JP2000096346A - Heat-storing and conductive fiber and yarn and fabric - Google Patents

Heat-storing and conductive fiber and yarn and fabric

Info

Publication number
JP2000096346A
JP2000096346A JP28047698A JP28047698A JP2000096346A JP 2000096346 A JP2000096346 A JP 2000096346A JP 28047698 A JP28047698 A JP 28047698A JP 28047698 A JP28047698 A JP 28047698A JP 2000096346 A JP2000096346 A JP 2000096346A
Authority
JP
Japan
Prior art keywords
fiber
conductive
heat storage
core
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28047698A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kawachi
博之 河内
Mitsuo Tanaka
光雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28047698A priority Critical patent/JP2000096346A/en
Publication of JP2000096346A publication Critical patent/JP2000096346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-storing and conductive fiber not colored and having both a heat-storing property and a conductive property, and to provide a fiber product comprising the heat-storing and conductive fibers. SOLUTION: This heat-storing and conductive fiber comprises a sheath-core conjugate fiber whose core portion contains white conductive ceramic particles, and has an electric conductivity of >=10-6 S/cm. The white conductive ceramic particles exist as aggregates having an average diameter of 0.5-5 μm, and are contained in the core portion in a concentration of 15-70 vol.%. A yarn and a fabric comprise the fibers, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄熱性と導電性を
兼備した蓄熱及び導電性繊維並びにこの蓄熱及び導電性
繊維からなる糸、布帛等の繊維製品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage and conductive fiber having both heat storage and conductivity, and to a fiber product such as a yarn or a cloth made of the heat storage and conductive fiber.

【0002】[0002]

【従来の技術】従来より、防寒衣料或いはスポーツ衣料
の分野における繊維素材として、保温性を高めるために
炭化物系セラミックス微粒子を紡糸原液に添加する等に
より炭化物系セラミックス微粒子を練り込ん蓄熱繊維が
提案されているが、かかる繊維素材は、繊維が着色し、
衣料に白度や発色性が要求される場合には不適当であ
る。
2. Description of the Related Art Hitherto, as a fiber material in the field of winter clothing or sports clothing, heat storage fibers in which carbide-based ceramic fine particles are kneaded by adding carbide-based ceramic fine particles to a spinning solution in order to enhance heat retention have been proposed. However, such fiber material, the fiber is colored,
It is unsuitable when whiteness and coloring are required for clothing.

【0003】また、一般に合成繊維は、電気絶縁性であ
り、接触や摩擦等により発生した静電気が帯電し易く、
帯電した静電気により、衣類のまとわりつき、汚れの付
着、可燃ガス、粉塵への引火、爆発、さらには電子機器
の誤動作等を引き起こすという問題を有している。この
合成繊維の静電気の問題を解決する手段として、カーボ
ンブラックで代表される導電性物質の微粒子を繊維に練
り込む方法があり、練り込み方法として芯鞘複合紡糸す
る方法もあるが、得られた導電性繊維は、着色するた
め、使用される用途が限定されるという欠点がある。
[0003] In general, synthetic fibers are electrically insulative, and are easily charged with static electricity generated by contact or friction.
There is a problem that the charged static electricity causes clinging of clothes, adhesion of dirt, ignition of combustible gas and dust, explosion, and malfunction of electronic devices. As a means for solving the problem of static electricity of the synthetic fiber, there is a method of kneading fine particles of a conductive substance represented by carbon black into the fiber, and there is also a method of core-sheath composite spinning as a kneading method. Since the conductive fibers are colored, there is a drawback that the applications for which the conductive fibers are used are limited.

【0004】かかる蓄熱繊維或いは導電性繊維における
着色の問題を解決するため、インジウム・スズ酸化物、
アンチモン・スズ酸化物等の導電性を有する白色のセラ
ミックス微粒子を芯鞘複合繊維の芯部に配する方法が提
案されているが、この方法では、導電性と蓄熱性が得ら
れるものの、実用上十分に保温性を奏する蓄熱性を確保
するためには多量の白色セラミックス微粒子を必要とす
る。
In order to solve the problem of coloring of the heat storage fiber or the conductive fiber, indium tin oxide,
A method has been proposed in which white ceramic fine particles having conductivity, such as antimony and tin oxide, are disposed on the core of the core-sheath composite fiber. In this method, although conductivity and heat storage are obtained, the method is not practical. A large amount of white ceramic fine particles is required in order to secure sufficient heat storage to exhibit heat retention.

【0005】[0005]

【発明が解決しようとする課題】本発明は、導電性物質
微粒子、特に導電性を有する白色のセラミックス微粒子
を用い、かかる微粒子を特定の凝集状態に複合繊維の芯
部に存在させるならば、経済的な使用量の範囲で、着色
がなく、かつ蓄熱性と導電性の両方を兼備した繊維が得
られることを見い出してなされたものである。本発明の
目的は、着色がなく、蓄熱性と導電性の両方を有する蓄
熱及び導電性繊維並びにこの蓄熱及び導電性繊維からな
る繊維製品を提供することにある。
DISCLOSURE OF THE INVENTION The present invention is based on the object of using an electrically conductive fine particle, particularly a white ceramic fine particle having conductivity, if such a fine particle is present in a specific agglomerated state at the core of the conjugate fiber. It has been found that a fiber which is free from coloring and has both heat storage properties and conductivity can be obtained within the range of a typical use amount. SUMMARY OF THE INVENTION An object of the present invention is to provide a heat storage and conductive fiber which is not colored and has both heat storage and conductivity, and a fiber product comprising the heat storage and conductive fiber.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、白色導
電性セラミックス微粒子が芯鞘複合繊維の芯部に配され
た繊維であって、該セラミックス微粒子が平均直径0.
5〜5μmの凝集体として存在し、芯部に占める割合で
15〜70体積%含まれ、導電率が10-6S/cm以上
であることを特徴とする蓄熱及び導電性繊維、にある。
The gist of the present invention is to provide a fiber in which white conductive ceramic fine particles are arranged on the core of a core-sheath composite fiber, and the ceramic fine particles have an average diameter of 0.1 mm.
A heat storage and conductive fiber which is present as an aggregate of 5 to 5 μm, is contained in an amount of 15 to 70% by volume in the core, and has a conductivity of 10 −6 S / cm or more.

【0007】[0007]

【発明の実施の形態】本発明の蓄熱及び導電性繊維は、
白色導電性セラミックス微粒子が芯鞘複合繊維の芯部に
配されることが必要であり、白色導電性セラミックス微
粒子が鞘部に配されると紡績工程等の加工工程での加工
通過性が悪く、また衣料用途等に用いた場合に着用感が
悪くなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The heat storage and conductive fibers of the present invention
It is necessary that the white conductive ceramic fine particles be disposed on the core of the core-sheath composite fiber, and if the white conductive ceramic fine particles are disposed on the sheath, processing passability in a processing step such as a spinning process is poor. Also, when used for clothing or the like, the feeling of wearing becomes poor.

【0008】本発明における白色導電性セラミックス微
粒子としては、繊維に着色を与えず、繊維に導電率で1
-6S/cm以上の良好な導電性と蓄熱性を発現させる
ためには、白色で、導電率が10-3S/cm以上のもの
であることが望ましく、好ましくはインジウム・スズ酸
化物、アンチモン・スズ酸化物、導電性酸化チタン等が
挙げられるが、白色で、導電率が10-3S/cm以上の
セラミックス微粒子であればこれらに限定されるもので
はない。白色導電性セラミックス微粒子は、粒径が0.
01μm以上5μm未満であることが好ましい。粒径が
5μmを超えると、凝集体を形成せず、また繊維を得る
際の紡糸ノズル圧の上昇が起こり紡糸性が悪化し、0.
01μm未満では取扱いが困難となる。
In the present invention, the white conductive ceramic fine particles may have a conductivity of 1% without imparting coloring to the fiber.
In order to exhibit good conductivity and heat storage of 0 -6 S / cm or more, it is desirable that the white color and the conductivity be 10 -3 S / cm or more, preferably indium tin oxide , Antimony-tin oxide, conductive titanium oxide, etc., but are not limited to these as long as they are white and have a conductivity of 10 −3 S / cm or more. The white conductive ceramic fine particles have a particle size of 0.1.
It is preferably at least 01 μm and less than 5 μm. If the particle size exceeds 5 μm, no agglomerate is formed, and the spinning nozzle pressure for obtaining fibers increases, resulting in poor spinnability.
If it is less than 01 μm, handling becomes difficult.

【0009】本発明の蓄熱及び導電性繊維においては、
芯鞘複合繊維の芯部に配された白色導電性セラミックス
微粒子は、平均直径0.5〜5μmの凝集体として存在
することが必要である。白色導電性セラミックス微粒子
の凝集体の形成される機構は、定かではないが、紡糸工
程における繊維形成の際に基質ポリマーが固化する過
程、即ち、溶融紡糸の場合にはポリマー溶融液中で、湿
式紡糸等の溶液紡糸の場合にはポリマー溶液中で、セラ
ミックス微粒子がポリマーの固化に伴い、ポリマー濃厚
相と相分離することにより凝集するものと理解される。
In the heat storage and conductive fiber of the present invention,
It is necessary that the white conductive ceramic fine particles disposed on the core of the core-sheath composite fiber exist as an aggregate having an average diameter of 0.5 to 5 μm. The mechanism by which the aggregates of white conductive ceramic particles are formed is not clear, but the process in which the substrate polymer solidifies during fiber formation in the spinning process, i.e., in the case of melt spinning, a wet process is performed in a polymer melt. In the case of solution spinning such as spinning, it is understood that, in a polymer solution, ceramic fine particles agglomerate due to phase separation from a polymer dense phase as the polymer solidifies.

【0010】熱伝導性及び導電性は、導電性セラミック
ス微粒子の連なりからなる熱及び電子のパスの形成によ
って生じるが、導電性セラミックス微粒子と導電性セラ
ミックス微粒子との間のポリマー相は、パスの中で欠陥
点として挙動し、熱及び電子の移動を阻害する。従い、
熱伝導性能及び導電性能は、パスの数と共に、パス中の
欠陥点の多少により左右される。本発明の蓄熱及び導電
性繊維においては、導電性セラミックス微粒子が凝集体
として存在し、パスにおける凝集体同士の接触界面が増
大してパス中の欠陥点が低減したことにより、光エネル
ギーがセラミックス微粒子に吸収され熱エネルギーに変
換されてなる熱を繊維全体に効率よ移動させ繊維全体に
蓄熱されて保温性を高め、また導電性能を向上させ静電
気を容易に逃がすことができる。
[0010] Thermal conductivity and conductivity are generated by the formation of heat and electron paths formed by a series of conductive ceramic fine particles. The polymer phase between the conductive ceramic fine particles and the conductive ceramic fine particles is formed in the path. And acts as a defect point to hinder the transfer of heat and electrons. Therefore,
The heat conduction performance and the conduction performance depend on the number of passes and the number of defect points in the passes. In the heat storage and conductive fibers of the present invention, the conductive ceramic fine particles are present as aggregates, the contact interface between the aggregates in the path is increased, and the number of defect points in the path is reduced, so that the light energy is reduced to the ceramic fine particles. The heat absorbed and converted into heat energy is efficiently transferred to the entire fiber, and is stored in the entire fiber to enhance the heat retention, improve the conductive performance, and easily discharge static electricity.

【0011】芯部における白色導電性セラミックス微粒
子の凝集体の存在は、芯鞘複合繊維の繊維縦断面を切り
出し、露出させた芯部の縦断面をイオンプラズマ・エッ
チング処理し、処理面を走査型電子顕微鏡で観察するこ
とにより確認することができる。また、凝集体のサイ
ズ、即ち直径は、走査型電子顕微鏡での像を画像処理す
ることにより平均直径として算出することができる。
The presence of aggregates of white conductive ceramic fine particles in the core is determined by cutting out the fiber longitudinal section of the core-sheath composite fiber, subjecting the exposed longitudinal section of the core to ion plasma etching, and scanning the treated surface with a scanning type. It can be confirmed by observing with an electron microscope. The size of the aggregate, that is, the diameter, can be calculated as an average diameter by performing image processing on an image with a scanning electron microscope.

【0012】白色導電性セラミックス微粒子の凝集体
は、その直径が大きい程有利であるが、平均直径が5μ
mを超えるとパスの数が相対的に少なくなり、細繊度の
繊維で良好な蓄熱性、導電性を有するものを得ることが
困難となる。パスの数は、芯部に含まれる白色導電性セ
ラミックス微粒子の総量に拠り、本発明の蓄熱及び導電
性繊維においては、白色導電性セラミックス微粒子の総
量として芯部に占める割合で15〜70体積%、好まし
くは20〜60体積%含まれることが必要である。白色
導電性セラミックス微粒子が15体積%未満では、蓄熱
性及び導電性が不十分であったりムラが生じたりし、7
0体積%を超えると、紡糸性が悪化し、また芯部の切断
が生じ蓄熱及び導電機能が失われるおそれがある。
The larger the diameter of the aggregate of the white conductive ceramic fine particles is, the more advantageous it is.
If it exceeds m, the number of passes becomes relatively small, and it becomes difficult to obtain fine fibers having good heat storage properties and conductivity. The number of passes depends on the total amount of the white conductive ceramic fine particles contained in the core, and in the heat storage and conductive fiber of the present invention, the total amount of the white conductive ceramic fine particles is 15 to 70% by volume in the core. , Preferably 20 to 60% by volume. When the amount of the white conductive ceramic fine particles is less than 15% by volume, heat storage and conductivity are insufficient or unevenness occurs, and
If the content exceeds 0% by volume, the spinnability may be deteriorated, and the core may be cut to lose heat storage and conductive functions.

【0013】本発明の蓄熱及び導電性繊維は、芯鞘複合
繊維であり、その芯部/鞘部の体積比率に特に限定はな
いが、芯部/鞘部の体積比率が好ましくは10/90〜
50/50であることが好ましい。本発明の蓄熱及び導
電性繊維を構成する芯鞘複合繊維の芯部及び鞘部成分と
しては、ポリエステル、ナイロン、ポリエチレン、ポリ
プロピレン、アクリロニトリル系ポリマー、ポリウレタ
ン、レイヨン等が挙げられ、芯部及び鞘部成分は、異種
または同種のポリマーの組み合わせであってもよい。
The heat storage and conductive fiber of the present invention is a core / sheath composite fiber, and the volume ratio of the core / sheath is not particularly limited, but the volume ratio of the core / sheath is preferably 10/90. ~
It is preferably 50/50. Examples of the core and sheath components of the core-sheath composite fiber constituting the heat storage and conductive fiber of the present invention include polyester, nylon, polyethylene, polypropylene, acrylonitrile-based polymer, polyurethane, rayon, and the like. The components may be combinations of different or similar polymers.

【0014】特に本発明の蓄熱及び導電性繊維において
は、芯鞘複合繊維の芯部及び鞘部成分がアクリロニトリ
ル系ポリマーであることが好ましく、芯部及び鞘部成分
がアクリロニトリル系ポリマーであるときには、本発明
の蓄熱及び導電性繊維は、風合い、外観、発色性に優
れ、セーター等に好適に用いられる。
Particularly, in the heat storage and conductive fiber of the present invention, the core and sheath components of the core-sheath composite fiber are preferably acrylonitrile-based polymers, and when the core and sheath components are acrylonitrile-based polymers, The heat storage and conductive fibers of the present invention are excellent in texture, appearance, and coloring, and are suitably used for sweaters and the like.

【0015】アクリロニトリル系ポリマーは、アクリロ
ニトリルを50重量%以上含有するポリマーであり、ア
クリロニトリルのホモポリマーであってもよいが、アク
リロニトリルコポリマーであることが好ましい。アクリ
ロニトリルの含有量が50重量%未満では、アクリル繊
維としての特性を失ったものものとなり好ましくない。
また、アクリロニトリルコポリマーである場合は、アク
リロニトリルを50重量%以上含有する範囲で、アクリ
ロニトリルと共重合可能な不飽和モノマーが共重合され
るが、アクリロニトリルと共重合可能な不飽和モノマー
としては、例えば次のモノマーが挙げられる。
The acrylonitrile-based polymer is a polymer containing 50% by weight or more of acrylonitrile, and may be a homopolymer of acrylonitrile, but is preferably an acrylonitrile copolymer. When the content of acrylonitrile is less than 50% by weight, the properties as acrylic fibers are lost, which is not preferable.
In the case of an acrylonitrile copolymer, an unsaturated monomer copolymerizable with acrylonitrile is copolymerized within a range containing 50% by weight or more of acrylonitrile. Examples of the unsaturated monomer copolymerizable with acrylonitrile include: Of the monomer.

【0016】即ち、アクリル酸メチル、アクリル酸エチ
ル、アクリル酸イソプロピル、アクリル酸n−ブチル、
アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロ
キシエチル、アクリル酸ヒドロキシプロピル等のアクリ
ル酸エステル類、メタクリル酸メチル、メタクリル酸エ
チル、メタクリル酸イソプロピル、メタクリル酸n−ブ
チル、メタクリル酸n−ヘキシル、メタクリル酸シクロ
ヘキシル、メタクリル酸ラウリル、メタクリル酸2−ヒ
ドロキシエチル、メタクリル酸ヒドロキシプロピル、メ
タクリル酸ジエチルアミノエチル等のメタクリル酸エス
テル類、アクリル酸、メタクリル酸、マレイン酸、イタ
コン酸、アクリルアミド、N−メチロールアクリルアミ
ド、ジアセトンアクリルアミド、スチレン、ビニルトル
エン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化
ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリ
デン等のモノマー、さらに染色性改良等の目的の場合に
は、p−スルホフェニルメタリルエーテル、メタリルス
ルホン酸、アリルスルホン酸、スチレンスルホン酸、2
−アクリルアミド−2−メチルプロパンスルホン酸及び
これらのアルカリ金属塩等が挙げられる。
That is, methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate,
Acrylic esters such as 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, methacrylic acid Methacrylates such as cyclohexyl, lauryl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylolacrylamide, diacetone Monomers such as acrylamide, styrene, vinyltoluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, and vinylidene fluoride Further, in the case of the purpose of dyeability improvement, p- sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2
-Acrylamide-2-methylpropanesulfonic acid and alkali metal salts thereof.

【0017】また、アクリロニトリル系ポリマーは、そ
の分子量に特に限定はないが、紡糸性、糸質、生産性か
ら分子量が10万〜100万であることが好ましく、分
子量が10万以下では紡糸性及び繊維物性が低下する傾
向にあり、100万を超えると生産性が低下する傾向に
ある。
The molecular weight of the acrylonitrile-based polymer is not particularly limited, but is preferably from 100,000 to 1,000,000 in terms of spinnability, yarn quality and productivity. Fiber properties tend to decrease, and if it exceeds 1,000,000, productivity tends to decrease.

【0018】本発明の蓄熱及び導電性繊維は、芯鞘複合
紡糸の際の芯部成分となるポリマー或いはポリマー溶液
に白色導電性セラミックス微粒子を配合し芯鞘複合紡糸
して得ることができる。芯鞘複合紡糸は、溶融紡糸法、
乾式紡糸法、湿式紡糸法或いは乾湿式紡糸法のいずれで
あってもよいが、芯部及び鞘部成分がアクリロニトリル
系ポリマーであるときには、白色導電性セラミックス微
粒子の凝集体のサイズを大きくする上で、乾式紡糸法、
乾湿式紡糸法が好ましく採用される。
The heat storage and conductive fibers of the present invention can be obtained by blending white conductive ceramic fine particles with a polymer or a polymer solution serving as a core component in core-sheath composite spinning, and then performing core-sheath composite spinning. Core-sheath composite spinning is a melt spinning method,
Dry spinning, wet spinning or dry-wet spinning may be used.However, when the core and sheath components are acrylonitrile-based polymers, it is necessary to increase the size of the aggregate of white conductive ceramic fine particles. , Dry spinning method,
Dry-wet spinning is preferably employed.

【0019】芯部及び鞘部成分がアクリロニトリル系ポ
リマーであるときの蓄熱及び導電性繊維を得る方法をさ
らに説明するならば、アクリロニトリル系ポリマーをジ
メチルホルムアミド、ジメチルアセトアミド、ジメチル
スルホキシド、エチレンカーボネート、γ−ブチリラク
トン、ロダン塩水溶液、塩化亜鉛水溶液、硝酸水溶液等
のアクリロニトリル系ポリマーの溶媒に溶解して溶液と
し、芯部とすべき側の溶液に白色導電性セラミックス微
粒子を添加配合して芯部用紡糸原液を調製し、白色導電
性セラミックス微粒子を添加しない溶液を鞘部用紡糸原
液として芯鞘複合紡糸する。
The heat storage and the method of obtaining conductive fibers when the core and sheath components are acrylonitrile-based polymers will be further described. The acrylonitrile-based polymers may be converted to dimethylformamide, dimethylacetamide, dimethylsulfoxide, ethylene carbonate, γ- A solution is prepared by dissolving in a solvent of acrylonitrile-based polymer such as butyrolactone, rodan salt aqueous solution, zinc chloride aqueous solution, nitric acid aqueous solution, and the like. Is prepared, and a core-sheath composite spinning is performed using a solution to which the white conductive ceramic fine particles are not added as a spinning solution for the sheath.

【0020】本発明の蓄熱及び導電性繊維は、任意の繊
度であってもよいが、衣料用途に用いられることを考慮
すれば、紡績等の加工性、製編織性の点で繊度が1〜3
0デニールであることが好ましい。本発明の蓄熱及び導
電性繊維は、フィラメント糸或いは紡績糸の糸形態であ
ってもよいが、特に紡績された糸はフィラメント糸に比
べ内部により多くの空間を有し繊維に蓄熱された熱の放
散が少なく保温性に優れるものであり、糸形態として好
ましい。本発明の蓄熱及び導電性繊維を紡績する際の紡
績方法には、特に制限はなく、綿紡、麻紡、2吋紡、3
吋紡、梳毛紡、毛紡、オープンエンド紡、ジェットスピ
ナー等が用いられる。
The heat storage and conductive fibers of the present invention may have any fineness, but in consideration of being used for clothing, the fineness is 1 to 1 in terms of processability such as spinning and knitting and weaving. 3
It is preferably 0 denier. The heat storage and conductive fiber of the present invention may be in the form of a filament yarn or a spun yarn, but in particular, a spun yarn has more space inside than a filament yarn, and the heat stored in the fiber. It has little heat dissipation and excellent heat retention, and is preferable as a yarn form. The spinning method for spinning the heat storage and conductive fibers of the present invention is not particularly limited, and includes cotton spinning, hemp spinning, 2-inch spinning, and spinning.
Inch spinning, worsted spinning, wool spinning, open-end spinning, jet spinner, and the like are used.

【0021】また、本発明の蓄熱及び導電性繊維は、糸
形態にして或いは糸形態にすることなしに、織物、編物
或いは不織布の布帛とされるものであり、本発明の蓄熱
及び導電性繊維からなる布帛は、保温性に富み、静電気
障害のない布帛として優れるものである。
The heat storage and conductive fiber of the present invention may be a woven fabric, a knitted fabric or a non-woven fabric in a yarn form or not in a yarn form. Is excellent in heat insulation and free of static electricity.

【0022】さらに本発明の蓄熱及び導電性繊維は、単
独でも用いることができる、他の繊維と混合して用いて
保温性を与え、静電気障害を低減させることができる。
混合することのできる他繊維としては、綿、麻等の植物
繊維、絹、羊毛、モヘア等の動物繊維、レーヨン、キュ
プラ等の再生繊維、アセテート繊維、ビニロン繊維、ポ
リエステル繊維、ナイロン繊維、アクリル繊維、ポリエ
チレン繊維、ポリプロピレン繊維等の合成繊維等が挙げ
られる。また混合方法は、混紡、混繊、交織、交編等の
任意の方法であってよい。
Further, the heat storage and conductive fibers of the present invention can be used alone, and can be used in combination with other fibers to provide heat retention and reduce static electricity damage.
Other fibers that can be mixed include vegetable fibers such as cotton and hemp, animal fibers such as silk, wool and mohair, recycled fibers such as rayon and cupra, acetate fibers, vinylon fibers, polyester fibers, nylon fibers, and acrylic fibers. And synthetic fibers such as polyethylene fibers and polypropylene fibers. The mixing method may be any method such as blending, blending, weaving, and knitting.

【0023】[0023]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお、実施例における評価項目は次の方法によって
測定した。
The present invention will be described below in more detail with reference to examples. The evaluation items in the examples were measured by the following methods.

【0024】〔繊維の導電率〕繊維束より取り出した単
繊維を1cm離れた二つの金属端子間に銀ペーストで接
着して取り付け、20℃、40RH%の雰囲気下で、金
属端子間に1000Vの直流電圧を印加し、金属端子間
の抵抗値R(Ω)を東亜電波(株)製超絶縁計SM−8
210にて測定し、導電率σ(S/cm)を次式により
算出した。 導電率σ(S/cm)=1/(1.11×10-6×R×
(d/ρ)) 但し、dは繊度(デニール)、ρは繊維の比重
[Electrical Conductivity of Fiber] A single fiber taken out of a fiber bundle is adhered between two metal terminals separated by 1 cm with a silver paste and attached at a temperature of 20 ° C. and a relative humidity of 40 RH%. A DC voltage is applied, and the resistance value R (Ω) between metal terminals is measured by a super insulation meter SM-8 manufactured by Toa Denpa Co., Ltd.
The conductivity σ (S / cm) was calculated by the following equation. Conductivity σ (S / cm) = 1 / (1.11 × 10 −6 × R ×
(D / ρ)) where d is fineness (denier) and ρ is specific gravity of fiber

【0025】〔摩擦帯電圧〕目付け300g、タテ20
cm、ヨコ10cmの編地をノニオン界面活性剤で精練
し、染色して風乾して試料とし、制電性能としてJIS
L1094−1980(織編物の帯電性試験方法)に
拠り京大化研式ロータリースタティックテスター(興亜
商会製)にて摩擦帯電圧(V)を測定した。なお、ドラ
ム回転数400rpm、摩擦時間60秒とし、摩擦布と
して綿布を使用。
[Friction charge voltage] 300 g in weight, length 20
cm, a knitted fabric of 10 cm in width is scoured with a nonionic surfactant, dyed and air-dried to obtain a sample.
Friction band voltage (V) was measured with a Kyoto University Chemical Research Type rotary static tester (produced by Koa Shokai) based on L1094-1980 (a method for testing the chargeability of a woven or knitted fabric). The rotation speed of the drum was 400 rpm, the friction time was 60 seconds, and cotton cloth was used as the friction cloth.

【0026】〔繊維の蓄熱性〕目付け300g、タテ2
0cm、ヨコ10cmの編地に、20℃、60RH%の
雰囲気下で、編地面から1.5m離れた位置から白黒用
レフランプ(500W)を30分間照射した後、編地の
表面温度(℃)をサーモビュアー(日本電子(株)製赤
外線センサー)で測定した。
[Heat storage property of fiber] Weight 300g, length 2
After irradiating a knitted fabric having a size of 0 cm and a width of 10 cm with a black and white reflex lamp (500 W) for 30 minutes from a position 1.5 m away from the knitted ground under an atmosphere of 20 ° C. and 60 RH%, the surface temperature of the knitted fabric (° C.) Was measured with a thermoviewer (infrared sensor manufactured by JEOL Ltd.).

【0027】(実施例1〜8、比較例1〜3)芯部用紡
糸原液として、アクリロニトリル93.5重量%、アク
リル酸メチル6.0重量%及びメタリルスルホン酸ナト
リウム0.5重量%からなる分子量16万のアクリロニ
トリル系ポリマー(A)と、 粒径0.2μm、導電率
が5×10-1S/cmの導電性酸化チタン(三菱マテリ
アル(株)製W−P)(B)とを、表1に示す混合比率
(重量)で、ジメチルホルムアミドに添加混合した後、
ボールミルで約20時間分散処理して調製した。また、
鞘部用紡糸原液として、アクリロニトリル93.1重量
%及び酢酸ビニル6.9重量%からなる分子量15万の
アクリロニトリル系ポリマーをポリマー濃度30重量%
にジメチルホルムアミドに溶解して調製した。
(Examples 1 to 8 and Comparative Examples 1 to 3) As the core spinning solution, 93.5% by weight of acrylonitrile, 6.0% by weight of methyl acrylate and 0.5% by weight of sodium methallylsulfonate were used. Acrylonitrile-based polymer (A) having a molecular weight of 160,000 and conductive titanium oxide having a particle size of 0.2 μm and conductivity of 5 × 10 −1 S / cm (WP manufactured by Mitsubishi Materials Corporation) (B) Was added to dimethylformamide at a mixing ratio (weight) shown in Table 1 and mixed.
It was prepared by dispersion treatment in a ball mill for about 20 hours. Also,
As a spinning dope for the sheath, an acrylonitrile-based polymer having a molecular weight of 150,000 consisting of 93.1% by weight of acrylonitrile and 6.9% by weight of vinyl acetate was used at a polymer concentration of 30% by weight.
Was prepared by dissolving in dimethylformamide.

【0028】各紡糸原液を130℃に加熱し、孔数40
0、孔径0.2mmの芯鞘複合紡糸口金を用いて230
℃の不活性ガス中に、表1に示す芯部/鞘部の体積比率
になるよう各紡糸原液の吐出比率を変えて、吐出した。
得られた未延伸糸を、引き続き100℃の熱水中で3.
75倍に延伸し、さらに95℃の熱水中で洗浄した。次
いで無緊張下、150℃、40RH%で乾燥、緩和処理
し20%収縮させて、単繊維繊度3デニールの繊維束を
得た。得られた繊維の芯部での導電性酸化チタン凝集体
の平均直径、占有体積率(vol%)及び繊維の導電率
を表1に示した。また、得られた繊維束を51mm長に
カットしてなる原綿3d×51mmと通常のアクリル繊
維原綿2d×51mmとを混率10重量%/90重量%
に混紡して1/52メートル番手の紡績糸とし、この紡
績糸を用いて18ゲージ2本取りにて平編地に編成して
制電性能及び蓄熱性を評価し、その結果を表1に示し
た。
Each spinning dope is heated to 130 ° C. and the number of holes is reduced to 40.
0, 230 using a core-sheath composite spinneret having a pore diameter of 0.2 mm
The spinning solution was discharged into an inert gas at a temperature of 0 ° C. while changing the discharge ratio of each spinning solution so that the core / sheath volume ratio shown in Table 1 was obtained.
2. The obtained undrawn yarn is then continuously placed in hot water at 100 ° C.
The film was stretched 75 times and further washed in hot water at 95 ° C. Subsequently, the fiber bundle was dried and relaxed at 150 ° C. and 40 RH% under no tension and contracted by 20% to obtain a fiber bundle having a single fiber fineness of 3 denier. Table 1 shows the average diameter, the occupied volume ratio (vol%), and the conductivity of the fiber of the conductive titanium oxide aggregate at the core of the obtained fiber. Also, a mixture of raw cotton 3d × 51 mm obtained by cutting the obtained fiber bundle into a length of 51 mm and ordinary acrylic fiber raw cotton 2d × 51 mm is mixed at a ratio of 10% by weight / 90% by weight.
Into a 1/52 meter count spun yarn, knitted into a flat knitted fabric with two 18 gauge strands using this spun yarn, and evaluated the antistatic performance and heat storage properties. The results are shown in Table 1. Indicated.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】本発明の蓄熱及び導電性繊維は、導電性
物質微粒子、特に導電性を有する白色のセラミックス微
粒子が特定の凝集状態に複合繊維の芯部に存在すること
により、経済的な使用量の範囲で、着色がなく、かつ蓄
熱性と導電性の両方を兼備した繊維であり、本発明の蓄
熱及び導電性繊維からなる糸、好適には紡績糸で構成し
た織編物或いは不織布は、保温性があり、かつ静電気障
害を低減するので、防寒衣料、スポーツ衣料等の繊維製
品の素材として極めて有用なるものである。
The heat storage and conductive fibers of the present invention can be used economically because fine particles of conductive material, especially white fine ceramic particles having conductivity, are present in a specific agglomerated state at the core of the composite fiber. In the range of the amount, there is no coloring, and is a fiber having both heat storage and conductivity, the yarn of the heat storage and conductive fiber of the present invention, preferably a woven or knitted or non-woven fabric composed of spun yarn, Since it has heat retention and reduces static electricity damage, it is extremely useful as a material for textile products such as winter clothing and sports clothing.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4L035 AA08 BB02 BB72 BB89 BB91 CC07 DD01 DD19 EE20 FF10 JJ09 KK01 MB06 4L041 AA03 AA20 AA25 BA02 BA05 BA21 BA49 BC04 BC09 BC20 BD14 BD20 CA50 CA51 CB05 CB24 CB25 CB28 DD01 DD15 DD21  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 4L035 AA08 BB02 BB72 BB89 BB91 CC07 DD01 DD19 EE20 FF10 JJ09 KK01 MB06 4L041 AA03 AA20 AA25 BA02 BA05 BA21 BA49 BC04 BC09 BC20 BD14 BD20 CA50 CA51 CB05 CB21 DD25 CB21 DD25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 白色導電性セラミックス微粒子が芯鞘複
合繊維の芯部に配された繊維であって、該セラミックス
微粒子が平均直径0.5〜5μmの凝集体として存在
し、芯部に占める割合で15〜70体積%含まれ、導電
率が10-6S/cm以上であることを特徴とする蓄熱及
び導電性繊維。
1. A fiber in which white conductive ceramic fine particles are arranged in a core portion of a core-sheath composite fiber, wherein the ceramic fine particles exist as an aggregate having an average diameter of 0.5 to 5 μm and occupy the core portion. A heat storage and conductive fiber, wherein the heat storage and the conductive fiber have a conductivity of 10 −6 S / cm or more.
【請求項2】 芯部及び鞘部成分がアクリロニトリル系
ポリマーからなり、繊度が1〜30デニールである請求
項1または請求項2記載の蓄熱及び導電性繊維。
2. The heat storage and conductive fiber according to claim 1, wherein the core and sheath components are made of an acrylonitrile-based polymer and have a fineness of 1 to 30 denier.
【請求項3】 請求項1、請求項2または請求項3記載
の蓄熱及び導電性繊維から紡績された糸。
3. A yarn spun from the heat storage and conductive fibers according to claim 1, 2 or 3.
【請求項4】 請求項1、請求項2または請求項3記載
の蓄熱及び導電性繊維からなる布帛。
4. A fabric comprising the heat storage and conductive fibers according to claim 1, 2 or 3.
JP28047698A 1998-09-17 1998-09-17 Heat-storing and conductive fiber and yarn and fabric Pending JP2000096346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28047698A JP2000096346A (en) 1998-09-17 1998-09-17 Heat-storing and conductive fiber and yarn and fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28047698A JP2000096346A (en) 1998-09-17 1998-09-17 Heat-storing and conductive fiber and yarn and fabric

Publications (1)

Publication Number Publication Date
JP2000096346A true JP2000096346A (en) 2000-04-04

Family

ID=17625618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28047698A Pending JP2000096346A (en) 1998-09-17 1998-09-17 Heat-storing and conductive fiber and yarn and fabric

Country Status (1)

Country Link
JP (1) JP2000096346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056411A (en) * 2005-08-25 2007-03-08 Unitica Fibers Ltd Heat-storage hydrophilic fiber
DE102015015255A1 (en) * 2015-11-20 2017-05-24 Licence Fiber with electrical conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007056411A (en) * 2005-08-25 2007-03-08 Unitica Fibers Ltd Heat-storage hydrophilic fiber
DE102015015255A1 (en) * 2015-11-20 2017-05-24 Licence Fiber with electrical conductivity

Similar Documents

Publication Publication Date Title
CN1083499C (en) Flame-retardant polyvinyl alcohol base fiber
JP6241133B2 (en) Spun yarn and knitted fabric including the spun yarn
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
CN108135297A (en) Clothes with antistatic property
JP2000096346A (en) Heat-storing and conductive fiber and yarn and fabric
JP2000096347A (en) Heat-storing and conductive fiber and yarn and fabric
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
JP5504048B2 (en) Conductive composite fiber
JPH11200149A (en) White electroconductive fiber
JPH0978377A (en) Antistatic acrylic spun yarn
JPH11107034A (en) Acrylic fiber excellent in moist heat characteristic and its production
JP2903967B2 (en) Acrylic bulky knitted fabric
JP4772538B2 (en) Polyvinyl alcohol fiber and method for producing the same
JPH0978354A (en) Electroconductive acrylic fiber
JPS593574B2 (en) Manufacturing method of conductive mixed fiber yarn
JPH09217229A (en) Electroconductive fiber and spun yarn of static resistant fiber using the same
JPH0571012A (en) Acrylic synthetic fiber
JP5979419B2 (en) Pile fabric
JPS6328130B2 (en)
JPH101851A (en) Antistatic short fiber assembly and its production
JPH08325832A (en) Hygroscopic antistatic acrylonitrile fiber
JPS5929694B2 (en) Antistatic knitted fabric for clothing
JPH05311502A (en) Rapidly drying swimming suit
JP3289817B2 (en) Method for producing conductive fiber