JP2006104588A - Electroconductive acrylic fiber and method for producing electroconductive acrylic fiber - Google Patents

Electroconductive acrylic fiber and method for producing electroconductive acrylic fiber Download PDF

Info

Publication number
JP2006104588A
JP2006104588A JP2004289555A JP2004289555A JP2006104588A JP 2006104588 A JP2006104588 A JP 2006104588A JP 2004289555 A JP2004289555 A JP 2004289555A JP 2004289555 A JP2004289555 A JP 2004289555A JP 2006104588 A JP2006104588 A JP 2006104588A
Authority
JP
Japan
Prior art keywords
conductive
spinning
core
sheath
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004289555A
Other languages
Japanese (ja)
Other versions
JP4564322B2 (en
JP2006104588A5 (en
Inventor
Akira Ochi
亮 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2004289555A priority Critical patent/JP4564322B2/en
Publication of JP2006104588A publication Critical patent/JP2006104588A/en
Publication of JP2006104588A5 publication Critical patent/JP2006104588A5/ja
Application granted granted Critical
Publication of JP4564322B2 publication Critical patent/JP4564322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an electroconductive acrylic fiber having an excellent electroconductivity and excellent whiteness by a wet spinning method in a higher productivity stably. <P>SOLUTION: This method for producing the electroconductive acrylic fiber consisting of an acrylic polymer as a main component and having a sheath core structure containing electroconductive fine particles in its core part is provided by using organic solvent solution dissolving the acrylic polymer with the organic solvent as a spinning stock solution of the sheath component and also organic solvent solution dissolving by mixing the electroconductive fine particles (A) and the acrylic polymer (B) so as to become 4-20 weight ratio of the (A)/(B) as the spinning solution of the core component, spinning by setting the viscosity of spinning stock solution of the sheath component as ≤300 poise, and setting the sheath core ratio so that the content the electroconductive fine particles contained in the electroconductive acrylic fiber becomes 5-15 wt.% by using a sheath core type spinneret, and then performing 30-50% thermal shrinkage treatment. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、優れた導電性能を有し、帯電防止効果や電磁波シールド効果が必要とされる衣料およびインテリア用途などに好適に用いられる導電性アクリル繊維およびその製造方法に関するものである。   The present invention relates to a conductive acrylic fiber that has excellent conductive performance and is suitably used for clothing and interior applications that require an antistatic effect and an electromagnetic shielding effect, and a method for producing the same.

導電性繊維は静電気を除去する目的で工業用及び家庭用に広く使用されており、静電気に起因する引火・爆発の回避、電子部品の故障防止、衣類のまとわりつき防止、冬場の低湿度期に顕著な衣類、マット、カーペットなどの摩擦帯電に起因するスパーク発生の回避などのためには必要不可欠な材料となっている。   Conductive fibers are widely used for industrial and household purposes to eliminate static electricity, avoiding ignition and explosion caused by static electricity, preventing breakdown of electronic components, preventing cluttering of clothing, and remarkable in the low humidity period of winter It is an indispensable material for avoiding the occurrence of sparks caused by frictional electrification of clothing, mats and carpets.

従来、導電性繊維は、繊維表面に導電材料を後加工により複合化する方法、繊維自身に導電材料を使用する方法、導電材料を繊維内部に練り込む方法などにより生産され、各分野で使用されてきた。例えば、後加工技術としてはカーボンブラック、金属、金属化合物などの導電性微粒子を繊維表面に埋め込む方法、銅化合物などの金属化合物を繊維に含浸した後に化学処理して導電性金属化合物を繊維内部または表層に析出させる方法、ポリエーテル化合物やポリエーテルエステル化合物などのイオン伝導性物質を化学的架橋法などの方法により繊維表層部分に固定化する方法などが知られている。   Conventionally, conductive fibers are produced and used in various fields by a method of compositing a conductive material on the fiber surface by post-processing, a method of using a conductive material on the fiber itself, a method of kneading the conductive material inside the fiber, etc. I came. For example, post-processing techniques include a method of embedding conductive fine particles such as carbon black, metal, and metal compounds in the fiber surface, and impregnating the fibers with metal compounds such as copper compounds and then chemically treating the conductive metal compounds inside the fibers or There are known a method of depositing on the surface layer, a method of immobilizing an ion conductive material such as a polyether compound and a polyether ester compound on the fiber surface layer by a method such as a chemical crosslinking method.

また、繊維自身に導電材料を使用する方法としては、例えば繊維自身に金属繊維、炭素繊維またはπ電子共役系からなる導電性有機ポリマー(ポリピロール等)を用いる方法などが知られている。   As a method of using a conductive material for the fiber itself, for example, a method using a conductive organic polymer (polypyrrole or the like) made of metal fiber, carbon fiber, or π-electron conjugated system is known.

導電材料を繊維内部に練り込む方法としては、カーボンブラック、金属、金属化合物などの導電性微粒子をブレンド紡糸または複合紡糸などの方法により複合化する方法や、また、ポリエーテル化合物、ポリエーテルエステル化合物、イオン性化合物、これらの化合物をブロック重合またはグラフト重合したポリマーなどのイオン伝導性物質をブレンド紡糸または複合紡糸などの方法により複合化する方法等が知られている。   As a method for kneading the conductive material into the fiber, a method in which conductive fine particles such as carbon black, metal, and metal compound are combined by a method such as blend spinning or composite spinning, or a polyether compound or a polyether ester compound is used. In addition, there are known ionic compounds, methods of compounding ion conductive materials such as polymers obtained by block polymerization or graft polymerization of these compounds by methods such as blend spinning or composite spinning.

上記のような導電性繊維の製造において、例えばカーボンブラック、金属、金属化合物、π電子共役系高分子化合物などの導電性物質を使用するときには、これらの物質を単体で使用する場合であれ、または繊維表面に埋め込んだり、内部に練り込む場合であれ、導電性繊維を得ることができる。また、得られた導電性繊維をその他一般的な繊維に少量ブレンドして織成または編成することにより、繊維製品に良好な制電性を付与できるという利点を有する。しかしながら、これらの導電性物質は一般に着色しているため、白衣などの淡色系製品に使用されると審美性が損なわれる等の問題があり、繊維加工品の用途が限定されるという欠点があった。   In the production of the conductive fibers as described above, for example, when using a conductive material such as carbon black, metal, metal compound, π electron conjugated polymer compound, even if these materials are used alone, or Whether embedded in the fiber surface or kneaded inside, a conductive fiber can be obtained. Further, by blending a small amount of the obtained conductive fibers with other general fibers and weaving or knitting, there is an advantage that good antistatic properties can be imparted to the fiber product. However, since these conductive materials are generally colored, there is a problem that, when used in light-colored products such as lab coats, there is a problem that the aesthetics are impaired, and the use of the fiber processed product is limited. It was.

一方、ポリエーテル化合物、ポリエーテルエステル化合物、これらの化合物をブロック重合またはグラフト重合したイオン伝導性物質を使用して導電性繊維を製造する場合には、イオン伝導性物質が一般に無色であることから、イオン伝導性物質を複合化した繊維は幅広い用途に使用することができる。しかし、このようなイオン伝導性物質は、電気伝導メカニズムとしては、イオンの移動に依るものであるので湿度依存性が高く、良好な制電性を確保するには通常の繊維に対する導電性繊維のブレンド率を高くする必要がある。その結果、染色性の低下、染色堅牢度の低下、風合いの硬化など繊維加工品本来の特性を損なうなどの欠点があった。   On the other hand, when producing conductive fibers using a polyether compound, a polyether ester compound, or an ion conductive material obtained by block polymerization or graft polymerization of these compounds, the ion conductive material is generally colorless. The fiber in which the ion conductive material is combined can be used for a wide range of applications. However, since such an ion conductive material is dependent on the movement of ions as an electric conduction mechanism, it is highly humidity dependent. It is necessary to increase the blend rate. As a result, there are disadvantages such as deterioration of the original properties of the fiber processed product, such as a decrease in dyeability, a decrease in dyeing fastness, and a cured texture.

以上のような状況下において、繊維加工品本来の特性を損なうことなく、湿度依存性の無い白色系の導電性繊維を得るために、白色の導電性物質を連続相が形成されるように繊維内に必要最低限の量だけ複合化する技術が要望されていた。   Under such circumstances, in order to obtain a white conductive fiber having no humidity dependency without impairing the original properties of the processed fiber product, a white conductive material is formed so that a continuous phase is formed. There has been a demand for a technique for combining the required minimum amount.

このような要望に応える方法として、酸化スズ、酸化亜鉛、ITO(インジウム・スズ酸化物)、ATO(アンチモン・スズ酸化物)などに代表される導電性セラミックスの微粒子や、これらの導電性セラミックスがコーティングされた微粒子などの白色系の導電性微粒子を繊維に練り込む方法が提案されている。   In order to meet such demands, fine particles of conductive ceramics represented by tin oxide, zinc oxide, ITO (indium tin oxide), ATO (antimony tin oxide), etc., and these conductive ceramics are used. A method of kneading white conductive fine particles such as coated fine particles into fibers has been proposed.

例えば特許文献1及び特許文献2では、芯鞘複合紡糸を用いて上記白色系の導電性微粒子を芯部に練り込むことにより、導電性の芯鞘複合繊維を製造する方法が開示されている。特に、上記特許文献1によれば、芯部に含有させる導電性微粒子の体積含有率、芯部と鞘部との面積比、芯部の断面積、鞘部の厚みがそれぞれ所定値となるようにして芯鞘複合紡糸された導電性アクリル繊維は、優れた導電性、白度及び糸強度を有し、幅広い用途展開が可能であるとしている。
特許第3227528号公報 特許第3289817号公報
For example, Patent Literature 1 and Patent Literature 2 disclose a method for producing a conductive core-sheath composite fiber by kneading the white conductive fine particles into the core part using core-sheath composite spinning. In particular, according to Patent Document 1, the volume content of the conductive fine particles contained in the core part, the area ratio of the core part to the sheath part, the cross-sectional area of the core part, and the thickness of the sheath part are set to predetermined values. Thus, the conductive acrylic fiber that has been subjected to core-sheath composite spinning has excellent conductivity, whiteness, and yarn strength, and can be used in a wide range of applications.
Japanese Patent No. 3227528 Japanese Patent No. 3289817

しかし、上記特許文献1及び特許文献2では、例えば芯鞘構造の導電性繊維を乾式紡糸法により紡糸を行うことによって、優れた導電性及び白度を有するアクリル繊維を得ることができるものの、乾式紡糸法を用いる場合には、アクリロニトリルを溶解する有機溶剤がジメチルホルムアルデヒドに限定されていた。一方、湿式紡糸法により紡糸を行う場合、アクリロニトリルを溶解する有機溶剤としては所望する繊維品質に応じて様々な溶剤を選択することができる。しかしながら、湿式紡糸法は乾式紡糸法に比べ導電性能の発現がしにくく、湿式紡糸法により所望の導電性繊維を得るためには、偏芯型である芯鞘複合紡糸ノズルを使用して芯部の位置や鞘部の厚みを高精度に制御するなどの工夫が必要とされた。   However, in Patent Document 1 and Patent Document 2 described above, for example, an acrylic fiber having excellent conductivity and whiteness can be obtained by spinning a conductive fiber having a core-sheath structure by a dry spinning method. When using the spinning method, the organic solvent for dissolving acrylonitrile was limited to dimethylformaldehyde. On the other hand, when spinning by a wet spinning method, various solvents can be selected as the organic solvent for dissolving acrylonitrile depending on the desired fiber quality. However, the wet spinning method is less likely to exhibit conductive performance than the dry spinning method, and in order to obtain a desired conductive fiber by the wet spinning method, the core portion is used by using an eccentric core-sheath composite spinning nozzle. It was necessary to devise such as controlling the position and the thickness of the sheath with high accuracy.

湿式紡糸法が乾式紡糸法に比べて導電性能が発現しにくい原因については明確ではないが、乾式紡糸法の場合には、その繊維形成過程が脱溶媒とそれに伴う体積収縮によって起こる為、繊維自体が緻密になり易い。そのため、芯鞘複合紡糸にて芯部に導電性微粒子を練り込んだ場合に導電性微粒子の連続層を形成し易い。一方、湿式紡糸法の場合には、凝固浴による沈殿凝固が起こった後に脱溶媒させるため、乾式紡糸法に比べ繊維中にボイドができやすく、導電性微粒子の連続層を形成し難くなることが考えられる。即ち、乾式紡糸法と湿式紡糸法とでは、繊維形成過程の違いが繊維の導電性能に大きく影響しているものと推察される。   It is not clear why the wet spinning method is less conductive than the dry spinning method, but in the case of the dry spinning method, the fiber formation process occurs due to solvent removal and accompanying volume shrinkage. Tends to be dense. Therefore, it is easy to form a continuous layer of conductive fine particles when conductive fine particles are kneaded into the core portion by core-sheath composite spinning. On the other hand, in the case of the wet spinning method, since the solvent is removed after precipitation coagulation in the coagulation bath, voids are easily formed in the fiber compared to the dry spinning method, and it is difficult to form a continuous layer of conductive fine particles. Conceivable. That is, it is presumed that the difference in fiber formation process greatly affects the electrical conductivity of the fiber between the dry spinning method and the wet spinning method.

また、湿式紡糸法の場合には乾式紡糸法に比較して紡糸速度が遅い為、通常、生産性を確保するために数1000ホールから数万ホールの多ホール型の紡糸ノズルが用いられる。しかしながら、前述のような偏芯型の芯鞘複合紡糸ノズルを用いて湿式紡糸法により導電性アクリル繊維を製造する場合には、芯成分の紡糸原液と鞘成分の紡糸原液の僅かな粘度バランスの変化によって芯部の鞘部への露出が発生しやすくなり、紡糸時の糸切れや繊維の染色異常などが発生することがあった。そのため、湿式紡糸法によって芯鞘構造のアクリル繊維を安定して製造するためには、紡糸ノズルのホール数は多くても数100程度に調整することが必要とされ、また製造条件も非常に狭い領域に制御して紡糸を行わなければならなかった。すなわち、湿式紡糸法によって所望の導電性や白度を有する導電性アクリル繊維を高い生産性で安定して製造することは非常に困難とされていた。   In the case of the wet spinning method, since the spinning speed is slower than that of the dry spinning method, a multi-hole type spinning nozzle having several thousand holes to several tens of thousands of holes is usually used in order to ensure productivity. However, when the conductive acrylic fiber is produced by the wet spinning method using the eccentric core-sheath composite spinning nozzle as described above, a slight viscosity balance between the spinning solution of the core component and the spinning solution of the sheath component is obtained. Due to the change, exposure of the core portion to the sheath portion is likely to occur, and yarn breakage during spinning and abnormal dyeing of fibers may occur. Therefore, in order to stably produce the core-sheath acrylic fiber by the wet spinning method, it is necessary to adjust the number of holes of the spinning nozzle to about several hundreds at most, and the production conditions are very narrow. The region had to be controlled and spun. That is, it has been extremely difficult to stably produce conductive acrylic fibers having desired conductivity and whiteness by high wet spinning with high productivity.

本発明は上記問題点に鑑みてなされたものであって、本発明の目的は、優れた導電性及び優れた白度を有する導電性アクリル繊維を湿式紡糸法により高い生産性で安定して製造できる製造方法を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to stably produce conductive acrylic fibers having excellent conductivity and excellent whiteness with high productivity by a wet spinning method. It is to provide a manufacturing method that can be used.

本発明者等は、導電性アクリル繊維を湿式紡糸法により安定して製造するために鋭意実験及び検討を重ねた結果、芯部における導電性微粒子の重量比、アクリル繊維に含有される導電性微粒子の重量割合、紡糸後に行う熱収縮処理の収縮率、さらには鞘成分の紡糸原液の粘度をそれぞれ所定の値に設定して導電性アクリル繊維の製造を行えば良いことを見出して、本発明を完成させた。また、本発明の方法により、乾式紡糸法においても、良好な導電性アクリル繊維を製造することができる。   The inventors of the present invention have conducted extensive experiments and studies to stably produce conductive acrylic fibers by a wet spinning method. As a result, the weight ratio of conductive fine particles in the core portion, conductive fine particles contained in the acrylic fibers It was found that the conductive acrylic fiber may be produced by setting the weight ratio of the fiber, the shrinkage ratio of the heat shrink treatment performed after spinning, and the viscosity of the spinning solution of the sheath component to respective predetermined values. Completed. In addition, by the method of the present invention, a good conductive acrylic fiber can be produced even in the dry spinning method.

例えば、従来の導電性アクリル繊維の製造では、上記特許文献1等に記載されているように、芯部に含有させる導電性微粒子の体積含有率、芯部と鞘部との面積比、芯部の断面積、鞘部の厚み等といったパラメータが、それぞれ所定値となるように設定して導電性アクリル繊維の製造を行っていた。   For example, in the production of conventional conductive acrylic fibers, as described in Patent Document 1 above, the volume content of conductive fine particles contained in the core, the area ratio between the core and the sheath, the core The conductive acrylic fiber was manufactured by setting the parameters such as the cross-sectional area and the thickness of the sheath so as to be predetermined values.

それに対して、本発明は、導電性アクリル繊維を湿式紡糸法により製造する際に、上記に示したような従来とは異なるパラメータをそれぞれ所定の値に設定して導電性アクリル繊維の製造を行うものである。このようにして導電性アクリル繊維を製造することにより、芯部における導電性微粒子の連続層を所定量の導電性微粒子で従来よりも安定して形成することができる。これにより、優れた導電性及び優れた白度を有する導電性アクリル繊維を湿式紡糸法により高い生産性で安定して製造することが可能となる。   In contrast, according to the present invention, when conductive acrylic fibers are manufactured by a wet spinning method, conductive acrylic fibers are manufactured by setting parameters different from the conventional ones as described above to predetermined values. Is. By producing conductive acrylic fibers in this manner, a continuous layer of conductive fine particles in the core can be formed with a predetermined amount of conductive fine particles more stably than before. Thereby, it becomes possible to stably produce conductive acrylic fibers having excellent conductivity and excellent whiteness with high productivity by the wet spinning method.

すなわち、本発明の導電性アクリル繊維の製造方法は、アクリル系ポリマーを主成分とし、芯部に導電性微粒子を含む芯鞘構造を有する導電性アクリル繊維を製造する製造方法であって、アクリル系ポリマーを有機溶剤に溶解した有機溶剤溶液を鞘成分の紡糸原液とし、また導電性微粒子(A)とアクリル系ポリマー(B)との重量比(A)/(B)が4以上20以下となるように混合して有機溶剤に溶解した有機溶剤溶液を芯成分の紡糸原液とし、前記鞘成分の紡糸原液の粘度を300poise以下となるように設定して、芯鞘型紡糸口金を用いて前記導電性アクリル繊維中に含まれる導電性微粒子の含有量が5重量%以上15重量%以下となるように鞘部と芯部の比率を設定して紡糸を行った後、30%以上50%以下の熱収縮処理を行うことを含んでなることを最も主要な特徴となしている。特に、このような本発明の導電性アクリル繊維の製造方法は、前記紡糸を湿式紡糸法により行う場合に好適に適用することができる。   That is, the method for producing a conductive acrylic fiber according to the present invention is a method for producing a conductive acrylic fiber having a core-sheath structure containing an acrylic polymer as a main component and containing conductive fine particles in the core, An organic solvent solution obtained by dissolving a polymer in an organic solvent is used as a spinning stock solution of the sheath component, and the weight ratio (A) / (B) between the conductive fine particles (A) and the acrylic polymer (B) is 4 or more and 20 or less. An organic solvent solution mixed and dissolved in an organic solvent as above is used as the spinning solution for the core component, and the viscosity of the spinning solution for the sheath component is set to 300 poise or less, and the conductive material is formed using the core-sheath spinneret. Spinning was carried out by setting the ratio of the sheath part to the core part so that the content of the conductive fine particles contained in the conductive acrylic fiber was 5% by weight or more and 15% by weight or less, and then 30% or more and 50% or less. Heat shrink treatment And it forms the most important feature that it comprises a Ukoto. In particular, the method for producing a conductive acrylic fiber of the present invention can be suitably applied when the spinning is performed by a wet spinning method.

また、本発明の導電性アクリル繊維の製造方法においては、前記芯鞘構造の鞘部におけるアクリル系ポリマーのアクリロニトリル含有量が50重量%以上98重量%以下であることが好ましく、さらに、前記導電性微粒子は10-3S/cm以上の導電率を有する酸化チタンまたは酸化亜鉛であることが好ましい。さらにこの場合、前記芯鞘型紡糸口金の孔数が3000以上であることが好ましい。 In the method for producing a conductive acrylic fiber according to the present invention, the acrylonitrile content of the acrylic polymer in the sheath portion of the core-sheath structure is preferably 50% by weight or more and 98% by weight or less. The fine particles are preferably titanium oxide or zinc oxide having a conductivity of 10 −3 S / cm or more. Furthermore, in this case, it is preferable that the number of holes of the core-sheath type spinneret is 3000 or more.

本発明の導電性アクリル繊維の製造方法は、アクリル系ポリマーを有機溶剤に溶解した有機溶剤溶液を鞘成分の紡糸原液とし、また導電性微粒子(A)とアクリル系ポリマー(B)とを重量比(A)/(B)が4以上20以下となるように混合して有機溶剤に溶解した有機溶剤溶液を芯成分の紡糸原液とし、鞘成分の紡糸原液の粘度を300poise以下となるように設定して、導電性アクリル繊維中に含まれる導電性微粒子の含有量が5重量%以上15重量%以下となるように鞘部と芯部の比率を設定した芯鞘型紡糸口金を用いて紡糸を行った後、30%以上50%以下の収縮率で熱収縮処理を行うことにより、導電性アクリル繊維の芯部に導電性微粒子の連続層を安定して形成して、優れた導電性及び優れた白度を有する導電性アクリル繊維を湿式紡糸法により高い生産性で安定して、しかも簡便に製造することができる。   In the method for producing conductive acrylic fiber of the present invention, an organic solvent solution obtained by dissolving an acrylic polymer in an organic solvent is used as a spinning stock solution of the sheath component, and the conductive fine particles (A) and the acrylic polymer (B) are in a weight ratio. The organic solvent solution mixed in (A) / (B) so as to be 4 or more and 20 or less and dissolved in the organic solvent is used as the spinning solution for the core component, and the viscosity of the spinning solution for the sheath component is set to 300 poise or less. Then, spinning is performed using a core-sheath type spinneret in which the ratio of the sheath part to the core part is set so that the content of the conductive fine particles contained in the conductive acrylic fiber is 5% by weight or more and 15% by weight or less. After performing the thermal shrinkage treatment at a shrinkage rate of 30% or more and 50% or less, a continuous layer of conductive fine particles is stably formed on the core of the conductive acrylic fiber, and excellent conductivity and excellent Conductive acrylic with high whiteness The fibers stably with high productivity by a wet spinning method, moreover can be easily manufactured.

また、本発明の導電性アクリル繊維の製造方法では、芯鞘構造の鞘部におけるアクリル系ポリマーのアクリロニトリル含有量が50重量%以上98重量%以下であることにより、染色鮮明性、発色性、熱特性に優れた導電性アクリル繊維となる。さらに、アクリル繊維の芯部に含有させる導電性微粒子が、10-3S/cm以上の導電率を有するものであれば、アクリル繊維の導電性をより高めることができる。例えば、このような導電率が10-3S/cm以上となる導電性微粒子としては、酸化チタンまたは酸化亜鉛を用いることができる。 In the method for producing a conductive acrylic fiber of the present invention, the acrylonitrile content of the acrylic polymer in the sheath portion of the core-sheath structure is 50% by weight or more and 98% by weight or less. The conductive acrylic fiber has excellent characteristics. Furthermore, if the conductive fine particles contained in the core of the acrylic fiber have a conductivity of 10 −3 S / cm or more, the conductivity of the acrylic fiber can be further increased. For example, titanium oxide or zinc oxide can be used as such conductive fine particles having an electric conductivity of 10 −3 S / cm or more.

さらに、本発明の製造方法は、芯鞘型紡糸口金により紡糸を行う際に孔数が3000以上である芯鞘型紡糸口金を用いることができ、このように孔数が3000以上である芯鞘型紡糸口金で紡糸を行うことにより、非常に高い生産性で導電性アクリル繊維を製造することができる。   Furthermore, the production method of the present invention can use a core-sheath type spinneret having a number of holes of 3000 or more when spinning with a core-sheath type spinneret, and thus the core-sheath having a number of holes of 3000 or more. By performing spinning with a mold spinneret, conductive acrylic fibers can be produced with very high productivity.

以下に、本発明の導電性アクリル繊維の製造方法における好適な実施の形態について詳細に説明する。
本実施形態に係る導電性アクリル繊維の製造方法では、先ず鞘成分の紡糸原液と芯成分の紡糸原液とを準備する。上記鞘成分の紡糸原液としては、アクリル系ポリマーを有機溶剤に溶解した有機溶剤溶液を用意し、また芯成分の紡糸原液としては、導電性微粒子(A)とアクリル系ポリマー(B)とを重量比(A)/(B)が4以上20以下となるように混合して有機溶剤に溶解した有機溶剤溶液を用意する。
Below, suitable embodiment in the manufacturing method of the conductive acrylic fiber of this invention is described in detail.
In the method for producing a conductive acrylic fiber according to the present embodiment, a sheath component spinning dope and a core component spinning dope are first prepared. As the spinning solution for the sheath component, an organic solvent solution in which an acrylic polymer is dissolved in an organic solvent is prepared. As the spinning solution for the core component, the conductive fine particles (A) and the acrylic polymer (B) are added by weight. An organic solvent solution prepared by mixing so that the ratio (A) / (B) is 4 or more and 20 or less and dissolving in the organic solvent is prepared.

本実施形態において、鞘成分及び芯成分の紡糸原液に使用されるアクリル系ポリマーは特に限定されず、従来のアクリル繊維の製造に用いられる一般的なアクリル系ポリマーを用いることができる。特に、例えば以下で説明する紡糸後の熱収縮処理工程において容易に熱収縮を発現できるものを用いることが好ましい。アクリル系ポリマーの組成と緩和による熱収縮の関係については、共重合させるモノマー成分にも左右されるが、一般的に重合体中のアクリルニトリル含有量の少ないほど熱収縮性は高くなる傾向にある。従って、紡糸原液中のアクリロニトリル含有量は、その後の熱収縮処理工程にて所定の熱収縮率が得られるように適切に調整することが望ましい。   In the present embodiment, the acrylic polymer used for the spinning solution of the sheath component and the core component is not particularly limited, and a general acrylic polymer used for the production of conventional acrylic fibers can be used. In particular, it is preferable to use a material that can easily exhibit heat shrinkage in the heat shrinkage treatment step after spinning described below. The relationship between the acrylic polymer composition and the thermal shrinkage due to relaxation depends on the monomer component to be copolymerized, but generally the smaller the acrylonitrile content in the polymer, the higher the heat shrinkability. . Therefore, it is desirable to appropriately adjust the acrylonitrile content in the spinning dope so that a predetermined heat shrinkage rate can be obtained in the subsequent heat shrink treatment process.

特に、鞘成分の紡糸原液については、アクリル系ポリマーのアクリロニトリル含有量が50重量%以上98重量%以下、特に50重量%以上95重量%以下であることが好適である。アクリロニトリルの含有量が50重量%未満では、染色鮮明性、発色性などのアクリル繊維としての本来の特徴が効果的に発現せず、また熱特性をはじめとする他の物性も低下する傾向となる。また、アクリロニトリルの溶解性や染色性等を向上させるためには、アクリロニトリルにアクリル酸エステル等の不飽和単量体を共重合させることが好ましい。   In particular, for the spinning solution of the sheath component, it is preferable that the acrylonitrile content of the acrylic polymer is 50% by weight to 98% by weight, particularly 50% by weight to 95% by weight. If the acrylonitrile content is less than 50% by weight, the original characteristics of the acrylic fiber such as dyeing vividness and color developability are not effectively exhibited, and other physical properties such as thermal properties tend to be lowered. . In order to improve the solubility and dyeability of acrylonitrile, it is preferable to copolymerize acrylonitrile with an unsaturated monomer such as an acrylate ester.

従って、鞘部におけるアクリロニトリル含有量は、不飽和単量体を共重合させることによって、上記のように50重量%以上98重量%以下となるようにすることが好ましく、それにより、アクリル繊維が本来有する特性を失うことなく、優れた染色鮮明性、発色性、熱特性を具備させることができる。なお、本実施形態において、アクリロニトリルと共重合させる不飽和単量体は特に限定されないが、例えばアクリル酸およびアクリル酸エステル類、メタクリル酸およびメタクリル酸エステル類、酢酸ビニル、塩化ビニル、塩化ビニリデンなどを用いることができる。   Therefore, the acrylonitrile content in the sheath is preferably 50% by weight or more and 98% by weight or less as described above by copolymerizing the unsaturated monomer. Without losing the properties it has, it can have excellent dyeing clarity, color development and thermal properties. In the present embodiment, the unsaturated monomer copolymerized with acrylonitrile is not particularly limited. For example, acrylic acid and acrylic acid esters, methacrylic acid and methacrylic acid esters, vinyl acetate, vinyl chloride, vinylidene chloride, and the like. Can be used.

またこの場合、芯鞘構造を有するアクリル繊維を、芯部が鞘部へ露出するのを抑制して、紡糸時に糸切れを生じさせずに安定して製造するためには、鞘成分の紡糸原液の粘度を調節することが極めて重要であり、鞘成分の紡糸原液の粘度が300poise以下、好ましくは150poise以下となるように、鞘成分の紡糸原液における固形分濃度や温度を制御することが大事である。   Further, in this case, in order to stably manufacture the acrylic fiber having a core-sheath structure without suppressing the core part from being exposed to the sheath part and causing yarn breakage during spinning, It is extremely important to control the viscosity of the sheath component, and the solid content concentration and temperature in the spinning component solution of the sheath component are important so that the viscosity of the spinning component solution of the sheath component is 300 poise or less, preferably 150 poise or less. is there.

一方、芯成分の紡糸原液については、上記のように導電性微粒子(A)とアクリル系ポリマー(B)との重量比(A)/(B)を4以上20以下となるように混合して有機溶剤に溶解する。上記重量比(A)/(B)の値を4以上とすることにより、導電性アクリル繊維を製造した際にそのアクリル繊維中に導電性微粒子の連続相が安定して形成されて十分な導電性能を具備させることができる。一方、上記重量比(A)/(B)が20を超えると、紡糸を行うときに導電性微粒子の分散性の低下や、紡糸原液の曳糸性の低下が生じてしまい、凝固糸引取時あるいは延伸時に芯部の切断が発生しやすくなる。このため、紡糸性が低下するとともにアクリル繊維の導電性能を低下させてしまう。   On the other hand, the spinning solution of the core component is mixed so that the weight ratio (A) / (B) of the conductive fine particles (A) and the acrylic polymer (B) is 4 or more and 20 or less as described above. Dissolve in organic solvent. By setting the value of the above weight ratio (A) / (B) to 4 or more, when a conductive acrylic fiber is produced, a continuous phase of conductive fine particles is stably formed in the acrylic fiber, and sufficient conductivity is achieved. Performance can be provided. On the other hand, if the weight ratio (A) / (B) exceeds 20, the dispersion of the conductive fine particles and the spinnability of the spinning dope will be reduced during spinning, and when the coagulated yarn is taken up. Or it becomes easy to generate | occur | produce the cutting | disconnection of a core part at the time of extending | stretching. For this reason, the spinnability is lowered and the conductive performance of the acrylic fiber is lowered.

このとき、芯成分の紡糸原液に含有させる導電性微粒子は、粉末状での導電率が10-3S/cm以上となる白度の高い金属酸化物であることが好適である。このような導電性微粒子としては、酸化チタンまたは酸化亜鉛を好適に用いることができ、またその他にも、例えば酸化錫、酸化インジウム、酸化錫または酸化亜鉛で表面を被覆した酸化チタンを用いることができる。さらに導電性を一層高めるために、酸化錫、酸化インジウムに対しては酸化アンチモンを、酸化亜鉛に対しては酸化錫、酸化インジウム、酸化アルミニウム、酸化カリウム、酸化ゲルマニウム等を併用することができる。またこの場合、紡糸原液に含有させる導電性微粒子の形態は特に限定されないが、微粒子が粒状の場合には平均粒径が3μm以下であることが、アクリル繊維の製造における原液の濾過工程及び紡糸工程での安定性の面から好ましい。 At this time, it is preferable that the conductive fine particles contained in the core component spinning dope is a metal oxide having a high whiteness in which the electrical conductivity in a powder form is 10 −3 S / cm or more. As such conductive fine particles, titanium oxide or zinc oxide can be suitably used. In addition, for example, titanium oxide whose surface is coated with tin oxide, indium oxide, tin oxide or zinc oxide can be used. it can. In order to further increase the conductivity, antimony oxide can be used in combination with tin oxide and indium oxide, and tin oxide, indium oxide, aluminum oxide, potassium oxide, germanium oxide, and the like can be used in combination with zinc oxide. In this case, the form of the conductive fine particles to be contained in the spinning dope is not particularly limited, but when the fine particles are granular, the average particle size is 3 μm or less. It is preferable from the viewpoint of stability.

また、上記鞘成分及び芯成分の各紡糸原液を調整するための有機溶剤については、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの有機溶剤を好ましく用いることができるが、特に限定されるものではなく、アクリル繊維の紡糸で一般的に用いられるその他の有機溶剤を選択することもできる。   In addition, as for the organic solvent for adjusting each spinning stock solution of the sheath component and the core component, an organic solvent such as dimethylacetamide, dimethylformamide, dimethylsulfoxide can be preferably used, but is not particularly limited. Other organic solvents commonly used in acrylic fiber spinning can also be selected.

本実施形態において、上記鞘成分及び芯成分の各紡糸原液の固形分濃度、及び温度についても特に制限はないが、固形分濃度が低過ぎると紡糸後の繊維中にボイドが発生しやすく、結果として繊維物性を低下、導電性能の低下につながる恐れがある。従って、鞘成分の紡糸原液中の固形分濃度は5重量%以上であることが好ましく、また芯成分の紡糸原液中の固形分濃度は30重量%以上であることが好ましい。   In the present embodiment, there is no particular limitation on the solid content concentration and temperature of each spinning solution of the sheath component and the core component, but if the solid content concentration is too low, voids are likely to occur in the fiber after spinning. As a result, the physical properties of the fibers may be reduced, leading to a decrease in the conductive performance. Accordingly, the solid content concentration of the sheath component in the spinning dope is preferably 5% by weight or more, and the solid content concentration in the spinning solution of the core component is preferably 30% by weight or more.

次に、上記のように準備した鞘成分及び芯成分の紡糸原液を、芯鞘型紡糸口金を用いてアクリル繊維中に含まれる導電性微粒子の含有量が5重量%以上15重量%以下となるように鞘部と芯部の比率を設定して湿式紡糸法により紡糸を行う。紡糸を行う際に、繊維中に含まれる導電性微粒子の含有量が5重量%未満の場合には、導電性微粒子が少ない為にアクリル繊維に対して目標とする優れた導電性能を付与することができない。一方、導電性微粒子の含有量が15重量%を超える場合には、導電性アクリル繊維を製造したときに繊維白度に劣るため、その製品用途が限定されるという問題が生じる。   Next, in the spinning solution of the sheath component and the core component prepared as described above, the content of the conductive fine particles contained in the acrylic fiber using the core-sheath type spinneret is 5 wt% or more and 15 wt% or less. Thus, the ratio of the sheath part and the core part is set and spinning is performed by a wet spinning method. When spinning, if the content of conductive fine particles contained in the fiber is less than 5% by weight, the conductive fine particles provide less excellent conductive performance for acrylic fibers because there are few conductive fine particles. I can't. On the other hand, when the content of the conductive fine particles exceeds 15% by weight, the fiber whiteness is inferior when the conductive acrylic fiber is produced, so that the product application is limited.

なお、上記湿式紡糸法については、従来のアクリル繊維の製造で一般的に用いられている方法と同様にして行うことができ、例えば鞘成分及び芯成分の紡糸原液を芯鞘型紡糸口金から有機溶剤と水からなる凝固液中に吐出して固化させることによって紡糸を行うことができる。   The wet spinning method can be carried out in the same manner as that generally used in the production of conventional acrylic fibers. For example, a sheath stock and a spinning solution of a core component are organically fed from a core-sheath spinneret. Spinning can be performed by discharging and solidifying into a coagulating liquid consisting of a solvent and water.

このとき、芯鞘型紡糸口金としては、孔数が3000以上、特に5000以上である紡糸口金を用いることが好ましく、このように孔数が3000以上である芯鞘型紡糸口金を用いて紡糸を行うことにより、非常に高い生産性で導電性アクリル繊維を製造することができる。   At this time, as the core-sheath type spinneret, it is preferable to use a spinneret having a number of holes of 3000 or more, particularly 5000 or more. Thus, the core-sheath type spinneret having a number of holes of 3000 or more is used for spinning. By doing so, conductive acrylic fibers can be produced with very high productivity.

そして、上記湿式紡糸によって得られた凝固糸は、その後、延伸、脱溶剤、油剤付与、乾燥緻密化等の各処理が施された後、30%以上50%以下の収縮率で凝固糸を収縮させる熱収縮処理が行われる。上記の延伸、脱溶剤、油剤付与、乾燥緻密化等の各処理における処理方法や処理条件は特に限定されず、必要に応じて適宜変更することができる。例えば延伸処理については、80℃以上の熱水中で脱溶剤を伴いながら行うことができ、また、紡糸安定性、得られる繊維の物性などを考慮すると、その延伸倍率については3〜10倍程度、特に4〜7倍に設定することが好ましい。   The coagulated yarn obtained by the above wet spinning is then subjected to various treatments such as drawing, solvent removal, oiling, drying and densification, and then shrinks the coagulated yarn at a shrinkage rate of 30% to 50%. A heat shrinking process is performed. The treatment method and treatment conditions in each treatment such as stretching, solvent removal, oil agent application, and drying densification are not particularly limited, and can be appropriately changed as necessary. For example, the stretching treatment can be carried out with removal of solvent in hot water at 80 ° C. or higher, and considering the spinning stability and the physical properties of the resulting fiber, the stretching ratio is about 3 to 10 times. In particular, it is preferable to set 4 to 7 times.

また、上記熱収縮処理は、優れた導電性を付与する為に芯部の導電性微粒子間の距離を近づけるために行われる工程であり、非常に重要である。この熱収縮処理において、アクリル繊維の収縮率が30%未満の場合は、導電性微粒子間の距離を十分に近づけることができなくなり、目標とする優れた導電性能を付与することができない。一方、収縮率が50%より大きい場合はアクリル繊維が脆くなり易く、その後紡績工程を行う際に紡績工程通過性が低下するという問題が生じる。   In addition, the heat shrinking process is a process that is performed in order to reduce the distance between the conductive fine particles in the core in order to impart excellent conductivity, and is very important. In this heat shrinkage treatment, when the shrinkage ratio of the acrylic fiber is less than 30%, the distance between the conductive fine particles cannot be sufficiently reduced, and the target excellent conductive performance cannot be provided. On the other hand, when the shrinkage rate is larger than 50%, the acrylic fiber is liable to be brittle, and there is a problem that the passing through the spinning process is lowered when the spinning process is performed thereafter.

上記熱収縮処理は、湿熱下または乾熱下のどちらの雰囲気下で行われても良いが、繊維の着色などを考慮すると湿熱下で行うことが好ましい。また、この熱収縮処理において、アクリル繊維の収縮率は、前述した繊維中のアクリルニトリル含有量や紡糸後の延伸時の延伸倍率によって左右される。そのため、熱収縮処理の処理条件は、アクリル繊維を上記所定の収縮率で収縮させることができるように、アクリルニトリル含有量や延伸倍率等の条件と組み合わせて適宜設定することが好ましい。例えば、熱収縮処理を150℃以下、好ましくは130℃以下の処理温度で行って30%以上50%以下のアクリル繊維の収縮率が得られるように、紡糸原液中のアクリルニトリル含有量や延伸処理条件等を適切に設定することが可能である。   The heat shrink treatment may be performed in an atmosphere of either wet heat or dry heat, but it is preferable to perform the heat contraction under wet heat in consideration of the coloring of the fibers. Further, in this heat shrinkage treatment, the shrinkage rate of the acrylic fiber depends on the acrylonitrile content in the fiber and the draw ratio at the time of drawing after spinning. Therefore, it is preferable to appropriately set the treatment conditions for the heat shrink treatment in combination with the conditions such as the acrylonitrile content and the draw ratio so that the acrylic fibers can be shrunk at the predetermined shrinkage rate. For example, the acrylonitrile content in the spinning dope and the stretching treatment so that the shrinkage of the acrylic fiber is 30% or more and 50% or less by performing the heat shrinkage treatment at a treatment temperature of 150 ° C. or less, preferably 130 ° C. or less. Conditions etc. can be set appropriately.

以上のようにして導電性アクリル繊維を湿式紡糸法によって製造することにより、例えば従来のように芯部の位置や鞘部の厚み等を高精度に制御せずとも、導電性アクリル繊維の芯部に導電性微粒子の連続層を安定して形成でき、優れた導電性及び優れた白度を有する導電性アクリル繊維を高い生産性で簡便に、しかも安定して製造することができる。   By manufacturing the conductive acrylic fiber by the wet spinning method as described above, for example, the core portion of the conductive acrylic fiber can be controlled without controlling the position of the core portion and the thickness of the sheath portion with high accuracy as in the prior art. In addition, a continuous layer of conductive fine particles can be stably formed, and conductive acrylic fibers having excellent conductivity and excellent whiteness can be easily and stably manufactured with high productivity.

また、このようにして製造された導電性アクリル繊維であれば、優れた導電性及び優れた白度を有するため、例えば帯電防止効果や電磁波シールド効果が必要とされる淡色系繊維加工品等にも用いることができ、様々な用途に適用することができる。特に、このような導電性の優れたアクリル繊維を用いて繊維製品を製造した場合、繊維製品に優れた制電性を付与して静電気を効果的に除去することができるため、例えば静電気による衣類のまとわりつきを防止したり、また、静電気に起因する引火・爆発の回避、電子部品の故障防止、衣類、マット、カーペットなどの摩擦帯電に起因するスパーク発生の回避等の効果を容易に達成することができる。   In addition, since the conductive acrylic fiber manufactured in this way has excellent conductivity and excellent whiteness, for example, a light-colored fiber processed product that requires an antistatic effect or an electromagnetic shielding effect. Can also be used, and can be applied to various applications. In particular, when a textile product is manufactured using such an acrylic fiber having excellent conductivity, it is possible to effectively remove static electricity by imparting excellent antistatic properties to the textile product. Easily achieve effects such as preventing clinging, avoiding ignition and explosion caused by static electricity, preventing failure of electronic components, and avoiding sparks caused by frictional electrification of clothes, mats, carpets, etc. Can do.

なお、上記実施形態では、導電性アクリル繊維の紡糸を湿式紡糸法により行う場合を主に説明しているが、本発明はこれに限定されず、例えば乾式紡糸法によって紡糸を行うこともできる。このように乾式紡糸法により紡糸を行う場合であっても、湿式紡糸法の場合と同様に、優れた導電性及び優れた白度を有する導電性アクリル繊維を高い生産性で安定して製造することができる。   In the above embodiment, the case where the conductive acrylic fiber is spun by the wet spinning method is mainly described. However, the present invention is not limited to this, and for example, the spinning can be performed by the dry spinning method. Thus, even in the case of spinning by the dry spinning method, the conductive acrylic fiber having excellent conductivity and excellent whiteness can be stably produced with high productivity as in the case of the wet spinning method. be able to.

以下、本発明の導電性アクリル繊維のより具体的な実施形態として、実施例を挙げて詳細に説明する。なお、実施例において、芯鞘複合状態の評価、単繊維電気抵抗値の測定及び摩擦帯電圧の測定については以下の方法にて実施した。   Hereinafter, as a more specific embodiment of the conductive acrylic fiber of the present invention, an example will be given and described in detail. In the examples, the evaluation of the core-sheath composite state, the measurement of the single fiber electric resistance value, and the measurement of the frictional voltage were performed by the following methods.

(芯鞘複合状態の評価)
得られた導電性アクリル繊維を光学顕微鏡にて観察し、芯鞘複合状態を確認した。導電性アクリル繊維の芯鞘複合状態は以下の基準で評価した。
○:芯鞘複合率が90%以上 ×:芯鞘複合率が90%未満
(Evaluation of core-sheath composite state)
The obtained conductive acrylic fiber was observed with an optical microscope, and the core-sheath composite state was confirmed. The core-sheath composite state of the conductive acrylic fiber was evaluated according to the following criteria.
○: Core-sheath composite rate is 90% or more ×: Core-sheath composite rate is less than 90%

(単繊維の電気抵抗値の測定法)
下記に示す実施例1〜4及び比較例1〜7のそれぞれの条件で製造された導電性アクリル繊維を、正確に1cm離して銀ペースト(藤倉化成株式会社製ドータイト)により金属端子に接着した。この金属端子間に温度20℃、相対湿度40RH%の雰囲気において1000Vの直流電圧を印加し、金属端子間の抵抗値を測定した(東亜電波株式会社製SM−8210)。
(Measurement method of electrical resistance of single fiber)
The conductive acrylic fibers produced under the conditions of Examples 1 to 4 and Comparative Examples 1 to 7 shown below were accurately separated by 1 cm and adhered to metal terminals with silver paste (Dotite manufactured by Fujikura Kasei Co., Ltd.). A DC voltage of 1000 V was applied between the metal terminals in an atmosphere at a temperature of 20 ° C. and a relative humidity of 40 RH%, and the resistance value between the metal terminals was measured (SM-8210 manufactured by Toa Denpa Inc.).

(編地の摩擦帯電圧測定法)
実施例1〜4及び比較例1〜7のそれぞれの条件で製造された導電性アクリル繊維と市販のアクリル繊維とを用いて紡績糸を形成し、その紡績糸により以下で詳しく説明するように天竺編地を編成した。そして、得られた天竺編地を用いてJIS−L−1094−1980に定められている摩擦帯電圧測定法に基づいて、温度20℃、相対湿度40RH%の雰囲気にて摩擦帯電圧の測定を行った。
(Measurement method of frictional voltage of knitted fabric)
A spun yarn is formed using conductive acrylic fibers manufactured under the conditions of Examples 1 to 4 and Comparative Examples 1 to 7 and commercially available acrylic fibers, and the spun yarn is used to produce a spun yarn as described in detail below. Knitted fabric. Then, based on the friction band voltage measurement method defined in JIS-L-1094-1980, the friction band voltage is measured in an atmosphere at a temperature of 20 ° C. and a relative humidity of 40 RH% using the obtained woven fabric. went.

(実施例1〜4及び比較例1〜9)
鞘成分の紡糸原液として、以下の3種類の紡糸原液(a1〜a3)を準備した。先ず、鞘成分の紡糸原液(a1)として、アクリロニトリル91重量%、酢酸ビニル9重量%からなるアクリル系ポリマーを、固形分濃度が20重量%となるようにジメチルアセトアミドに溶解した有機溶剤溶液を作製した。また、鞘成分の紡糸原液(a2)として、アクリロニトリル94重量%、アクリル酸メチル6重量%からなるアクリル系ポリマーを、固形分濃度が20重量%となるようにジメチルアセトアミドに溶解した有機溶剤溶液を作製した。更に、鞘成分の紡糸原液(a3)として、アクリロニトリル93重量%、酢酸ビニル7重量%からなるアクリル系ポリマーを、固形分濃度が25重量%となるようにジメチルアセトアミドに溶解した有機溶剤溶液を作製した。
(Examples 1-4 and Comparative Examples 1-9)
The following three spinning stock solutions (a1 to a3) were prepared as the spinning stock solution for the sheath component. First, an organic solvent solution in which an acrylic polymer composed of 91% by weight of acrylonitrile and 9% by weight of vinyl acetate is dissolved in dimethylacetamide so that the solid content concentration is 20% by weight is prepared as the spinning solution for the sheath component (a1). did. Moreover, an organic solvent solution in which an acrylic polymer composed of 94% by weight of acrylonitrile and 6% by weight of methyl acrylate is dissolved in dimethylacetamide so that the solid content concentration is 20% by weight is used as the spinning solution for the sheath component (a2). Produced. Furthermore, an organic solvent solution in which an acrylic polymer composed of 93% by weight of acrylonitrile and 7% by weight of vinyl acetate was dissolved in dimethylacetamide so that the solid content concentration was 25% by weight was prepared as the spinning solution for the sheath component (a3). did.

一方、芯成分の紡糸原液として、アクリロニトリル93重量%、酢酸ビニル7重量%からなるアクリル系ポリマーと、導電性酸化チタン微粒子(石原産業株式会社製ET−500W:粒径0.2〜0.3μm、導電率0.4S/cm)と、ジメチルアセトアミドとを、固形分濃度、及び導電性酸化チタン微粒子とアクリル系ポリマーとの重量比(A)/(B)がそれぞれ以下の表1に示す値となるように混合することによって、4種類の紡糸原液(b1〜b4)を得た。   On the other hand, an acrylic polymer composed of 93% by weight of acrylonitrile and 7% by weight of vinyl acetate and a conductive titanium oxide fine particle (ET-500W manufactured by Ishihara Sangyo Co., Ltd .: particle size 0.2 to 0.3 μm) , Conductivity 0.4 S / cm), dimethylacetamide, solid content concentration, and the weight ratio (A) / (B) between the conductive titanium oxide fine particles and the acrylic polymer are the values shown in Table 1 below. 4 types of spinning dope (b1 to b4) were obtained.

Figure 2006104588
Figure 2006104588

上記で作製した3種類の鞘成分の紡糸原液a1〜a3と、4種類の芯成分の紡糸原液b1〜b4とを、表2に示した実施例1〜4及び比較例1〜9の組み合わせとなるように用いた。またその際に、紡糸時の鞘成分の紡糸原液が表2に示す粘度となるように紡糸原液温度を設定した。そして、これらの鞘成分の紡糸原液と芯成分の紡糸原液とを、孔数が5000、孔径φが0.07mmの芯鞘型紡糸口金により、繊維中の導電性酸化チタン微粒子の含有量が表2に示す値となるようにそれぞれ芯部と鞘部の比率を設定して、40℃、55重量%のジメチルアセトアミド水溶液中に吐出し、凝固させた。   The combination of the spinning stock solutions a1 to a3 of the three sheath components prepared above and the spinning stock solutions b1 to b4 of the four core components shown in Table 2 and the combinations of Examples 1 to 4 and Comparative Examples 1 to 9 shown in Table 2. Used to be. At that time, the spinning solution temperature was set so that the spinning solution of the sheath component during spinning had the viscosity shown in Table 2. These sheath component spinning stock solution and core component spinning stock solution are expressed by a core-sheath type spinneret having a pore number of 5000 and a pore diameter φ of 0.07 mm, so that the content of conductive titanium oxide fine particles in the fiber is expressed. The ratio of the core portion and the sheath portion was set so that the value shown in 2 was obtained, and the mixture was discharged into a dimethylacetamide aqueous solution at 40 ° C. and 55 wt% to be solidified.

得られた凝固糸は、95℃の熱水中での延伸(延伸倍率は5倍)、脱溶剤、油剤付与、乾燥緻密化の各処理を施した後、熱収縮処理にて加圧水蒸気下120℃で熱収縮させることにより、単繊維繊度4.0dtexの導電性アクリル繊維を製造した。なお、この熱収縮処理における各アクリル繊維の収縮率を表2に合わせて示す。   The obtained coagulated yarn was subjected to stretching in hot water at 95 ° C. (stretching ratio is 5 times), solvent removal, oiling, drying and densification, and then subjected to heat shrinkage under pressured steam 120. Conductive acrylic fibers having a single fiber fineness of 4.0 dtex were produced by heat shrinking at 0 ° C. In addition, the shrinkage rate of each acrylic fiber in this heat shrinkage treatment is shown in Table 2.

Figure 2006104588
Figure 2006104588

その後、得られた実施例1〜4及び比較例1〜9の各導電性アクリル繊維は、上記で説明した手法により、芯鞘複合状態の評価を行った。また、芯鞘複合状態が良好であった実施例1〜4及び比較例1〜7の各導電性アクリル繊維については、上記で説明した単繊維の電気抵抗値の測定法により、単繊維電気抵抗値の測定を行った。それらの芯鞘複合状態の評価結果及び単繊維電気抵抗値の測定結果を表3に示す。   Then, each obtained conductive acrylic fiber of Examples 1-4 and Comparative Examples 1-9 evaluated the core-sheath compound state by the method demonstrated above. Moreover, about each conductive acrylic fiber of Examples 1-4 and Comparative Examples 1-7 whose core-sheath compound state was favorable, by the measuring method of the electrical resistance value of the single fiber demonstrated above, single fiber electrical resistance The value was measured. Table 3 shows the evaluation results of the core-sheath composite state and the measurement results of the single fiber electric resistance value.

さらに、芯鞘複合状態が良好であった実施例1〜4及び比較例1〜7の各導電性アクリル繊維と、単繊維繊度2.2dtexの市販のアクリル繊維(三菱レイヨン株式会社製 H815)とを、重量比率が3/97、5/95、10/90となるようにそれぞれ混綿して紡績糸(OE紡積、綿番手1/20)を形成し、得られた紡績糸を用いて16ゲージの天竺編地を作製した。その後、作製した各天竺編地に対して、上記で説明した摩擦帯電圧測定を実施した。その摩擦帯電圧測定の結果も表3に合わせて示す。   Furthermore, each of the conductive acrylic fibers of Examples 1 to 4 and Comparative Examples 1 to 7 in which the core-sheath composite state was good, and a commercially available acrylic fiber having a single fiber fineness of 2.2 dtex (H815 manufactured by Mitsubishi Rayon Co., Ltd.) Are mixed to form weight ratios of 3/97, 5/95, and 10/90 to form spun yarn (OE spun, cotton count 1/20), and using the spun yarn obtained, 16 A gauze knitted fabric was prepared. Thereafter, the frictional voltage measurement described above was performed on each of the prepared woven fabrics. The result of the measurement of the frictional voltage is also shown in Table 3.

Figure 2006104588
Figure 2006104588

表3に示したように、鞘部紡糸原液の粘度が300poiseを超える比較例8及び9に関しては、アクリル繊維の芯鞘複合状態が非常に悪い結果となり、繊維品質面で劣るものであった。一方、実施例1〜4の導電性アクリル繊維を用いて作製した繊維製品は、摩擦帯電圧が何れも3000V以下の値を示し、優れた制電性を有することが確認できる。一般に、上記実施例1〜4のように摩擦帯電圧が3000V以下である場合、静電気による衣服のまとわりつきやパチパチする不快感がなくなるといわれている。また、上記実施例1〜4の導電性アクリル繊維を用いて作製した天竺編地を目視にて観察したところ、何れの編地も優れた白度を有していることが確認された。   As shown in Table 3, regarding Comparative Examples 8 and 9 in which the viscosity of the sheath spinning solution exceeded 300 poise, the core-sheath composite state of the acrylic fiber was very bad, and the fiber quality was inferior. On the other hand, the fiber products produced using the conductive acrylic fibers of Examples 1 to 4 have a frictional voltage of 3000 V or less, and it can be confirmed that they have excellent antistatic properties. In general, when the frictional voltage is 3000 V or less as in Examples 1 to 4, it is said that there is no discomfort that clings to clothes or cracks due to static electricity. Moreover, when the top knitted fabric produced using the conductive acrylic fiber of the said Examples 1-4 was observed visually, it was confirmed that any knitted fabric has the outstanding whiteness.

本発明の導電性アクリル繊維は、帯電防止効果や電磁波シールド効果が必要とされる衣料およびインテリア用途などに好適に用いることができる。   The conductive acrylic fiber of the present invention can be suitably used for clothing and interior applications that require antistatic effects and electromagnetic shielding effects.

Claims (6)

アクリル系ポリマーを主成分とし、芯部に導電性微粒子を含む芯鞘構造を有する導電性アクリル繊維を製造する製造方法であって、アクリル系ポリマーを有機溶剤に溶解した有機溶剤溶液を鞘成分の紡糸原液とし、また導電性微粒子(A)とアクリル系ポリマー(B)との重量比(A)/(B)が4以上20以下となるように混合して有機溶剤に溶解した有機溶剤溶液を芯成分の紡糸原液とし、前記鞘成分の紡糸原液の粘度を300poise以下となるように設定して、芯鞘型紡糸口金を用いて前記導電性アクリル繊維中に含まれる導電性微粒子の含有量が5重量%以上15重量%以下となるように鞘部と芯部の比率を設定して紡糸を行った後、30%以上50%以下の熱収縮処理を行うことを含んでなることを特徴とする導電性アクリル繊維の製造方法。   A production method for producing a conductive acrylic fiber having a core-sheath structure containing an acrylic polymer as a main component and containing conductive fine particles in a core, wherein an organic solvent solution obtained by dissolving an acrylic polymer in an organic solvent is used as a sheath component. An organic solvent solution prepared as a spinning dope and mixed in a weight ratio (A) / (B) between the conductive fine particles (A) and the acrylic polymer (B) of 4 to 20 and dissolved in the organic solvent. The core component spinning dope is set so that the sheath component spinning dope has a viscosity of 300 poise or less, and the content of the conductive fine particles contained in the conductive acrylic fiber using the core-sheath type spinneret is It is characterized by comprising performing a heat shrinkage treatment of 30% or more and 50% or less after spinning by setting the ratio of the sheath part and the core part to be 5% by weight or more and 15% by weight or less. Conductive acrylic Manufacturing method of Wei. 前記紡糸を湿式紡糸法により行うことを含んでなる請求項1に記載の導電性アクリル繊維の製造方法。   The method for producing a conductive acrylic fiber according to claim 1, comprising performing the spinning by a wet spinning method. 前記芯鞘構造の鞘部におけるアクリル系ポリマーのアクリロニトリル含有量が50重量%以上98重量%以下であることを含んでなる請求項1または請求項2に記載の導電性アクリル繊維の製造方法。   The method for producing conductive acrylic fibers according to claim 1 or 2, wherein the acrylonitrile content of the acrylic polymer in the sheath portion of the core-sheath structure is 50 wt% or more and 98 wt% or less. 前記導電性微粒子の導電率が10-3S/cm以上であることを含んでなる請求項1ないし請求項3のいずれかに記載の導電性アクリル繊維の製造方法。 The method for producing a conductive acrylic fiber according to any one of claims 1 to 3, wherein the conductivity of the conductive fine particles is 10 -3 S / cm or more. 前記導電性微粒子が酸化チタンまたは酸化亜鉛であることを含んでなる請求項1ないし請求項4のいずれかに記載の導電性アクリル繊維の製造方法。   The method for producing a conductive acrylic fiber according to any one of claims 1 to 4, wherein the conductive fine particles include titanium oxide or zinc oxide. 前記芯鞘型紡糸口金の孔数が3000以上であることを含んでなる請求項1ないし請求項5のいずれかに記載の導電性アクリル繊維の製造方法。   The method for producing a conductive acrylic fiber according to any one of claims 1 to 5, wherein the number of holes in the core-sheath type spinneret is 3000 or more.
JP2004289555A 2004-10-01 2004-10-01 Method for producing conductive acrylic fiber Active JP4564322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289555A JP4564322B2 (en) 2004-10-01 2004-10-01 Method for producing conductive acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289555A JP4564322B2 (en) 2004-10-01 2004-10-01 Method for producing conductive acrylic fiber

Publications (3)

Publication Number Publication Date
JP2006104588A true JP2006104588A (en) 2006-04-20
JP2006104588A5 JP2006104588A5 (en) 2007-11-01
JP4564322B2 JP4564322B2 (en) 2010-10-20

Family

ID=36374655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289555A Active JP4564322B2 (en) 2004-10-01 2004-10-01 Method for producing conductive acrylic fiber

Country Status (1)

Country Link
JP (1) JP4564322B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246838A (en) * 2009-04-20 2010-11-04 Mitsubishi Rayon Co Ltd Conductive sheath-core conjugate acrylic fiber for brush
CN106894157A (en) * 2017-02-26 2017-06-27 浙江峰赫纺织有限公司 A kind of anti-electromagnetic radiation acrylic fiber felt and preparation method thereof
WO2018084040A1 (en) * 2016-11-01 2018-05-11 帝人株式会社 Fabric, method for manufacturing same, and fiber product
JP2018135625A (en) * 2017-02-20 2018-08-30 正仁 櫨田 Method of manufacturing a woolen yarn and sweater not generating static electricity using fiber not generating static electricity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055214A (en) * 1991-06-26 1993-01-14 Kanebo Ltd Electroconductive fiber
JPH0681216A (en) * 1992-09-01 1994-03-22 Kanebo Ltd Electrically conductive acrylic fiber
JPH08337925A (en) * 1995-04-12 1996-12-24 Mitsubishi Rayon Co Ltd Electroconductive acrylic fiber and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055214A (en) * 1991-06-26 1993-01-14 Kanebo Ltd Electroconductive fiber
JPH0681216A (en) * 1992-09-01 1994-03-22 Kanebo Ltd Electrically conductive acrylic fiber
JPH08337925A (en) * 1995-04-12 1996-12-24 Mitsubishi Rayon Co Ltd Electroconductive acrylic fiber and its production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246838A (en) * 2009-04-20 2010-11-04 Mitsubishi Rayon Co Ltd Conductive sheath-core conjugate acrylic fiber for brush
WO2018084040A1 (en) * 2016-11-01 2018-05-11 帝人株式会社 Fabric, method for manufacturing same, and fiber product
CN109923251A (en) * 2016-11-01 2019-06-21 帝人株式会社 Cloth and silk and its manufacturing method and fibre
JPWO2018084040A1 (en) * 2016-11-01 2019-06-24 帝人株式会社 Fabric, method for producing the same, and textile
EP3536836A4 (en) * 2016-11-01 2019-09-11 Teijin Limited Fabric, method for manufacturing same, and fiber product
US11078608B2 (en) 2016-11-01 2021-08-03 Teijin Limited Fabric, method for manufacturing same, and fiber product
JP2018135625A (en) * 2017-02-20 2018-08-30 正仁 櫨田 Method of manufacturing a woolen yarn and sweater not generating static electricity using fiber not generating static electricity
CN106894157A (en) * 2017-02-26 2017-06-27 浙江峰赫纺织有限公司 A kind of anti-electromagnetic radiation acrylic fiber felt and preparation method thereof

Also Published As

Publication number Publication date
JP4564322B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
EP1413653A2 (en) Conductive, soil-resistant core-sheath fibre with high resistance to chemicals, its production process and use
DE2707275A1 (en) ACRYLIC FIBER OR FIBER WITH REDUCED STATIC ELECTRICITY
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
JP4564322B2 (en) Method for producing conductive acrylic fiber
JP2007119992A (en) Synthetic acrylic fiber and method for producing the same
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JPH08337925A (en) Electroconductive acrylic fiber and its production
JPH11200149A (en) White electroconductive fiber
JP2020165044A (en) Conductive composite fiber and method for producing the same
JP2005194650A (en) Conductive conjugate fiber
JP2011162928A (en) Conductive polytetrafluoroethylene fiber and production method therefor
JP2007224448A (en) Electrically conductive conjugate fiber
JP5700240B2 (en) Acrylic fiber paper and manufacturing method thereof
JPH0227442B2 (en) DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO
CN115354414B (en) Strong acid and strong alkali resistant conductive composite fiber, preparation method and application thereof
JP2006348439A (en) Conductive acrylic fiber
JP2009221632A (en) Sheath-core conjugate conductive acrylic filament
JP3635152B2 (en) Conductive composite fiber
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JP2012067433A (en) Manufacturing method of acrylic synthetic fiber
JPH0978377A (en) Antistatic acrylic spun yarn
JPS6328130B2 (en)
JPS58115118A (en) Electrically conductive composite fiber
JPH09228148A (en) Electroconductive fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4564322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250