JP4773849B2 - Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property - Google Patents

Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property Download PDF

Info

Publication number
JP4773849B2
JP4773849B2 JP2006062620A JP2006062620A JP4773849B2 JP 4773849 B2 JP4773849 B2 JP 4773849B2 JP 2006062620 A JP2006062620 A JP 2006062620A JP 2006062620 A JP2006062620 A JP 2006062620A JP 4773849 B2 JP4773849 B2 JP 4773849B2
Authority
JP
Japan
Prior art keywords
less
conductive
mass
fiber
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006062620A
Other languages
Japanese (ja)
Other versions
JP2007009390A (en
Inventor
亮 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2006062620A priority Critical patent/JP4773849B2/en
Publication of JP2007009390A publication Critical patent/JP2007009390A/en
Application granted granted Critical
Publication of JP4773849B2 publication Critical patent/JP4773849B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、繊維製品に優れた制電性能と抗ピル性能、及び蓄熱性能を付与することのできる導電性アクリル系繊維に関する。   The present invention relates to a conductive acrylic fiber capable of imparting excellent antistatic performance, anti-pill performance, and heat storage performance to a textile product.

アクリル系繊維は、柔軟なタッチ、保温性、形態安定性、耐光性、高染色性などに優れた特徴を有しており、ナイロン、ポリエステル繊維等の合成繊維と同様に、衣料製品、インテリア分野の繊維製品に多用されている。
しかし、アクリル系繊維を含む合成繊維は、一般的に電気絶縁性であるため、接触や摩擦により発生した静電気は、合成繊維から容易に漏洩しない。この静電気は、衣服のまとわりつき、汚れの付着、衣服着脱時の不快感等を発生するので、静電性能を有する繊維素材がかねてより要望されていた。
また、アクリル系繊維を使用した衣服、特にセーターやジャージ、インナーには、着用時にピリングが発生しやすいといった問題がありこの点についても改善が求められてきた。 静電性能を付与する方法としては、繊維表面に導電材料を後加工により付与する方法、繊維自身に導電材料を使用する方法、導電材料を繊維内部に練り込む方法など繊維自体に導電性能を付与させる種々の提案がなされている。特許文献1、特許文献2には、芯鞘複合紡糸を用い白色系の導電性微粒子を芯部に練り込んだ導電性芯鞘型複合繊維が開示されている。
いわゆる抗ピル性能を付与する方法としては、特許文献3などの様に繊維自体の物性を制御する方法などが数多く提案されている。
一方、近年、消費者の多機能化された繊維製品を要望する流れのなか、抗ピル性能と制電性能を併せもつ繊維製品の開発が望まれている。
上記特許文献1、特許文献2で開示されている導電性繊維の場合、製品に十分な導電性能を付与することは可能であるが、その反面、繊維製品の抗ピル性能を低下させてしまうという問題があった。
特開平8−337925号公報 特開平9−324320号公報 特開昭57−121610号公報
Acrylic fibers have excellent features such as flexible touch, heat retention, form stability, light resistance, and high dyeability. Like synthetic fibers such as nylon and polyester fibers, clothing and interior products Often used in textile products.
However, since synthetic fibers including acrylic fibers are generally electrically insulating, static electricity generated by contact or friction does not easily leak from the synthetic fibers. This static electricity causes clinging of clothes, adhesion of dirt, uncomfortable feeling when attaching / detaching clothes, etc., and therefore a fiber material having electrostatic performance has been demanded for some time.
Further, clothes using acrylic fibers, particularly sweaters, jerseys, and inners, have a problem that pilling is likely to occur when worn, and improvements have also been demanded in this regard. As a method of imparting electrostatic performance, a method of imparting conductive performance to the fiber itself, such as a method of imparting a conductive material to the fiber surface by post-processing, a method of using a conductive material on the fiber itself, a method of kneading the conductive material inside the fiber, etc. Various proposals have been made. Patent Documents 1 and 2 disclose conductive core-sheath composite fibers in which white-based conductive fine particles are kneaded into a core part using core-sheath composite spinning.
As a method for imparting so-called anti-pill performance, a number of methods for controlling the physical properties of the fiber itself have been proposed, such as Patent Document 3.
On the other hand, in recent years, there has been a demand for the development of textile products having both anti-pill performance and anti-static performance in response to consumer demand for multifunctional textile products.
In the case of the conductive fibers disclosed in Patent Document 1 and Patent Document 2, it is possible to impart sufficient conductive performance to the product, but on the other hand, the anti-pill performance of the fiber product is reduced. There was a problem.
JP-A-8-337925 JP-A-9-324320 JP-A-57-121610

本発明の目的は、繊維製品に十分な制電性能と抗ピル性能、及び蓄熱性能を付与することが可能な導電性アクリル系繊維を提供することにある。   An object of the present invention is to provide a conductive acrylic fiber capable of imparting sufficient antistatic performance, anti-pill performance, and heat storage performance to a textile product.

本発明は、導電率10 −3 S/cm以上の導電性微粒子を50体積%以上80体積%以下含有するアクリロニトリル系ポリマーからなる芯部とアクリロニトリル系ポリマーからなる鞘部より構成され、繊維中に前記導電性微粒子を5質量%以上15質量%以下含有し、印加電圧1000V下での単繊維電気抵抗平値が1.3×105M・Ω以下であり、かつ、繊維の結節強度[DKS(cN/dtex)]と結節伸度[DKE(%)]の積の値が10以上35以下である導電性アクリル系繊維の製造方法であって、アクリロニトリル系ポリマーを有機溶剤に溶解した鞘成分紡糸原液と、導電率10 −3 S/cm以上の導電性微粒子およびアクリロ二トリル系ポリマーを質量比で4以上20以下となるように調整した芯成分紡糸原液とを、アクリル系繊維中に前記導電性微粒子が5質量%以上15質量%以下含有するように芯鞘型紡糸口金を用いて湿式紡糸し、60℃以上の熱水中で、4.0倍以上5.5倍以下で延伸し、さらに、10%以上25%未満で緩和熱処理して得られる、導電性アクリル系繊維の製造方法を要旨とする The present invention is composed of a core part made of an acrylonitrile-based polymer containing conductive fine particles having an electric conductivity of 10 −3 S / cm or more and 50% by volume or more and 80% by volume or less and a sheath part made of an acrylonitrile-based polymer. The conductive fine particles are contained in an amount of 5% by mass or more and 15% by mass or less, the single-fiber electrical resistance average value is 1.3 × 10 5 M · Ω or less under an applied voltage of 1000 V, and the fiber knot strength [DKS (cN / Dtex)] and nodular elongation [DKE (%)] is a method for producing a conductive acrylic fiber having a value of 10 or more and 35 or less, and is a sheath component spinning stock solution in which an acrylonitrile polymer is dissolved in an organic solvent. When, a core component spinning solution was adjusted to conductivity 10 -3 S / cm or more conductive particles and acrylonitrile-based polymer such that 4 to 20 by mass ratio, a 4. Wet spinning using a core-sheath type spinneret so that the conductive fine particles are contained in the ril-based fiber in an amount of 5% by mass or more and 15% by mass or less, and 4.0 times or more in hot water at 60 ° C. or higher. The gist is a method for producing conductive acrylic fiber obtained by stretching at 5 times or less and further by relaxing heat treatment at 10% or more and less than 25% .

本発明は、特にセーター、ジャージ、インナーなど衣料用途において、優れた制電性能と抗ピル性能、及び蓄熱性能を兼備した繊維製品を提供する事を可能とするものである。   The present invention makes it possible to provide a textile product that combines excellent antistatic performance, anti-pill performance, and heat storage performance, particularly in clothing applications such as sweaters, jerseys, and innerwear.

以下に本発明を詳細に説明する。
本発明において、芯成分と鞘成分を構成するアクリロニトリル系ポリマーは、通常のアクリル系繊維の製造に用いられるアクリロニトリル系ポリマーであればよく、特に限定しない。芯成分と鞘成分を構成するアクリロニトリル系ポリマーは、同一組成であっても異なる組成であってもよいが、そのモノマーの構成は、少なくとも50質量%のアクリロニトリルを含有していることが必要である。これによりアクリル系繊維本来の特性を発現することができる。アクリロニトリルと共重合するモノマーとしては、通常アクリル系繊維を構成するアクリロニトリル系ポリマーを構成するモノマーであれば特に限定しないが、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチルなどに代表されるアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピルなどに代表されるメタクリル酸エステル類、さらにアクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデンなどが挙げられる。
また、アクリロニトリル系ポリマーにp−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−アクリルアミド−2メチルプロパンスルホン酸、及びこれらのアルカリ塩を共重合することは、染色性の改良のために好ましい。
The present invention is described in detail below.
In the present invention, the acrylonitrile polymer constituting the core component and the sheath component is not particularly limited as long as it is an acrylonitrile polymer used for production of ordinary acrylic fibers. The acrylonitrile-based polymer constituting the core component and the sheath component may have the same composition or different compositions, but the monomer composition must contain at least 50% by mass of acrylonitrile. . Thereby, the original characteristic of acrylic fiber can be expressed. The monomer copolymerized with acrylonitrile is not particularly limited as long as it is a monomer that usually constitutes an acrylonitrile polymer that constitutes an acrylic fiber. For example, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, Acrylic acid esters represented by 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and the like, methacrylic acid esters represented by methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, and the like, acrylic acid, methacrylic acid, Examples include maleic acid, itaconic acid, acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, and vinylidene fluoride.
In addition, copolymerization of acrylonitrile-based polymer with p-sulfophenylmethallyl ether, methallylsulfonic acid, allylsulfonic acid, styrenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and their alkali salts It is preferable for improvement.

本発明の導電性アクリル系繊維の芯部は、導電率10−3S/cm以上の導電性微粒子を50体積%以上80体積%以下含有するアクリロニトリル系ポリマーからなる。含有量を50体積%以上とすることにより、後述の抗ピル性付与条件で製造した際においても、そのアクリル系繊維中に導電性微粒子の連続相が形成される。また、80体積%以下とすることにより安定した紡糸が可能で、十分な糸質が得られる。また、導電性アクリル繊維中に前記導電性微粒子が5質量%以上15質量%以下含有することが必要である。含有量が5質量%以上とすることにより、芯部に目標とする導電性能を得るのに十分な導電性微粒子の連続相が安定して形成される。一方、含有量が15質量%を超えると、抗ピル性付与の製造条件下では、繊維物性が低下するため、加工性不良となり、また、導電性アクリル系繊維の白度の点でも商品性が低下するため好ましくない。 導電率10−3S/cm以上の導電性微粒子は、白度の高い金属酸化物であることが好ましく、この様な導電性微粒子としては、酸化錫、酸化亜鉛、酸化インジウム及び酸化錫または酸化亜鉛で表面を被覆した酸化チタンが挙げられる。
更に導電性を高める添加剤を併用する方法として、酸化錫、酸化インジウムに対して酸化アンチモンを、酸化亜鉛に対してアルミニウム、カリウム、イソジウム、ゲルマニウム、錫などの金属酸化物を併用する方法が挙げられる。
導電性微粒子の形態には、特に限定はないが、平均粒径が3μm以下であることが原液の濾過工程、紡糸工程の安定性から好ましい。
The core part of the conductive acrylic fiber of the present invention is made of an acrylonitrile-based polymer containing conductive fine particles having a conductivity of 10 −3 S / cm or more in a range of 50% by volume to 80% by volume. By setting the content to 50% by volume or more, a continuous phase of conductive fine particles is formed in the acrylic fiber even when manufactured under the below-mentioned anti-pill property imparting condition. Further, when the amount is 80% by volume or less, stable spinning is possible and sufficient yarn quality is obtained. Further, it is necessary that the conductive fine particles are contained in an amount of 5% by mass to 15% by mass in the conductive acrylic fiber. By setting the content to 5% by mass or more, a continuous phase of conductive fine particles sufficient to obtain a target conductive performance in the core is stably formed. On the other hand, if the content exceeds 15% by mass, the fiber properties deteriorate under the production conditions for imparting anti-pill properties, resulting in poor processability, and the commerciality is also low in terms of whiteness of the conductive acrylic fiber. Since it falls, it is not preferable. The conductive fine particles having an electric conductivity of 10 −3 S / cm or more are preferably metal oxides having high whiteness, and examples of such conductive fine particles include tin oxide, zinc oxide, indium oxide, tin oxide, and oxide. Examples thereof include titanium oxide whose surface is coated with zinc.
Further, as a method of using an additive for increasing conductivity, there is a method of using antimony oxide for tin oxide and indium oxide, and using a metal oxide such as aluminum, potassium, isodium, germanium and tin for zinc oxide. It is done.
The form of the conductive fine particles is not particularly limited, but an average particle size of 3 μm or less is preferable from the standpoint of stability of the filtration process and the spinning process of the stock solution.

本発明の導電性アクリル系繊維は、印加電圧1000V下での単繊維電気抵抗平値が1.3×10M・Ω以下が必要であり、1.0×10M・Ω以下であることがより好ましい。印加電圧1000V下での単繊維電気抵抗平値が1.3×10M・Ω以下とすることで、導電性アクリル系繊維を繊維製品に少量混合するだけで十分な制電性能を付与することができる。1.3×10M・Ωを越える場合であっても、繊維製品に制電性を付与することは可能であるが、その場合、繊維製品中の導電性アクリル系繊維の混合率を高める必要があり、繊維製品の色調や風合いに悪影響を与える場合があり好ましくない。 The conductive acrylic fiber of the present invention requires a single-fiber electrical resistance average value of 1.3 × 10 5 M · Ω or less under an applied voltage of 1000 V, and is 1.0 × 10 5 M · Ω or less. It is more preferable. By setting the single fiber electrical resistance average value under an applied voltage of 1000 V to 1.3 × 10 5 M · Ω or less, sufficient antistatic performance is imparted only by mixing a small amount of conductive acrylic fiber into the fiber product. be able to. Even if it exceeds 1.3 × 10 5 M · Ω, it is possible to impart antistaticity to the textile, but in that case, the mixing ratio of the conductive acrylic fiber in the textile is increased. This is not preferable because it may adversely affect the color tone and texture of the textile product.

更に、本発明の導電性アクリル系繊維は、その繊維の結節強度[DKS(cN/dtex)]と結節伸度[DKE(%)]の積の値が10以上35以下であることが必要であり、15以上30以下であることがより好ましい。この結節強度と結節伸度の積の値は、繊維製品の抗ピル性付与するための指標であり、35以下とすることにより、導電性アクリル系繊維を混紡した繊維製品に、目標とする抗ピル性能を付与する事ができる。10以上とすることによりアクリル系繊維が脆くなり過ぎるのを抑え、紡績工程での折損によるフライ発生や脱落が抑えられる。特にこの値が15以上30以下の場合には、紡績工程、特にトウコンバーターでの加工性に優れるため、より好ましい。一方、この値が10未満では、加工工程において、導電性アクリル繊維の脱落が顕著となり、製品の制電性能が低下する。   Furthermore, the conductive acrylic fiber of the present invention requires that the product of the knot strength [DKS (cN / dtex)] and the knot elongation [DKE (%)] of the fiber be 10 or more and 35 or less. Yes, and more preferably 15 or more and 30 or less. The value of the product of the knot strength and the knot elongation is an index for imparting the anti-pill property of the fiber product. By setting it to 35 or less, the fiber product obtained by blending conductive acrylic fibers with the target anti-pill property is used. Pill performance can be imparted. By setting it to 10 or more, it is possible to suppress the acrylic fiber from becoming too brittle, and to prevent the occurrence of fly and dropping due to breakage in the spinning process. In particular, when this value is 15 or more and 30 or less, the processability in the spinning process, particularly the toe converter, is excellent, and therefore, it is more preferable. On the other hand, when the value is less than 10, the conductive acrylic fiber is significantly dropped in the processing step, and the antistatic performance of the product is lowered.

本発明の導電性アクリル系繊維の単繊維繊度は、特に制限はないが、衣料用途に用いる場合には、0.5dtex以上4dtex以下が好ましく、1.0dtex以上3.3dtex以下であることがさらに好ましい。
単繊維繊度が0.5dtex以上とすることにより紡績工程でのネップ発生を抑えることができ、4dtex以下とすることにより繊維製品の風合いを損ねることもない。
The single fiber fineness of the conductive acrylic fiber of the present invention is not particularly limited, but when used for apparel, it is preferably 0.5 dtex or more and 4 dtex or less, and more preferably 1.0 dtex or more and 3.3 dtex or less. preferable.
When the single fiber fineness is 0.5 dtex or more, the occurrence of neps in the spinning process can be suppressed, and when it is 4 dtex or less, the texture of the fiber product is not impaired.

本発明の導電性アクリル系繊維は、例えば以下の製造方法で得ることができる。まず、鞘成分及び芯成分の紡糸原液を調整する。鞘成分の紡糸原液は、上記のアクリロニトリル系ポリマーを有機溶剤に溶解し調整する。一方、芯成分の紡糸原液は、上記の導電性微粒子と上記のアクリロニトリル系ポリマーを質量比で4以上20以下となるように混合して有機溶剤に溶解し調整する。上記質量比を4以上にすることにより、導電性アクリル系繊維を後述の抗ピル性付与条件で製造した際においても、そのアクリル系繊維中に導電性微粒子の連続相が安定して形成される。一方、20以下とすることにより紡糸を行うときに導電性微粒子の分散性を十分なものに保つとともに紡糸原液の曳糸性の低下を抑え、凝固糸引き取り時あるいは延伸時に芯部の破断の発生を抑制できる。この芯部の破断は、導電性アクリル系繊維の導電性を低下させる。   The conductive acrylic fiber of the present invention can be obtained, for example, by the following production method. First, the spinning dope for the sheath component and the core component is adjusted. The spinning solution for the sheath component is prepared by dissolving the acrylonitrile polymer in an organic solvent. On the other hand, the spinning solution of the core component is prepared by mixing the conductive fine particles and the acrylonitrile polymer so that the mass ratio is 4 or more and 20 or less and dissolving in an organic solvent. By setting the mass ratio to 4 or more, a continuous phase of conductive fine particles is stably formed in the acrylic fiber even when the conductive acrylic fiber is manufactured under the anti-pilling property imparting condition described later. . On the other hand, when it is set to 20 or less, the dispersibility of the conductive fine particles is kept sufficient when spinning, and the lowering of the spinnability of the spinning stock solution is suppressed, and the core portion breaks when the coagulated yarn is taken or stretched. Can be suppressed. The breakage of the core portion reduces the conductivity of the conductive acrylic fiber.

上記の各紡糸原液を調整するための有機溶剤は、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどの有機溶剤を好ましく用いることができるが、特に限定されるものではない。アクリル系繊維の紡糸で一般的に用いられるその他の溶剤も選択することができる。   Organic solvents such as dimethylacetamide, dimethylformamide, and dimethyl sulfoxide can be preferably used as the organic solvent for adjusting each spinning dope, but are not particularly limited. Other solvents commonly used in spinning acrylic fibers can also be selected.

各紡糸原液の固形分濃度、温度は、特に制限はないが、固形分濃度が低過ぎると紡糸後の繊維中にボイドが発生しやすく、結果として繊維物性の低下と導電性能の低下を招く恐れがあるので、鞘成分の紡糸原液中の固形分濃度は5質量%以上であることが好ましく、また芯成分の紡糸原液中の固形分濃度は30質量%以上であることが、芯部の導電パス形成の為、好ましい。   There are no particular restrictions on the solid content concentration and temperature of each spinning dope, but if the solid content concentration is too low, voids are likely to occur in the fiber after spinning, which may result in a decrease in fiber properties and a decrease in conductive performance. Therefore, the solid content concentration of the sheath component in the spinning dope is preferably 5% by mass or more, and the solid content concentration in the spinning solution of the core component is preferably 30% by mass or more. This is preferable for forming a pass.

次に、準備した鞘成分、芯成分の紡糸原液を、芯鞘型紡糸口金を用いて、導電性アクリル系繊維中に含まれる導電性微粒子の含有量が5質量%以上15質量%以下となるように鞘部と芯部の比率を設定し、溶剤と水からなる凝固浴中に吐出して繊維化する。5質量%以上とすることにより、後述する抗ピル性付与に必要な延伸、緩和条件下においても、芯部に、目標とする導電性能を得るのに十分な導電性微粒子の連続相が形成される。一方、導電性微粒子の含有量が15質量%を超えると、抗ピル性付与の製造条件下では、繊維物性が低下するため、加工性不良となり、また、導電性アクリル系繊維の繊維白度の点でも商品性が低下するので、好ましくない。   Next, the content of the conductive fine particles contained in the conductive acrylic fiber is 5% by mass or more and 15% by mass or less using the core / sheath spinneret of the prepared sheath component and core component spinning stock solution. In this way, the ratio of the sheath part to the core part is set, and the fiber is discharged into a coagulation bath composed of a solvent and water. By setting the content to 5% by mass or more, a continuous phase of conductive fine particles sufficient to obtain the target conductive performance is formed in the core even under the stretching and relaxation conditions necessary for imparting anti-pilling properties described later. The On the other hand, if the content of the conductive fine particles exceeds 15% by mass, the fiber physical properties deteriorate under the production conditions for imparting anti-pilling properties, resulting in poor processability, and the fiber whiteness of the conductive acrylic fibers. This is not preferable because the merchantability is lowered.

上記凝固浴の溶剤濃度、温度に特に制限はないが、溶剤濃度は20質量%以上60質量%以下、温度は30℃以上55℃以下であることが好ましい。
凝固浴の溶剤濃度を20質量%以上とすることで、紡糸安定性を一定のレベルに保つことができる。また60質量%を超えると、凝固速度が遅く、単繊維間の接着が発生しやすくなる為、好ましくない。
凝固浴の温度を30℃以上とすれば、安定した紡糸性が得られるが、55℃を超えると、アクリル系繊維が脆くなり、繊維物性の低下を招くので、好ましくない。
The solvent concentration and temperature of the coagulation bath are not particularly limited, but the solvent concentration is preferably 20% by mass to 60% by mass and the temperature is preferably 30 ° C. or more and 55 ° C. or less.
By setting the solvent concentration of the coagulation bath to 20% by mass or more, the spinning stability can be maintained at a certain level. On the other hand, if it exceeds 60% by mass, the coagulation rate is slow and adhesion between single fibers tends to occur, which is not preferable.
If the temperature of the coagulation bath is 30 ° C. or higher, stable spinnability can be obtained, but if it exceeds 55 ° C., the acrylic fiber becomes brittle and the fiber properties are lowered, which is not preferable.

凝固浴を出た糸条は、60℃以上の熱水中で、4.0倍以上5.5倍以下で延伸されるとともに洗浄脱溶媒され、引き続き、油剤付与、乾燥工程を施した後に緩和処理が施される。延伸倍率が4.0倍以上であれば、紡績等の加工に対して十分な繊維物性のアクリル系繊維が得られるが、一方、5.5倍を超えると、抗ピル性が低下するので好ましくない。
また、乾燥、緩和熱処理は、従来アクリル系繊維の製造に用いられる、熱ロールやネットプロセスによる乾燥とアニール、熱板緩和、スチーム緩和といった緩和方法を単独または組み合わせて行うことができる。緩和熱処理における収縮率は、抗ピル性と導電性能を両立させるためには10%以上25%未満とすることが必要である。収縮率が、10%未満であれば、導電性が不充分となり、25%以上であれば、抗ピル性が低下する。
The yarn exiting the coagulation bath is stretched by 4.0 times to 5.5 times in hot water at 60 ° C or higher, washed and desolved, and then relaxed after applying an oil agent and a drying process. Processing is performed. If the draw ratio is 4.0 times or more, an acrylic fiber having sufficient fiber physical properties for processing such as spinning can be obtained. On the other hand, if it exceeds 5.5 times, the anti-pill property is preferably reduced. Absent.
In addition, the drying and relaxation heat treatment can be performed alone or in combination with relaxation methods such as drying and annealing by a hot roll or net process, hot plate relaxation, and steam relaxation, which are conventionally used in the production of acrylic fibers. The shrinkage rate in the relaxation heat treatment needs to be 10% or more and less than 25% in order to achieve both the anti-pill property and the conductive performance. If the shrinkage rate is less than 10%, the conductivity is insufficient, and if it is 25% or more, the anti-pill property is lowered.

本発明の紡績糸は、本発明の導電性アクリル系繊維を1質量%以上15質量%以下と他の繊維85質量%以上99質量%以下から構成される。
導電性アクリル系繊維を1質量%以上とすれば、繊維製品に十分な制電性能を付与することができ、15質量%以下とすることで繊維製品の色調や風合いを損ねることはない。
混紡する他の繊維としては、通常のアクリル系繊維、ポリエステル繊維、ナイロン繊維、レーヨンなどの化学繊維、綿、ウール、シルク等の天然繊維が上げられ、特に制限はない。
また、本発明の紡績糸より得られる編地の摩擦耐電圧は、3000V以下である。これにより静電気を原因とする衣類のまとわりつき、汚れの付着、衣服着脱時の不快感等の従来の問題を解決することができる。
更に、本発明の紡績糸は、その抗ピル性能が3級以上、好ましくは3.5級以上の抗ピル性を有する。抗ピル性が3級以上であることにより、本発明の紡績糸を用いた繊維製品に、実用面で十分な抗ピル性能を付与することができる。尚、本発明での抗ピル性は JIS L1076 A法に従って測定された値である。
また本発明の紡績糸は、紡績糸中の導電性微粒子の含有量が0.5質量%以上となるように本発明の導電性アクリル系繊維を混紡することで、繊維製品に実用的な蓄熱性能を付与することが可能である。ここで言う繊維製品に実用的な蓄熱性能とは、下記の方法で測定した蓄熱量ΔTが3℃以上であることを指し、冬場の繊維製品の使用環境を想定すると、5℃以上であることがより好ましい。
『蓄熱量ΔTの測定方法』
(1) 導電性アクリル系繊維を含有する紡績糸Aからなる編地A(15×15cm)と、比較対照品として一般のアクリル系繊維からなる紡績糸Bからなる編地B(15×15cm)を作成する。
(2) 温度22℃、湿度65%環境下で、上記編地Aおよび編地Bに照射距離30cmとして300Wのアイランプの光を10分間照射し、各々の表面温度を測定する。
(3) 10分後の編地Aの表面温度をTa、編地Bの表面温度をTbとし、その差をΔT、即ち ΔT=Ta−Tbを、紡績糸Aの蓄熱量ΔTとした。
The spun yarn of the present invention is composed of 1% by mass to 15% by mass of the conductive acrylic fiber of the present invention and 85% by mass to 99% by mass of other fibers.
When the conductive acrylic fiber is 1% by mass or more, sufficient antistatic performance can be imparted to the fiber product, and by setting it to 15% by mass or less, the color tone and texture of the fiber product are not impaired.
Examples of other fibers to be blended include ordinary acrylic fibers, polyester fibers, nylon fibers, rayon and other chemical fibers, and cotton, wool, silk and other natural fibers, and are not particularly limited.
The knitted fabric obtained from the spun yarn of the present invention has a friction withstand voltage of 3000 V or less. As a result, conventional problems such as clinging of clothes caused by static electricity, adhesion of dirt, and uncomfortable feeling when attaching / detaching clothes can be solved.
Furthermore, the spun yarn of the present invention has an anti-pilling property of anti-pill performance of grade 3 or higher, preferably grade 3.5 or higher. When the anti-pill property is 3rd or higher, the fiber product using the spun yarn of the present invention can be given sufficient anti-pill performance in practical use. In addition, the anti-pill property in this invention is a value measured according to JIS L1076 A method.
In addition, the spun yarn of the present invention is a practical heat storage in a textile product by blending the conductive acrylic fiber of the present invention so that the content of the conductive fine particles in the spun yarn is 0.5% by mass or more. Performance can be imparted. The heat storage performance that is practical for textile products here means that the heat storage amount ΔT measured by the following method is 3 ° C. or more, and that it is 5 ° C. or more assuming the use environment of textile products in winter. Is more preferable.
“Measurement method of heat storage ΔT”
(1) A knitted fabric A (15 × 15 cm) made of spun yarn A containing conductive acrylic fiber and a knitted fabric B (15 × 15 cm) made of spun yarn B made of general acrylic fiber as a comparative product. Create
(2) Under a temperature of 22 ° C. and a humidity of 65%, the knitted fabric A and the knitted fabric B are irradiated with light of a 300 W eyelamp for 10 minutes at an irradiation distance of 30 cm, and the surface temperature of each is measured.
(3) The surface temperature of the knitted fabric A after 10 minutes is Ta, the surface temperature of the knitted fabric B is Tb, and the difference is ΔT, that is, ΔT = Ta−Tb is the heat storage amount ΔT of the spun yarn A.

以下、本発明の導電性アクリル系繊維のより具体的な実施形態として、実施例を挙げて詳細に説明する。
なお、実施例において、単繊維電気抵抗値、摩擦帯電圧の測定、結節強度、結節伸度、抗ピル性など特性値は、以下の方法で測定を実施した。
Hereinafter, examples will be described in detail as more specific embodiments of the conductive acrylic fiber of the present invention.
In Examples, characteristic values such as single fiber electric resistance value, frictional voltage measurement, knot strength, knot elongation, and anti-pill property were measured by the following methods.

(単繊維の電気抵抗値の測定法)
得られた導電性アクリル系繊維を正確に1cm離して銀ペースト(藤倉化成株式会社製ドータイト)により金属端子に接着した。
この金属端子間に温度20℃、相対湿度40RH%の雰囲気において1000Vの直流電圧を印加し、金属端子間の抵抗値を測定した(東亜電波株式会社製SM−8210)。
(Measurement method of electrical resistance of single fiber)
The obtained conductive acrylic fiber was accurately separated by 1 cm and adhered to a metal terminal with a silver paste (Dotite manufactured by Fujikura Kasei Co., Ltd.).
A DC voltage of 1000 V was applied between the metal terminals in an atmosphere at a temperature of 20 ° C. and a relative humidity of 40 RH%, and the resistance value between the metal terminals was measured (SM-8210 manufactured by Toa Denpa Inc.).

(編地の摩擦帯電圧測定法)
得られた導電性アクリル系繊維と市販のアクリル系繊維とを用いて紡績糸を形成し、その紡績糸で16ゲージの天竺編地を作製した。得られた天竺編地を用いてJIS−L−1094−1980に定められている摩擦帯電圧測定法に基づいて、温度20℃、相対湿度40RH%の雰囲気にて摩擦帯電圧の測定を行った。
(Measurement method of frictional voltage of knitted fabric)
A spun yarn was formed using the obtained conductive acrylic fiber and a commercially available acrylic fiber, and a 16-gauge knitted fabric was produced from the spun yarn. Based on the friction band voltage measurement method defined in JIS-L-1094-1980, the friction band voltage was measured in an atmosphere having a temperature of 20 ° C. and a relative humidity of 40 RH% using the obtained tenshi knitted fabric. .

(編地の蓄熱性能評価)
各サンプルを混紡して得られる紡績糸で、16ゲージの天竺編地を作製しその編地を15×15cm角の測定試料とする。その試料を、先述の方法にて、蓄熱量ΔTを測定した。
(使用ランプ 岩崎電気株式会社製 リフレクターフラッド写真用散光形 PRF300W)
(Evaluation of heat storage performance of knitted fabric)
A 16-gauge knitted fabric is produced from the spun yarn obtained by blending each sample, and the knitted fabric is used as a 15 × 15 cm square measurement sample. A heat storage amount ΔT of the sample was measured by the method described above.
(Lamp used: Iwasaki Electric Co., Ltd. Reflector Flood Photo Diffuse PRF300W)

(繊維の結節強度、結節伸度)
JIS L1015の方法に従って測定した。
(Fiber knot strength, knot elongation)
It measured according to the method of JIS L1015.

(抗ピル性)
16ゲージの天竺編地を、JIS L1076 A法に従って測定した。
(Anti-pill property)
A 16-gauge knitted fabric was measured according to JIS L1076 A method.

(トウカッティング性評価)
得られた導電性アクリル系繊維の100ktexトウをトウコンバーター機(SEYDEL社製SEYDEL682)を用い、トータル延伸倍率4.0倍、処理速度200m/minにて処理を行った。
(Toe cutting property evaluation)
The obtained conductive acrylic fiber 100 ktex tow was processed at a total draw ratio of 4.0 times and a processing speed of 200 m / min using a tow converter machine (SEYDEL682 manufactured by SEYDEL).

(鞘成分の紡糸原液の調整)
鞘成分の紡糸原液(a1)として、アクリロニトリル単位94質量%、アクリル酸メチル単位5.5質量%、メチルスルホン酸ナトリウム単位0.5質量%からなるアクリロニトリル系ポリマーを、固形分濃度が20質量%となるようにジメチルアセトアミドに溶解した有機溶剤溶液を作製した。
鞘成分の紡糸原液(a2)として、アクリロニトリル単位93質量%、酢酸ビニル単位7質量%からなるアクリロニトリル系ポリマーを、固形分濃度が20質量%となるようにジメチルアセトアミドに溶解した有機溶剤溶液を作製した。
(Adjustment of sheath solution spinning solution)
An acrylonitrile-based polymer comprising 94% by mass of acrylonitrile units, 5.5% by mass of methyl acrylate units, and 0.5% by mass of sodium methylsulfonate units as a spinning solution for the sheath component (a1) has a solid content concentration of 20% by mass. Then, an organic solvent solution dissolved in dimethylacetamide was prepared.
As an undiluted spinning solution (a2) for the sheath component, an organic solvent solution was prepared by dissolving acrylonitrile-based polymer consisting of 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units in dimethylacetamide so that the solid content concentration was 20% by mass. did.

(芯成分の紡糸原液の調整)
アクリロニトリル単位93質量%、酢酸ビニル単位7質量%からなるアクリロニトリル系ポリマーと、導電性酸化チタン微粒子(石原産業株式会社製ET−500W:粒径0.2〜0.3μm、導電率0.4S/cm)と、ジメチルアセトアミドとを固形分濃度、導電性酸化チタン微粒子とアクリロニトリル系ポリマーとの質量比(A)/(B)がそれぞれ表1に示す値となるように混合することによって、2種類の紡糸原液(b1、b2)を得た。
(Adjustment of spinning solution for core component)
Acrylonitrile polymer consisting of 93% by mass of acrylonitrile units and 7% by mass of vinyl acetate units, and conductive titanium oxide fine particles (ET-500W manufactured by Ishihara Sangyo Co., Ltd .: particle size 0.2-0.3 μm, conductivity 0.4 S / cm) and dimethylacetamide are mixed so that the solid content concentration and the mass ratio (A) / (B) of the conductive titanium oxide fine particles and the acrylonitrile-based polymer are the values shown in Table 1, respectively. Spinning stock solutions (b1, b2) were obtained.

Figure 0004773849
Figure 0004773849

(実施例1〜7、比較例1〜6)
鞘成分の紡糸原液a1、a2と、芯成分の紡糸原液b1、b2とを、表2に示した組み合わせで以下の条件で紡糸し、導電性アクリル系繊維を得た。得られた導電性アクリル系繊維の評価結果を表3に示した。
鞘成分の紡糸原液と芯成分の紡糸原液とを、孔数が5000、孔径φが0.07mmの芯鞘型紡糸口金により、導電性アクリル系繊維中の導電性酸化チタン微粒子の含有量が表2に示す値となるようにそれぞれ芯部と鞘部の比率を設定して、表2に示す紡糸条件にて凝固、95℃の熱水中での延伸、脱溶剤、油剤付与、乾燥緻密化の各処理を施した後、熱収縮処理にて加圧水蒸気下、表2に示す温度で熱収縮させることにより、単繊維繊度4.0dtexの導電性アクリル繊維を製造した。
(Examples 1-7, Comparative Examples 1-6)
The sheath component spinning stock solutions a1 and a2 and the core component spinning stock solutions b1 and b2 were spun under the following conditions in the combinations shown in Table 2 to obtain conductive acrylic fibers. The evaluation results of the obtained conductive acrylic fiber are shown in Table 3.
The sheath-spinning stock solution and the core-component spinning stock solution are represented by a core-sheath spinneret having a pore number of 5000 and a pore diameter of 0.07 mm, so that the content of conductive titanium oxide fine particles in the conductive acrylic fiber is expressed. 2. Set the ratio of the core and sheath so that the values shown in 2 are obtained, solidify under the spinning conditions shown in Table 2, stretch in 95 ° C. hot water, solvent removal, oil application, dry densification After performing each of these treatments, conductive acrylic fibers having a single fiber fineness of 4.0 dtex were produced by heat shrinking under pressure steam in the heat shrinking treatment at the temperatures shown in Table 2.

Figure 0004773849
Figure 0004773849

Figure 0004773849
Figure 0004773849

(実施例8〜15、比較例7〜13)
また、実施例1、2、比較例2、4、5にて得られた繊維を76mmのカット綿とし、単繊維繊度3.3dtexの市販のアクリル系繊維(三菱レイヨン株式会社製 H615 カット長76mm)およびウール(64s)を、表4に示す質量比率で混綿してメートル番手48番単糸の紡績糸を作成し、得られた紡績糸を用いて16ゲージの天竺編地を作製した。その後、作製した各天竺編地に対して、上記で説明した摩擦帯電圧測定および抗ピル性を評価した。その結果を表4に示した
(Examples 8-15, Comparative Examples 7-13)
Further, the fibers obtained in Examples 1 and 2 and Comparative Examples 2, 4 and 5 were cut into 76 mm cut cotton, and a commercially available acrylic fiber having a single fiber fineness of 3.3 dtex (H615 manufactured by Mitsubishi Rayon Co., Ltd., cut length 76 mm). ) And wool (64 s) were blended at a mass ratio shown in Table 4 to produce a metric count 48 single yarn, and a 16-gauge knitted fabric was produced using the resulting spun yarn. Thereafter, the frictional band voltage measurement and the anti-pill property described above were evaluated for each of the prepared woven fabrics. The results are shown in Table 4.

Figure 0004773849
Figure 0004773849

表4に示したように、本発明の導電性アクリル系繊維は、繊維製品に優れた制電性、及び抗ピル性能を付与することができる。
(実施例16〜19、比較例14〜18)
また、実施例1、2、にて得られた繊維を76mmにカット綿とし、単繊維繊度3.3dtexの市販のアクリル系繊維(三菱レイヨン株式会社製 H615 カット長76mm)およびウール(64s)を、表4に示す質量比率で、混綿してメートル番手32番単糸の紡績糸を作成し、得られた紡績糸を用いて12ゲージの天竺編地を作製した。また、単繊維繊度3.3dtex市販のアクリル系繊維(三菱レイヨン株式会社製 V17 カット長76mm)100%からなるメートル番手32番単糸の紡績糸を用いて12ゲージの天竺編地を作製し、これを比較対照品として上記で説明した蓄熱性の評価を実施した。
As shown in Table 4, the conductive acrylic fiber of the present invention can impart excellent antistatic properties and anti-pill performance to the textile product.
(Examples 16 to 19, Comparative Examples 14 to 18)
Further, the fibers obtained in Examples 1 and 2 were cut into 76 mm cotton, and a commercially available acrylic fiber having a single fiber fineness of 3.3 dtex (H615 cut length 76 mm manufactured by Mitsubishi Rayon Co., Ltd.) and wool (64 s) were used. A spun yarn of metric number 32 single yarn was prepared by blending at the mass ratio shown in Table 4, and a 12-gauge yarn knitted fabric was produced using the obtained spun yarn. Further, a 12-gauge yarn knitted fabric was produced using a spun yarn of meter number 32 single yarn consisting of 100% single fiber fineness 3.3 dtex commercially available acrylic fiber (V17 cut length 76 mm, manufactured by Mitsubishi Rayon Co., Ltd.) Using this as a comparative control product, the heat storage evaluation described above was performed.

Figure 0004773849
Figure 0004773849

表5に示したように、導電性微粒子を0.5質量%以上含有するように本発明の導電性アクリル系繊維を混紡した繊維製品は、優れた蓄熱性を有することが確認できる。   As shown in Table 5, it can be confirmed that the fiber product obtained by blending the conductive acrylic fiber of the present invention so as to contain 0.5% by mass or more of conductive fine particles has excellent heat storage properties.

(実施例20〜21、比較例19〜20)
実施例1、2および比較例5、6で得られた繊維を100Ktexの繊維束(トウ)とし、トウコンバーター(SEYDEL社製:SEYDEL682)による処理を行い、カッティング性(カット時のフライ発生量、糸切れ、ネップ発生状況の目視判定)について評価した。その結果を表5に示す。

Figure 0004773849
(Examples 20 to 21, Comparative Examples 19 to 20)
The fibers obtained in Examples 1 and 2 and Comparative Examples 5 and 6 were made into a fiber bundle (tow) of 100 Ktex, treated by a tow converter (SEYDEL: SEYDEL682), and cutting properties (amount of fly generated during cutting, Evaluation was made on the thread breakage and the visual judgment of the occurrence of the nep. The results are shown in Table 5.
Figure 0004773849

表6に示したように、本発明の導電性アクリル系繊維は比較品に比べ、トウコンバーターでのカッティング性に非常に優れた特性を示すことがわかる。   As shown in Table 6, it can be seen that the conductive acrylic fiber of the present invention exhibits very excellent characteristics in cutting performance with a toe converter as compared with a comparative product.

Claims (1)

導電率10Conductivity 10 −3-3 S/cm以上の導電性微粒子を50体積%以上80体積%以下含有するアクリロニトリル系ポリマーからなる芯部とアクリロニトリル系ポリマーからなる鞘部より構成され、繊維中に前記導電性微粒子を5質量%以上15質量%以下含有し、印加電圧1000V下での単繊維電気抵抗平値が1.3×105M・Ω以下であり、かつ、繊維の結節強度[DKS(cN/dtex)]と結節伸度[DKE(%)]の積の値が10以上35以下である導電性アクリル系繊維の製造方法であって、アクリロニトリル系ポリマーを有機溶剤に溶解した鞘成分紡糸原液と、導電率10It is composed of a core part made of an acrylonitrile-based polymer containing 50% by volume or more and 80% by volume or less of conductive fine particles of S / cm or more, and a sheath part made of an acrylonitrile-based polymer. 15% by mass or less, the average single fiber electric resistance under an applied voltage of 1000 V is 1.3 × 10 5 M · Ω or less, and the knot strength [DKS (cN / dtex)] and knot elongation [ DKE (%)] is a method for producing a conductive acrylic fiber having a product value of 10 or more and 35 or less, wherein a sheath component spinning stock solution in which an acrylonitrile polymer is dissolved in an organic solvent, and a conductivity of 10 −3-3 S/cm以上の導電性微粒子およびアクリロ二トリル系ポリマーを質量比で4以上20以下となるように調整した芯成分紡糸原液とを、アクリル系繊維中に前記導電性微粒子が5質量%以上15質量%以下含有するように芯鞘型紡糸口金を用いて湿式紡糸し、60℃以上の熱水中で、4.0倍以上5.5倍以下で延伸し、さらに、10%以上25%未満で緩和熱処理して得られる、導電性アクリル系繊維の製造方法。S / cm or more of conductive fine particles and acrylonitrile polymer adjusted to have a mass ratio of 4 to 20 in a core component spinning raw solution, and the conductive fine particles are contained in an acrylic fiber in an amount of 5% by mass to 15%. Wet spinning using a core-sheath type spinneret so that the content is less than or equal to mass%, stretching in hot water at 60 ° C. or higher, 4.0 times or more and 5.5 times or less, and further 10% or more and less than 25% A method for producing conductive acrylic fibers obtained by relaxation heat treatment at
JP2006062620A 2005-06-02 2006-03-08 Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property Active JP4773849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006062620A JP4773849B2 (en) 2005-06-02 2006-03-08 Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005163160 2005-06-02
JP2005163160 2005-06-02
JP2006062620A JP4773849B2 (en) 2005-06-02 2006-03-08 Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property

Publications (2)

Publication Number Publication Date
JP2007009390A JP2007009390A (en) 2007-01-18
JP4773849B2 true JP4773849B2 (en) 2011-09-14

Family

ID=37748254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006062620A Active JP4773849B2 (en) 2005-06-02 2006-03-08 Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property

Country Status (1)

Country Link
JP (1) JP4773849B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5765877B2 (en) * 2009-04-20 2015-08-19 三菱レイヨン株式会社 Conductive core-sheath composite acrylic fiber for brush
JP5318071B2 (en) 2010-11-01 2013-10-16 三菱電機株式会社 Switching power supply
JP5979419B2 (en) * 2012-05-22 2016-08-24 三菱レイヨン株式会社 Pile fabric
JP6241133B2 (en) * 2013-08-22 2017-12-06 三菱ケミカル株式会社 Spun yarn and knitted fabric including the spun yarn
CN109923251A (en) * 2016-11-01 2019-06-21 帝人株式会社 Cloth and silk and its manufacturing method and fibre
CN108441979A (en) * 2018-04-27 2018-08-24 芜湖天科生物科技有限公司 A kind of antibacterial conductive fiber and preparation method thereof
CN108441984A (en) * 2018-04-27 2018-08-24 芜湖天科生物科技有限公司 A kind of environmental protection electroconductive resin fiber and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57121610A (en) * 1981-01-19 1982-07-29 Mitsubishi Rayon Co Ltd Pilling-resistant acrylic synthetic fiber and its production
JP3227528B2 (en) * 1995-04-12 2001-11-12 三菱レイヨン株式会社 Conductive acrylic fiber and method for producing the same

Also Published As

Publication number Publication date
JP2007009390A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
JP6241133B2 (en) Spun yarn and knitted fabric including the spun yarn
WO2016127833A1 (en) Acetic nitrile fibre and preparation method therefor
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JP5128540B2 (en) Spun yarn containing acrylic fiber and knitted fabric using the same
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP4955921B2 (en) Anti-pill fine fineness acrylic fiber, method for producing the same, and spun yarn
JP5329468B2 (en) Long and short composite yarn suitable for lightweight heat-insulated knitted fabric
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
JP4564322B2 (en) Method for producing conductive acrylic fiber
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JPH06101129A (en) Acrylic spun yarn
JPH11200149A (en) White electroconductive fiber
JP5979419B2 (en) Pile fabric
JP2000096347A (en) Heat-storing and conductive fiber and yarn and fabric
JP2000096346A (en) Heat-storing and conductive fiber and yarn and fabric
JP2008007876A (en) Flame retardant sheath core type conjugate fiber and method for producing the same
JP2601775B2 (en) Flame retardant acrylic composite fiber
JPH0227442B2 (en) DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO
JP2005120512A (en) Acrylic conjugate fiber having refreshing cool feeling and method for producing the same
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP2012067433A (en) Manufacturing method of acrylic synthetic fiber
JP2023031514A (en) Acrylic fiber, manufacturing method of the same, spun yarn, dyed spun yarn, knitted fabric, and underwear
JPH07102420A (en) Composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4773849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250