JPH05287612A - Conductive acrylic fiber and its production - Google Patents

Conductive acrylic fiber and its production

Info

Publication number
JPH05287612A
JPH05287612A JP10926392A JP10926392A JPH05287612A JP H05287612 A JPH05287612 A JP H05287612A JP 10926392 A JP10926392 A JP 10926392A JP 10926392 A JP10926392 A JP 10926392A JP H05287612 A JPH05287612 A JP H05287612A
Authority
JP
Japan
Prior art keywords
conductive
conductive component
fiber
particles
dope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10926392A
Other languages
Japanese (ja)
Inventor
Yoshikatsu Mizukami
義勝 水上
Takashi Matsumura
隆 松村
Shuji Teranishi
修二 寺西
Hiroko Yoshimura
裕子 吉村
Satoko Kakegawa
都子 掛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP10926392A priority Critical patent/JPH05287612A/en
Publication of JPH05287612A publication Critical patent/JPH05287612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber not colored black and excellent in the electric conductivity by spinning a dope comprising a non-conductive component and a conductive component which comprises a dope produced by dispersing a conductive agent consisting of specific conductive particles in a matrix polymer having a specific intrinsic viscosity. CONSTITUTION:Acrylonitrile, methyl acrylate, methacrylsufonic acid sodium salt, etc., are radically polymerized to produce an acrylic polymer dope having an intrinsic viscosity of >=1.13 as a matrix. Conductive particles comprising fibrous fine particles having aspect ratios of >=4 are dispersed in the produced matrix to obtain the conductive component. The conductive component is mixed with a non-conductive component in a spinning dope viscosity ratio of <=0.5 between the non-conductive component and the conductive component. The mixture is spun and subsequently subjected to a drawing process, etc., to obtain the objective fiber in which the conductive particles have an X-ray orientation degree of >=90%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた導電性アクリル複
合繊維に関するものであり、制電防止効果や電磁波シー
ルド効果が必要とされる衣料,建寝装用途に用いられ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excellent conductive acrylic composite fiber, which is used for clothing and construction bedding which requires antistatic effect and electromagnetic wave shielding effect.

【0002】[0002]

【従来の技術】従来、導電性繊維としては例えば特公昭
55−23925号公報に記載されているカーボンブラ
ックをポリアルキレングリコール共重合体に分散させた
芯成分を持つ導電性繊維があり公知であるが、さらに優
れた導電性を有する導電繊維を得るためには導電性粒子
であるカーボンブラックをさらに多く分散させる必要が
あり、そのためには分散技術の向上が必要である。一
方、カーボンブラックを用いると繊維の色が黒くなり汎
用性に欠ける。そこで導電性を向上させるためにはさら
に優れた色の白い導電性成分を分散させる必要がある。
さらに優れた導電性粒子としては銀粉があるが比重が大
きいため沈降し易く分散がより困難であり、分散技術の
向上が必要である。
2. Description of the Related Art Conventionally, as a conductive fiber, for example, a conductive fiber having a core component in which carbon black is dispersed in a polyalkylene glycol copolymer, which is described in Japanese Patent Publication No. 55-23925, is known. However, in order to obtain a conductive fiber having further excellent conductivity, it is necessary to disperse more carbon black which is a conductive particle, and for that purpose, it is necessary to improve the dispersion technique. On the other hand, when carbon black is used, the color of the fiber becomes black, which lacks versatility. Therefore, in order to improve the conductivity, it is necessary to disperse a white conductive component having a more excellent color.
Further excellent conductive particles include silver powder, but since it has a large specific gravity, it tends to settle and is more difficult to disperse, and it is necessary to improve the dispersion technique.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は一般の
ポリマーをマトリックスとして用い、優れた導電性の色
が黒くない導電性繊維を提供することにあり、比抵抗が
102 〜10Ω・cm台である優れた導電性繊維の製造
法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive fiber which uses a general polymer as a matrix and has an excellent conductive color which is not black and has a specific resistance of 10 2 to 10 Ω · cm. It is to provide a method for producing an excellent conductive fiber that is a stand.

【0004】[0004]

【課題を解決するための手段】本発明の導電性アクリル
複合繊維は、導電性粒子がアスペクト比4以上の繊維状
であり、導電性粒子の繊維中のX線配向度が90%以上
であり、導電性成分のマトリックスポリマーの極限粘度
が1.13以上であることを特徴とする。
In the conductive acrylic composite fiber of the present invention, the conductive particles are fibrous with an aspect ratio of 4 or more, and the degree of X-ray orientation in the fibers of the conductive particles is 90% or more. The matrix polymer of the conductive component has an intrinsic viscosity of 1.13 or more.

【0005】また本発明の製造法は、導電性粒子がアス
ペクト比4以上の繊維状であり、導電性粒子の繊維中の
X線配向度が90%以上であり、導電性成分のマトリッ
クスポリマーの極限粘度が1.13以上である導電性ア
クリル複合繊維を製造するに際し、導電性成分とその他
の成分の紡糸ドープ粘度比を0.5以下とすることを特
徴とする。
Further, in the production method of the present invention, the conductive particles are fibrous with an aspect ratio of 4 or more, the degree of X-ray orientation in the fibers of the conductive particles is 90% or more, and the conductive component matrix polymer When producing a conductive acrylic composite fiber having an intrinsic viscosity of 1.13 or more, the spinning dope viscosity ratio of the conductive component and other components is set to 0.5 or less.

【0006】本発明の導電性繊維は繊維状の導電性粒子
を用いるため湿式または乾式紡糸のほうが好ましい。湿
式または乾式紡糸では紡糸ドープが溶剤で希釈された状
態であるため導電性粒子の濃度も希釈された状態にあ
り、2次凝集を防止し、安定な分散液を作成することが
できる。一方、溶融紡糸ではポリマーの粘度と導電性粒
子の濃度が高いため繊維状の導電性成分を均一に分散さ
せることが困難である。
Since the conductive fiber of the present invention uses fibrous conductive particles, wet or dry spinning is preferred. In the wet or dry spinning, since the spinning dope is diluted with the solvent, the concentration of the conductive particles is also diluted, so that secondary aggregation can be prevented and a stable dispersion liquid can be prepared. On the other hand, in melt spinning, it is difficult to uniformly disperse the fibrous conductive component because the viscosity of the polymer and the concentration of the conductive particles are high.

【0007】本発明に用いる導電性成分のマトリックス
ポリマーは一般に用いられるアクリルポリマーで良い。
ただし、非導電成分のポリマーと分離してしまうと繊維
としての強度等の基本性能が損なわれるためポリマーの
組み合わせに関しては配慮する必要がある。本発明に使
用する導電性成分,非導電成分のアクリルポリマーはア
クリロニトリルを主要成分とする組成的には一般的なポ
リマーで良い。すなわち、第2コモノマーとしてはメチ
ルアクリレート,酢酸ビニル,アクリルアミド,アクリ
ル酸,塩化ビニル,塩化ビニリデン等が使用できる。ま
た、第3モノマーとしてはアリルスルホン酸ナトリウ
ム,メタクリルスルホン酸ナトリウム,2−アクリルア
ミド2−メチルプロパンスルホン酸ナトリウム等が使用
できる。ポリマーの重合方法は、溶液重合でもサスペン
ジョン重合でも良く、とくに制限するものではない。
The matrix polymer of the conductive component used in the present invention may be a commonly used acrylic polymer.
However, if the polymer is separated from the non-conductive component, the basic performance such as the strength of the fiber is impaired, so that it is necessary to consider the combination of the polymers. The acrylic polymer as the conductive component or the non-conductive component used in the present invention may be a general polymer having acrylonitrile as a main component in terms of composition. That is, methyl acrylate, vinyl acetate, acrylamide, acrylic acid, vinyl chloride, vinylidene chloride or the like can be used as the second comonomer. As the third monomer, sodium allyl sulfonate, sodium methacryl sulfonate, sodium 2-acrylamido 2-methylpropane sulfonate, etc. can be used. The polymerization method of the polymer may be solution polymerization or suspension polymerization, and is not particularly limited.

【0008】本発明の複合導電性繊維の導電成分は単独
でも紡糸できる物性を持っている必要がある。非導電成
分で補強されるが、単独で紡糸できないと複合繊維の紡
糸時糸切れが多発し実用性を持たない。この導電成分に
は30重量%以上の導電性粒子がポリマーに対して含ま
れるためポリマー濃度としては通常の70%以下とな
る。紡糸ドープのポリマー濃度が低下すると極端な場合
は凝固浴で凝固不十分となり、単独で紡糸できなくな
る。また導電性粒子が凝固浴中に流出してしまう。低ポ
リマー濃度で単独紡糸できるためにはポリマーの分子量
を高くすれば良い。本発明では導電成分のマトリックス
ポリマーの極限粘度が1.13以上であり、好ましくは
1.33以上である。極限濃度が1.13未満では導電
成分だけでは紡糸できないため、複合繊維にしても糸切
れが多い。極限粘度が1.33以上になると複合繊維に
紡糸する際の糸切れは殆ど無くなり、繊維強力も向上す
る。極限粘度を高くするためには重合方法はサスペンジ
ョン重合が好ましい。溶液重合でジメチルフォルムアミ
ドを用いる場合には、ジメチルフォルムアミドが連鎖移
動剤として作用するため重合条件を選択する必要があ
る。
The conductive component of the composite conductive fiber of the present invention must have physical properties such that it can be spun by itself. Although it is reinforced with a non-conductive component, if it cannot be spun alone, it will have many yarn breakages during spinning of the composite fiber, which is not practical. Since the conductive component contains 30% by weight or more of the conductive particles with respect to the polymer, the polymer concentration becomes 70% or less, which is the usual concentration. When the polymer concentration of the spinning dope is reduced, in an extreme case, the coagulation bath causes insufficient coagulation, which makes it impossible to spin alone. In addition, the conductive particles flow out into the coagulation bath. In order to be able to perform single spinning at a low polymer concentration, the molecular weight of the polymer may be increased. In the present invention, the intrinsic viscosity of the conductive polymer matrix polymer is 1.13 or more, preferably 1.33 or more. If the ultimate concentration is less than 1.13, spinning cannot be performed with only the conductive component, and thus even composite fibers often break. When the intrinsic viscosity is 1.33 or more, yarn breakage during spinning into a composite fiber is almost eliminated, and the fiber strength is also improved. Suspension polymerization is preferable as the polymerization method for increasing the intrinsic viscosity. When dimethylformamide is used in solution polymerization, it is necessary to select the polymerization conditions because dimethylformamide acts as a chain transfer agent.

【0009】本発明のアクリル複合導電繊維は導電成分
が単独でも紡糸できるためサイドバイサイド形でも良
く、芯鞘形でも良い。芯鞘形の場合、導電成分を芯鞘形
の鞘の1部が切れて芯が表面に出ている方が良い。また
非導電成分には例えば鞘の部分に酸化チタンが含まれて
いても良い。鞘に酸化チタンが含まれていると芯の導電
成分の着色が見えずに外観が良くなる。染色した後も目
立たなくなる。本発明のアクリル複合導電繊維の複合比
率(重量)は、導電成分1に対して非導電成分が10以
下である。導電成分の比率が低下すると共に導電性は低
下するため、必要な導電性に応じその比率を選択する。
一方、導電成分の比率が低下すると共に複合繊維の強力
は向上する。用途に応じ適当な比率を選択する。
The acrylic composite conductive fiber of the present invention may be of the side-by-side type or the core-sheath type because the conductive component can be spun alone. In the case of the core-sheath type, it is better that the conductive component is cut off at a part of the core-sheath type sheath to expose the core on the surface. Further, the non-conductive component may include titanium oxide in the sheath portion, for example. When the sheath contains titanium oxide, the coloring of the conductive component of the core is not visible and the appearance is improved. Even after dyeing, it becomes inconspicuous. The composite ratio (weight) of the acrylic composite conductive fiber of the present invention is such that the conductive component is 1 and the non-conductive component is 10 or less. Since the conductivity decreases as the ratio of the conductive component decreases, the ratio is selected according to the required conductivity.
On the other hand, the strength of the composite fiber improves as the ratio of the conductive component decreases. Select an appropriate ratio according to the application.

【0010】本発明に使用する導電性粒子は10-1Ω・
cm以下の比抵抗の銀メッキ導電性チタン酸カリウム,
導電性針状晶酸化チタン等の繊維状微粒子等が使用でき
る。本発明に用いる繊維状微粒子のアスペクト比は4以
上であり、7以上が繊維状微粒子を配向させやすく好ま
しい。微粒子の直径が2μを越えるものが0.1重量%
以上あると、口金詰まりが起こりやすく紡糸性が悪くな
り実用上好ましくない。導電性をさらに向上するために
は比抵抗が10-3Ω・cm以下の、銀メッキした繊維状
微粒子等がより好ましい。
The conductive particles used in the present invention are 10 -1 Ω.
silver-plated conductive potassium titanate with a specific resistance of 1 cm or less,
Fibrous fine particles such as conductive acicular titanium oxide can be used. The aspect ratio of the fibrous fine particles used in the present invention is 4 or more, and 7 or more is preferable because the fibrous fine particles can be easily oriented. 0.1% by weight of particles with a diameter of more than 2μ
If it is above, clogging of the die is likely to occur and the spinnability is deteriorated, which is not preferable in practice. In order to further improve the conductivity, silver-plated fibrous fine particles having a specific resistance of 10 −3 Ω · cm or less are more preferable.

【0011】本発明の繊維状微粒子は、適当な延伸をす
ることにより90%以上の配向度を与えられる。繊維状
微粒子の配向度が低いと良い導電性を繊維に付与するこ
とはできない。
The fibrous fine particles of the present invention can be provided with a degree of orientation of 90% or more by appropriate stretching. If the degree of orientation of the fibrous fine particles is low, good conductivity cannot be imparted to the fibers.

【0012】本発明で紡糸する方法は湿式でも、乾式で
もとくに問題ないが、紡糸,延伸の延伸倍率は通常のア
クリル繊維より低いほうが好ましい。高延伸倍率は導電
成分の切断を起こし易く、収縮は切断した部分の修復に
役立つ。例えばアクリルの湿式紡糸では紡糸,延伸,水
洗,オイリング,乾燥,捲縮付与,切断され綿が製造さ
れる。
The spinning method according to the present invention may be either wet or dry, but the draw ratio for spinning and drawing is preferably lower than that of ordinary acrylic fibers. A high draw ratio tends to cause cutting of the conductive component, and shrinkage helps repair the cut portion. For example, in wet spinning of acrylic, cotton is produced by spinning, drawing, washing with water, oiling, drying, crimping, and cutting.

【0013】[0013]

【本発明の効果】本発明の導電繊維は、比抵抗が103
Ω・cm以下の優れた導電性を示すのみでなく、強度2
g/d以上、伸度20%以上あり、通常の繊維用途に対
応できるため汎用性に富んでいる。
The conductive fiber of the present invention has a specific resistance of 10 3
Not only exhibits excellent conductivity of Ω · cm or less, but also has strength of 2
Since it has g / d or more and an elongation of 20% or more and can be used for ordinary fiber applications, it is versatile.

【0014】[0014]

【実施例】以下さらに詳細は実施例にて説明する。実施
例中『%』は『重量%』を示す。実施例中の綿の強伸度
測定はJIS L−1015に準じて行った。比抵抗
は、長さ10cmの繊維束の両端に銀ペーストを付け、
20℃60%RHの雰囲気で電気抵抗を測定し算出し
た。X線配向度Hの測定は、繊維中の繊維状導電成分の
回折のデバイ環に沿っての強度分布曲線の半価幅hから
次の式により求めた。 H(%)=〔(90°−h°/2)90°〕×100
EXAMPLES Further details will be described below with reference to examples. In the examples, “%” indicates “weight%”. The strength and elongation of the cotton in the examples was measured according to JIS L-1015. The specific resistance is that silver paste is attached to both ends of a 10 cm long fiber bundle,
The electric resistance was measured and calculated in an atmosphere of 20 ° C. and 60% RH. The X-ray orientation degree H was determined by the following formula from the half width h of the intensity distribution curve along the Debye ring of diffraction of the fibrous conductive component in the fiber. H (%) = [(90 ° -h ° / 2) 90 °] × 100

【0015】実施例1 アクリロニトリル(以下ANと略記する。),メチルア
クリレート(以下MAと略記する。),メタクリルスル
ホン酸ナトリウム(以下MASと略記する。)を各々9
6.5,3,0.5%の比率でモノマー濃度30%に調
製し、常法により低温重合によりジメチルホルムアミド
を溶剤とし、アゾビスバレロニトリルを開始剤に使用し
たラジカル重合にてポリマー濃度18%,極限粘度1.
15の導電成分用アクリルポリマードープを得た。同様
にして通常の温度でアゾビスイソブチロニトリルを開始
剤としてAN,MA,MASが各々90,9.5,0.
5%で極限粘度が0.81の非導電成分用アクリルポリ
マードープを得た。
Example 1 9 acrylonitrile (hereinafter abbreviated as AN), methyl acrylate (hereinafter abbreviated as MA), and sodium methacryl sulfonate (hereinafter abbreviated as MAS) each 9
A monomer concentration of 30% was prepared at a ratio of 6.5, 3, 0.5%, and dimethylformamide was used as a solvent by low temperature polymerization by a conventional method, and a polymer concentration was 18 by radical polymerization using azobisvaleronitrile as an initiator. %, Intrinsic viscosity 1.
15 acrylic polymer dopes for conductive components were obtained. Similarly, at a normal temperature, using azobisisobutyronitrile as an initiator, AN, MA, and MAS were 90, 9.5, 0.
An acrylic polymer dope for a non-conductive component having an intrinsic viscosity of 0.81 at 5% was obtained.

【0016】得られた導電成分用アクリルポリマードー
プを導電成分マトリックスとし、導電剤を表1に示す比
率で分散したドープを導電成分とし、常法によりサイド
バイサイド口金を使用し供給ドープ量が非導電成分と導
電成分とが比率3対1で湿式紡糸し、4倍の1次延伸,
水洗後,オイリング,巻縮,乾燥し3デニール76mm
の綿を得た。導電剤の中で繊維状導電微粒子はチタン酸
カリウムの平均直径0.5ミクロン、平均長さ12ミク
ロン、比抵抗3×10-2Ω・cmの10重量%均一に銀
メッキしたウイスカーを用いた。繊維状導電微粒子の配
向度は全て90%以上であった。
The obtained acrylic polymer dope for the conductive component was used as the conductive component matrix, and the dope in which the conductive agent was dispersed in the ratio shown in Table 1 was used as the conductive component. Wet spinning at a ratio of 3: 1 with the conductive component and 4 times primary drawing,
After washing with water, oiling, crimping and drying, 3 denier 76mm
Got cotton. Among the conductive agents, fibrous conductive fine particles used were whiskers of potassium titanate having an average diameter of 0.5 μm, an average length of 12 μm, a specific resistance of 3 × 10 −2 Ω · cm, and 10% by weight uniformly silver-plated. . The degree of orientation of the fibrous conductive particles was 90% or more.

【0017】得られた綿の比抵抗,強度,伸度を表2に
示す。
Table 2 shows the specific resistance, strength and elongation of the obtained cotton.

【0018】実施例2 繊維状導電微粒子を20重量%銀メッキした平均直径
0.4ミクロン、平均長さ3ミクロン、比抵抗10-3Ω
・cmの針状酸化チタンに変更する以外、実施例1の試
験No.3と同様にして作成した綿の比抵抗を測定した
結果、9Ω・cmの優れた導電性を示した。綿の色も淡
灰色であった。カチオン染料のマラカイトグリーンow
f.1%で染色した綿は少しくすんだ程度で染色するこ
とができた。
Example 2 20 wt% of fibrous conductive fine particles were silver-plated, average diameter 0.4 μm, average length 3 μm, specific resistance 10 −3 Ω.
-Test No. 1 of Example 1 except changing to needle-shaped titanium oxide of cm. As a result of measuring the specific resistance of the cotton produced in the same manner as in No. 3, it showed excellent conductivity of 9 Ω · cm. The cotton color was also light gray. Malachite green ow of cationic dye
f. Cotton dyed at 1% could be dyed to a slightly dull degree.

【0019】実施例3 導電成分のマトリックスのポリマーの極限粘度を1.3
8に変更する以外、実施例1の試験No.3と同様にし
て作成した綿の比抵抗を測定した結果、2Ω・cmの優
れた導電性を示した。この綿の強力は3.5g/dと良
い値を示した。また綿の色も淡灰色であった。
Example 3 The intrinsic viscosity of the polymer of the conductive component matrix was 1.3.
No. 8 except that the test No. As a result of measuring the specific resistance of the cotton produced in the same manner as in No. 3, an excellent conductivity of 2 Ω · cm was shown. The strength of this cotton showed a good value of 3.5 g / d. The cotton color was also light gray.

【0020】比較例1 実施例1の試験No.3と同様にして1次延伸倍率を2
倍にした綿の配向度は85%であった。この綿の比抵抗
は3.4×106 Ω・cmと低い導電性を示した。
Comparative Example 1 Test No. 1 of Example 1. In the same way as in 3, the primary draw ratio is 2
The doubled cotton had an orientation of 85%. The specific resistance of this cotton was as low as 3.4 × 10 6 Ω · cm and showed low conductivity.

【0021】比較例2 導電成分マトリックスに非導電成分のポリマーを用いて
実施例1の試験No.3と同様にして紡糸したが、紡糸
時の糸切れが多発し得られた繊維の強力も1g/d以下
であった。この綿の比抵抗は1.7×105 Ω・cmと
低い導電性を示した。
Comparative Example 2 Test No. 1 of Example 1 was conducted using a polymer having a non-conductive component in the conductive component matrix. Spinning was carried out in the same manner as in No. 3, but the fiber breakage occurred frequently during spinning, and the strength of the obtained fiber was also 1 g / d or less. The specific resistance of this cotton was 1.7 × 10 5 Ω · cm, which was a low conductivity.

【表1】 [Table 1]

【表2】 [Table 2]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性粒子がアスペクト比4以上の繊維
状であり、導電性粒子の繊維中のX線配向度が90%以
上であり、導電性成分のマトリックスポリマーの極限粘
度が1.13以上であることを特徴とする導電性アクリ
ル複合繊維。
1. The conductive particles are fibrous with an aspect ratio of 4 or more, the degree of X-ray orientation in the fibers of the conductive particles is 90% or more, and the intrinsic viscosity of the matrix polymer of the conductive component is 1.13. The above is a conductive acrylic composite fiber characterized by the above.
【請求項2】 導電性粒子がアスペクト比4以上の繊維
状であり、導電性粒子の繊維中のX線配向度が90%以
上であり、導電性成分のマトリックスポリマーの極限粘
度が1.13以上である導電性アクリル複合繊維を製造
するに際し、導電性成分とその他の成分の紡糸ドープ粘
度比を0.5以下とすることを特徴とする導電性アクリ
ル複合繊維の製造法。
2. The conductive particles are fibrous with an aspect ratio of 4 or more, the degree of X-ray orientation in the fibers of the conductive particles is 90% or more, and the intrinsic viscosity of the matrix polymer of the conductive component is 1.13. A method for producing a conductive acrylic conjugate fiber, characterized in that the spinning dope viscosity ratio of the conductive component and the other component is set to 0.5 or less when producing the conductive acrylic conjugate fiber as described above.
JP10926392A 1992-04-01 1992-04-01 Conductive acrylic fiber and its production Pending JPH05287612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10926392A JPH05287612A (en) 1992-04-01 1992-04-01 Conductive acrylic fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10926392A JPH05287612A (en) 1992-04-01 1992-04-01 Conductive acrylic fiber and its production

Publications (1)

Publication Number Publication Date
JPH05287612A true JPH05287612A (en) 1993-11-02

Family

ID=14505742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10926392A Pending JPH05287612A (en) 1992-04-01 1992-04-01 Conductive acrylic fiber and its production

Country Status (1)

Country Link
JP (1) JPH05287612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043876A1 (en) * 1998-02-25 1999-09-02 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999043876A1 (en) * 1998-02-25 1999-09-02 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same
US6333107B1 (en) 1998-02-25 2001-12-25 Otsuka Kagaku Kabushiki Kaisha Fine electrically conductive fiber, and resin composition and conductive yarn comprising the same
CN1125200C (en) * 1998-02-25 2003-10-22 大塚化学株式会社 Fine electrically conductive fiber, and resin composition and conductive yarn comprising same

Similar Documents

Publication Publication Date Title
CA1158816A (en) Conductive composite filaments and methods for producing said composite filaments
US4357389A (en) Polymer dope composition, composite fibers made therefrom and process for making same
JP4773849B2 (en) Method for producing acrylic synthetic fiber having conductivity, anti-pill property, and heat storage property
US4810449A (en) Process for the production of hydrophilic polyacrylonitrile filaments or fibers
JP4604911B2 (en) Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber
JPH05287612A (en) Conductive acrylic fiber and its production
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
EP0330766A1 (en) Multi-layered conjugated acrylic fibers and the method for their production
JPS59223313A (en) Electrically conductive acrylic synthetic fiber and production thereof
JP4564322B2 (en) Method for producing conductive acrylic fiber
JP3892132B2 (en) Acrylic fiber and method for producing the same
JP2601775B2 (en) Flame retardant acrylic composite fiber
JPH055214A (en) Electroconductive fiber
JPH0681216A (en) Electrically conductive acrylic fiber
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP4603208B2 (en) Polyketone fiber
JPH11200149A (en) White electroconductive fiber
JPH06101129A (en) Acrylic spun yarn
JP2838206B2 (en) Mixed spun yarn consisting of polytetrafluoroethylene fiber
JP3192308B2 (en) Acrylic synthetic fiber with excellent light resistance
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JP5420196B2 (en) Acrylic synthetic fiber and method for producing the same
JPH0931747A (en) Acrylic fiber having excellent conductivity and its production
JPH0227441B2 (en) DODENSEIAKURIRUKEIGOSEISENINOSEIZOHOHO