JP2006114747A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2006114747A
JP2006114747A JP2004301462A JP2004301462A JP2006114747A JP 2006114747 A JP2006114747 A JP 2006114747A JP 2004301462 A JP2004301462 A JP 2004301462A JP 2004301462 A JP2004301462 A JP 2004301462A JP 2006114747 A JP2006114747 A JP 2006114747A
Authority
JP
Japan
Prior art keywords
film
fluorine
semiconductor device
high dielectric
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004301462A
Other languages
Japanese (ja)
Other versions
JP2006114747A5 (en
Inventor
Takaoki Sasaki
隆興 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004301462A priority Critical patent/JP2006114747A/en
Publication of JP2006114747A publication Critical patent/JP2006114747A/en
Publication of JP2006114747A5 publication Critical patent/JP2006114747A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize improvements in MISFET characteristics by increasing the quality of an interface between a high-dielectric gate insulated film and a silicon substrate. <P>SOLUTION: In a method for manufacturing a semiconductor device having a high-k film 21 and a gate electrode 24 formed on a silicon substrate 11, annealing treatment 23 is applied to the substrate after formation of the high-k film in a fluorine atmosphere, and thereafter, the process temperature is set to be lower than 600°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体装置の製造方法に関するもので、詳しくは、絶縁ゲート電界効果トランジスタ(MISFET)用のゲート絶縁膜に高誘電率膜(High−k膜)が適用される半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device in which a high dielectric constant film (High-k film) is applied to a gate insulating film for an insulated gate field effect transistor (MISFET). .

シリコン基板上に絶縁膜とゲート電極を形成した半導体装置において、絶縁膜にフッ素を添加することにより、シリコン基板との界面に存在するダングリングボンドを終端させることは、特許文献1に示されているが、電極形成前に低温でフッ素アニール処理を行う点が示されていない。
特開2001−257344号公報
Patent Document 1 discloses that in a semiconductor device in which an insulating film and a gate electrode are formed on a silicon substrate, dangling bonds existing at the interface with the silicon substrate are terminated by adding fluorine to the insulating film. However, it does not show that fluorine annealing is performed at a low temperature before electrode formation.
JP 2001-257344 A

メタルゲートは、通常、high−k膜に有利な材料であるが、high−k膜の成膜温度は、低い場合が多く、シリコン基板界面状態を良好にする熱工程を経ていないのが普通である。また、先にシリコン基板中にソースドレインを形成する工程(ダマシンゲートなどゲート後付けプロセス)では、サリサイドの形成(例えばNiSiでは500℃未満)を行った後に、本来の絶縁膜を形成する場合が多く、これも高温化を適用できない一つの要因となっている。   A metal gate is usually a material advantageous for a high-k film, but the film-forming temperature of a high-k film is often low, and it is normal that it does not go through a thermal process that improves the silicon substrate interface state. is there. Further, in the process of forming the source / drain in the silicon substrate (gate retrofitting process such as damascene gate), the original insulating film is often formed after the salicide is formed (for example, less than 500 ° C. for NiSi). This is another factor that cannot be applied at high temperatures.

このように、低温化に伴い、シリコン基板の界面の状態が熱工程で回復せず、界面準位が多いことが避けて通れない。これを低減する方法として、水素アニール工程を行うことが挙げられるが、水素や重水素ではその回復の度合いが温度で制限されてしまい、例えば配線形成後に行うシンターリング工程では約500℃未満で、大きな効果が期待できない。   As described above, it is inevitable that the interface state of the silicon substrate is not recovered by the thermal process as the temperature is lowered, and there are many interface states. As a method for reducing this, it is possible to perform a hydrogen annealing step. However, in hydrogen and deuterium, the degree of recovery is limited by temperature. For example, a sintering step performed after wiring formation is less than about 500 ° C., A big effect cannot be expected.

また、水素は界面付近に存在する場合、NBTI(Negative Bias Temperature Instability)をより悪化させると言われており、信頼性に対する影響が大きい。また、イオン注入でフッ素を導入する方法については、例えばゲート後付け工程(ダマシンゲートプロセスなど)を経る場合、十分に界面にフッ素を導入することが困難である。   Further, when hydrogen is present in the vicinity of the interface, it is said that NBTI (Negative Bias Temperature Instability) is further deteriorated, which greatly affects reliability. As for the method of introducing fluorine by ion implantation, it is difficult to sufficiently introduce fluorine to the interface when, for example, a gate post-attachment process (damascene gate process or the like) is performed.

以上のように、シリコン基板の界面の改質に必要な高温化の導入不可能、シンターの限界があることから、デバイスへ与える影響は計り知れないものがある。界面準位の増加に伴い、例えば移動度の劣化、BTストレス耐性の低減など、深刻な問題が存在する。   As described above, it is impossible to introduce the high temperature required for the modification of the interface of the silicon substrate, and there is a limit of the sinter, so the influence on the device is immeasurable. As the interface state increases, there are serious problems such as deterioration of mobility and reduction of resistance to BT stress.

本発明は、上述の事情に鑑みてなされたもので、MISFETにおいてhigh−k膜を含むゲート絶縁膜(高誘電体ゲート絶縁膜)にフッ素を低温下で導入し、高性能なMISFETを可能にする半導体装置の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances. In a MISFET, fluorine is introduced into a gate insulating film (high dielectric gate insulating film) including a high-k film at a low temperature, thereby enabling a high-performance MISFET. An object of the present invention is to provide a method for manufacturing a semiconductor device.

上記課題を解決するために、半導体装置の製造方法にかかる第1の発明は、シリコン基板上にhigh−k膜とゲート電極を形成する半導体装置の製造方法において、high−k膜形成後にフッ素雰囲気でアニール処理を施し、その後のプロセス温度を600℃以下、500℃程度で行うという構成を有している。   In order to solve the above problems, a first invention according to a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device in which a high-k film and a gate electrode are formed on a silicon substrate. An annealing process is performed, and the subsequent process temperature is 600 ° C. or lower and about 500 ° C.

そして、半導体装置の製造方法にかかる第2の発明は、シリコン基板上にhigh−k膜とゲート電極を形成する半導体装置の製造方法において、high−k膜形成後にhigh−k膜に積層した極薄絶縁膜を形成し、上記high−k膜と極薄絶縁膜の界面領域にフッ素を含有させるという構成を有している。   According to a second aspect of the present invention, there is provided a method for manufacturing a semiconductor device in which a high-k film and a gate electrode are formed on a silicon substrate, wherein the electrode is stacked on the high-k film after the high-k film is formed. A thin insulating film is formed, and fluorine is contained in the interface region between the high-k film and the ultrathin insulating film.

本発明は、シリコン基板と高誘電体ゲート絶縁膜の界面および高誘電体ゲート絶縁膜の膜質を改質して、MISFETの特性の向上を図ることができる。   The present invention can improve the characteristics of the MISFET by modifying the interface between the silicon substrate and the high dielectric gate insulating film and the film quality of the high dielectric gate insulating film.

以下に、図面を参照して本発明の実施の形態の幾つかを詳細に説明する。
(実施の形態1)
はじめに、本発明の実施の形態1を図1〜図8を参照して説明する。まず、図1に示す通り、シリコン基板11にSTI(shallow trench isolation)12を形成し、更に、犠牲酸化膜13を形成する。犠牲酸化膜13を介してウエル(Well)インプラ注入14を行う。次に、犠牲酸化膜13をエッチング除去し、その後、酸化膜形成前の洗浄処理を行う。
Hereinafter, some of the embodiments of the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
First, Embodiment 1 of the present invention will be described with reference to FIGS. First, as shown in FIG. 1, an STI (shallow trench isolation) 12 is formed on a silicon substrate 11, and a sacrificial oxide film 13 is further formed. Well implantation 14 is performed through the sacrificial oxide film 13. Next, the sacrificial oxide film 13 is removed by etching, and then a cleaning process before forming the oxide film is performed.

次に、図2に示す通り、シリコン基板11表面に任意の厚さのダミーゲート絶縁膜15を形成後、アモルファス或いはポリ状のシリコン膜、或いはシリコンゲルマニウム膜のダミーゲート電極16を堆積させる。   Next, as shown in FIG. 2, a dummy gate insulating film 15 having an arbitrary thickness is formed on the surface of the silicon substrate 11, and then a dummy gate electrode 16 made of an amorphous or poly-silicon film or a silicon germanium film is deposited.

次に、図3に示す通り、ダミーゲート電極16を加工後、エクステンション層111a及びハロー用の不純物をイオン注入し、更に、サイドウォール18を形成し、ソースドレイン用の不純物をイオン注入して、活性化アニールを施す。活性化アニールは、例えば約1050℃で数秒間のスパイクアニール(spikeアニール)とする。このようにして、浅接合のソースドレイン拡散層111を形成する。ここで、エクステンション層111aとソースドレイン拡散層111は同導電型の拡散層であり、ハローは逆導電型の拡散層となる。   Next, as shown in FIG. 3, after processing the dummy gate electrode 16, the extension layer 111a and halo impurities are ion-implanted, and further, sidewalls 18 are formed, and source-drain impurities are ion-implanted. Activation annealing is performed. The activation annealing is, for example, spike annealing (spike annealing) at about 1050 ° C. for several seconds. In this manner, a shallow junction source / drain diffusion layer 111 is formed. Here, the extension layer 111a and the source / drain diffusion layer 111 are diffusion layers of the same conductivity type, and the halo is a diffusion layer of opposite conductivity type.

上記ソースドレイン拡散層111等を浅接合に形成する活性化アニールは、その他に、フラッシュランプアニール、レーザーアニール等のような低サーマルバジェットによる熱処理がある。ここで、フラッシュランプアニールにおいては、可視域から近赤外線域までの広い範囲に発光波長を有している白色光のキセノン(Xe)フラッシュランプを用いるとよい。このXeフラッシュランプは、数100μ秒〜数10m秒という極めて短時間の発光が可能な光源であり、その処理温度450〜600℃、処理時間10m秒程度で上記活性化アニールをすることができる。   The activation annealing for forming the source / drain diffusion layer 111 and the like in a shallow junction includes heat treatment by a low thermal budget such as flash lamp annealing and laser annealing. Here, in flash lamp annealing, a white light xenon (Xe) flash lamp having a light emission wavelength in a wide range from the visible region to the near infrared region may be used. This Xe flash lamp is a light source capable of emitting light for a very short time of several hundred microseconds to several tens of milliseconds, and the activation annealing can be performed at a processing temperature of 450 to 600 ° C. and a processing time of about 10 milliseconds.

その後、図4に示す通り、例えばCo、Niなどの金属膜をスパッタ法で成膜し、公知のサリサイド技術によりソースドレイン拡散層111表面にシリサイド層19を低温で形成する。   Thereafter, as shown in FIG. 4, a metal film such as Co or Ni is formed by sputtering, and a silicide layer 19 is formed on the surface of the source / drain diffusion layer 111 at a low temperature by a known salicide technique.

次に、図5に示す通り、窒化膜201と酸化膜202の層間膜20を形成する。下地の窒化膜201をストッパにCMP(Chemical Mechanical Polishing)を施し、アモルファス或いはポリ状のシリコン膜、或いはシリコンゲルマニウム膜のダミーゲート電極16を露出させ、ダミーゲート電極16をエッチングで除去し、シリコン基板11を露出させる。   Next, as shown in FIG. 5, an interlayer film 20 of a nitride film 201 and an oxide film 202 is formed. CMP (Chemical Mechanical Polishing) is performed using the underlying nitride film 201 as a stopper to expose the dummy gate electrode 16 of an amorphous or poly-silicon film or silicon germanium film, and the dummy gate electrode 16 is removed by etching. 11 is exposed.

その後、図6に示す通り、例えばHfOなどのHigh−k材料をALD(Atomic Layer Deposition)或いはMOCVD法(Metal Organic Chemical Vapor Deposition)で堆積し、上記露出したシリコン基板11表面および層間膜20表面を被覆するhigh−k膜21を形成する。このようにして、高誘電体ゲート絶縁膜を構成する絶縁膜として、シリコン基板11上直にhigh−k膜21が形成される。 Thereafter, as shown in FIG. 6, a high-k material such as HfO 2 is deposited by ALD (Atomic Layer Deposition) or MOCVD (Metal Organic Chemical Vapor Deposition), and the exposed silicon substrate 11 surface and interlayer film 20 surface. A high-k film 21 is formed. In this way, the high-k film 21 is formed directly on the silicon substrate 11 as an insulating film constituting the high dielectric gate insulating film.

ここで、high−k膜21としては、上述したところのHfOの他にZrOといった金属酸化物や、HfSiOx、ZrSiOxといった金属シリケート、HfAlOx、ZrAlOxといった金属アルミネート、La、Y等のランタノイド系元素の酸化物を主体とした高誘電率膜材料で構成すると好適である。そして、上記高誘電率膜材料から成るHigh−k膜のうち2種類以上の絶縁膜を選択し積層した積層構造の絶縁膜を用いてもよい。 Here, as the high-k film 21, in addition to the above-described HfO 2, a metal oxide such as ZrO 2 , a metal silicate such as HfSiOx and ZrSiOx, a metal aluminate such as HfAlOx and ZrAlOx, La 2 O 3 , Y 2 It is preferable to use a high dielectric constant film material mainly composed of an oxide of a lanthanoid element such as O 3 . An insulating film having a laminated structure in which two or more kinds of insulating films are selected from the high-k films made of the high dielectric constant film material and stacked may be used.

この後、図7に示す通り、酸素雰囲気でプラズマ処理を施し、high−k膜21中の酸素欠損を補う。この処理により同時にシリコン基板11とhigh−k膜21の界面にSiO界面形成膜22が形成される。このSiO界面形成膜22は、400℃程度でサブナノメータ程度の膜厚に形成される。 Thereafter, as shown in FIG. 7, plasma treatment is performed in an oxygen atmosphere to compensate for oxygen vacancies in the high-k film 21. By this process, an SiO 2 interface forming film 22 is formed at the interface between the silicon substrate 11 and the high-k film 21 at the same time. This SiO 2 interface forming film 22 is formed to a thickness of about sub-nanometers at about 400 ° C.

以上のようにして、高誘電体ゲート絶縁膜を構成するhigh−k膜21とSiO界面形成膜22を形成後、フッ素を界面に導入する目的で、Fの雰囲気(窒素との混合比で1vol.%から10vol.%程度の濃度に希釈した雰囲気)中で、100℃から400℃まで昇温し、1分から10分程度保持したプロセスを経てFアニール23を施す。このプロセスを取ることにより、フッ素添加時に特別なアニール処理を行わない。この処理によってhigh−k膜21、SiO界面形成膜22中、そして特にシリコン基板11との界面付近に多くのフッ素が局在する状態を実現できる(図11参照)。この界面には、1020/cm以上の量のフッ素が存在する。 After forming the high-k film 21 and the SiO 2 interface forming film 22 constituting the high dielectric gate insulating film as described above, an F 2 atmosphere (mixing ratio with nitrogen) is introduced for the purpose of introducing fluorine into the interface. In an atmosphere diluted to a concentration of about 1 vol.% To 10 vol.%), The temperature is raised from 100 ° C. to 400 ° C., and F 2 annealing 23 is performed through a process of holding for about 1 to 10 minutes. By taking this process, no special annealing treatment is performed when fluorine is added. By this treatment, it is possible to realize a state in which a large amount of fluorine is localized in the high-k film 21, the SiO 2 interface formation film 22, and particularly in the vicinity of the interface with the silicon substrate 11 (see FIG. 11). This interface has fluorine in an amount of 10 20 / cm 3 or more.

フッ素を導入するガス雰囲気としてFを挙げたが、これはフッ素を含有する例えばフロロカーボン系ガス(CF、C、C、C、C、C、C)やトリフルオロメタン(CHF)、ジフルオロメタン(CH)、六フッ化硫黄(SF)、三フッ化窒素(NF)、三フッ化塩素(ClF)でも同様の効果が確認されている。但し、400℃以下の低温で実現するためには、Fが望ましい。 It has been mentioned the F 2 as the gas atmosphere introducing fluorine, this example fluorocarbon-based gas containing fluorine (CF 4, C 2 F 6 , C 3 F 8, C 4 F 8, C 4 F 4, C 4 F 6, C 5 F 8) and trifluoromethane (CHF 3), difluoromethane (CH 2 F 2), sulfur hexafluoride (SF 6), nitrogen trifluoride (NF 3), chlorine trifluoride (ClF 3 ), The same effect has been confirmed. However, F 2 is desirable for realizing at a low temperature of 400 ° C. or lower.

あるいは、上記NFガス、Fガスをプラズマ励起し、このプラズマ励起で生成するフッ素の活性種の中でイオン種を除き、フッ素の中性ラジカルを上記high−k膜21表面に照射する、いわゆるフッ素のリモートプラズマ処理を施してもよい。この場合も、400℃以下の低温下にて、high−k膜21、SiO界面形成膜22中、及びシリコン基板11との界面付近に多くのフッ素を導入させることができる。 Alternatively, the NF 3 gas and the F 2 gas are plasma-excited, the ionic species are removed from the active species of fluorine generated by the plasma excitation, and the surface of the high-k film 21 is irradiated with fluorine neutral radicals. So-called remote plasma treatment of fluorine may be performed. Also in this case, a large amount of fluorine can be introduced into the high-k film 21, the SiO 2 interface forming film 22, and in the vicinity of the interface with the silicon substrate 11 at a low temperature of 400 ° C. or lower.

この後、図8に示す通り、例えばTiNまたはWなどのメタル膜をCVD法等で成膜し、公知のドライエッチング技術で加工してゲート電極24を形成し、ソースドレインのコンタクト25を形成し、配線材料工程を経て、例えばW、Alを用いて任意の回路を構成する。メタルゲート電極の形成など、high−k膜21形成後のプロセスは、600℃以下の低温で行われる。このように600℃以下の低温のプロセスにすることにより、高誘電体ゲート絶縁膜に含有されるフッ素の活性化は抑制されて安定化し、高品質の高誘電体ゲート絶縁膜および界面が得られるようになる。また、このように低温プロセスにすることで、high−k膜21の膜質劣化、シリサイド層19の凝集等の問題は皆無になる。   Thereafter, as shown in FIG. 8, a metal film such as TiN or W is formed by a CVD method or the like, processed by a known dry etching technique to form a gate electrode 24, and a source / drain contact 25 is formed. Through the wiring material process, for example, an arbitrary circuit is configured using W or Al. Processes after the formation of the high-k film 21 such as formation of a metal gate electrode are performed at a low temperature of 600 ° C. or lower. Thus, by using a low temperature process of 600 ° C. or lower, activation of fluorine contained in the high dielectric gate insulating film is suppressed and stabilized, and a high quality high dielectric gate insulating film and interface can be obtained. It becomes like this. In addition, by using the low temperature process in this way, problems such as film quality deterioration of the high-k film 21 and aggregation of the silicide layer 19 are eliminated.

上記ゲート電極24としては、TiNの他に、ZrNx、HfNx、VNx、NbNx、TaNx、MoNx、WNx、あるいはTiSixNy、ZrSixNy、HfSixNy、VSixNy、NbSixNy、TaSixNy、MoSixNy、WSixNy等の導電体膜材料またはそれらの積層した材料を用いることができる。あるいは、Ti、Zr、Hf、V、Nb、Ta、Mo、Wなどの金属、TiSix、ZrSix、HfSix、VSix、NbSix、TaSix、MoSix、WSix、NiSix、CoSixなどの金属珪化物、TiCx、ZrCx、HfCx、VCx、NbCx、TaCx、MoCx、WCxなどの金属炭化物から成る導電体膜材料またはそれらの積層した材料を用いることができる。また、上記Wの代わりにAlやAl合金、CuやCu合金等を用いることができる。   As the gate electrode 24, in addition to TiN, ZrNx, HfNx, VNx, NbNx, TaNx, MoNx, WNx, or TiSixNy, ZrSixNy, HfSixNy, VSixNy, NbSixNy, TaSixNy, MoSixNy, or a conductive material such as WSixNy. The laminated material can be used. Alternatively, metals such as Ti, Zr, Hf, V, Nb, Ta, Mo, W, TiSix, ZrSix, HfSix, VSix, NbSix, TaSix, MoSix, WSix, NiSix, CoSix, and other metal silicides, TiCx, ZrCx, A conductive film material made of a metal carbide such as HfCx, VCx, NbCx, TaCx, MoCx, WCx, or a stacked material thereof can be used. Moreover, Al, Al alloy, Cu, Cu alloy, etc. can be used instead of W.

次に、上記実施の形態1の一実施例における効果について説明する。
フッ素処理をしたMISFETについて、ゲート領域は、W/TiN/HfO(膜厚2.5nm)/SiO(膜厚0.5nm)の構造に形成され、その形成工程の順序は、図1〜図8の通りである。ここで、上記フッ素ガスの処理により、高誘電体ゲート絶縁膜中のフッ素分布は図11に示すようになる。そして、ダミーゲート時のソースドレイン拡散層の活性化アニールは、1000℃、3秒程度であり、最終的なシンターは400℃である。また、フッ処理をしないMISFETは、フッ素アニール工程のみを行わず、その他の工程は同じである。
Next, effects in one example of the first embodiment will be described.
With respect to the MISFET subjected to the fluorine treatment, the gate region is formed in a structure of W / TiN / HfO 2 (film thickness 2.5 nm) / SiO 2 (film thickness 0.5 nm). It is as FIG. Here, the fluorine distribution in the high dielectric gate insulating film is as shown in FIG. 11 by the treatment of the fluorine gas. The activation annealing of the source / drain diffusion layer at the time of the dummy gate is 1000 ° C. for about 3 seconds, and the final sintering is 400 ° C. In addition, the MISFET that is not subjected to the fluorine treatment does not perform only the fluorine annealing process, and the other processes are the same.

図9は、上記フッ素処理をした場合と、処理をしない場合のMISFETの移動度を示している。横軸が電界の強さ(Eeff(MV/cm))を示し、縦軸が移動度(μ(cm/Vs))を示している。図9(A)は、N型MISFETの移動度を示し、図9(B)は、P型MISFETの移動度を示している。N型もP型もともにフッ素処理により移動度が向上している。N型MISFETは、P型MISFETより電界(横軸)全般に亘って移動度が向上しており、フッ素処理による効果がより多く得られていることを示している。 FIG. 9 shows the mobility of the MISFET with and without the fluorine treatment. The horizontal axis indicates the electric field strength (Eeff (MV / cm)), and the vertical axis indicates the mobility (μ (cm 2 / Vs)). FIG. 9A shows the mobility of the N-type MISFET, and FIG. 9B shows the mobility of the P-type MISFET. Both N-type and P-type have improved mobility by fluorine treatment. The N-type MISFET has improved mobility over the entire electric field (horizontal axis) as compared with the P-type MISFET, indicating that more effects are obtained by the fluorine treatment.

図10は、横軸の右部がフッ素系ガス処理を行った場合を示し、左部がフッ素系ガス処理を行わない場合を示している。右側の縦軸が界面準位(Dit(cm−2eV−1))を示し、左側の縦軸がNBTI(Negative Bias Temperature Instability)(ΔVth(V))を示している。白丸がN型MISFETを示し、黒丸がP型MISFETを示している。折れ線グラフは、右側の縦軸を利用し、N型とP型のMISFETの界面準位の相違を示している。棒グラフは、左側の縦軸を利用し、フッ素系ガス処理による、しきい値の変動を示している。 In FIG. 10, the right part of the horizontal axis shows the case where the fluorine-based gas treatment is performed, and the left part shows the case where the fluorine-based gas treatment is not performed. The vertical axis on the right side shows the interface state (Dit (cm −2 eV −1 )), and the vertical axis on the left side shows NBTI (Negative Bias Temperature Instability) (ΔVth (V)). White circles indicate N-type MISFETs, and black circles indicate P-type MISFETs. The line graph shows the difference in the interface state between the N-type and P-type MISFETs using the right vertical axis. The bar graph uses the vertical axis on the left side to show the variation of the threshold value due to the fluorine-based gas treatment.

図10に示す通り、N型もP型も、フッ素系ガス処理により、界面準位が低下しており、大きく改善していることが読み取れる。特に、N型の界面準位がP型より小さいことが分かる。また、フッ素系ガス処理により、しきい値の変動が小さくなっていることを示している。この結果、BTストレスを印加した場合、デバイスの信頼性の差も明らかであり、デバイス特性と信頼性の両方を同時に満足できることが確認される。   As shown in FIG. 10, it can be seen that both the N-type and P-type have greatly improved since the interface state is lowered by the fluorine-based gas treatment. In particular, it can be seen that the N-type interface state is smaller than the P-type. Moreover, it is shown that the fluctuation of the threshold value is reduced by the fluorine-based gas treatment. As a result, when BT stress is applied, the difference in device reliability is also clear, and it is confirmed that both device characteristics and reliability can be satisfied simultaneously.

図11は、シリコン基板11とゲート絶縁膜21、22との界面付近のフッ素の導入量を示しており、界面付近のフッ素の導入量は、1×1020/cm以上を示している。これにより、フッ素の導入量が界面付近で1×1020/cm以上であると、より効果が得られることが知られる。 FIG. 11 shows the amount of fluorine introduced in the vicinity of the interface between the silicon substrate 11 and the gate insulating films 21 and 22, and the amount of fluorine introduced in the vicinity of the interface shows 1 × 10 20 / cm 3 or more. Thereby, it is known that the effect is more obtained when the amount of fluorine introduced is 1 × 10 20 / cm 3 or more near the interface.

(実施の形態2)
次に、本発明の実施の形態2を図1〜図6、図12〜図15を参照して説明する。この実施の形態の特徴は、実施の形態1において説明したhigh−k膜上に更に極薄絶縁膜を形成してから、上述したところのフッ素導入を行うところにある。あるいは、high−k膜上にフッ素を含有する極薄絶縁膜を積層して形成するところにある。このようにすることで、high−k膜と極薄絶縁膜との界面領域に更に多量のフッ素が容易に導入できるようになる。
(Embodiment 2)
Next, a second embodiment of the present invention will be described with reference to FIGS. 1 to 6 and FIGS. The feature of this embodiment resides in that after the ultra-thin insulating film is further formed on the high-k film described in the first embodiment, fluorine is introduced as described above. Alternatively, an ultra-thin insulating film containing fluorine is stacked on the high-k film. By doing so, a larger amount of fluorine can be easily introduced into the interface region between the high-k film and the ultrathin insulating film.

実施の形態2の場合においても、実施の形態1の場合と全く同様に、図1〜図6までの工程を経て、図6に示すダマシンゲートを構成するhigh−k膜21を成膜する。   In the case of the second embodiment, as in the case of the first embodiment, the high-k film 21 constituting the damascene gate shown in FIG. 6 is formed through the steps of FIGS.

この後、図12に示す通り、酸素雰囲気でプラズマ処理を施し、high−k膜21中の酸素欠損を補う。同時に、この処理によりシリコン基板11とhigh−k膜21の界面にSiO界面形成膜22が形成される。このSiO界面形成膜22は、400℃程度で例えば0.5nm程度の膜厚に形成される。 Thereafter, as shown in FIG. 12, plasma treatment is performed in an oxygen atmosphere to compensate for oxygen vacancies in the high-k film 21. At the same time, the SiO 2 interface forming film 22 is formed at the interface between the silicon substrate 11 and the high-k film 21 by this process. The SiO 2 interface formation film 22 is formed at a temperature of about 400 ° C., for example, with a thickness of about 0.5 nm.

この後、図13に示す通り、例えばALD法により0.5nm〜1.5nm程度の膜厚の極薄絶縁膜26を形成する。上記ALD法において、例えばジクロールシランガス(SiHCl)、水(HO)等を成膜原料のプリカーサとして使用しシリコン酸化膜を成膜温度200〜300℃程度で堆積させる。この場合、high−k膜21を成膜するALD成膜装置と極薄絶縁膜26を成膜する成膜装置はマルチチャンバー構造になっており、high−k膜21と極薄絶縁膜26とを上記装置内で連続的に成膜するようにすれば好適である。ここで、極薄絶縁膜26としてシリコン窒化膜、シリコン酸窒化膜等を形成してもよい。シリコン窒化膜の成膜では、成膜原料のプリカーサとしてジクロールシランガス(SiHCl)とアンモニア(NH)を用いればよく、シリコン酸窒化膜の成膜におけるプリカーサとしてはジクロールシランガス(SiHCl)、水(HO)およびアンモニア(NH)を使用する。 Thereafter, as shown in FIG. 13, an ultrathin insulating film 26 having a thickness of about 0.5 nm to 1.5 nm is formed by, for example, ALD. In the ALD method, for example, dichlorosilane gas (SiH 2 Cl 2 ), water (H 2 O) or the like is used as a precursor of a film forming material, and a silicon oxide film is deposited at a film forming temperature of about 200 to 300 ° C. In this case, the ALD film forming apparatus for forming the high-k film 21 and the film forming apparatus for forming the ultrathin insulating film 26 have a multi-chamber structure, and the high-k film 21 and the ultrathin insulating film 26 It is preferable to form a film continuously in the apparatus. Here, a silicon nitride film, a silicon oxynitride film, or the like may be formed as the ultrathin insulating film 26. In the formation of a silicon nitride film, dichlorosilane gas (SiH 2 Cl 2 ) and ammonia (NH 3 ) may be used as a precursor for film formation, and dichlorosilane gas (SiH) is used as a precursor in the formation of a silicon oxynitride film. 2 Cl 2), using a water (H 2 O) and ammonia (NH 3).

以上のようにして、高誘電体ゲート絶縁膜を構成するhigh−k膜21、SiO界面形成膜22および極薄絶縁膜26を形成後、実施の形態1の場合と同様に、図14に示す通り、Fガスの雰囲気(窒素との混合比で1vol.%から10vol.%程度の濃度に希釈した雰囲気)中で、100℃から400℃まで昇温し、1分から10分程度保持したプロセスを経てFアニール23を施す。このプロセスを取ることにより、フッ素添加時に特別なアニール処理を行わない。この処理によって極薄絶縁膜26とhigh−k膜21の界面、high−k膜21中、SiO界面形成膜22中、及びシリコン基板11との界面付近に多くのフッ素が局在する状態を実現できる(図17参照)。これらの界面領域には、それぞれ3×1021/cm程度、1×1020/cm以上のフッ素量が含有されるようになる。しかも、図11と比較しても明らかなように、極薄絶縁膜26、high−k膜21およびSiO界面形成膜22から成る高誘電体ゲート絶縁膜に、実施の形態1の場合よりも1桁以上多量のフッ素を導入することが可能になる。 As described above, after forming the high-k film 21, the SiO 2 interface forming film 22 and the ultrathin insulating film 26 constituting the high dielectric gate insulating film, as in the case of the first embodiment, FIG. As shown, the temperature was raised from 100 ° C. to 400 ° C. in an atmosphere of F 2 gas (atmosphere diluted to a concentration of about 1 vol.% To 10 vol.% As a mixing ratio with nitrogen) and held for about 1 to 10 minutes. F 2 annealing 23 is performed through the process. By taking this process, no special annealing treatment is performed when fluorine is added. By this treatment, a state in which a large amount of fluorine is localized at the interface between the ultrathin insulating film 26 and the high-k film 21, in the high-k film 21, in the SiO 2 interface forming film 22, and in the vicinity of the interface with the silicon substrate 11 This can be realized (see FIG. 17). These interface regions each contain a fluorine amount of about 3 × 10 21 / cm 3 and 1 × 10 20 / cm 3 or more. Moreover, as is clear from comparison with FIG. 11, the high dielectric gate insulating film composed of the ultrathin insulating film 26, the high-k film 21 and the SiO 2 interface forming film 22 is made more than in the case of the first embodiment. It becomes possible to introduce a large amount of fluorine by one digit or more.

この場合も、実施の形態1の場合と同様に、フッ素を導入するガス雰囲気としてFガスの代わりにフッ素を含有する、例えばフロロカーボン系ガス(CF、C、C、C、C、C、C)やトリフルオロメタン(CHF)、ジフルオロメタン(CH)、六フッ化硫黄(SF)、三フッ化窒素(NF)、三フッ化塩素(ClF)でも同様の効果が生じる。あるいは、上記NFガス、Fガスをプラズマ励起し、フッ素の活性種の中でイオン種を除き、フッ素の中性ラジカルを上記high−k膜21表面に照射する、いわゆるフッ素のリモートプラズマ処理を施してもよい。この場合も、400℃以下の低温下にて、high−k膜21、SiO界面形成膜22中、及びシリコン基板11との界面付近に多くのフッ素を導入させることができる。 Also in this case, as in the first embodiment, fluorine gas is contained instead of F 2 gas as a gas atmosphere for introducing fluorine. For example, fluorocarbon-based gas (CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 8, C 4 F 4, C 4 F 6, C 5 F 8) and trifluoromethane (CHF 3), difluoromethane (CH 2 F 2), sulfur hexafluoride (SF 6), nitrogen trifluoride (NF 3 ) and chlorine trifluoride (ClF 3 ) produce similar effects. Alternatively, so-called remote plasma treatment of fluorine in which the NF 3 gas and F 2 gas are plasma-excited, ion species are removed from the active species of fluorine, and the surface of the high-k film 21 is irradiated with fluorine neutral radicals. May be applied. Also in this case, a large amount of fluorine can be introduced into the high-k film 21, the SiO 2 interface forming film 22, and in the vicinity of the interface with the silicon substrate 11 at a low temperature of 400 ° C. or lower.

また、極薄絶縁膜26の上記成膜においてフッ素をドープしてもよい。例えば上記ALD法の成膜時に上記プリカーサと共にドーピングガスとして希釈したFガス(窒素との混合比で0.1vol.%〜5vol.%程度)、NFガスあるいはSFガスを成膜室(チャンバー)に導入し、フッ素ドープの極薄絶縁膜26を成膜する。この方法においても、図17に示したのと同様の濃度分布を有し多量のフッ素を含有する高誘電体ゲート絶縁膜を形成することが可能になる。 Further, fluorine may be doped in the film formation of the ultrathin insulating film 26. For example, an F 2 gas (mixing ratio with nitrogen of about 0.1 vol.% To 5 vol.%), NF 3 gas, or SF 6 gas diluted with the precursor as a doping gas at the time of film formation by the ALD method, film formation chamber ( The fluorine-doped ultrathin insulating film 26 is formed. Also in this method, a high dielectric gate insulating film having a concentration distribution similar to that shown in FIG. 17 and containing a large amount of fluorine can be formed.

この後、図15に示す通り、実施の形態1と同様にして、例えばTiNまたはWなどのメタル膜から成るゲート電極24を形成し、更にソースドレインのコンタクト25を形成し、配線材料工程を経て、例えばW、Alを用いて任意の回路を構成する。メタルゲート電極の形成など、high−k膜21形成後のプロセスは、600℃以下の低温で行うと好適である。この600℃以下の低温のプロセスにすることにより、高誘電体ゲート絶縁膜に含有する多量のフッ素は不活性で安定化したままであり、高品質の高誘電体ゲート絶縁膜および界面が得られる。ここで、600℃温度を超えるプロセスを用いると、上記含有するフッ素は活性化し逆にシリコン基板との界面に損傷を与え易くなる。   Thereafter, as shown in FIG. 15, in the same manner as in the first embodiment, a gate electrode 24 made of a metal film such as TiN or W is formed, a source / drain contact 25 is further formed, and a wiring material process is performed. For example, an arbitrary circuit is configured using W or Al. Processes after the formation of the high-k film 21 such as formation of a metal gate electrode are preferably performed at a low temperature of 600 ° C. or lower. By using this low temperature process of 600 ° C. or less, a large amount of fluorine contained in the high dielectric gate insulating film remains inactive and stable, and a high quality high dielectric gate insulating film and interface can be obtained. . Here, when a process exceeding a temperature of 600 ° C. is used, the fluorine contained therein is activated and tends to damage the interface with the silicon substrate.

以下、上記実施の形態2の一実施例における効果について説明する。
上述したFアニールによるフッ素処理をしたMISFETについて、ゲート領域は、W/TiN/SiN(膜厚0.5nm)/HfSiOx(膜厚2.0nm)/SiO(膜厚0.5nm)の構造に形成され、その形成工程の順序は、図1〜図6、図12〜図15の通りである。ここで、上記Fアニールにより、高誘電体ゲート絶縁膜中のフッ素分布は図17に示すようになる。そして、ダミーゲート時の活性化アニールは、1000℃、3秒程度であり、最終的なシンターは400℃である。また、フッ処理をしないMISFETは、Fアニール工程のみを行わず、その他の工程は同じである。
Hereinafter, effects in one example of the second embodiment will be described.
In the MISFET subjected to the fluorine treatment by F 2 annealing described above, the gate region has a structure of W / TiN / SiN (film thickness 0.5 nm) / HfSiOx (film thickness 2.0 nm) / SiO 2 (film thickness 0.5 nm). The order of the forming steps is as shown in FIGS. 1 to 6 and 12 to 15. Here, the fluorine distribution in the high dielectric gate insulating film is as shown in FIG. 17 by the F 2 annealing. The activation annealing at the time of the dummy gate is about 1000 ° C. for about 3 seconds, and the final sintering is 400 ° C. In addition, the MISFET not subjected to the foot treatment does not perform only the F 2 annealing process, and the other processes are the same.

図16は、上記フッ素処理をした場合と、処理をしない場合のnチャネルMISFETの高誘電体ゲート絶縁膜中の電荷トラップ量と、上記高誘電体ゲート絶縁膜/シリコン基板界面の界面準位とを評価した結果を示している。この評価は、上記MISFETを公知のチャージポンピング法で測定して行った。ここで、図16(A)は、電荷トラップ量の評価結果を示し、図16(B)は、界面準位の評価結果を示している。図16(A、B)の横軸に高誘電体ゲート絶縁膜中への電荷注入量をとり、図16(A)の縦軸には高誘電体ゲート絶縁膜中への電荷注入により電荷トラップに捕獲された電荷キャリア数(トラップ電荷の増加量に対応している)を単位面積当たりで示す。そして、図16(B)の縦軸は高誘電体ゲート絶縁膜中への電荷注入ストレス(BTストレスに相当する)による界面準位密度の増加量を示している。   FIG. 16 shows the amount of charge traps in the high-dielectric gate insulating film of the n-channel MISFET with and without the fluorine treatment, and the interface state at the high-dielectric gate insulating film / silicon substrate interface. The result of evaluating is shown. This evaluation was performed by measuring the MISFET by a known charge pumping method. Here, FIG. 16A shows an evaluation result of the charge trap amount, and FIG. 16B shows an evaluation result of the interface state. In FIG. 16A and FIG. 16B, the horizontal axis represents the amount of charge injected into the high dielectric gate insulating film, and the vertical axis in FIG. 16A represents the charge trap by charge injection into the high dielectric gate insulating film. The number of charge carriers trapped in (corresponding to the increased amount of trapped charges) is shown per unit area. The vertical axis in FIG. 16B shows the amount of increase in interface state density due to charge injection stress (corresponding to BT stress) into the high dielectric gate insulating film.

図16(A)に示す通り、黒丸のフッ素処理をしないMISFETの場合は、白丸のフッ素処理をしたMISFETの場合よりも、電荷トラップは少なくとも1桁以上多く存在する。これは、上記実施の形態2で説明したようにMISFETの高誘電体ゲート絶縁膜中にフッ素を含有させることにより、膜中、特にhigh−k膜中の電荷トラップ量が1桁以上低減することを示している。   As shown in FIG. 16A, in the case of a MISFET that is not subjected to fluorine treatment of black circles, there are at least one digit more charge traps than in the case of a MISFET that is subjected to fluorine treatment of white circles. This is because the amount of charge traps in the film, particularly in the high-k film, is reduced by one digit or more by containing fluorine in the high dielectric gate insulating film of the MISFET as described in the second embodiment. Is shown.

図16(B)に示す通り、黒丸のフッ素処理をしないMISFETの場合は、白丸のフッ素処理をしたMISFETの場合よりも、上記ストレスによる界面準位の生成量は少なくとも1桁以上多くなる。これは、上記実施の形態2で説明したようにMISFETの高誘電体ゲート絶縁膜中にフッ素を含有させることにより、高誘電体ゲート絶縁膜/シリコン基板界面の結合状態が安定化することを示している。また、上記フッ素処理により、図10で説明したように界面準位は低下することは、実施の形態1の場合と全く同じである。上記図16で説明したフッ素処理の効果は、pチャネルMISFETの場合にも同様に生じるものである。   As shown in FIG. 16B, in the case of a MISFET that is not subjected to the fluorine treatment of black circles, the amount of interface state generated by the stress is at least one digit higher than that of the MISFET that is subjected to fluorine treatment of white circles. This indicates that, as described in the second embodiment, the coupling state of the high dielectric gate insulating film / silicon substrate interface is stabilized by containing fluorine in the high dielectric gate insulating film of the MISFET. ing. In addition, the interface state is lowered as described in FIG. 10 by the fluorine treatment, which is exactly the same as in the first embodiment. The effect of the fluorine treatment described with reference to FIG. 16 similarly occurs in the case of the p-channel MISFET.

図17は、実施の形態2特有の3層構造になる高誘電体ゲート絶縁膜へのフッ素の導入量を示している。図11と比較して判るように、この場合は、シリコン基板11とSiO界面形成膜22、high−k膜21との界面付近、high−k膜21と極薄絶縁膜26との界面領域に多量のフッ素が蓄積(パイルアップ)する形態で含有される。そして、シリコン界面付近のフッ素の導入量は、1×1020/cm以上を示し、high−k膜21と極薄絶縁膜26と界面付近のフッ素の導入量は、更に1桁以上の多い3×1021/cm程度になる。 FIG. 17 shows the amount of fluorine introduced into the high dielectric gate insulating film having a three-layer structure unique to the second embodiment. As can be seen from comparison with FIG. 11, in this case, the interface region between the silicon substrate 11 and the SiO 2 interface forming film 22 and the high-k film 21, and the interface region between the high-k film 21 and the ultrathin insulating film 26. A large amount of fluorine is contained in a form that accumulates (pile-up). The amount of fluorine introduced in the vicinity of the silicon interface is 1 × 10 20 / cm 3 or more, and the amount of fluorine introduced in the vicinity of the high-k film 21, the ultrathin insulating film 26 and the interface is more than one digit more. It becomes about 3 × 10 21 / cm 3 .

このようにhigh−k膜21を挟む上記2箇所の界面領域にフッ素が含有するようになるために、通常ではフッ素固溶度の小さいhigh−k膜21中であっても多量のフッ素を含有させることが可能になり、シリコン基板表面の界面準位の低減、膜中の電荷トラップの低減が容易に達成できるようになる。そして、高品質および信頼性の高い高誘電体ゲート絶縁膜の形成が可能になる。   As described above, since the fluorine is contained in the two interface regions sandwiching the high-k film 21, a large amount of fluorine is usually contained even in the high-k film 21 having a small fluorine solid solubility. Accordingly, it is possible to easily reduce the interface state on the surface of the silicon substrate and the charge traps in the film. Further, it is possible to form a high dielectric gate insulating film with high quality and high reliability.

また、この実施の形態2の場合には、上記メカニズムによりhigh−k膜21に充分なフッ素量を含有させることが可能になり、フッ素導入のプロセス余裕度が非常に高くなって導入フッ素量の調整/制御が容易になる。   Further, in the case of the second embodiment, the high-k film 21 can be made to contain a sufficient amount of fluorine by the above mechanism, and the process margin for fluorine introduction becomes very high, and the amount of introduced fluorine is reduced. Adjustment / control is facilitated.

本発明は、上記実施の形態に限定されるものでなく、発明の趣旨を逸脱しない範囲でいろいろの変形を採ることができる。例えば、上述したようなダマシン構造のゲート電極のMISFETの代わりに、通常の構造であるフラット構造のゲート電極を有するMISFETの形成の場合にも本発明は同様に適用できるものである。この場合、高誘電体ゲート絶縁膜を形成後に、MISFETのソースドレイン等の拡散層を形成する。そこで、high−k膜の耐熱性を高めるために窒素を膜中に含有させる方法を併用させるとよい。あるいは、ソースドレイン拡散層等の拡散層のアニール温度を低減するために、上述したようなフラッシュランプアニールまたは600℃程度での固相成長技術を併用すればよい。   The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the spirit of the invention. For example, instead of the damascene gate electrode MISFET as described above, the present invention can be similarly applied to the formation of a MISFET having a flat gate electrode which is a normal structure. In this case, a diffusion layer such as a source / drain of the MISFET is formed after the high dielectric gate insulating film is formed. Therefore, in order to increase the heat resistance of the high-k film, a method of incorporating nitrogen into the film may be used in combination. Alternatively, in order to reduce the annealing temperature of the diffusion layer such as the source / drain diffusion layer, flash lamp annealing as described above or a solid phase growth technique at about 600 ° C. may be used in combination.

また、high−k膜に用いる金属酸化膜としては、その他にアルミナ膜(Al膜)、酸化タンタル膜(Ta膜)、チタン酸ストロンチウム膜(STO膜)、チタン酸バリウムストロンチウム膜(BST膜)のような金属酸化膜あるいはチタン酸ジルコン酸鉛膜(PZT膜)のような強誘電体膜を用いてもよい。そして、high−k膜に用いる金属シリケート膜としては、La、Y等のランタノイド系元素のシリケート膜あるいは高融点金属のシリケート膜、更には、これらのシリケート膜の複合したシリケート膜を用いてもよい。また、high−k膜に用いる金属アルミネート膜としては、La、Y等のランタノイド系元素のアルミネート膜あるいは高融点金属のアルミネート膜、更には、これらのアルミネート膜の複合膜を用いてもよい。あるいは、シリケート膜とアルミネート膜の複合膜を使用することもできる。 In addition, examples of the metal oxide film used for the high-k film include an alumina film (Al 2 O 3 film), a tantalum oxide film (Ta 2 O 5 film), a strontium titanate film (STO film), and a barium strontium titanate. A metal oxide film such as a film (BST film) or a ferroelectric film such as a lead zirconate titanate film (PZT film) may be used. As a metal silicate film used for the high-k film, a silicate film of a lanthanoid element such as La 2 O 3 or Y 2 O 3 or a silicate film of a refractory metal, or a composite silicate film of these silicate films is used. A membrane may be used. Moreover, as a metal aluminate film used for the high-k film, an aluminate film of a lanthanoid element such as La 2 O 3 or Y 2 O 3 or an aluminate film of a refractory metal, and further these aluminate films The composite membrane may be used. Alternatively, a composite film of a silicate film and an aluminate film can be used.

また、上記極薄絶縁膜26として、high−k膜21とは異種の高誘電率膜を積層して形成させてもよい。この場合でも、実施の形態2のメカニズムが同様に働き、これらの異種high−k膜の界面にフッ素がパイルアップするために、多量のフッ素を高誘電体ゲート絶縁膜に含有させることができるようになる。   Further, the ultrathin insulating film 26 may be formed by laminating a high dielectric constant film different from the high-k film 21. Even in this case, the mechanism of the second embodiment works in the same way, and fluorine piles up at the interface between these different types of high-k films, so that a large amount of fluorine can be contained in the high dielectric gate insulating film. become.

ウエル注入時の半導体装置の断面図Cross-sectional view of semiconductor device during well implantation ダミーゲート形成時の半導体装置の断面図Cross-sectional view of semiconductor device when forming dummy gate ダミーゲート加工とイオン注入時の半導体装置の断面図Cross section of semiconductor device during dummy gate processing and ion implantation サリサイド形成後の半導体装置の断面図Cross-sectional view of semiconductor device after salicide formation CMP後、ダミーゲート除去工程時の半導体装置の断面図Cross-sectional view of the semiconductor device during the dummy gate removal process after CMP high−k膜形成時の半導体装置の断面図Sectional view of the semiconductor device when forming a high-k film 実施の形態1におけるFアニール工程時の半導体装置の断面図Sectional view of a semiconductor device when F 2 annealing step in the first embodiment 実施の形態1におけるメタル電極とコンタクト形成時の半導体装置の断面図Sectional drawing of the semiconductor device at the time of contact formation with the metal electrode in Embodiment 1 フッ素系ガス処理による移動度の改善例を示すグラフの図Graph of an example of mobility improvement by fluorine gas treatment フッ素系ガス処理によるVthと界面準位の改善例を示すグラフの図Graph of an example of Vth and interface state improvement by fluorine gas treatment 実施の形態1におけるシリコン基板とゲート絶縁膜の界面付近のフッ素分布図Fluorine distribution near the interface between the silicon substrate and the gate insulating film in the first embodiment 実施の形態2におけるSiO界面形成膜形成時の半導体装置の断面図Sectional view of a semiconductor device when SiO 2 interface forming layer formed in the second embodiment 実施の形態2における極薄絶縁膜形成時の半導体装置の断面図Sectional drawing of the semiconductor device at the time of ultra-thin insulating film formation in Embodiment 2 実施の形態2におけるFアニール工程時の半導体装置の断面図Sectional view of a semiconductor device when F 2 annealing step in the second embodiment 実施の形態2におけるメタル電極とコンタクト形成時の半導体装置の断面図Sectional drawing of the semiconductor device at the time of metal electrode and contact formation in Embodiment 2 フッ素系ガス処理によるゲート絶縁膜の改善例を示すグラフの図Graph of an example of gate insulation film improvement by fluorine gas treatment 実施の形態2におけるシリコン基板とゲート絶縁膜の界面付近のフッ素分布図Fluorine distribution near the interface between the silicon substrate and the gate insulating film in the second embodiment

符号の説明Explanation of symbols

11・・・シリコン基板
111a・・エクステンション層、ハロー層
111・・・ソースドレイン拡散層
12・・・STI(shallow trench isolation)
13・・・犠牲酸化膜
14・・・ウエルインプラ注入
15・・・ダミーゲート絶縁膜
16・・・ダミーゲート電極
18・・・サイドウォール
19・・・シリサイド層
20・・・層間膜
201・・層間膜(窒化膜)
202・・層間膜(酸化膜)
21・・・high−k膜
22・・・SiO界面形成膜
23・・・Fアニール
24・・・メタルゲート電極
25・・・コンタクト電極
26・・・極薄絶縁膜
11... Silicon substrate 111 a .. extension layer, halo layer 111... Source / drain diffusion layer 12... STI (shallow trench isolation)
13 ... Sacrificial oxide film 14 ... Well implantation 15 ... Dummy gate insulating film 16 ... Dummy gate electrode 18 ... Side wall 19 ... Silicide layer 20 ... Interlayer film 201 ... Interlayer film (nitride film)
202 .. Interlayer film (oxide film)
21 ... high-k film 22 ... SiO 2 interface forming film 23 ... F 2 annealing 24 ... metal gate electrode 25 ... contact electrode 26 ... ultra-thin insulating film

Claims (8)

シリコン基板上に高誘電率膜とゲート電極を形成する半導体装置の製造方法において、高誘電率膜形成後にフッ素雰囲気でアニール処理を施し、その後のプロセス温度を600℃以下で行うことを特徴とする半導体装置の製造方法。   In a method for manufacturing a semiconductor device in which a high dielectric constant film and a gate electrode are formed on a silicon substrate, annealing is performed in a fluorine atmosphere after the formation of the high dielectric constant film, and the subsequent process temperature is 600 ° C. or lower. A method for manufacturing a semiconductor device. 請求項1に記載の半導体装置の製造方法において、アニール処理は、フッ素を含有するガスを成分とすることを特徴とする半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the annealing treatment includes a gas containing fluorine as a component. 請求項1に記載の半導体装置の製造方法において、高誘電率膜と半導体基板の界面付近のフッ素の濃度が1020/cm以上であることを特徴とする半導体装置の製造方法。 2. The method of manufacturing a semiconductor device according to claim 1, wherein the concentration of fluorine in the vicinity of the interface between the high dielectric constant film and the semiconductor substrate is 10 20 / cm 3 or more. シリコン基板上に高誘電率膜とゲート電極を形成する半導体装置の製造方法において、高誘電率膜に積層する該高誘電率膜とは異種の薄膜を形成後にフッ素雰囲気でアニール処理を施すことを特徴とする半導体装置の製造方法。   In a method of manufacturing a semiconductor device in which a high dielectric constant film and a gate electrode are formed on a silicon substrate, annealing is performed in a fluorine atmosphere after forming a thin film different from the high dielectric constant film stacked on the high dielectric constant film. A method of manufacturing a semiconductor device. シリコン基板上に高誘電率膜とゲート電極を形成する半導体装置の製造方法において、高誘電率膜に積層する該高誘電率膜とは異種のフッ素ドープの薄膜を形成することを特徴とする半導体装置の製造方法。   In a method of manufacturing a semiconductor device in which a high dielectric constant film and a gate electrode are formed on a silicon substrate, a thin film of fluorine dope different from the high dielectric constant film laminated on the high dielectric constant film is formed Device manufacturing method. 請求項1、4又は5に記載の半導体装置の製造方法において、高誘電率膜形成後、酸素プラズマ処理を行い、その後にフッ素雰囲気でのアニール処理あるいは前記薄膜形成することを特徴とする半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 1, wherein an oxygen plasma treatment is performed after the high dielectric constant film is formed, and then an annealing treatment in a fluorine atmosphere or the thin film is formed. Manufacturing method. 請求項4又は5に記載の半導体装置の製造方法において、前記薄膜はシリコン酸化膜、シリコン窒化膜あるいはシリコン酸窒化膜であることを特徴とする半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 4, wherein the thin film is a silicon oxide film, a silicon nitride film, or a silicon oxynitride film. 請求項4又は5に記載の半導体装置の製造方法において、前記フッ素雰囲気でのアニール処理後あるいは前記フッ素ドープの薄膜形成後のプロセス温度が600℃以下であることを特徴とする半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 4, wherein a process temperature after annealing in the fluorine atmosphere or after formation of the fluorine-doped thin film is 600 ° C. or less. .
JP2004301462A 2004-10-15 2004-10-15 Method for manufacturing semiconductor device Withdrawn JP2006114747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301462A JP2006114747A (en) 2004-10-15 2004-10-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004301462A JP2006114747A (en) 2004-10-15 2004-10-15 Method for manufacturing semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011004584A Division JP4985855B2 (en) 2011-01-13 2011-01-13 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2006114747A true JP2006114747A (en) 2006-04-27
JP2006114747A5 JP2006114747A5 (en) 2007-11-22

Family

ID=36383007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301462A Withdrawn JP2006114747A (en) 2004-10-15 2004-10-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2006114747A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078253A (en) * 2006-09-20 2008-04-03 Sony Corp Manufacturing method of semiconductor device
JP2008530770A (en) * 2005-01-13 2008-08-07 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for forming HfSiN metal for n-FET applications
JP2008311661A (en) * 2007-06-15 2008-12-25 Dongbu Hitek Co Ltd Semiconductor element and its gate forming method
JP2010505281A (en) * 2006-09-26 2010-02-18 アプライド マテリアルズ インコーポレイテッド Fluorine plasma treatment for high-K gate stacks for defect passivation
JP2010212376A (en) * 2009-03-09 2010-09-24 Toshiba Corp Method of manufacturing semiconductor device
JP2011103459A (en) * 2009-10-07 2011-05-26 Asm Internatl Nv Method of adjusting threshold voltage of gate stack of pmos device
US8431468B2 (en) 2006-12-07 2013-04-30 Infineon Technologies Ag Noise reduction in semiconductor devices
JP2013175769A (en) * 2006-12-11 2013-09-05 Sony Corp Manufacturing method of semiconductor device
CN104347503A (en) * 2013-07-30 2015-02-11 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685278A (en) * 1992-09-07 1994-03-25 Hitachi Ltd Manufacture of semiconductor device
JPH09266308A (en) * 1996-03-29 1997-10-07 Nec Corp Method of manufacturing semiconductor device
JPH1140803A (en) * 1997-07-15 1999-02-12 Toshiba Corp Semiconductor device and its manufacture
JP2000022139A (en) * 1998-06-30 2000-01-21 Toshiba Corp Semiconductor device and its manufacture
JP2002299614A (en) * 2001-03-30 2002-10-11 Toshiba Corp Mis field effect transistor, method for manufacturing it, semiconductor storage medium and method for manufacturing it
JP2003218082A (en) * 2002-01-23 2003-07-31 Tokyo Electron Ltd Substrate-treating method and apparatus, and manufacturing apparatus of semiconductor device
WO2003100835A2 (en) * 2002-05-20 2003-12-04 Advanced Micro Devices, Inc. Gate oxide process methods for high performance mos transistors by reducing remote scattering
JP2004193150A (en) * 2002-12-06 2004-07-08 Toshiba Corp Semiconductor device and its manufacturing method
JP2004207560A (en) * 2002-12-26 2004-07-22 Toshiba Corp Semiconductor device and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685278A (en) * 1992-09-07 1994-03-25 Hitachi Ltd Manufacture of semiconductor device
JPH09266308A (en) * 1996-03-29 1997-10-07 Nec Corp Method of manufacturing semiconductor device
JPH1140803A (en) * 1997-07-15 1999-02-12 Toshiba Corp Semiconductor device and its manufacture
JP2000022139A (en) * 1998-06-30 2000-01-21 Toshiba Corp Semiconductor device and its manufacture
JP2002299614A (en) * 2001-03-30 2002-10-11 Toshiba Corp Mis field effect transistor, method for manufacturing it, semiconductor storage medium and method for manufacturing it
JP2003218082A (en) * 2002-01-23 2003-07-31 Tokyo Electron Ltd Substrate-treating method and apparatus, and manufacturing apparatus of semiconductor device
WO2003100835A2 (en) * 2002-05-20 2003-12-04 Advanced Micro Devices, Inc. Gate oxide process methods for high performance mos transistors by reducing remote scattering
JP2004193150A (en) * 2002-12-06 2004-07-08 Toshiba Corp Semiconductor device and its manufacturing method
JP2004207560A (en) * 2002-12-26 2004-07-22 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530770A (en) * 2005-01-13 2008-08-07 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for forming HfSiN metal for n-FET applications
JP2008078253A (en) * 2006-09-20 2008-04-03 Sony Corp Manufacturing method of semiconductor device
JP2010505281A (en) * 2006-09-26 2010-02-18 アプライド マテリアルズ インコーポレイテッド Fluorine plasma treatment for high-K gate stacks for defect passivation
US8431468B2 (en) 2006-12-07 2013-04-30 Infineon Technologies Ag Noise reduction in semiconductor devices
US11901454B2 (en) 2006-12-11 2024-02-13 Sony Group Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US10868176B2 (en) 2006-12-11 2020-12-15 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
JP2013175769A (en) * 2006-12-11 2013-09-05 Sony Corp Manufacturing method of semiconductor device
US11404573B2 (en) 2006-12-11 2022-08-02 Sony Group Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US9041058B2 (en) 2006-12-11 2015-05-26 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and method of manufacturing same using dummy gate process
US9419096B2 (en) 2006-12-11 2016-08-16 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US9502529B2 (en) 2006-12-11 2016-11-22 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US9673326B2 (en) 2006-12-11 2017-06-06 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US9865733B2 (en) 2006-12-11 2018-01-09 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
US10128374B2 (en) 2006-12-11 2018-11-13 Sony Corporation Metal oxide semiconductor having epitaxial source drain regions and a method of manufacturing same using dummy gate process
JP2008311661A (en) * 2007-06-15 2008-12-25 Dongbu Hitek Co Ltd Semiconductor element and its gate forming method
JP2010212376A (en) * 2009-03-09 2010-09-24 Toshiba Corp Method of manufacturing semiconductor device
JP2011103459A (en) * 2009-10-07 2011-05-26 Asm Internatl Nv Method of adjusting threshold voltage of gate stack of pmos device
CN104347503A (en) * 2013-07-30 2015-02-11 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US10535748B2 (en) Method of forming a contact with a silicide region
US6911707B2 (en) Ultrathin high-K gate dielectric with favorable interface properties for improved semiconductor device performance
US9147614B2 (en) Transistor device and fabrication method
KR101878696B1 (en) Methods to integrate sonos into cmos flow
JP5811432B2 (en) Semiconductor structure for trapping impurity oxygen for high-k gate dielectric and method for forming the structure (trapping metal stack for high-k gate dielectric)
US9698269B2 (en) Conformal nitridation of one or more fin-type transistor layers
US8889505B2 (en) Method for manufacturing semiconductor device
JP2006108602A (en) Semiconductor device and its manufacturing method
US9105720B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US11101178B2 (en) Semiconductor integrated circuit
US9385208B2 (en) Semiconductor device having high-K gate dielectric layer
US7939396B2 (en) Base oxide engineering for high-K gate stacks
US20180337248A1 (en) High-K Dielectric and Method of Manufacture
JP2006114747A (en) Method for manufacturing semiconductor device
JP4985855B2 (en) Manufacturing method of semiconductor device
US20140035058A1 (en) Semiconductor Devices and Methods of Manufacturing the Same
JP2008072001A (en) Semiconductor device and manufacturing method therefor
KR100712523B1 (en) Semiconductor device having different gate dielectric layers and method for manufacturing the same
JP2005079390A (en) Semiconductor device
JP2007142007A (en) Semiconductor device and manufacturing method thereof
JP2006073704A (en) Manufacturing method of semiconductor apparatus
KR101623462B1 (en) METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE COMPRISING HIGH-k METAL OXIDE FILM
JP2006080354A (en) Manufacturing method of misfet
JP2005347584A (en) Method of manufacturing semiconductor device
JP2012109339A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110118