JPH0227442B2 - DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO - Google Patents

DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO

Info

Publication number
JPH0227442B2
JPH0227442B2 JP9348583A JP9348583A JPH0227442B2 JP H0227442 B2 JPH0227442 B2 JP H0227442B2 JP 9348583 A JP9348583 A JP 9348583A JP 9348583 A JP9348583 A JP 9348583A JP H0227442 B2 JPH0227442 B2 JP H0227442B2
Authority
JP
Japan
Prior art keywords
conductive
weight
polymer
spinning
acrylic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9348583A
Other languages
Japanese (ja)
Other versions
JPS59223313A (en
Inventor
Yoshikazu Kondo
Ryuji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP9348583A priority Critical patent/JPH0227442B2/en
Publication of JPS59223313A publication Critical patent/JPS59223313A/en
Publication of JPH0227442B2 publication Critical patent/JPH0227442B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性アクリル系合成繊維及びその製
造方法に関する。 一般に合成繊維は制電性に乏しく特に冬季の低
湿度雰囲気においては静電気発生が著しく衣料、
インテリア、寝装等はもちろん工業用等において
もその改良が望まれ各種の提案がなされてきた。
これらの欠点を解消する方法として金属繊維や金
属メツキ繊維または炭素繊維を用いる方法があ
り、他の繊維と混用することにより制電性の向上
が図られているが、これらの繊維は一般にその機
械的性質や光沢、色、染色性等が通常の合成繊維
や天然繊維と相違するため特殊な混紡、紡積方
法、染色方法、加工方法が必要であり、用途的に
もカーペツトなどに限定されるのが普通である。 上記導電性繊維の欠点を改良する為に合成繊維
の一部或いは全体にカーボンブラツク等の導電性
物質を混入せしめる方法が提案された。繊維全体
に導電性物質を混入させる方法は、導電性物質の
使用量が大きくコスト高及び操業性、生産性の低
下及び染色性異常等の欠点が尚多く存在してい
る。 繊維の一部に導電性物質を混入させる方法とし
ては、複合紡糸法、海島状繊維紡糸法、導電層筋
状分散紡糸法に大別できる。特公昭52−31450号
公報或いは特開昭51−143723号公報等ではシー
ス・コア型或いはサイドバイサイド型の導電性複
合繊維が提案されているが製造の困難さ、生産性
の低さ及びフイブリル化や各成分の剥離による導
電性の低下、染色性の変化及び外観の劣化等を生
じる。特公昭56−3447号公報、特開昭56−68109
号公報、特開昭56−58008号公報等ではより複雑
な製造法により、上記複合繊維の欠点の改良を試
みているがやはり製造上の困難さ、生産性の低さ
は尚大きく又、性能、品質の向上もわずかしか期
待できないと思われる。特公昭53−31971号公報
特公昭57−20404号公報、特開昭54−112212号公
報、特開昭55−45856号公報、特開昭52−103525
号公報にはカーボンブラツク、銀、銅、アルミニ
ウム、鉄などの導電性物質を繊維軸方向に連続的
に配向、分散する方法が提案されているが繊維軸
方向に連続的に配向分散させるためにはブロツク
ポリエーテル、ブロツクポリエーテルにAN等の
ビニルモノマーをグラフトした共重合体などを該
導電性物質の分散マトリツクスポリマーとして用
いなければならず、工業的に容易でないばかりか
該マトリツクスポリマーの耐熱性の低さや強伸度
の低さが導電繊維の物性、性能を低下させる。本
発明者らは上記欠点を排除すべく鋭意検討の結
果、本発明に到達した。 本発明の目的とするところのものは優れた導電
性を有しかつ優れた加工性、高い商品性能を有す
る導電性アクリル系合成繊維を提供するにあり、
他の目的は導電性にすぐれたアクリル系合成繊維
の容易かつ安価な製造方法を提供するにある。 本発明はアクリル系重合体50〜90部と、導電性
微粒子10〜50重量%とアクリル系重合体と混和性
はあるが非相溶性の弾性重合体90〜50重量%とか
らなる導電性弾性重合体50〜10部とよりなり、導
電性弾性重合体が繊維軸方向へ非連続の細長い島
状に分散した構造を有する導電性アクリル系合成
繊維であり、本発明方法はアクリル系重合体溶液
と、導電性微粒子10〜50重量%とアクリル系重合
体と混和性はあるが非相溶性の弾性重合体90〜50
重量%とからなる導電性弾性重合体溶液とを(ア
クリル系重合体)/(導電性弾性重合体)=50/
50〜90/10(重量比)で混合し、凝固浴中へ紡糸
ドラフト0.2〜2.0で紡糸し、水洗、乾燥後湿熱下
で収縮させる事を特徴とする。 本発明繊維はアクリル系重合体を50〜90部、好
ましくは55〜85部、更に好ましくは60〜80培文導
電性微粒子を含有した弾性重合体からなる導電性
弾性重合体50〜10部、好ましくは45〜15部、更に
好ましくは40〜20部とよりなる。アクリル系重合
体が90部を越え導電性弾性重合体が10部未満であ
ると導電成分が少なくかつ繊維軸方向への伸びが
不十分であるという点の為に導電性の発現が十分
でない。又、アクリル系重合体が50部未満で導電
性弾性重合体が50部を越えると繊維中での導電性
弾性重合体成分の分散形態が異常に大きくなり、
又形状の分布も広がり製造工程中での糸切れ中の
トラブル及び紡績、織編工程でのトラブル等が多
発したり繊維の染色性光沢が低下する。 本発明に適用するアクリル系重合体としては少
なくとも80重量%のアクリロニトリルを含有する
ものが好ましく、20重量%未満の共重合可能なモ
ノマー、例えばアクリル酸メチル、メタクリル酸
メチル、アクリル酸エチル等のアクリル酸エステ
ル又はメタクリル酸アルキルエステル類、アクリ
ルアミド及びメタクリルアミド等のアミド類、及
びそれらのN−モノ置換或いはNN−ジ置換アミ
ド類、酢酸ビニル、及びスチレンスルホンなどの
スルホン酸基含有のモノマー及びそれらの塩類等
を含有する事が出来る。 特にアリルスルホン酸又はメタリルスルホン酸
及びそれらの塩を、0.3〜2.5重量%、好ましくは
0.5〜2.0重量%共重合せしめることにより単に染
色性を向上するに留まらず無数の微小なボイドの
発生を抑制することにより耐熱性の低下を抑える
ことができる。 特に好ましくはアクリロニトリル90重量%以
上、メタリルスルホン酸ソーダ0.5〜2.0重量%及
びアクリル酸メチル又は酢酸ビニルよりなり分子
量45000〜60000のものである。又難燃性が要求さ
れる物には80重量%以下のアクリロニトリルと塩
化ビニル又は塩化ビニリデンを20〜60重量%含有
したアクリル系重合体が好ましく、更に好ましく
は塩化ビニル又は塩化ビニリデン30〜50重量%及
びスルホン酸基含有モノマー0.5〜3.0重量%及び
アクリロニトリルからなる難燃アクリル系重合体
を使用する。 又、本発明に適用される弾性重合体は、アクリ
ル系重合体と混和性は有るが相溶性はないものが
必要である。こうした弾性重合体としてはポリウ
レタン系重合体、アクリロニトリル・ブタジエン
ゴム、アクリルゴム等であるが、溶剤溶解性、繊
維形成性及びゴム弾性等物性の点で、ポリウレタ
ン系重合体が好ましい。 ポリウレタン系重合体としては、ポリエステル
型、ポリエーテル型、ポリエステルエーテル型、
ポリエステルアミド型およびポリチオエーテル型
のポリウレタンの総称であり、詳細にはエチレン
グリコール、プロピレングリコール、ブチレング
リコール、ヘキサメチレングリコール、1・4−
シクロヘキシルグリコール、P−キシレングリコ
ール、またはビスフエノールAとアジピン酸、ス
ベリン酸、セバチン酸、テレフタル酸、イソフタ
ル酸またはγ−ラクトン等からなるポリエステ
ル、アジピン酸−ジエタノールアミドまたはテレ
フタル酸−ビス−プロパノールアミドおよび前述
のジカルボン酸類とからできるポリエステルアミ
ド、ジエチレングリコール、トリエチレングリコ
ール、1・4−フエニレンビスオキシエチルエー
テルまたは2・2′−ジフエニルプロパン−4・4
−ビスオキシエチルエーテル及び前述のジカルボ
ン酸類とを原料とするポリエステルエーテル、エ
チレンオキサイド、プロピレンオキサイド、テト
ラヒドロフランからなるポリエーテル、チオジグ
リコールなどのポリチオエーテル類など分子量
200〜3000の末端水酸基を有する線状重合体を有
機ジイソシアネート例えば1・3−フエニレンジ
イソシアネート、1・4−フエニレンジイソシア
ネート、2・4−トリレンジイソシアネート、
4・4′−ジフエニルメタンジイソシアネート、ヘ
キサメチレンジイソシアネート、キシレンジイソ
シアネートまたは1・5−ナフチレンジイソシア
ネートと2価アルコールの鎖延長剤と共に公知の
重合方法で反応せしめたポリウレタン系重合体が
挙げられる。 ポリウレタン重合体はポリエステル型或いはポ
リエステルエーテル型のポリウレタンが好まし
く、ポリウレタン重合体の重合度は低い方が好ま
しい。例えば溶液粘度で表わせば重合度濃度20重
重量%のジメチルホルムアミド溶液の50℃での粘
度が700ポイズ以下のものが好ましく、特に好ま
しくは500ポイズ以下である。アクリル系重合体
と弾性重合体は混和性は有するが非相溶性である
事が必要である。 産和性を有するとアクリル系重合体と弾性重合
体を混合する場合(例えば双方の溶液の混合或い
は片方の溶液へ他方の重合体の溶解混合)におい
てゲル化又は凝集せず一方の成分が他方の成分中
によく分散、混合する事を示す。又相溶性がない
ときはアクリル系重合体に弾性重合体を混合させ
た場合肉眼による観察はもとより顕微鏡観察(約
600〜1000倍)においても混合溶液が不均質であ
る事により判別できる。導電性弾性重合体は導電
性微粒子10〜50重量%及びアクリル系重合体と混
和性はあるが非相溶性の前述した弾性重合体より
なる。導電性微粒子が10重量%未満では導電性の
付与が十分でなく又、50重量%を越えると、操業
性、加工性が著しく低下するばかりか導電性も飽
和に達し極めて不都合である。 本発明に適用する導電性微粒子はカーボンブラ
ツク、銀、銅、アルミニウム、鉄などの金属、酸
化錫、酸化亜鉛、及び酸化錫又は酸化亜鉛を被覆
した酸化チタンなどの粒子が挙げられる。これら
の粒子の粒子径は通常1μm以下、好ましくは0.7μ
m以下、特に好ましくは0.5μm乃至0.01μm程度
のものが使用される。 導電性粒子としてのカーボンブラツクは粒子径
1μm以下のものが好ましく、その種類は特に制
限されず、所謂アセチレンブラツク、オイルフア
ーネストブラツク、チヤンネルブラツク等が挙げ
られる。 銀、銅、アルミニウム、鉄などの金属粒子は通
常粒径が1μm以下、好ましくは0.5μm以下のもの
で、比抵抗が10Ω・cm以下のものが使用される。 導電性酸化亜鉛又は酸化錫の導電性は粉末状で
の比抵抗が104Ω・cm程度以下、特に102Ω・cm程
度以下が好ましく、101Ω・cm程度以下が最も好
ましい。実際には102Ω・cm〜10-2Ω・cm程度の
ものが得られており、本発明の目的に好適に応用
することが出来る。 酸化亜鉛又は酸化錫の被膜を有する酸化チタン
は粒子径、粉末状での比抵抗が酸化亜鉛、酸化錫
と同程度のものが使用される。これらの被膜は例
えば真空蒸着法、金属化合物を付着させ焼成して
酸化物にする方法、又はそれを部分還元する方法
により形成することができる。 カーボンブラツクを導電性粒子として用いた場
合、繊維の色が黒色になるという欠点は有する
が、その比重の小ささ及びクラスター(微小な連
鎖)構造を有するという点で使用量が少なくてよ
く、カーボンブラツクの導電性弾性重合体中での
含有率は好ましくは10〜45重量%、更に好ましく
は15〜40重量%である。カーボンブラツク以外の
導電性粒子は比重が大きい為使用量もカーボンブ
ラツクの場合より大きくなりコストアツプの要因
となるが繊維の色が黒色でないという大きなメリ
ツトがある。特に導電性酸化錫、酸化亜鉛及びそ
れらを表面コーテイングした酸化チタン等では白
色の導電性繊維が得られる。 本発明繊維中にて導電性弾性重合体は多数の島
状成分として繊維軸方向に細長いが非連続に伸び
た構造を有する。 この繊維断面方向及び繊維軸方向への多数の導
電性成分の存在が除電と放電という作用をうまく
行なつている。特に細長い非連続の島状として存
在する為、多くの先鋭端を有する事も制電性能を
向上させる効果を有しているようである。又、導
電性成分として弾性重合体を使用している事も制
電性能を維持するのに不可欠である。それは繊維
が引つ張り、曲げという日常的な外力、変形を受
ける場合、導電性成分に弾性重合体を使用しない
場合はくり返しの外力、変形により導電性粒子と
それを含有する重合体との境にクラツクが生じ導
電性の著しい低下が生じるという欠点を有する。 従つて本発明に示した重合体の組合せにより切
めて安価な高性能で、操業性、加工性の良好なか
つ外力に対し導電性の低下のない導電性アクリル
系合成繊維が得られる。 本発明繊維はアクリル系重合体溶液と導電性微
粒子を含有したアクリル系重合体と混和性はある
が、非相溶性の弾性重合体(導電性弾性重合体と
よぶ)溶液の混合紡糸により得られる。アクリル
系重合体は前述した重合体が使用出来、溶液の調
製はアクリル系重合体を溶剤に溶解するか或いは
溶剤中でアクリル系重合体を重合する事により得
られる。アクリル系重合体の溶剤はジメチルホル
ムアミド、ジメチルスルホキシド、ジメチルアセ
トアミド、エチレンカーボネート或いはγ−ブチ
ロラクトンその他の有機溶剤及び硝酸、ロダン酸
塩水溶液、塩化亜鉛水溶液等の無機溶剤が使用出
来る。弾性重合体の溶剤は弾性重合体の溶剤を使
用出来るが、アクリル系重合体に使用した溶剤と
同一のものが、凝固性、溶剤回収性等の点で好ま
しい。特に好ましくはジメチルホルムアミドを共
通溶剤に用いアクリル系重合体及びポリウレタン
を各々溶液重合を行なう。ジメチルホルムアミド
を溶剤として使用した場合アクリル系重合体溶液
の重合体濃度は15〜35重量%、好ましくは20〜30
重量%であり、ポリウレタン溶液の重合体濃度も
アクリル系重合体より小さいか、ほゞ同程度でよ
い。アクリル系重合体溶液と弾性重合体溶液はお
互いに混和性はあるが非相溶である事が必要であ
り又、導電性微粒子が弾性重合体溶液中へ残留す
る事も必要である。 アクリル系重合体溶液と弾性重合体溶液の粘度
も操業性、製品品質、導電性能に大きな影響を与
える。ここでいう粘度とは同一重合体濃度、同一
温度における粘度を言う。重合体濃度20重量%の
ジメチルホルムアミド溶液の50℃での粘度を通常
使用する。 例えばアクリル系重合体溶液の粘度が弾性重合
体溶液の粘度よりずつと小さい場合は繊維の紡出
時及び紡糸延伸においても弾性重合体の変形が十
分おきる事がなく、その部分のデニールむらとな
つたり又、糸切れが発生したり、導電性が不十分
であるという結果になる。一方アクリル系重合体
溶液の粘度が弾性重合体溶液の粘度より大きい場
合には紡出時及び紡糸延伸において弾性重合体が
十分引き伸ばされ、繊維軸方向に細長い島状成分
として形成される。その為、デニールむらや操業
性の低下という現象は見られず、又導電性も良好
である。アクリル系重合体溶液と弾性重合体溶液
の粘度の比は100/1以下が好ましく、更に好ま
しくは1/2〜50/1である。 導電性弾性重合体は導電性微粒子10〜50重量%
と弾性重合体90〜50重量%とよりなる。導電性粒
子としてカーボンブラツクを使用する場合はカー
ボンブラツクを好ましくは10〜45重量%、更に好
ましくは15〜40重量%と弾性重合体を好ましくは
90〜55重量%、更に好ましくは85〜60重量%とよ
りなる。導電性微粒子の弾性重合体への混入は各
種の方法が採用される。例えば弾性重合体を重合
する際に添加する方法とか弾性重合体溶液へ添加
する方法等があるが注意する事は導電性微粒子が
十分に分散するだけの撹拌力を与える事及びカー
ボンブラツクの場合はカーボンブラツクのクラス
ターを切断しないような撹拌を行なう事であり、
導電性微粒子を添加後この導電性弾性重合体溶液
を或いはアクリル系重合体溶液と導電性弾性重合
体溶液を混合した紡糸原液を紙、布、焼結金
属フイルター、金網或いは高分子多孔質膜にて
過する事が好ましい。ここでの過精度は約10μ
の粒子を除去する位のもので十分である。 又、導電性粒子の弾性重合体への分散性及び安
定性を向上させるのに各種分散剤の使用も可能で
ある。 アクリル系重合体溶液と導電性弾性重合体溶液
との混合は各種混合方法を用いる事が出来るが、
混合状態を顕微鏡等で確認しながら行なう方がよ
い。混合液はアクリル系重合体溶液中へ顕微鏡下
では黒色に見える導電性弾性重合体が多数の小さ
な球状或いは変形した球状として浮遊、分散して
いるが、この分散の大きさが均一でかつ5〜
100μ位が好ましく、更に好ましくは20〜70μ位が
よい。 両者を混合して得られた紡糸原液は通常の紡糸
口金を用いて凝固浴中へ紡出される。凝固浴は紡
糸原液に使用している溶剤の水溶液を用いるのが
好ましいが特別の目的の為には他の溶剤水溶液或
いはケロシン、イソプロピルアルコール及び他の
溶剤等を使用出来る。 凝固浴の条件は通常アクリル系合成繊維を紡糸
する時の条件を採用出来るが、凝固浴温度は低い
方が導電性向上の為には好ましい。ジメチルホル
ムアミド水溶液を用いる場合ジメチルホルムアミ
ド濃度は50〜65重量%、更に好ましくは55〜60重
量%であり温度は20℃以下が好ましく、更に好ま
しくは5〜15℃である。凝固浴へ紡出された繊維
は紡糸ドラフトの値(第1ローラーの巻き上げ速
度と口金面での紡出速度の比)が0.2〜2.0にて第
1ローラーへ巻き上げる。紡糸ドラフトが0.2未
満では凝固時の配向が十分でなく繊維がもろく、
又導電性の発現が不十分であり、又紡糸ドラフト
が2.0を越えると導電性の低下、ボイドの増大及
び染色性の低下等の製品品質の低下と糸切れの増
大等操業性の低下がある。 紡糸ドラフトは好ましくは0.3〜1.5、更に好ま
しくは0.4〜1.0である。第1ローラーで巻き上げ
られた繊維は直ちに溶剤濃度、温度の異なる複数
の紡糸浴にて紡糸延伸を受ける。紡糸延伸は通常
95℃より低温で行ない、好ましくは50〜90℃、更
に好ましくは60〜85℃、特に好ましくは50〜70℃
の紡糸浴と70〜90℃の紡糸浴にて2段延伸を行な
うのがよい。紡糸延伸での温度が95℃を越えると
導電性の低下がある。紡糸延伸倍率は通常2〜7
倍、好ましくは3〜6倍行なう。延伸倍率が低い
場合繊維の延伸が十分でなく乾燥工程或いは延伸
工程での繊維の切断等の操業性の低下及び強伸
度、染色性等品質が低下することがある。紡糸延
伸後、繊維は水洗工程を経て残留溶剤の洗浄後、
オイル付与工程を経て乾燥焼きつぶしを行なう。
乾燥焼きつぶしは十分に行なう必要があり、好ま
しくは100〜180℃の熱風及び100〜150℃の熱ロー
ラーを併用して水分率が1%以下になるまで行な
う。乾燥工程においてトルクモーター等により10
%前後の収縮を行なわせる事も導電性の向上には
好ましい。乾燥焼きつぶしを行なつた繊維は、必
要ならば延伸を行ないその後湿熱下にて収縮を行
なわせる。延伸は1.6倍以下が好ましい。この収
縮処理により繊維の導電性の向上及び導電性の均
一性の向上がみられる。収縮は100〜150℃、好ま
しくは115〜130℃の湿熱で行ない、処理は連続で
もパツチでもよいが、処理中なるべく繊維に大き
な張力をかけない事が重要である。大きな張力を
発生するような収縮処理方法では導電性の改良が
余り望めない。収縮率は大体5〜30%位で十分で
あるが最適の収縮率の値はアクリル系重合体の組
成、導電性弾性重合体の含有率及び製造工程条件
により各々設定する。収縮工程を経た繊維は必要
ならば油剤付与、クリンプ付与等を実施されフイ
ラメント、トウ或いはステーフルフアイバーの形
で製品となる。本発明の導電性アクリル系合成繊
維は製造するのに特殊なポリマーやモノマーを用
いる事なく又、特殊な機器や製造工程を必要とせ
ずかつ導電性や加工性能及び他の商品性能も十分
満足されているものである等従来にない優れた点
を有している。 特に本発明繊維のもつ特長としては引張り、曲
げ等の外力に対して導電性の低下がないか或いは
極めて小さい事が上げられ、この為に使用中に導
電性の経時変化がなくいつまでも良好な導電性能
を有する事も上げられる。 本発明の導電性アクリル系合成繊維の用途とし
ては、日常生活における静電気障害があるカーペ
ツト、作業衣、各種制服等の衣服類及びインテリ
ア製品等はもちろんであるが、静電気障害をきら
う電子機器類、産業機器類等のシールド材や産業
資材等に大いに有用である。 以下実施例を示して本発明を更に詳細に説明し
ていく。繊維の導電性の測定は1000〜10000デニ
ールの繊維束を長さ5〜15cm位に切断し繊維束の
両端を導電接着剤(DOTITE D−550藤倉化成
(株))にて固着し、この部分をクリンプで十分よく
把持して、この間に電圧100Vをかけ電気抵抗値
R(Ω/cm)を測定する。 繊維の電気比抵抗値(Ω・cm)は下式により求
める。 =R×デニール/q×105×比重(Ω・cm) 尚、実施例中に示す部、%は特にことわらない
限り重量部、重量%を示す。 実施例 1 アクリロニトリル:アクリル酸メチル:メタリ
ルスルホン酸ソーダ=91.2:8.0:0.8(%)の組成
を有するアクリル系重合体をジメチルホルムアミ
ド(以下DMFと呼称する)中にて溶液重合し残
存モノマーを回収・除去後重合体濃度24%のアク
リル系重合体溶液を得た。又、MW1500のポリエ
チレンアジペート300部と1・4−ブタンジオー
ル27部とジフエニルメタンジイソシアネート(以
下MDIと呼称する)113部とをDMF600部中にて
重合開始し、重合物の粘度を見ながらDMFで希
釈し最終的に重合体濃度15%のポリウレタン溶液
を得た。 ポリウレタン溶液にカーボンブラツク(アセチ
レンブラツク)をポリウレタンとカーボンブラツ
クとの全量に対して第1表に示すカーボンブラツ
クを添加した。カーボンブラツクを添加したポリ
ウレタン溶液とアクリル系重合体溶液とをカーボ
ンブラツク添加ポリウレタン30部及びアクリル系
重合体70部となるように両者を混合したものを紡
糸ドープとし、これを直径0.06mm4000ケの孔数を
有する口金からDMF:水=60:40(%)、15℃の
凝固浴中へ紡出する。紡出された糸を紡糸ドラフ
ト0.7になるような第1ロータースピードで巻き
上げ紡糸倍率を5倍行ない水洗、オイル付与、乾
燥焼きつぶし後、120℃の湿熱下で15%収縮させ
3デニールの繊維を得た。結果を第1表に示す。
The present invention relates to a conductive acrylic synthetic fiber and a method for producing the same. In general, synthetic fibers have poor antistatic properties, and especially in low-humidity environments during winter, static electricity is generated significantly in clothing, clothing, etc.
Improvements have been desired not only in interior design, bedding, etc., but also in industrial applications, and various proposals have been made.
One way to overcome these drawbacks is to use metal fibers, metal-plated fibers, or carbon fibers, and by mixing them with other fibers, the antistatic properties are improved, but these fibers are generally Because its physical properties, luster, color, dyeability, etc. are different from ordinary synthetic fibers and natural fibers, special blending, spinning, dyeing, and processing methods are required, and its use is limited to carpets, etc. is normal. In order to improve the above-mentioned drawbacks of conductive fibers, a method has been proposed in which a conductive substance such as carbon black is mixed into part or all of the synthetic fibers. The method of mixing a conductive substance into the entire fiber requires a large amount of the conductive substance and has many disadvantages such as high cost, reduced operability and productivity, and abnormal dyeability. Methods for incorporating a conductive substance into a portion of the fibers can be broadly classified into a composite spinning method, a sea-island fiber spinning method, and a conductive layer streak dispersion spinning method. In Japanese Patent Publication No. 52-31450 and Japanese Patent Application Laid-open No. 51-143723, sheath-core type or side-by-side type conductive composite fibers have been proposed, but they are difficult to manufacture, have low productivity, and are prone to fibrillation. Deterioration of conductivity, change in dyeability, deterioration of appearance, etc. occur due to peeling of each component. JP 56-3447, JP 56-68109
No. 56-58008 and JP-A-56-58008 attempt to improve the above-mentioned drawbacks of composite fibers by using more complicated manufacturing methods, but the manufacturing difficulties and low productivity are still significant, and the performance is still high. , it seems that only a small improvement in quality can be expected. JP 53-31971, JP 57-20404, JP 54-112212, JP 55-45856, JP 52-103525
The publication proposes a method of continuously orienting and dispersing conductive substances such as carbon black, silver, copper, aluminum, and iron in the fiber axis direction. In this case, it is necessary to use a block polyether or a copolymer obtained by grafting a vinyl monomer such as AN to a block polyether as a dispersion matrix polymer for the conductive substance. Low heat resistance and low strength and elongation deteriorate the physical properties and performance of conductive fibers. The present inventors have arrived at the present invention as a result of intensive studies to eliminate the above-mentioned drawbacks. The object of the present invention is to provide a conductive acrylic synthetic fiber having excellent conductivity, excellent processability, and high product performance.
Another object of the present invention is to provide an easy and inexpensive method for producing acrylic synthetic fibers with excellent conductivity. The present invention provides a conductive elastic material comprising 50 to 90 parts of an acrylic polymer, 10 to 50% by weight of conductive fine particles, and 90 to 50% by weight of an elastic polymer that is miscible but incompatible with the acrylic polymer. It is a conductive acrylic synthetic fiber which consists of 50 to 10 parts of a polymer and has a structure in which a conductive elastic polymer is dispersed in discontinuous long and thin islands in the fiber axis direction. and 10 to 50% by weight of conductive fine particles and 90 to 50% of an elastomeric polymer that is miscible but incompatible with the acrylic polymer.
A conductive elastic polymer solution consisting of (acrylic polymer) / (conductive elastic polymer) = 50 /
It is characterized by mixing at a ratio of 50 to 90/10 (weight ratio), spinning into a coagulation bath at a spinning draft of 0.2 to 2.0, washing with water, drying, and shrinking under moist heat. The fiber of the present invention contains 50 to 90 parts of an acrylic polymer, preferably 55 to 85 parts, more preferably 50 to 10 parts of an elastomeric polymer containing conductive fine particles of 60 to 80 parts, The amount is preferably 45 to 15 parts, more preferably 40 to 20 parts. If the content of the acrylic polymer exceeds 90 parts and the content of the conductive elastic polymer is less than 10 parts, the electrical conductivity will not be sufficiently developed because the electrically conductive component will be small and the elongation in the fiber axis direction will be insufficient. Also, if the acrylic polymer is less than 50 parts and the conductive elastic polymer exceeds 50 parts, the dispersion form of the conductive elastic polymer component in the fiber will become abnormally large.
In addition, the distribution of shapes becomes wider, leading to frequent troubles during thread breakage and troubles during spinning, weaving and knitting processes during the manufacturing process, and the dyeing luster of the fibers decreases. The acrylic polymer used in the present invention preferably contains at least 80% by weight of acrylonitrile, and less than 20% by weight of copolymerizable monomers, such as acrylics such as methyl acrylate, methyl methacrylate, and ethyl acrylate. Acid esters or methacrylic acid alkyl esters, amides such as acrylamide and methacrylamide, and their N-mono- or N-disubstituted amides, vinyl acetate, sulfonic acid group-containing monomers such as styrene sulfone, and their It can contain salts, etc. In particular, 0.3 to 2.5% by weight of allylsulfonic acid or methallylsulfonic acid and their salts, preferably
Copolymerization of 0.5 to 2.0% by weight not only improves the dyeability but also suppresses the deterioration of heat resistance by suppressing the generation of countless minute voids. Particularly preferred is one composed of 90% by weight or more of acrylonitrile, 0.5 to 2.0% by weight of sodium methallylsulfonate, and methyl acrylate or vinyl acetate and has a molecular weight of 45,000 to 60,000. For materials requiring flame retardancy, acrylic polymers containing 80% by weight or less of acrylonitrile and 20 to 60% by weight of vinyl chloride or vinylidene chloride are preferred, and more preferably 30 to 50% by weight of vinyl chloride or vinylidene chloride. % and a sulfonic acid group-containing monomer and 0.5 to 3.0% by weight of acrylonitrile. Further, the elastic polymer applied to the present invention needs to be miscible with the acrylic polymer but not compatible with the acrylic polymer. Examples of such elastic polymers include polyurethane polymers, acrylonitrile-butadiene rubber, acrylic rubber, etc., and polyurethane polymers are preferred in terms of physical properties such as solvent solubility, fiber forming properties, and rubber elasticity. Polyurethane polymers include polyester type, polyether type, polyester ether type,
It is a general term for polyesteramide type and polythioether type polyurethanes, and in detail, ethylene glycol, propylene glycol, butylene glycol, hexamethylene glycol, 1,4-
Polyesters consisting of cyclohexyl glycol, P-xylene glycol, or bisphenol A and adipic acid, suberic acid, sebacic acid, terephthalic acid, isophthalic acid, or γ-lactone, adipic acid-diethanolamide or terephthalic acid-bis-propanolamide, and Polyesteramide made from the above-mentioned dicarboxylic acids, diethylene glycol, triethylene glycol, 1,4-phenylenebisoxyethyl ether or 2,2'-diphenylpropane-4,4
- Polyester ethers made from bisoxyethyl ether and the aforementioned dicarboxylic acids, polyethers made from ethylene oxide, propylene oxide, and tetrahydrofuran, polythioethers such as thiodiglycol, etc. Molecular weight
A linear polymer having 200 to 3000 terminal hydroxyl groups is mixed with an organic diisocyanate such as 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate,
Examples include polyurethane polymers obtained by reacting 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, xylene diisocyanate, or 1,5-naphthylene diisocyanate with a dihydric alcohol chain extender by a known polymerization method. The polyurethane polymer is preferably a polyester type or polyester ether type polyurethane, and the degree of polymerization of the polyurethane polymer is preferably low. For example, in terms of solution viscosity, the viscosity of a dimethylformamide solution with a degree of polymerization concentration of 20% by weight at 50° C. is preferably 700 poise or less, particularly preferably 500 poise or less. It is necessary that the acrylic polymer and the elastic polymer have miscibility but are incompatible. When an acrylic polymer and an elastic polymer are mixed together (for example, when the solutions of both are mixed or when the other polymer is dissolved and mixed in one solution), one component will not gel or aggregate, and one component will not form in the other. Indicates that it is well dispersed and mixed in the ingredients. In addition, when there is no compatibility, when an acrylic polymer is mixed with an elastic polymer, it can be observed not only with the naked eye but also with a microscope (approx.
600 to 1000 times), it can be distinguished by the fact that the mixed solution is heterogeneous. The conductive elastic polymer is composed of 10 to 50% by weight of conductive fine particles and the above-mentioned elastic polymer which is miscible but incompatible with the acrylic polymer. When the amount of conductive fine particles is less than 10% by weight, conductivity is not sufficiently imparted, and when it exceeds 50% by weight, not only operability and processability are significantly reduced, but also the conductivity reaches saturation, which is extremely inconvenient. The conductive fine particles applicable to the present invention include particles of carbon black, metals such as silver, copper, aluminum, and iron, tin oxide, zinc oxide, and titanium oxide coated with tin oxide or zinc oxide. The particle size of these particles is usually 1 μm or less, preferably 0.7 μm.
A thickness of less than m, particularly preferably about 0.5 μm to 0.01 μm, is used. Carbon black as a conductive particle has a particle size of
It is preferably 1 μm or less, and its type is not particularly limited, and examples thereof include so-called acetylene black, oil furnace black, channel black, and the like. Metal particles such as silver, copper, aluminum, iron, etc. are usually those having a particle size of 1 μm or less, preferably 0.5 μm or less, and having a resistivity of 10 Ω·cm or less. Regarding the electrical conductivity of conductive zinc oxide or tin oxide, the specific resistance in powder form is preferably about 10 4 Ω·cm or less, particularly preferably about 10 2 Ω·cm or less, and most preferably about 10 1 Ω·cm or less. In reality, values of about 10 2 Ω·cm to 10 −2 Ω·cm have been obtained, and can be suitably applied to the purpose of the present invention. Titanium oxide having a coating of zinc oxide or tin oxide has a particle size and specific resistance in powder form comparable to those of zinc oxide or tin oxide. These films can be formed, for example, by a vacuum deposition method, a method of depositing a metal compound and baking it to form an oxide, or a method of partially reducing it. When carbon black is used as conductive particles, it has the disadvantage that the color of the fiber becomes black, but since it has a small specific gravity and a cluster (micro chain) structure, it can be used in a small amount. The content of black in the conductive elastic polymer is preferably 10 to 45% by weight, more preferably 15 to 40% by weight. Since conductive particles other than carbon black have a large specific gravity, the amount used is also larger than in the case of carbon black, which causes an increase in cost, but there is a great advantage that the fiber color is not black. In particular, white conductive fibers can be obtained using conductive tin oxide, zinc oxide, and titanium oxide with surface coatings thereof. In the fiber of the present invention, the conductive elastic polymer has a structure in which it is elongated but discontinuously extended in the fiber axis direction as a large number of island-like components. The presence of a large number of conductive components in the fiber cross-sectional direction and in the fiber axis direction effectively performs the functions of static elimination and discharge. In particular, since it exists in the form of elongated, discontinuous islands, having many sharp edges also seems to have the effect of improving antistatic performance. Furthermore, the use of an elastic polymer as a conductive component is also essential for maintaining antistatic performance. When fibers are subjected to everyday external forces such as tension and bending, and deformation, and when an elastic polymer is not used as the conductive component, repeated external forces and deformation can cause the boundary between conductive particles and the polymer containing them to This has the disadvantage that cracks occur in the conductivity, resulting in a significant decrease in conductivity. Therefore, by combining the polymers shown in the present invention, it is possible to obtain conductive acrylic synthetic fibers that are inexpensive, have high performance, have good operability and processability, and do not exhibit a decrease in conductivity against external forces. The fiber of the present invention is obtained by mixed spinning of an acrylic polymer solution and an elastomeric polymer (referred to as a conductive elastomer) solution that is miscible but incompatible with the acrylic polymer containing conductive fine particles. . The above-mentioned acrylic polymer can be used, and a solution can be prepared by dissolving the acrylic polymer in a solvent or by polymerizing the acrylic polymer in a solvent. As the solvent for the acrylic polymer, dimethylformamide, dimethylsulfoxide, dimethylacetamide, ethylene carbonate, γ-butyrolactone, and other organic solvents, and inorganic solvents such as nitric acid, rhodanate aqueous solution, zinc chloride aqueous solution, etc. can be used. As the solvent for the elastic polymer, a solvent for the elastic polymer can be used, but it is preferable to use the same solvent as that used for the acrylic polymer in terms of coagulation properties, solvent recovery, etc. Particularly preferably, the acrylic polymer and polyurethane are each subjected to solution polymerization using dimethylformamide as a common solvent. When dimethylformamide is used as a solvent, the polymer concentration of the acrylic polymer solution is 15 to 35% by weight, preferably 20 to 30% by weight.
% by weight, and the polymer concentration of the polyurethane solution may be lower than or approximately the same as that of the acrylic polymer. The acrylic polymer solution and the elastomeric polymer solution must be mutually miscible but incompatible, and it is also necessary that the conductive fine particles remain in the elastomeric polymer solution. The viscosity of the acrylic polymer solution and elastomeric polymer solution also has a significant impact on operability, product quality, and conductive performance. The viscosity here refers to the viscosity at the same polymer concentration and at the same temperature. The viscosity at 50° C. of a dimethylformamide solution with a polymer concentration of 20% by weight is usually used. For example, if the viscosity of the acrylic polymer solution is slightly lower than the viscosity of the elastic polymer solution, sufficient deformation of the elastic polymer will not occur during fiber spinning and spinning/drawing, resulting in uneven denier in that area. Otherwise, thread breakage may occur or insufficient conductivity may result. On the other hand, when the viscosity of the acrylic polymer solution is higher than the viscosity of the elastic polymer solution, the elastic polymer is sufficiently stretched during spinning and spinning and drawing, and is formed as island-like components elongated in the fiber axis direction. Therefore, phenomena such as denier unevenness and decrease in operability are not observed, and the conductivity is also good. The viscosity ratio of the acrylic polymer solution and the elastic polymer solution is preferably 100/1 or less, more preferably 1/2 to 50/1. Conductive elastic polymer contains 10 to 50% by weight of conductive fine particles
and 90 to 50% by weight of an elastic polymer. When carbon black is used as the conductive particles, the carbon black is preferably 10 to 45% by weight, more preferably 15 to 40% by weight, and the elastic polymer is preferably 10 to 45% by weight.
The content is 90 to 55% by weight, more preferably 85 to 60% by weight. Various methods can be used to mix the conductive fine particles into the elastic polymer. For example, there are methods such as adding it when polymerizing the elastic polymer or adding it to the elastic polymer solution, but care must be taken to apply sufficient stirring force to disperse the conductive fine particles and in the case of carbon black. The purpose of stirring is to avoid cutting the carbon black clusters.
After adding conductive fine particles, this conductive elastic polymer solution or a spinning dope containing a mixture of an acrylic polymer solution and a conductive elastic polymer solution is applied to paper, cloth, a sintered metal filter, a wire mesh, or a porous polymer membrane. It is preferable to spend some time. The overaccuracy here is about 10μ
It is sufficient to remove 100% of the particles. Various dispersants can also be used to improve the dispersibility and stability of the conductive particles in the elastomeric polymer. Various mixing methods can be used to mix the acrylic polymer solution and the conductive elastic polymer solution.
It is better to check the mixing state using a microscope or the like. In the mixed liquid, the conductive elastic polymer, which appears black under a microscope, is suspended and dispersed in the acrylic polymer solution as many small spheres or deformed spheres, but the size of this dispersion is uniform and
The thickness is preferably about 100μ, more preferably about 20 to 70μ. A spinning dope obtained by mixing the two is spun into a coagulation bath using an ordinary spinneret. As the coagulation bath, it is preferable to use an aqueous solution of the solvent used in the spinning dope, but for special purposes, an aqueous solution of other solvents, kerosene, isopropyl alcohol, and other solvents can be used. The coagulation bath conditions can be the same as those used for spinning acrylic synthetic fibers, but a lower coagulation bath temperature is preferable for improving conductivity. When a dimethylformamide aqueous solution is used, the dimethylformamide concentration is 50 to 65% by weight, more preferably 55 to 60% by weight, and the temperature is preferably 20°C or lower, more preferably 5 to 15°C. The fibers spun into the coagulation bath are wound onto the first roller at a spinning draft value (ratio of the winding speed of the first roller to the spinning speed at the spinneret surface) of 0.2 to 2.0. If the spinning draft is less than 0.2, the orientation during coagulation will not be sufficient and the fiber will be brittle.
In addition, the development of conductivity is insufficient, and if the spinning draft exceeds 2.0, there will be a decrease in conductivity, a decrease in product quality such as an increase in voids and a decrease in dyeability, and a decrease in operability such as an increase in yarn breakage. . The spinning draft is preferably 0.3 to 1.5, more preferably 0.4 to 1.0. The fibers wound up by the first roller are immediately subjected to spinning and drawing in a plurality of spinning baths having different solvent concentrations and temperatures. Spinning and drawing is usually
It is carried out at a temperature lower than 95°C, preferably 50 to 90°C, more preferably 60 to 85°C, particularly preferably 50 to 70°C.
It is preferable to carry out two-stage stretching in a spinning bath at 70 to 90°C. When the temperature during spinning and drawing exceeds 95°C, conductivity decreases. The spinning draw ratio is usually 2 to 7.
Do this twice, preferably 3 to 6 times. If the stretching ratio is low, the fibers may not be stretched sufficiently, resulting in a decrease in operability such as cutting of the fibers in the drying process or the stretching process, and a decrease in quality such as strength and elongation, dyeability, etc. After spinning and drawing, the fibers undergo a water washing process to remove residual solvent.
After the oil application step, drying and crushing is performed.
Drying and baking must be carried out sufficiently, preferably using a combination of hot air at 100 to 180°C and heated rollers at 100 to 150°C until the moisture content becomes 1% or less. In the drying process, the torque motor etc.
% shrinkage is also preferable for improving conductivity. The dry and burnt fibers are stretched if necessary and then shrunk under moist heat. The stretching is preferably 1.6 times or less. This shrinkage treatment improves the conductivity of the fibers and improves the uniformity of the conductivity. Shrinkage is carried out with moist heat at 100-150°C, preferably 115-130°C. Treatment may be continuous or patchy, but it is important not to apply as much tension to the fibers during treatment. A shrinkage treatment method that generates a large amount of tension does not provide much improvement in conductivity. A shrinkage rate of approximately 5 to 30% is sufficient, but the optimum value of the shrinkage rate is determined depending on the composition of the acrylic polymer, the content of the conductive elastic polymer, and the manufacturing process conditions. The fibers that have undergone the shrinking process are subjected to oiling, crimping, etc., if necessary, and are made into products in the form of filaments, tows, or staple fibers. The conductive acrylic synthetic fiber of the present invention does not require the use of special polymers or monomers, does not require special equipment or manufacturing processes, and has sufficient conductivity, processing performance, and other product performance. It has superior features not found in the past. In particular, a feature of the fibers of the present invention is that there is no or very little decrease in conductivity when subjected to external forces such as tension and bending, and for this reason, there is no change in conductivity over time during use, and the conductivity remains good for a long time. Having good performance can also be mentioned. The conductive acrylic synthetic fibers of the present invention can be used not only for carpets, work clothes, various uniforms, and other clothing and interior products that are susceptible to static electricity in daily life, but also for electronic devices that do not want to be affected by static electricity. It is very useful as a shielding material for industrial equipment, industrial materials, etc. The present invention will be explained in more detail below with reference to Examples. To measure the conductivity of fibers, cut a fiber bundle of 1,000 to 10,000 denier into lengths of about 5 to 15 cm, and glue both ends of the fiber bundle with conductive adhesive (DOTITE D-550 Fujikura Kasei).
Co., Ltd., and this part is firmly grasped with a crimp, and a voltage of 100 V is applied between them to measure the electrical resistance value R (Ω/cm). The electric specific resistance value (Ω・cm) of the fiber is determined by the following formula. =R x denier/q x 10 5 x specific gravity (Ω·cm) Note that parts and percentages shown in the examples indicate parts by weight and percentages by weight unless otherwise specified. Example 1 An acrylic polymer having a composition of acrylonitrile: methyl acrylate: sodium methallylsulfonate = 91.2:8.0:0.8 (%) was solution polymerized in dimethylformamide (hereinafter referred to as DMF) to remove the remaining monomers. After recovery and removal, an acrylic polymer solution with a polymer concentration of 24% was obtained. In addition, polymerization was started with 300 parts of polyethylene adipate having a MW of 1500, 27 parts of 1,4-butanediol, and 113 parts of diphenylmethane diisocyanate (hereinafter referred to as MDI) in 600 parts of DMF. Finally, a polyurethane solution with a polymer concentration of 15% was obtained. Carbon black (acetylene black) as shown in Table 1 was added to the polyurethane solution based on the total amount of polyurethane and carbon black. A spinning dope is prepared by mixing a polyurethane solution to which carbon black has been added and an acrylic polymer solution so that 30 parts of carbon black-added polyurethane and 70 parts of acrylic polymer are added. The sample was spun into a coagulation bath of DMF:water = 60:40 (%) at 15°C from a nozzle having a diameter of 100%. The spun yarn is wound at the first rotor speed so that the spinning draft is 0.7, the spinning ratio is 5 times, washed with water, oiled, dried and burned, and then shrunk by 15% under moist heat at 120°C to produce a 3 denier fiber. Obtained. The results are shown in Table 1.

【表】【table】

【表】 実施例 2 実施例1で用いたアクリル系重合体溶液と25%
のカーボンブラツク入りポリウレタン溶液とを第
2表に示す重合体比率になるよう混合し、紡糸ド
ープとした。紡糸条件は実施例1と同じに行な
い、3デニールの繊維を得た。 結果を第2表に示す。
[Table] Example 2 Acrylic polymer solution used in Example 1 and 25%
and a carbon black-containing polyurethane solution so as to have the polymer ratio shown in Table 2 to obtain a spinning dope. The spinning conditions were the same as in Example 1, and a 3-denier fiber was obtained. The results are shown in Table 2.

【表】 実施例 3 アクリロニトリル:アクリル酸メチル:メタリ
ルスルホン酸ソーダ=90.3:9.0:0.7(%)の組成
を有する分子量50000のアクリル系重合体をDMF
溶液重合により重合し、モノマー回収後、重合体
濃度23%、水分率2%のアクリル系重合体溶液を
得た。分子量1500のポリプロピレンアジペート
150部と1.4−ブタンジオール27部とMDI90.4部と
を400部のDMF中で重合させ反応終了後DMFで
希釈し重合体濃度30%の25℃での粘度が1200ポイ
ズのポリウレタン溶液を得た。ポリウレタン溶液
を希釈し重合体濃度15%にし、その溶液に平均粒
径0.05μの導電性酸化錫粒子ポリウレタン100部に
対し80部添加し、サンドグラインダーにて十分分
散させた。導電性酸化錫を含有したポリウレタン
溶液とアクリル系重合体溶液とをポリウレタン/
アクリル系重合体の重量比が25/75になるよう混
合し紡糸原液とした。紡糸原液は第3表に示す口
金を用いて種々の紡糸ドラフトの値で紡出した。
凝固浴はDMF:水=54:46(%)で10℃である。
紡糸条件以後は実施例1と同条件にて処理を行な
つた。結果を第3表に示す。尚Exp21にて乾燥後
に湿熱処理を行なわないものは比電導度が217.7
Ω・cmであり導電性の低下がみられた。
[Table] Example 3 An acrylic polymer with a molecular weight of 50,000 having a composition of acrylonitrile: methyl acrylate: sodium methallylsulfonate = 90.3:9.0:0.7 (%) was mixed with DMF.
Polymerization was carried out by solution polymerization, and after monomer recovery, an acrylic polymer solution with a polymer concentration of 23% and a water content of 2% was obtained. Polypropylene adipate with molecular weight 1500
Polymerize 150 parts of 1.4-butanediol, 27 parts of 1.4-butanediol, and 90.4 parts of MDI in 400 parts of DMF, and after the reaction is complete, dilute with DMF to obtain a polyurethane solution with a polymer concentration of 30% and a viscosity of 1200 poise at 25°C. Ta. The polyurethane solution was diluted to a polymer concentration of 15%, and 80 parts of conductive tin oxide particles with an average particle size of 0.05 μm were added to the solution per 100 parts of polyurethane, and thoroughly dispersed using a sand grinder. A polyurethane solution containing conductive tin oxide and an acrylic polymer solution are mixed into polyurethane/
The acrylic polymers were mixed at a weight ratio of 25/75 to obtain a spinning stock solution. The spinning dope was spun using the spindle shown in Table 3 at various spinning draft values.
The coagulation bath was DMF:water = 54:46 (%) at 10°C.
After the spinning conditions, processing was carried out under the same conditions as in Example 1. The results are shown in Table 3. In addition, the specific conductivity of Exp21 without moist heat treatment after drying is 217.7.
Ω・cm, and a decrease in conductivity was observed.

【表】【table】

Claims (1)

【特許請求の範囲】 1 アクリル系重合体50〜90部と、導電性微粒子
10〜50重量%とアクリル系重合体と混和性はある
が非相溶性の弾性重合体90〜50重量%とからなる
導電性弾性重合体50〜10部とよりなり、導電性弾
性重合体が繊維軸方向へ非連続の細長い島状に分
散した構造を有する導電性アクリル系合成繊維。 2 アクリル系重合体がアクリロニトリルを80重
量%以上含有する特許請求の範囲第1項記載の繊
維。 3 導電性微粒子がカーボンブラツク、金属又は
金属酸化物である特許請求の範囲第1項記載の繊
維。 4 導電性微粒子が酸化錫、酸化亜鉛、及び酸化
チタンに酸化錫又は酸化亜鉛を被覆したものであ
る特許請求の範囲第1項記載の繊維。 5 弾性重合体がポリウレタンである特許請求の
範囲第1項記載の繊維。 6 アクリル系重合体溶液と、導電性微粒子10〜
50重量%とアクリル系重合体と混和性はあるが非
相溶性の弾性重合体90〜50重量%とからなる導電
性弾性重合体の溶液とを(アクリル系重合体)/
(導電性弾性重合体)=50/50〜90/10(重量比)
で混合し、凝固浴中へ紡糸ドラフト0.2〜2.0で紡
出し、水洗、乾燥後湿熱下で収縮させる事を特徴
とする導電性アクリル系合成繊維の製造方法。 7 アクリル系重合体がアクリロニトリルを80重
量%以上含有する特許請求の範囲第6項記載の方
法。 8 導電性微粒子がカーボンブラツク、金属又は
金属酸化物である特許請求の範囲第6項記載の方
法。 9 導電性微粒子が酸化錫、酸化亜鉛、及び酸化
チタンに酸化錫又は酸化亜鉛を被覆したものであ
る特許請求の範囲第6項記載の方法。 10 弾性重合体がポリウレタンである特許請求
の範囲第6項記載の方法。 11 紡糸ドラフトが0.3〜1.5である特許請求の
範囲第6項記載の方法。 12 紡糸延伸を95℃以下で行なう特許請求の範
囲第6項記載の方法。 13 紡糸延伸を3〜7倍行なう特許請求の範囲
第6項記載の方法。
[Claims] 1. 50 to 90 parts of acrylic polymer and conductive fine particles
The conductive elastic polymer consists of 50 to 10 parts by weight of 10 to 50% by weight and 90 to 50% by weight of an elastic polymer that is miscible but incompatible with the acrylic polymer. A conductive acrylic synthetic fiber with a structure dispersed in discontinuous long and thin islands in the direction of the fiber axis. 2. The fiber according to claim 1, wherein the acrylic polymer contains 80% by weight or more of acrylonitrile. 3. The fiber according to claim 1, wherein the conductive fine particles are carbon black, metal, or metal oxide. 4. The fiber according to claim 1, wherein the conductive fine particles are tin oxide, zinc oxide, and titanium oxide coated with tin oxide or zinc oxide. 5. The fiber according to claim 1, wherein the elastic polymer is polyurethane. 6 Acrylic polymer solution and conductive fine particles 10~
(acrylic polymer) /
(Conductive elastic polymer) = 50/50 to 90/10 (weight ratio)
A method for producing conductive acrylic synthetic fibers, which comprises mixing the fibers in a coagulation bath, spinning them into a coagulation bath at a spinning draft of 0.2 to 2.0, washing them with water, drying them, and then shrinking them under moist heat. 7. The method according to claim 6, wherein the acrylic polymer contains 80% by weight or more of acrylonitrile. 8. The method according to claim 6, wherein the conductive fine particles are carbon black, metal, or metal oxide. 9. The method according to claim 6, wherein the conductive fine particles are tin oxide, zinc oxide, and titanium oxide coated with tin oxide or zinc oxide. 10. The method according to claim 6, wherein the elastic polymer is polyurethane. 11. The method according to claim 6, wherein the spinning draft is 0.3 to 1.5. 12. The method according to claim 6, wherein the spinning and drawing is carried out at 95°C or lower. 13. The method according to claim 6, wherein the spinning and drawing is performed 3 to 7 times.
JP9348583A 1983-05-26 1983-05-26 DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO Expired - Lifetime JPH0227442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9348583A JPH0227442B2 (en) 1983-05-26 1983-05-26 DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9348583A JPH0227442B2 (en) 1983-05-26 1983-05-26 DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS59223313A JPS59223313A (en) 1984-12-15
JPH0227442B2 true JPH0227442B2 (en) 1990-06-18

Family

ID=14083645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9348583A Expired - Lifetime JPH0227442B2 (en) 1983-05-26 1983-05-26 DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227442B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194221A (en) * 1985-02-18 1986-08-28 Chisso Corp Elastic conjugated yarn and cloth using same
US5698148A (en) * 1996-07-26 1997-12-16 Basf Corporation Process for making electrically conductive fibers
FI117511B (en) * 2001-04-04 2006-11-15 Premix Oy Process for preparing an conductive polymer blend and conductive polymer blend
JP5420196B2 (en) * 2008-06-10 2014-02-19 東レ株式会社 Acrylic synthetic fiber and method for producing the same

Also Published As

Publication number Publication date
JPS59223313A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
DE2707275C2 (en)
CN1258010C (en) Anti-electrostatic nano compound polyester fibre and making method thereof
JPS5839175B2 (en) Antistatic synthetic polymer composition
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
JPH0227442B2 (en) DODENSEIAKURIRUKEIGOSEISENIOYOBISONOSEIZOHOHO
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
JPH0227441B2 (en) DODENSEIAKURIRUKEIGOSEISENINOSEIZOHOHO
JP2008063716A (en) Polymer alloy fiber, method for producing the same and fiber product using the same
JP4564322B2 (en) Method for producing conductive acrylic fiber
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JPH11200149A (en) White electroconductive fiber
JPH0978377A (en) Antistatic acrylic spun yarn
JP5700240B2 (en) Acrylic fiber paper and manufacturing method thereof
JP2002020931A (en) Polyester filament
JP2545430B2 (en) Polyester fiber for flocking
JP3278228B2 (en) Flat acrylic fiber and method for producing the same
JPH10158928A (en) Splittable acrylic synthetic yarn and its production
JPH0643643B2 (en) Polyester fiber for flocking
JPH05287612A (en) Conductive acrylic fiber and its production
JPS6234847B2 (en)
JPH09228148A (en) Electroconductive fiber
JP4763451B2 (en) Conductive composite fiber
JPH0978354A (en) Electroconductive acrylic fiber