JP3892132B2 - Acrylic fiber and method for producing the same - Google Patents

Acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP3892132B2
JP3892132B2 JP3660198A JP3660198A JP3892132B2 JP 3892132 B2 JP3892132 B2 JP 3892132B2 JP 3660198 A JP3660198 A JP 3660198A JP 3660198 A JP3660198 A JP 3660198A JP 3892132 B2 JP3892132 B2 JP 3892132B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
spinning
strength
acrylonitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3660198A
Other languages
Japanese (ja)
Other versions
JPH11222717A (en
Inventor
宏 細川
清三 大石
正和 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP3660198A priority Critical patent/JP3892132B2/en
Publication of JPH11222717A publication Critical patent/JPH11222717A/en
Application granted granted Critical
Publication of JP3892132B2 publication Critical patent/JP3892132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Reinforced Plastic Materials (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強力極細アクリル繊維及びその製造方法に関する。
【0002】
【従来の技術】
アクリル繊維は、バルキー性、鮮明な染色性、良好な染色堅牢性、優れた耐光性等の長所を有することから、セーター、ジャージー、ソックス等の衣料分野、毛布、カーペット、フェイクファー等の建寝装分野等に広く用いられているが、アクリル繊維の別の用途として、極細アクリル繊維の短繊維が、大きな比表面積、親水性と疎水性の適度のバランス、熱での非溶融性、優れた分繊性或いは分散性を備えることから、フィルター分野、孔版印刷原紙分野、樹脂等との繊維複合材料分野等の工業用途にも応用されている。
【0003】
このような工業用途へ繊維を適用する場合、最終製品の力学特性並びに製品の製造工程通過性等の見地から、ある程度以上の繊維強度と伸度が望まれるケースが多い。通常衣料・建寝装分野で用いられるアクリル繊維は、引っ張り強度が2〜4g/dで、伸度が25〜45%であり、工業用途へ極細アクリル繊維を適用する場合には、伸度は通常の範囲でよいものの、引っ張り強度がより高い高強力繊維であることが望まれている。
【0004】
高強力アクリル繊維を得る方法として、従来より原料ポリマー組成のアクリロニトリル成分の増加、高分子量化、紡糸原液中のポリマー濃度の適性化、繊維の高配向化等の技術が提案されているが、かかる技術では通常のアクリル繊維と比較して製造コストが高く応用分野が限られているのが現状であり、繊維の力学特性と共に経済的にも優れた高強力極細アクリル繊維が望まれている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、高い強度を有する力学特性と共に経済的にも優れ、工業用途に適用可能な高強力極細アクリル繊維及びその短繊維、その短繊維を含むシート状物並びに繊維複合材料を提供することにある。
【0006】
【課題を解決するための手段】
本発明の第1の要旨は、単繊維繊度が0.3デニール以下または繊維断面の最大厚みが3.5μm以下の極細繊維であって、引っ張り強度が5g/d以上、伸度が15%以上であることを特徴とするアクリル繊維にあり、第2の要旨は、アクリロニトリル系ポリマーの湿式紡糸法において、紡糸ドラフト1〜3倍、浴中での湿熱延伸倍率5〜10倍、乾熱での延伸倍率1.2〜3倍で紡糸する、前記アクリル繊維の製造方法にある。
【0007】
【発明の実施の形態】
本発明の高強力極細アクリル繊維は、単繊維繊度が0.3デニール以下または繊維断面の最大厚みが3.5μm以下であって、引っ張り強度が5g/d以上、伸度が15%以上であることを要件とするものであり、単繊維繊度が0.3デニールを超えると、特に工業用途での用途が限定され、また、繊維断面の最大厚みが3.5μmを超えると、引っ張り強度を5g/d以上とすることが困難となる。本発明において、繊維断面の最大厚みとは、繊維断面に扁平部を有する繊維においては、その扁平部の短軸の最大厚みを表し、円形断面の繊維においては、直径を表す。なお、Y字断面等で各扁平部のつけね部分の厚みは繊維の物性に影響を及ぼさない。
【0008】
本発明の高強力極細アクリル繊維は、シート状物或いは繊維複合材料等の素材として工業用途へ適用する上で、形態がカット長10mm以下の短繊維であることが好ましく、形態がカット長10mm以下の短繊維であることにより良好な分繊性或いは分散性を示す。カット長が10mmを超えると分繊工程或いは分散工程において繊維同士の絡まりを生じ易く、分繊性或いは分散性が悪化する。
【0009】
本発明の高強力極細アクリル繊維は、アクリロニトリルを50重量%以上含有するアクリロニトリル系ポリマーからなる。アクリロニトリル系ポリマーは、アクリロニトリルを50重量%以上含有するならば、アクリロニトリル単独ポリマーであってもよいが、経済的に好ましくはアクリロニトリルとアクリロニトリルに共重合可能な不飽和モノマーとのコポリマーで、アクリロニトリルを50〜95重量%含有するコポリマーである。
【0010】
アクリロニトリルに共重合可能な不飽和モノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2ーエチルヘキシル、アクリル酸2ーヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2ーヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデン等の不飽和モノマー等が挙げられる。
【0011】
さらに、染色性等改良の目的で共重合されるモノマーとして、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2ーアクリルアミドー2ーメチルプロパンスルホン酸、及びこれらのアルカリ金属塩等が挙げられる。アクリロニトリルを含有するコポリマーのアクリロニトリルの含有量が50重量%未満では、染色鮮明性、発色性等のアクリル繊維としての特徴が発揮されず、また熱特性をはじめとする他の物性も低下する傾向となる。
【0012】
アクリロニトリル系ポリマーの分子量は、通常アクリル系繊維の製造に用いられる範囲のものであれば特に限定されないが、分子量が低すぎると、紡糸性が低下すると同時に原糸の糸質も悪化する傾向にあり、分子量が高すぎると、紡糸原液に最適粘度を与えるポリマー濃度が低くなり、生産性が低下する傾向にあり、適宜紡糸条件に従って選択される。
【0013】
本発明の高強力極細アクリル繊維は、その製造方法に特に限定はないが、例えばアクリロニトリルを50重量%以上含有するアクリロニトリル系ポリマーを、溶剤に溶解して紡糸原液とし、紡糸するという湿式紡糸法により製造することができる。紡糸の際に用いられる溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、エチレンカーボネート、プロピレンカーボネート、γーブチロラクトン、アセトン等の有機溶剤、硝酸、ロダン酸ソーダ、塩化亜鉛等の無機溶剤が挙げられる。
【0014】
本発明の高強力極細アクリル繊維の5g/d以上引っ張り強度及び15%以上の伸度は、湿式紡糸法において、紡糸原液を凝固浴に吐出し引き取る工程での紡糸ドラフトを1〜3倍とし、浴中で湿熱延伸する工程での延伸倍率を4〜10倍、さらに乾燥緻密化の乾熱延伸する工程での延伸倍率を1.2〜3倍とすることにより得ることができる。なお、これらの工程自体は当業者に周知のものである。製造された高強力極細アクリル繊維は、カット長10mm以下に使用目的に合わせて任意の手段によりカットして短繊維とされる。
【0015】
本発明の高強力極細アクリル繊維のカット長10mm以下の短繊維は、抄紙して紙或いは任意の手段により不織布等のシート状物とすることができる。本発明の高強力極細アクリル繊維の短繊維を含むシート状物においては、高強力極細アクリル繊維の力学特性を発揮させるために、本発明の高強力極細アクリル繊維の短繊維を10重量%以上含有させることが必要である。
【0016】
また、本発明の高強力極細アクリル繊維のカット長10mm以下の短繊維は、各種繊維複合材料の素材として用いることができる。繊維複合材料としては、樹脂との混合の繊維強化プラスチック、ゴムとの混合の繊維強化ゴム、セメントとの混合の繊維強化コンクリート等が挙げられる。本発明の高強力極細アクリル繊維の短繊維を含む繊維複合材料においては、高強力極細アクリル繊維の力学特性を発揮させるためには、本発明の高強力極細アクリル繊維の短繊維を10重量%以上含有させることが必要である。
【0017】
本発明は、かかる本発明の高強力極細アクリル繊維のカット長10mm以下の短繊維を10重量%以上含有するシート状物並び本発明の高強力極細アクリル繊維のカット長10mm以下の短繊維を10重量%以上含有する繊維複合材料を包含するものである。
【0018】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、実施例における評価項目は次の方法により測定した。
【0019】
〔単繊維強伸度〕
単繊維を取り出し、引っ張り試験機(オリエンテック社製、テンシロン UTM−II−20)にて強度及び伸度を測定した。但し、単繊維繊度が0.1デニール以下の繊維については50本の繊維束で測定した。
【0020】
〔分繊・分散性〕
繊維を長さ3mmにカットし、この短繊維にポリビニルアルコールを加え、繊維濃度1.2重量%としてJIS P8209に規定の標準離解機にて10分間(30000rpm)攪拌し、離解した。次いで抄紙して目付け20g/m2、一辺が25cmの正方形のシートとし、目視により未分繊の繊維束の個数を計測した。評価は、未分繊繊維束が3個以下を分繊・分散性良好、未分繊繊維束が3個を超えると分繊・分散性不良とした。
【0021】
(実施例1〜6、比較例1〜4)
水系懸濁重合法により得たアクリロニトリル94重量%及びアクリル酸メチル6重量%からなる分子量12万のアクリロニトリル系ポリマーを、ジメチルアセトアミドに溶解し、ポリマー濃度25重量%のジメチルアセトアミド溶液の紡糸原液を調製した。この紡糸原液を孔形状が円形の紡糸ノズルにて、ジメチルアセトアミドの水溶液の凝固浴、紡糸ドラフト1.2倍、湿熱延伸倍率5倍、乾熱延伸倍率1.5倍の条件で湿式紡糸し、単繊維繊度が1.2デニール、0.3デニール、0.1デニール及び0.05デニールの円断面繊維を得た。
【0022】
得られた繊維の強伸度を測定した結果及び繊維をカット長3mm、7mm及び15mmにカットし、この短繊維を用いて抄紙して分繊・分散性及び引っ張り強度の測定の結果を表1に示した。
【0023】
(実施例7〜8、比較例5〜6)
水系懸濁重合法により得たアクリロニトリル94重量%及びアクリル酸メチル6重量%からなる分子量12万のアクリロニトリル系ポリマーを、ジメチルアセトアミドに溶解し、ポリマー濃度25重量%のジメチルアセトアミド溶液の紡糸原液を調製した。この紡糸原液を孔形状が十字及びY字の紡糸ノズルにて、ジメチルアセトアミドの水溶液の凝固浴、紡糸ドラフト1.5倍、湿熱延伸倍率5倍、乾熱延伸倍率1.5倍の条件で湿式紡糸し、単繊維繊度が1.2デニール、0.3デニールの十字及びY字断面繊維を得た。得られた繊維の強伸度を測定した
結果及び繊維をカット長3mmにカットし、この短繊維を用いて抄紙して分繊・分散性及び引っ張り強度の測定の結果を表1に示した。
【0024】
【表1】

Figure 0003892132
【0025】
【発明の効果】
本発明の高強力極細アクリル繊維は、高い強度を有する力学特性と分繊・分散共に経済的にも優れ工業用途に適用可能なものであり、その短繊維は、分繊・分散性に優れ、シート状物並びに繊維複合材料の素材として好適に用いられ、本発明の高強力極細アクリル繊維短繊維を含むシート状物は、フィルタ用、孔版板印刷原紙等に用いられ、また本発明の高強力極細アクリル繊維短繊維を含む繊維複合材料は、工業用の各種用途に用いられる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength ultrafine acrylic fiber and a method for producing the same.
[0002]
[Prior art]
Acrylic fibers have advantages such as bulkiness, clear dyeability, good dyeing fastness, and excellent light fastness. Therefore, acrylic fibers are used for clothing such as sweaters, jerseys, and socks, and blankets, carpets, faux fur, etc. Widely used in the field of clothing, etc. As another use of acrylic fibers, short fibers of ultrafine acrylic fibers have a large specific surface area, an appropriate balance between hydrophilicity and hydrophobicity, non-melting property with heat, excellent Since it has a separability or dispersibility, it is also applied to industrial applications such as the filter field, the stencil printing base paper field, and the fiber composite material field with resins.
[0003]
When fibers are applied to such industrial uses, there are many cases where a certain degree of fiber strength and elongation are desired from the standpoints of the mechanical properties of the final product and the product manufacturing process passability. Acrylic fibers usually used in the clothing and bedding field have a tensile strength of 2 to 4 g / d and an elongation of 25 to 45%. When applying ultrafine acrylic fibers to industrial applications, the elongation is Although it may be in a normal range, it is desired to be a high strength fiber having a higher tensile strength.
[0004]
As methods for obtaining high-strength acrylic fibers, techniques such as increasing the acrylonitrile component of the raw material polymer composition, increasing the molecular weight, optimizing the polymer concentration in the spinning dope, and increasing the orientation of the fibers have been proposed. In terms of technology, the present situation is that the manufacturing cost is high and the application fields are limited compared to ordinary acrylic fibers, and high-strength ultrafine acrylic fibers that are economically superior in addition to the mechanical properties of the fibers are desired.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength ultrafine acrylic fiber and its short fiber, a sheet-like material containing the short fiber, and a fiber composite material, which are economically excellent with mechanical properties having high strength and applicable to industrial applications. There is.
[0006]
[Means for Solving the Problems]
The first gist of the present invention is an ultrafine fiber having a single fiber fineness of 0.3 denier or less or a maximum fiber cross-section thickness of 3.5 μm or less, a tensile strength of 5 g / d or more, and an elongation of 15% or more. In the acrylic fiber characterized in that, in the wet spinning method of the acrylonitrile-based polymer , the spinning draft is 1 to 3 times, the wet heat draw ratio in the bath is 5 to 10 times, in the dry heat It exists in the manufacturing method of the said acrylic fiber spun by draw ratio 1.2-3 times.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The high-strength ultrafine acrylic fiber of the present invention has a single fiber fineness of 0.3 denier or less or a maximum fiber cross-section thickness of 3.5 μm or less, a tensile strength of 5 g / d or more, and an elongation of 15% or more. If the single fiber fineness exceeds 0.3 denier, the use in industrial applications is limited, and if the maximum thickness of the fiber cross section exceeds 3.5 μm, the tensile strength is 5 g. / D or more becomes difficult. In the present invention, the maximum thickness of the fiber cross section indicates the maximum thickness of the short axis of the flat portion in the fiber having a flat portion in the fiber cross section, and the diameter in the fiber of the circular cross section. It should be noted that the thickness of the flat portion of each flat portion in the Y-shaped cross section does not affect the physical properties of the fiber.
[0008]
The high-strength ultrafine acrylic fiber of the present invention is preferably a short fiber having a cut length of 10 mm or less, and having a cut length of 10 mm or less when applied to industrial applications as a raw material such as a sheet-like material or a fiber composite material. Good fiber separation or dispersibility due to the short fiber. If the cut length exceeds 10 mm, the fibers are likely to be entangled in the fiber separation process or the dispersion process, and the fiber separation or dispersibility is deteriorated.
[0009]
The high-strength ultrafine acrylic fiber of the present invention is composed of an acrylonitrile-based polymer containing acrylonitrile at 50% by weight or more. The acrylonitrile-based polymer may be an acrylonitrile homopolymer as long as it contains 50% by weight or more of acrylonitrile, but is economically preferably a copolymer of acrylonitrile and an unsaturated monomer copolymerizable with acrylonitrile. A copolymer containing ˜95% by weight.
[0010]
Examples of unsaturated monomers copolymerizable with acrylonitrile include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate. Acrylic acid ester, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, methacryl Methacrylic acid ester such as hydroxypropyl acid, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylolacrylamido , Diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, include unsaturated monomers such as vinylidene fluoride.
[0011]
Furthermore, as a monomer copolymerized for the purpose of improving dyeability, p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, and these Examples include alkali metal salts. If the acrylonitrile content of the copolymer containing acrylonitrile is less than 50% by weight, the characteristics of acrylic fibers such as dyeing clarity and color developability will not be exhibited, and other physical properties such as thermal properties will tend to be reduced. Become.
[0012]
The molecular weight of the acrylonitrile polymer is not particularly limited as long as it is within the range normally used for the production of acrylic fibers, but if the molecular weight is too low, the spinnability tends to deteriorate and the yarn quality of the raw yarn tends to deteriorate. If the molecular weight is too high, the polymer concentration that gives the optimum viscosity to the spinning dope tends to be low and the productivity tends to decrease, and it is appropriately selected according to the spinning conditions.
[0013]
The production method of the high-strength ultrafine acrylic fiber of the present invention is not particularly limited. For example, by a wet spinning method in which an acrylonitrile-based polymer containing 50% by weight or more of acrylonitrile is dissolved in a solvent to form a spinning stock solution, and spinning is performed. Can be manufactured. Examples of the solvent used for spinning include dimethylacetamide, dimethylformamide, dimethylsulfoxide, organic solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, and acetone, and inorganic solvents such as nitric acid, sodium rhodanate, and zinc chloride. .
[0014]
The tensile strength of 5 g / d or more and the elongation of 15% or more of the high-strength ultrafine acrylic fiber of the present invention is 1 to 3 times the spinning draft in the step of discharging the spinning stock solution to the coagulation bath and taking it up in the wet spinning method. It can be obtained by setting the stretching ratio in the step of wet heat stretching in the bath to 4 to 10 times , and further setting the stretching ratio in the step of dry densification for dry densification to 1.2 to 3 times. These steps themselves are well known to those skilled in the art. The manufactured high-strength ultrafine acrylic fiber is cut into a short fiber by an arbitrary means according to the purpose of use with a cut length of 10 mm or less.
[0015]
The short fibers having a cut length of 10 mm or less of the high-strength ultrafine acrylic fiber of the present invention can be made into a sheet-like material such as a non-woven fabric by paper or any means. In the sheet-like material containing the short fibers of the high-strength ultrafine acrylic fiber of the present invention, in order to exert the mechanical properties of the high-strength ultrafine acrylic fiber, the short fiber of the high-strength ultrafine acrylic fiber of the present invention is contained at 10% by weight or more. It is necessary to make it.
[0016]
Moreover, the short fiber with a cut length of 10 mm or less of the high-strength ultrafine acrylic fiber of the present invention can be used as a raw material for various fiber composite materials. Examples of the fiber composite material include fiber reinforced plastic mixed with resin, fiber reinforced rubber mixed with rubber, and fiber reinforced concrete mixed with cement. In the fiber composite material including the short fibers of the high-strength ultrafine acrylic fiber of the present invention, in order to exert the mechanical properties of the high-strength ultrafine acrylic fiber, the short fiber of the high-strength ultrafine acrylic fiber of the present invention is 10% by weight or more. It is necessary to contain.
[0017]
The present invention provides a sheet-like material containing 10% by weight or more of short fibers having a cut length of 10 mm or less of the high-strength ultrafine acrylic fiber of the present invention, and 10 short fibers having a cut length of 10 mm or less of the high-strength ultrafine acrylic fiber of the present invention. It includes a fiber composite material containing at least% by weight.
[0018]
【Example】
Hereinafter, the present invention will be specifically described by way of examples. The evaluation items in the examples were measured by the following method.
[0019]
[Single fiber strong elongation]
The single fiber was taken out, and the strength and elongation were measured with a tensile tester (Orientec, Tensilon UTM-II-20). However, the fiber having a single fiber fineness of 0.1 denier or less was measured with 50 fiber bundles.
[0020]
[Separation and dispersibility]
The fiber was cut to a length of 3 mm, polyvinyl alcohol was added to the short fiber, the fiber concentration was 1.2 wt%, and the mixture was stirred for 10 minutes (30000 rpm) with a standard disintegrator specified in JIS P8209, and disaggregated. The paper was then made into a square sheet having a basis weight of 20 g / m 2 and a side of 25 cm, and the number of undivided fiber bundles was measured visually. In the evaluation, when the number of undivided fiber bundles is 3 or less, the separation / dispersion is good, and when the number of undivided fiber bundles exceeds 3, the separation / dispersion is poor.
[0021]
(Examples 1-6, Comparative Examples 1-4)
An acrylonitrile polymer consisting of 94% by weight of acrylonitrile and 6% by weight of methyl acrylate obtained by an aqueous suspension polymerization method is dissolved in dimethylacetamide to prepare a spinning stock solution of a dimethylacetamide solution having a polymer concentration of 25% by weight. did. This spinning dope is wet-spun with a spinning nozzle having a circular hole shape under conditions of a coagulation bath of an aqueous solution of dimethylacetamide, a spinning draft of 1.2 times, a wet heat draw ratio of 5 times, and a dry heat draw ratio of 1.5 times. Circular cross-section fibers having a single fiber fineness of 1.2 denier, 0.3 denier, 0.1 denier and 0.05 denier were obtained.
[0022]
Table 1 shows the results of measuring the strength and elongation of the obtained fibers and the results of measuring the fiber separation / dispersibility and tensile strength by cutting the fibers into cut lengths of 3 mm, 7 mm and 15 mm, and making paper using the short fibers. It was shown to.
[0023]
(Examples 7-8, Comparative Examples 5-6)
An acrylonitrile polymer consisting of 94% by weight of acrylonitrile and 6% by weight of methyl acrylate obtained by an aqueous suspension polymerization method is dissolved in dimethylacetamide to prepare a spinning stock solution of a dimethylacetamide solution having a polymer concentration of 25% by weight. did. This spinning dope is wet with a spinning nozzle having cross-shaped and Y-shaped pores under the conditions of a coagulation bath of an aqueous solution of dimethylacetamide, a spinning draft of 1.5 times, a wet heat draw ratio of 5 times, and a dry heat draw ratio of 1.5 times. Spinning was performed to obtain cross and Y-shaped fibers having a single fiber fineness of 1.2 denier and 0.3 denier. Table 1 shows the results of measuring the strength and elongation of the obtained fiber and the results of measuring the fiber separation / dispersibility and tensile strength by cutting the fiber to a cut length of 3 mm and making paper using this short fiber.
[0024]
[Table 1]
Figure 0003892132
[0025]
【The invention's effect】
The high-strength ultrafine acrylic fiber of the present invention is economically excellent in both mechanical properties and splitting / dispersion having high strength and applicable to industrial applications, and its short fiber has excellent splitting / dispersibility, The sheet-like material suitably used as a raw material for sheet-like materials and fiber composite materials and containing the high-strength ultrafine acrylic fiber short fibers of the present invention is used for filters, stencil printing base papers, etc. Fiber composite materials containing ultrafine acrylic fiber short fibers are used in various industrial applications.

Claims (2)

単繊維繊度が0.3デニール以下または繊維断面の最大厚みが3.5μm以下の極細繊維であって、引っ張り強度が5g/d以上、伸度が15%以上であることを特徴とするアクリル繊維。A maximum thickness less ultrafine fibers 3.5μm in single fiber fineness of 0.3 denier or less, or the fiber cross section, the tensile strength of 5 g / d or more, an acrylic fiber elongation is equal to or 15% or more . アクリロニトリル系ポリマーの湿式紡糸法において、紡糸ドラフト1〜3倍、浴中での湿熱延伸倍率5〜10倍、乾熱での延伸倍率1.2〜3倍で紡糸する、請求項1記載のアクリル繊維の製造方法。The acrylic resin according to claim 1, wherein in the wet spinning method of acrylonitrile-based polymer, spinning is performed at a spinning draft of 1 to 3 times, a wet heat draw ratio of 5 to 10 times in a bath , and a draw ratio of 1.2 to 3 times of dry heat. A method for producing fibers.
JP3660198A 1998-02-04 1998-02-04 Acrylic fiber and method for producing the same Expired - Lifetime JP3892132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3660198A JP3892132B2 (en) 1998-02-04 1998-02-04 Acrylic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3660198A JP3892132B2 (en) 1998-02-04 1998-02-04 Acrylic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11222717A JPH11222717A (en) 1999-08-17
JP3892132B2 true JP3892132B2 (en) 2007-03-14

Family

ID=12474327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3660198A Expired - Lifetime JP3892132B2 (en) 1998-02-04 1998-02-04 Acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3892132B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103361925B (en) * 2013-07-31 2015-07-08 山东南山纺织服饰有限公司 Method for slenderizing and permanently shaping uncolored wool
CN103361924B (en) * 2013-07-31 2015-07-08 山东南山纺织服饰有限公司 Method of colored wool stretch refining and impermanency shaping
EP3493199A4 (en) * 2016-07-27 2019-10-16 Mitsubishi Chemical Corporation Fibers for sound absorbing/insulating material, use of said fibers, manufacturing method for fibers for sound absorbing/insulating material, and fiber-molded product for sound absorbing/insulating material

Also Published As

Publication number Publication date
JPH11222717A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
US7892992B2 (en) Polyvinyl alcohol fibers, and nonwoven fabric comprising them
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP3892132B2 (en) Acrylic fiber and method for producing the same
JP2007046195A (en) Precursor fiber for carbon fiber, method for producing the same and method for producing ultrafine carbon fiber
US4663232A (en) Acrylic fiber having excellent durability and dyeability and process for preparation thereof
JP2006348401A (en) Flame resistant fiber sheet precursor, method for producing the same and method for producing flame resistant fiber sheet
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP4943368B2 (en) Process for producing easily splittable acrylic composite fiber
JP2006342487A (en) Method for producing carbon fiber precursor bundle
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP4544581B2 (en) Carbon nanofiber and method for producing the same
JP3556510B2 (en) Acrylic binder fiber
JP4550563B2 (en) Carbon nanofiber or carbon nanotube aggregate and method for producing the same
JPH05148709A (en) Acrylic modified cross section fiber and its production
JPH11256423A (en) Splittable acrylic fiber, and acrylic fiber sheet and nonwoven fabric using the same
JP3897430B2 (en) Acrylic binder fiber
JP2601775B2 (en) Flame retardant acrylic composite fiber
JP3720635B2 (en) Acrylonitrile-based synthetic fiber and method for producing the same
JP2000080521A (en) Slittable acrylic fiber, slit acrylic fiber and sheetlike material
JP4366555B2 (en) Thermal adhesive binder fiber
JPH11247023A (en) Acrylic fiber containing fine particles, its production and artificial leather using the same fiber
US6740722B2 (en) Low density acrylic fiber
JPH10251915A (en) Acrylic fiber with modified cross-section and its production
JP2019127673A (en) Moisture absorption exothermic acrylic fiber
JP6309798B2 (en) Reinforcing fiber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term