-manganese oxide)
In Examples 1 to 5 and Comparative Examples 1 to 6, the ilmenite structure type nickel-manganese oxide obtained by the following method was used as a raw material.
[0019]
450 ml of an aqueous solution in which 0.20 mol of nickel sulfate and 0.20 mol of manganese sulfate are dissolved and 450 ml of an aqueous solution in which 0.80 mol of sodium hydroxide are dissolved are stirred into 800 ml of a 1.6 mol / L aqueous ammonium solution, and nitrogen is added. After simultaneous dropping while bubbling, the mixture was stirred and mixed at 25 ° C. overnight. Thereafter, while stirring 1.5 L of pure water, 50 ml of a 1.6 mol / L aqueous ammonium solution, 100 ml of 35% hydrogen peroxide solution and 100 ml of the obtained nickel-manganese coprecipitated slurry were added in the above order, and furthermore, Stirring was performed for 3 hours. Thereafter, the precipitate was separated by filtration, dried at 80 ° C. overnight, and calcined at 400 ° C. in an air stream for 2 hours.
(Charge / discharge cycle test and output characteristics test method)
Using the lithium-nickel-manganese composite oxide obtained in Examples 1 to 5 and Comparative Examples 1 to 6 as a cathode material of a battery, a mixture of polytetrafluoroethylene and acetylene black as conductive agents (trade name: TAB-2) ) 2: 1 by weight ratio, 1 ton / cm2After being formed into a pellet shape on a mesh (made of SUS316) at a pressure of 5 ° C., it was dried at 150 ° C. under reduced pressure to prepare a positive electrode for a battery. 1 mol / dm. Of lithium hexafluorophosphate in a mixed solvent of propylene carbonate and diethyl carbonate, and a negative electrode composed of the obtained battery positive electrode, a metal lithium foil (0.2 mm thick),3A battery was constructed using an electrolytic solution dissolved at a concentration of. The battery thus prepared was charged and discharged at 23 ° C. at a constant current and a battery voltage of 4.3 V to 2.5 V. Charging is 0.4mA · cm-2And discharge is performed at a current density of 0.4 mA · cm.-2And 2.5 mA · cm-2At two constant currents. Change the high rate discharge ratio to the discharge capacity ratio (2.5 mA-2/0.4mA·cm-2). The above was the output characteristic test. Further, the current density is 0.4 mA · cm-2The charge and discharge under the above conditions were repeated for 50 cycles.
[0020]
Example 1
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.03, and a sodium / alkali metal (atomic ratio). ) Was adjusted to 0.067 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.94Na0.06Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and was an R3m structure containing no by-product phase or its related structure, that is, a single-phase layered rock salt structure. As a result of pattern fitting of the powder X-ray pattern by hexagonal crystal by the WPPD method developed by Toraya et al. (H. Toraya et al., J. Appl. Cryst. 19, 440 (1986)), as shown in FIG. The a-axis length is 2.901 angstroms, the c-axis length is 14.37 angstroms, and c / a is 4.953.1.01Ni0.50Mn0.50O2The tendency of the c-axis length to selectively elongate compared to the lattice constant of was observed.
[0021]
When a discharge cycle test is performed, the initial discharge capacity (0.4 mA · cm-2) 147 mAh / g, high rate discharge ratio was 85.9%, and capacity retention (%) was 93.0%.
[0022]
Example 2
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.03, and a sodium / alkali metal (atomic ratio). ) Was adjusted to 0.017 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.82Na0.19Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and was an R3m structure containing no by-product phase or its related structure, that is, a single-phase layered rock salt structure. Further, as a result of fitting the X-ray diffraction pattern by the WPPD method, c / a was 4.973.0.50Mn0.50O2The tendency of the c-axis length to selectively elongate compared to the lattice constant of was observed. Further, as shown in FIG. 2, c / a tended to be proportional to the atomic ratio of Na / (Li + Na), that is, the Na substitution amount.
[0023]
Further, when this was used as a cathode material of a battery and an output characteristic test was performed in the same manner as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 149 mAh / g, high rate discharge ratio 92.4%. Further, as a result of performing a charge / discharge cycle test, the capacity retention ratio was 96.1%.
[0024]
Example 3
An ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.25 and a sodium / alkali metal (atomic ratio). ) Was adjusted to 0.080 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li1.13Na0.10Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 3 and showed an R3m structure containing no by-product phase or a related structure thereof, that is, a single-phase layered rock salt structure. As a result of fitting the X-ray diffraction pattern by the WPPD method, c / a was 4.952, and LiNi0.50Mn0.50O2The tendency of the c-axis length to selectively elongate compared to the lattice constant of was observed. Further, when this was used as a cathode material for a battery and an output characteristic test similar to that in Example 1 was performed, the initial discharge capacity (0.4 mA · cm-2) 142 mAh / g, high rate discharge ratio 98.0%. As a result of performing a charge / discharge cycle test, the capacity retention ratio was 97.9%.
[0025]
Example 4
The ilmenite type nickel-manganese oxide, lithium hydroxide monohydrate and potassium carbonate have an alkali metal (potassium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.02, potassium / alkali metal (atomic ratio) ) Was 0.042 in an automatic mortar for 0.042. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-potassium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.96K0.04Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 4 and showed an R3m structure containing no by-product phase or a related structure thereof, that is, a single-phase layered rock salt structure. Further, as a result of fitting the X-ray diffraction pattern by the WPPD method, c / a was 4.954.1.01Ni0.50Mn0.50O2The tendency of the c-axis length to selectively elongate compared to the lattice constant of was observed. Further, when this was used as a cathode material for a battery and an output characteristic test similar to that in Example 1 was performed, the initial discharge capacity (0.4 mA · cm-2) 146 mAh / g, high rate discharge ratio: 84.7%.
[0026]
Example 5
An ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and magnesium hydroxide have an alkali metal (magnesium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.05, magnesium / alkali metal (atom) (Ratio) was 0.057 in an automatic mortar for 1 hour. The obtained mixture was calcined at 950 ° C. for 20 hours in an air stream to obtain a lithium-magnesium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li1.01Mg0.05Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 5 and showed a phase close to the R3m structure or its related structure, that is, a single-phase layered rock salt structure. Further, as a result of fitting the X-ray diffraction pattern by the WPPD method, c / a was 4.945.1.01Ni0.50Mn0.50O2The tendency of the c-axis length to selectively elongate compared to the lattice constant of was observed. Further, when this was used as a cathode material for a battery and an output characteristic test similar to that in Example 1 was performed, the initial discharge capacity (0.4 mA · cm-2) 145 mAh / g, high rate discharge ratio 83.6%.
[0027]
Comparative Example 1
The ilmenite structure-type nickel-manganese oxide and lithium hydroxide monohydrate were mixed in an automatic mortar for one hour so that the alkali metal / transition metal (nickel + manganese) atomic ratio was 1.02. The obtained mixture was calcined at 950 ° C. for 20 hours in an air stream to obtain a lithium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li1.01Ni0.5Mn0.5O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and showed an R3m structure or its related structure, that is, a single-phase layered rock salt structure. As a result of fitting the X-ray diffraction pattern by the WPPD method, as shown in FIG. 2, c / a was 4.941. Further, when this was used as a cathode material of a battery and an output characteristic test was performed in the same manner as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 145 mAh / g, high rate discharge ratio: 82.4%. Further, as a result of performing the same charge / discharge cycle test as in Example 1, the capacity retention ratio was 86.3%.
[0028]
Comparative Example 2
An ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.01, sodium / alkali metal (atomic ratio) ) Was 0.30 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.71Na0.30Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and was a mixed phase having a layered rock salt structure. In addition, as a result of performing the same output characteristic test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 95.5 mAh / g, high rate discharge ratio: 49.9%.
[0029]
Comparative Example 3
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.02, and a sodium / alkali metal (atomic ratio). ) Was 0.50 in an automatic mortar for 0.5 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.50Na0.51Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and was a mixed phase having a layered rock salt structure. In addition, as a result of performing the same output characteristic test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 80.7 mAh / g, high rate discharge ratio 48.3%.
[0030]
Comparative Example 4
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.02, and a sodium / alkali metal (atomic ratio). ) Was adjusted to 0.670 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.32Na0.68Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 1 and was a mixed phase having a layered rock salt structure. In addition, as a result of performing the same output characteristic test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 29.0 mAh / g, high rate discharge ratio 51.1%.
[0031]
Comparative Example 5
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 1.51, sodium / alkali metal (atomic ratio) ) Was 0.110 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li1.32Na0.16Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 6, which was R3m containing some by-product phases or a related structure, that is, a single-phase layered rock salt structure. In addition, as a result of performing the same output characteristic test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 118 mAh / g, high rate discharge ratio 93.8%.
[0032]
Comparative Example 6
The ilmenite structure type nickel-manganese oxide, lithium hydroxide monohydrate, and sodium carbonate have an alkali metal (sodium + lithium) / transition metal (nickel + manganese) atomic ratio of 0.970, and a sodium / alkali metal (atomic ratio). ) Was 0.180 with an automatic mortar for 1 hour. The obtained mixture was calcined in an air stream at 950 ° C. for 20 hours to obtain a lithium-sodium-nickel-manganese composite oxide. As a result of ICP composition analysis, Li0.79Na0.17Ni0.50Mn0.50O2Met. The X-ray diffraction pattern was as shown in FIG. 7, which was R3m containing a by-product phase or an analogous structure thereof, that is, a single-phase layered rock salt structure. As a result of performing the same output characteristic test as in Example 1, the initial discharge capacity (0.4 mA · cm-2) 111 mAh / g, high rate discharge ratio 40.9%.
[0033]
The chemical compositions of Examples 1 to 5 and Comparative Examples 1 to 6, 1 + α value, β / (1 + α) value, c / a, initial discharge capacity value, high-rate discharge ratio, and capacity retention ratio are shown in Table 1 below. .
[0034]
[Table 1]
Figure 2004323331
From the above results, Li of Comparative Example 11.01Ni0.5Mn0.5O2In comparison with the output characteristics and the charge / discharge cycle characteristics of Examples 1 to 5, the Na-substituted material, the K-substituted material and the Mg-substituted material of Examples 1 to 5 tended to have improved output characteristics and charge-discharge cycle characteristics.
[0035]
【The invention's effect】
By using the lithium-nickel-manganese composite oxide of the present invention, Li1.01Ni0.5Mn0.5O2It is possible to provide a lithium-nickel-manganese composite oxide having improved output characteristics under a high load as compared with the above, and a positive electrode active material for a lithium ion secondary battery using the same.
[Brief description of the drawings]
FIG. 1 shows a powder X-ray diffraction diagram of a lithium-nickel-manganese composite oxide obtained according to Examples 1 and 2 and Comparative Examples 1, 2, 3, and 4.
FIG. 2 shows a correlation diagram between the amount of Na substitution of the lithium-nickel-manganese composite oxide obtained according to Examples 1 and 2 and Comparative Example 1 and the ratio c / a of the lattice constant attributed to hexagonal. .
FIG. 3 shows Li obtained according to Example 3.1.13Na0.10Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 4 shows Li obtained according to Example 4.0.96K0.04Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 5 Li obtained according to Example 51.01Mg0.05Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 6 shows Li obtained according to Comparative Example 5.1.32Na0.16Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.
FIG. 7 shows Li obtained according to Comparative Example 6.0.79Na0.17Ni0.50Mn0.50O21 shows a powder X-ray diffraction pattern of the sample.

Claims (5)

一般式Li1+ α ββNi0.5Mn0.5(α≧0、β>0)で表され、α及びβが1.00≦1+α≦1.25、0<β/(1+α)≦0.20の関係式を満足し、式中Aはアルカリ金属又はアルカリ土類金属から選択される少なくとも1つの元素であり、六方晶で帰属された格子定数、a軸長、c軸長の比率c/aが4.945以上、4.980以下であり、単相の層状岩塩構造であるリチウム−ニッケル−マンガン複合酸化物。Formula Li 1+ α - β A β Ni 0.5 Mn 0.5 O 2 (α ≧ 0, β> 0) is represented by, alpha and beta are 1.00 ≦ 1 + α ≦ 1.25,0 < β / (1 + α) ≦ 0.20, wherein A is at least one element selected from alkali metals and alkaline earth metals, and has a lattice constant assigned by hexagonal system, a-axis length, c A lithium-nickel-manganese composite oxide having an axis length ratio c / a of 4.945 or more and 4.980 or less and having a single-phase layered rock salt structure. アルカリ金属又はアルカリ土類金属がナトリウム、カリウム、マグネシウムからなる群より選ばれる少なくとも1種の金属である請求項1記載のリチウム−ニッケル−マンガン複合酸化物。The lithium-nickel-manganese composite oxide according to claim 1, wherein the alkali metal or alkaline earth metal is at least one metal selected from the group consisting of sodium, potassium, and magnesium. イルメナイト構造ニッケル−マンガン複合酸化物と、リチウム化合物とアルカリ金属又はアルカリ土類金属の化合物とを混合し、次いで有酸素雰囲気下750℃以上1000℃以下の温度で焼成することを特徴とする請求項1又は請求項2記載のリチウム−ニッケル−マンガン複合酸化物の製造方法。An ilmenite structure nickel-manganese composite oxide, a lithium compound and a compound of an alkali metal or an alkaline earth metal are mixed, and then calcined at a temperature of 750 ° C or more and 1000 ° C or less in an aerobic atmosphere. The method for producing a lithium-nickel-manganese composite oxide according to claim 1 or 2. 請求項1記載のリチウム−ニッケル−マンガン複合酸化物を含有してなるリチウムイオン二次電池用正極活物質。A positive electrode active material for a lithium ion secondary battery, comprising the lithium-nickel-manganese composite oxide according to claim 1. 請求項4記載の正極活物質を使用するリチウムイオン二次電池。A lithium ion secondary battery using the positive electrode active material according to claim 4.
JP2003123748A 2003-04-28 2003-04-28 Lithium-nickel-manganese compound oxide, its manufacturing method and its application Withdrawn JP2004323331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003123748A JP2004323331A (en) 2003-04-28 2003-04-28 Lithium-nickel-manganese compound oxide, its manufacturing method and its application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003123748A JP2004323331A (en) 2003-04-28 2003-04-28 Lithium-nickel-manganese compound oxide, its manufacturing method and its application

Publications (1)

Publication Number Publication Date
JP2004323331A true JP2004323331A (en) 2004-11-18

Family

ID=33501549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003123748A Withdrawn JP2004323331A (en) 2003-04-28 2003-04-28 Lithium-nickel-manganese compound oxide, its manufacturing method and its application

Country Status (1)

Country Link
JP (1) JP2004323331A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057307A1 (en) * 2004-11-26 2006-06-01 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2007287661A (en) * 2006-03-20 2007-11-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008063211A (en) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology Lithium manganese-based compound oxide and its manufacture method
JP2008137837A (en) * 2006-11-30 2008-06-19 Tosoh Corp Lithium-nickel-manganese complex oxide, its manufacturing process and its application
WO2010110402A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
JP2013175311A (en) * 2012-02-23 2013-09-05 National Institute Of Advanced Industrial & Technology Positive electrode material for sodium secondary battery, manufacturing method thereof, sodium secondary battery electrode using the positive electrode material for sodium secondary battery, nonaqueous sodium secondary battery having the sodium secondary battery electrode, and electric device having the nonaqueous sodium secondary battery incorporated therein
WO2014007358A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
JP2014026959A (en) * 2012-06-20 2014-02-06 Gs Yuasa Corp Positive electrode active material for lithium secondary battery, precursor of the positive electrode active material, electrode for lithium secondary battery and lithium secondary battery
WO2015148245A1 (en) * 2014-03-28 2015-10-01 The Gillette Company Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
JP2016064967A (en) * 2014-09-18 2016-04-28 本田技研工業株式会社 Lithium composite oxide, manufacturing method of lithium composite oxide, cathode active material for lithium secondary battery and lithium secondary battery
WO2016080471A1 (en) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 Lithium sodium complex oxide, method for manufacturing lithium sodium complex oxide, cathode active material for secondary battery and secondary battery
JP2016102043A (en) * 2014-11-18 2016-06-02 本田技研工業株式会社 Lithium sodium complex oxide, manufacturing method of lithium sodium complex oxide, cathode active material for secondary batter and secondary battery
US10910647B2 (en) 2017-05-09 2021-02-02 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
CN114975977A (en) * 2022-08-03 2022-08-30 四川新能源汽车创新中心有限公司 Lithium nickel manganese oxide-sodium nickel manganese oxide composite cathode material and preparation method and application thereof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250136B1 (en) * 2004-11-26 2013-04-04 고쿠리쓰다이가쿠호진 규슈다이가쿠 Positive electrode active material for nonaqueous electrolyte secondary battery
WO2006057307A1 (en) * 2004-11-26 2006-06-01 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
US8709655B2 (en) 2004-11-26 2014-04-29 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
JP2007287661A (en) * 2006-03-20 2007-11-01 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2008063211A (en) * 2006-03-20 2008-03-21 National Institute Of Advanced Industrial & Technology Lithium manganese-based compound oxide and its manufacture method
JP4691711B2 (en) * 2006-03-20 2011-06-01 独立行政法人産業技術総合研究所 Lithium manganese composite oxide and method for producing the same
US8021783B2 (en) 2006-03-20 2011-09-20 National Institute Of Advanced Industrial Science And Technology Lithium manganese-based composite oxide and method for preparing the same
JP2008137837A (en) * 2006-11-30 2008-06-19 Tosoh Corp Lithium-nickel-manganese complex oxide, its manufacturing process and its application
CN102361821A (en) * 2009-03-23 2012-02-22 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
JP2011142064A (en) * 2009-03-23 2011-07-21 Sumitomo Chemical Co Ltd Manufacturing method of layered structure lithium complex metal oxide
US8758455B2 (en) 2009-03-23 2014-06-24 Sumitomo Chemical Company, Limited Process for producing lithium composite metal oxide having layered structure
WO2010110402A1 (en) * 2009-03-23 2010-09-30 住友化学株式会社 Process for producing lithium composite metal oxide having layered structure
KR101751546B1 (en) * 2009-03-23 2017-06-27 스미또모 가가꾸 가부시키가이샤 Process for producing lithium composite metal oxide having layered structure
JP2013175311A (en) * 2012-02-23 2013-09-05 National Institute Of Advanced Industrial & Technology Positive electrode material for sodium secondary battery, manufacturing method thereof, sodium secondary battery electrode using the positive electrode material for sodium secondary battery, nonaqueous sodium secondary battery having the sodium secondary battery electrode, and electric device having the nonaqueous sodium secondary battery incorporated therein
JP2014026959A (en) * 2012-06-20 2014-02-06 Gs Yuasa Corp Positive electrode active material for lithium secondary battery, precursor of the positive electrode active material, electrode for lithium secondary battery and lithium secondary battery
JPWO2014007358A1 (en) * 2012-07-06 2016-06-02 住友化学株式会社 Lithium composite metal oxide, positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery
WO2014007358A1 (en) * 2012-07-06 2014-01-09 住友化学株式会社 Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
US9583763B2 (en) 2012-07-06 2017-02-28 Sumitomo Chemical Company, Limited Lithium composite metal oxide, positive electrode active substance, positive electrode, and non-aqueous electrolyte secondary battery
JP2016185905A (en) * 2012-07-06 2016-10-27 住友化学株式会社 Lithium composite metal oxide, cathode active material, cathode and nonaqueous electrolyte secondary battery
EP3745497A1 (en) * 2014-03-28 2020-12-02 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11799082B2 (en) 2014-03-28 2023-10-24 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US9793542B2 (en) 2014-03-28 2017-10-17 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US10158118B2 (en) 2014-03-28 2018-12-18 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US10276869B2 (en) 2014-03-28 2019-04-30 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
EP3503261A1 (en) * 2014-03-28 2019-06-26 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material
WO2015148245A1 (en) * 2014-03-28 2015-10-01 The Gillette Company Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11081696B2 (en) 2014-03-28 2021-08-03 Duracell U.S. Operations, Inc. Beta-delithiated layered nickel oxide electrochemically active cathode material and a battery including said material
US11316159B2 (en) 2014-03-28 2022-04-26 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickle oxide electrochemically active cathode material
US11901553B2 (en) 2014-03-28 2024-02-13 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickle oxide electrochemically active cathode material
JP2016064967A (en) * 2014-09-18 2016-04-28 本田技研工業株式会社 Lithium composite oxide, manufacturing method of lithium composite oxide, cathode active material for lithium secondary battery and lithium secondary battery
WO2016080471A1 (en) * 2014-11-18 2016-05-26 国立研究開発法人産業技術総合研究所 Lithium sodium complex oxide, method for manufacturing lithium sodium complex oxide, cathode active material for secondary battery and secondary battery
JP2016102043A (en) * 2014-11-18 2016-06-02 本田技研工業株式会社 Lithium sodium complex oxide, manufacturing method of lithium sodium complex oxide, cathode active material for secondary batter and secondary battery
US10910647B2 (en) 2017-05-09 2021-02-02 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
US11764357B2 (en) 2017-05-09 2023-09-19 Duracell U.S. Operations, Inc. Battery including beta-delithiated layered nickel oxide electrochemically active cathode material
CN114975977B (en) * 2022-08-03 2023-08-15 四川新能源汽车创新中心有限公司 Lithium nickel manganese oxide-sodium nickel manganese oxide composite positive electrode material and preparation method and application thereof
CN114975977A (en) * 2022-08-03 2022-08-30 四川新能源汽车创新中心有限公司 Lithium nickel manganese oxide-sodium nickel manganese oxide composite cathode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101131479B1 (en) Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
JP5081731B2 (en) The manufacturing method of the raw material for positive electrode active materials for lithium secondary batteries.
JP5228292B2 (en) A method for producing a lithium-nickel-manganese-cobalt composite oxide.
JP4137635B2 (en) Positive electrode active material and non-aqueous secondary battery
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
CA2672072A1 (en) Li-ni composite oxide particles for non-aqueous electrolyte secondary cell, process for producing the same, and non-aqueous electrolyte secondary cell
JP2007091573A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP6541115B2 (en) Positive electrode material and lithium secondary battery using the same for positive electrode
JPH05283076A (en) Nonaqueous electrolyte secondary battery and manufacture of positive electrode active material thereof
JP2021501980A (en) Manufacturing method of positive electrode active material
JP4496150B2 (en) Lithium / transition metal composite oxide production method and lithium battery using the lithium / transition metal composite oxide
JP2005097087A (en) New lithium-nickel-manganese multiple oxide and its manufacturing method
JPH08217452A (en) Needle manganese complex oxide, production and use thereof
JP2004002141A (en) Lithium nickel manganese oxide, its manufacturing method and lithium-ion secondary cell using the same
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4578790B2 (en) Method for producing lithium-nickel-cobalt-manganese-aluminum-containing composite oxide
JP2004323331A (en) Lithium-nickel-manganese compound oxide, its manufacturing method and its application
JP6910697B2 (en) Manufacturing method of positive electrode active material
JP2008120679A5 (en)
JP3974396B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2007149414A (en) Lithium ion secondary battery and manufacturing method of its lithium compound oxide
JP2010282982A (en) Lithium transition metal complex oxide and lithium battery made by using the same
JPH08217451A (en) Needle manganese complex oxide, production and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070717