JP3720635B2 - Acrylonitrile-based synthetic fiber and method for producing the same - Google Patents

Acrylonitrile-based synthetic fiber and method for producing the same Download PDF

Info

Publication number
JP3720635B2
JP3720635B2 JP18027599A JP18027599A JP3720635B2 JP 3720635 B2 JP3720635 B2 JP 3720635B2 JP 18027599 A JP18027599 A JP 18027599A JP 18027599 A JP18027599 A JP 18027599A JP 3720635 B2 JP3720635 B2 JP 3720635B2
Authority
JP
Japan
Prior art keywords
fiber
acrylonitrile
coagulation bath
weight
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18027599A
Other languages
Japanese (ja)
Other versions
JP2001011728A (en
Inventor
行生 笠坊
勝彦 池田
泰行 藤井
義彦 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP18027599A priority Critical patent/JP3720635B2/en
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to EP00940817A priority patent/EP1209261B1/en
Priority to CNB2004100045189A priority patent/CN1268794C/en
Priority to ES00940817T priority patent/ES2269153T3/en
Priority to PCT/JP2000/004127 priority patent/WO2001000910A1/en
Priority to US10/019,026 priority patent/US6610403B1/en
Priority to CNB008090971A priority patent/CN1170016C/en
Priority to DE60031138T priority patent/DE60031138T2/en
Priority to KR10-2001-7016571A priority patent/KR100417265B1/en
Priority to MXPA01013400A priority patent/MXPA01013400A/en
Priority to CNB2004100045193A priority patent/CN1276136C/en
Priority to TR2001/03698T priority patent/TR200103698T2/en
Priority to CNB200410004516XA priority patent/CN1270005C/en
Priority to TW089112436A priority patent/TW588129B/en
Priority to PT00940817T priority patent/PT1209261E/en
Publication of JP2001011728A publication Critical patent/JP2001011728A/en
Priority to US10/429,822 priority patent/US6696156B2/en
Priority to US10/429,821 priority patent/US6733881B2/en
Priority to US10/774,605 priority patent/US20040155377A1/en
Publication of JP3720635B2 publication Critical patent/JP3720635B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として衣料用途に好適なアクリロニトリル系合成繊維及びその製造方法に関するものである。
【0002】
【従来の技術】
衣料用途に好適なアクリロニトリル系合成繊維には、繊維の強度、伸度及び染色性がバランスして具備されていることが必要になっている。
【0003】
アクリロニトリル系合成繊維を湿式紡糸によって製造するときに、凝固浴での「凝固糸の引き取り速度/ノズル孔からの紡糸原液の吐出線速度」の比を高くすると共に、その後に施す延伸倍率を高くすることによって、配向度の高い高強度の繊維を得ることができる。
【0004】
ところで、凝固浴での「凝固糸の引き取り速度/ノズル孔からの紡糸原液の吐出線速度」の比を高くする、つまり凝固糸の引き取り速度を大きくすることは、凝固浴中で紡糸原液の凝固時間が短くなることであり、凝固浴中で凝固と延伸とが同時に行われて凝固糸にスキン層が発達してしまうために、繊維内部の溶剤置換が不十分になる。
【0005】
従ってこの場合には、表層部がフィブリル化の発達した配向度の高い構造になるのに対して、繊維内部はフィブリル化の発達のない粗構造の繊維になるために、これを高延伸倍率で延伸すると伸度が低下した繊維になり、風合いの良好な繊維糸にすることができなく、又表層部と繊維内部とで配向が不均一な繊維は、原綿の弾力性が不十分であり、これを使用した布帛に十分な反発力が備わらなく、衣料用途に必要な風合いに欠けるものになる。
【0006】
更に、表層部の配向度が必要以上に高くなっている繊維は、染色工程での染料の拡散が高配向の表層部によって阻害されるために、染色性が悪化するという欠点も生じる。
【0007】
なお特公平5−65603号公報には、スキン層不能濃度範囲の高濃度の凝固浴を使用する紡糸方法が説明されているが、凝固浴として有機溶剤水溶液を使用する場合のスキン層不能濃度範囲は有機溶剤濃度の高い領域であり、凝固速度が遅くなることから凝固糸の引取速度を高くすることができなくなり、生産性が極めて低下するだけでなく、凝固斑や繊維同士の融着等も発生する。
【0008】
【発明が解決しようとする課題】
従って本発明が解決しようとする課題は、表層部と繊維内部との配向が均一であって、原綿の弾力性が十分であり、これを使用した布帛に十分な反発力が備わるようになり、しかも強度、伸度及び染色性に優れた性質を有するアクリロニトリル系合成繊維を提供することにある。
【0009】
又本発明が解決しようとするもう一つの課題は、凝固糸の段階でのスキン層の厚さを抑えることによって繊維内部まで均一に凝固した凝固糸にする、すなわち繊維内部の溶剤の拡散が不十分になるのを抑えることによって洗浄時に溶剤が急激に拡散するのを防止する手段を採ることにより、表層部と繊維内部との配向が均一であり、強度、伸度及び染色性において優れた性質を有するアクリロニトリル系合成繊維を、容易かつ的確に得られるアクリロニトリル系合成繊維の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の課題は、以下に記載する構成による本発明のアクリロニトリル系合成繊維及びその製造方法によって解決される。
すなわち本発明は、80重量%以上〜95重量%未満のアクリロニトリル単位を含有するアクリロニトリル系重合体からなる合成繊維であって、その単繊維強度が2.5〜4.0(cN/dtex)であり、単繊維伸度が35〜50%であり、しかも引っ張り試験装置を使用して、試長20mmの単繊維を23℃、50%RHの環境下で、変形速度100%/minで引っ張り破断させたとき、単繊維の引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を生じることを特徴とするアクリロニトリル系合成繊維からなる。
【0011】
上記の構成を備えてなる本発明のアクリロニトリル系合成繊維においては、繊維断面が、長軸/短軸比1.0〜2.0の円形であることが好ましく、長軸/短軸比1.0〜1.2の円形であることが更に好ましい。
【0012】
又、本発明のアクリロニトリル系合成繊維の製造方法は、80重量%以上〜95重量%未満のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.3〜0.6倍の引き取り速度で引き取り、次いで該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて1.1〜2.0倍の延伸を施し、更に3倍以上の湿熱延伸を行なう工程からなる。さらに以下を特徴とする。
【0013】
すなわち、アクリロニトリル系重合体のジメチルアセトアミド溶液からなる紡糸原液と、ジメチルアセトアミド水溶液からなる第1凝固浴と、該第1凝固浴と同じ温度及び組成成分のジメチルアセトアミド水溶液からなる第2凝固浴を使用する。
【0014】
更に、上記の構成を備えてなる本発明のアクリロニトリル系合成繊維の製造方法においては、凝固浴の温度(℃)をYとし、有機溶剤の濃度(重量%)をXとしたときに、第1凝固浴及び第2凝固浴の温度(℃)Yと有機溶剤の濃度(重量%)Xとが、X,Y座標に表記した下記の式(1)〜(3)によって囲繞される範囲内にあることが好ましい。
Y=−X+105 ・・・・・・・・・・・・・・・・・・(1)
Y=−(1/2)X+77.5 ・・・・・・・・・・・・・・・・・・(2)
Y=−4X+315 ・・・・・・・・・・・・・・・・・・(3)
なお、X,Y座標に上記の式(1)〜(3)を表記したものを[図1]として示す。
【0015】
【発明の実施の形態】
本発明のアクリロニトリル系合成繊維は、主としてセーターなどの衣料素材やパイルなどの建寝装素材からなる衣料用途に供するのに好適な合成繊維であり、湿式紡糸による繊維化の段階での重合体の溶解性及び紡糸原液の安定性の点から、アクリロニトリル単位の量が比較的低い共重合体、つまりアクリロニトリル単位が95重量%未満のアクリロニトリル系重合体を繊維原料とする繊維からなる。
【0016】
なお、繊維原料として使用するアクリロニトリル系重合体のアクリロニトリル単位の量が80重量%未満になると、例えばセーターやパイル製品等の用途を目的とするアクリロニトリル系合成繊維に必要なウールライクな風合いが低下するので好ましくない。
【0017】
上記のアクリロニトリル系重合体は、アクリロニトリルと共重合し得る単量体とアクリロニトリルとの共重合体であり、共重合成分として使用する単量体には特に制限が無く、又アクリロニトリル単位が80重量%以上〜95重量%未満のアクリロニトリル系重合体同士の混合物であってもよい。
【0018】
アクリロニトリルと共重合し得る単量体としては、例えばメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸エステル類、塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル類、(メタ)アクリル酸、イタコン酸、クロトン酸等の酸類およびそれらの塩類、マレイン酸イミド、フェニルマレイミド、(メタ)アクリルアミド、スチレン、α−メチルスチレン、酢酸ビニル、スチレンスルホン酸ソーダ、アリルスルホン酸ソーダ、β−スチレンスルホン酸ソーダ、メタアリルスルホン酸ソーダ等のスルホン基を含む重合性不飽和単量体、2−ビニルピリジン、2−メチル−5−ビニルピリジン等のピリジン基を含む重合性不飽和単量体等を挙げることができる。
【0019】
繊維原料として使用するアクリロニトリル系重合体は、例えば水溶液を使用するレドックス重合、不均一系にする懸濁重合、分散剤を使用する乳化重合等をはじめ、その他の重合方法によって容易に得られる。
【0020】
本発明のアクリロニトリル系合成繊維は、その単繊維強度が2.5〜4.0(cN/dtex)であり、単繊維伸度が35〜50%であり、しかも単繊維の引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を生じるものである。
【0021】
アクリロニトリル系合成繊維の単繊維の強度が2.5(cN/dtex)より低くなったり、或いは伸度が50%を超えたりすると、紡績工程での単糸切れによる毛羽の発生が多くなって工程通過性が悪くなり、紡績性が著しく悪化する。
【0022】
又単繊維の強度が4.0(cN/dtex)より高くなったり、或いは伸度が35%未満になると、セーターなどの衣料素材やパイルなどの建寝装素材等の用途を目的とするアクリロニトリル系合成繊維に必要なウールライクの風合いが損なわれる。
【0023】
更に、単繊維の引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を生じるという特性は、繊維の表面層だけでなく繊維内部まで均一に配向が掛かった構造になっているときの特性である。
【0024】
つまり、繊維内部まで均一に配向していて、繊維の表層部と繊維内部の配向とが均一になっているアクリロニトリル系合成繊維は、その引っ張り破断試験を行なったときに、引っ張り破断面において複数の点で裂けるようにして破断するが、表層部が配向していて繊維内部が粗構造になっている繊維は、その引っ張り破断試験を行なったときに、引っ張り破断面において破断点が1点の状態で破断するので、単繊維の引っ張り破断側面に繊維軸方向に伸びる亀裂部を生ずることがない。
【0025】
なお、引っ張り破断試験を行なったときに、引っ張り破断面において複数の点で裂けるようにして破断したことにより、引っ張り破断側面に繊維軸方向に伸びる亀裂部を生じている単繊維の亀裂部が、[図2]に示すように、該亀裂部の基部Bから亀裂部の先端部S迄の長さLが20μm以上になっているときには、繊維の表面層だけでなく繊維内部まで均一に配向した構造になっていることが確認できている。
【0026】
従って本発明のアクリロニトリル系合成繊維は、表層部と繊維内部とが略同様に均一に配向している繊維からなるものであり、これは単繊維の引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を生じることによって特質付けられる。
【0027】
これに対して、表層部が配向していて繊維内部が粗構造になっている繊維は、その引っ張り破断試験を行なったときに引っ張り破断面において破断点が1点の状態で破断するので、単繊維の引っ張り破断側面に繊維軸方向に伸びる或る程度の長さの亀裂部を生ずることがなく、[図3]に示すように、引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を観察することができなく、原綿の弾力性が不十分であり、これを使用した布帛に十分な反発力が備わらず、セーターなどの衣料素材やパイルなどの建寝装素材からなる衣料用途の布帛に必要な風合いを満足し得ないものになる。
【0028】
なお、上記の単繊維の引っ張り破断試験の結果の引っ張り破断側面の状態は、テンシロンUTM−IIを使用して、23℃、50%RHの環境下で、試長20mm、変形速度100%/minで単繊維を破断させた試料を準備し、該試料の外側面をSEM用試料台に接着してAuを約10nmの厚さにスパッタリングした後、PHILIPS社製XL20走査型電子顕微鏡を使用して、加速電圧7.00kV、作動距離31mmの条件で観察した結果である。
【0029】
更に本発明のアクリロニトリル系合成繊維は、紡績性、光沢、発色性、ウールライクな弾力性等の点で、繊維断面が真円形又はそれに近いことが好ましく、繊維断面の長軸/短軸比が1.0〜2.0の円形であることが好ましく、繊維断面の長軸/短軸比が1.0〜1.2の円形であることがより好ましい。
【0030】
繊維断面の長軸/短軸比は、内径1mmの塩化ビニル樹脂製のチューブ内に測定用のアクリロニトリル系合成繊維を通した後、これをナイフで輪切りにした試料を準備し、続いて該試料をアクリロニトリル系合成繊維の断面が上を向くようにしてSEM試料台に接着し、更にAuを約10nmの厚さにスパッタリングしてから、PHILIPS社製XL20走査型電子顕微鏡により、加速電圧7.00kV、作動距離31mmの条件で測定したものである。
【0031】
本発明のアクリロニトリル系合成繊維の製造方法は、80重量%以上〜95重量%未満のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.3〜0.6倍の引き取り速度で引き取り、次いで該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて1.1〜2.0倍の延伸を施し、更に3倍以上の湿熱延伸を行なう工程からなる。
【0032】
上記の工程による本発明のアクリロニトリル系合成繊維の製造方法において、紡糸原液に使用するアクリロニトリル系重合体に対する有機溶剤としては、例えばジメチルアセトアミド、ジメチルスルホキシド、ジメチルホルムアミド等が挙げられるが、特にジメチルアセトアミドによる紡糸原液は、溶剤の加水分解による性状の悪化が少なく、良好な紡糸性を有するものになる。
【0033】
本発明のアクリロニトリル系合成繊維の製造方法においては、得られるアクリロニトリル系合成繊維の配向を高めるために、紡糸原液を紡糸口金から第1凝固浴中に吐出させて凝固糸にするときの第1凝固浴として、アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液を使用し、しかも該第1凝固浴から引き取った凝固糸を、アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて1.1〜2.0倍の延伸に付すことが必要である。
【0034】
ここで、第1凝固浴と第2凝固浴の有機溶剤の濃度を同じにする、第1凝固浴と第2凝固浴の温度を同じにする、更には紡糸原液の有機溶剤と第1凝固浴に用いる有機溶剤と第2凝固浴に用いる有機溶剤とを同じものにする等の手段を採ることにより、第1凝固浴と第2凝固浴の調整が容易であり、しかも溶剤回収上でのメリットのあるものすることができる。
【0035】
アクリロニトリル系重合体のジメチルアセトアミド溶液からなる紡糸原液と、ジメチルアセトアミド水溶液からなる第1凝固浴と、該第1凝固浴と同じ温度及び組成成分のジメチルアセトアミド水溶液からなる第2凝固浴とを使用すると、断面が真円形又はそれに近い長軸/短軸比1.0〜1.2の円形断面の合成繊維の製造を容易に行なうために必要である。
【0036】
更に、凝固浴の温度(℃)をYとし、有機溶剤の濃度(重量%)をXとしたときに、第1凝固浴及び第2凝固浴の温度(℃)Yと有機溶剤の濃度(重量%)Xとを、X,Y座標に表記した下記の式(1)〜(3)によって囲繞される範囲内にあるものにすると、上記の真円形又はそれに近い円形断面の合成繊維をより一層的確に製造し得るようになる。
Y=−X+105 ・・・・・・・・・・・・・・・・・・(1)
Y=−(1/2)X+77.5 ・・・・・・・・・・・・・・・・・・(2)
Y=−4X+315 ・・・・・・・・・・・・・・・・・・(3)
【0037】
上記の本発明のアクリロニトリル系合成繊維の製造方法にあっては、第1凝固浴から引き上げた凝固糸は、該凝固糸が含有する液体中の有機溶剤の濃度が、該第1凝固浴における有機溶剤の濃度を越えているので、凝固糸の表面だけが凝固した半凝固状態にある凝固糸になり、次工程の第2凝固浴中での延伸性が良好な凝固糸になる。
【0038】
又、第1凝固浴中から凝固糸を引き取るときの凝固糸の引き取り速度を、紡糸原液の吐出線速度の0.3〜0.6倍にしたことにより、凝固糸のスキン層の厚さを0.05〜0.15μmにすることが可能になる。
【0039】
第1凝固浴中から引き出す凝固糸のスキン層が0.05μmよりも薄くなっているときには、凝固浴中での繊維同士の密着又は凝固斑が生じ易くなっており、綿質の低い繊維になる。又、該スキン層が0.15μmよりも厚くなっているときには、スキン層によって凝固糸の凝固が阻害されたものになっており、繊維内部が粗構造であって、表層部が配向度の高い構造の繊維になる。
【0040】
なお、凝固糸のスキン層は以下の方法によって測定する。
先ず、第1凝固浴中から引き出した凝固糸を、該第1凝固浴と同じ組成の有機溶剤水溶液に浸漬した後、室温にて、前記有機溶剤水溶液/エタノールの比を徐々に変化させた有機溶剤水溶液/エタノールの混合液、及びエタノールに順次浸漬してエタノールに置換する。
続いて、エタノール/Spurr Resin(電子顕微鏡試料包埋用エポキシ樹脂)比を徐々に変化させた混合液、及びSpurr Resinに順次浸漬して、Spurr Resinに置換し、更に一晩放置して重合包埋することにより試料を作成し、この試料をミクロトームを用いて薄切りした後、透過型電子顕微鏡で加速電圧40kVにて観察し、凝固糸のスキン層の厚さを測定する。
【0041】
上記の工程によるアクリロニトリル系合成繊維の製造方法において、第1凝固浴から引き出した凝固液を含んだままの膨潤状態にある凝固糸は、空気中で延伸することも可能であるが、この凝固糸を上記の本発明方法のように第2凝固浴中で延伸する手段を採ることにより、凝固糸の凝固を促進させることができ、又延伸工程での温度制御も容易になる。
【0042】
又、第2凝固浴中での延伸倍率を1.1倍よりも低くすると、均一に配向した繊維が得られなくなり、又2.0倍よりも高くすると、単繊維切れが発生し易くなり、紡糸安定性が低下し、しかもその後の湿熱延伸工程での延伸性が悪化する。
【0043】
更に、第2凝固浴中での延伸工程後の湿熱延伸は、繊維の配向を更に高めるためのものであり、第2凝固浴中での延伸を終えた膨潤状態にある繊維を水洗に付しながらの延伸や、或いは熱水中での延伸によって行ない得るが、高生産性の観点から熱水中での延伸を行なうのが好ましい。なお、この湿熱延伸工程での延伸倍率を3倍よりも低くすると、繊維の配向の向上が十分でなくなる。
【0044】
第2凝固浴中での延伸工程を終えた繊維は、これを乾燥した後に延伸することも可能であるが、乾燥後に延伸する工程を採ると、静電気が発生しやすく集束性が著しく低下する。これに対して、第2凝固浴中での延伸工程の後の延伸を湿熱延伸によって行なう工程を採る本発明方法によれば、延伸工程に伴なう集束性の著しい低下を避けることができる。
【0045】
更に又、本発明のアクリロニトリル系合成繊維の製造方法においては、湿熱延伸を施した後の乾燥前の膨潤繊維の膨潤度が70重量%以下であるようにすることが好ましい。
【0046】
つまり、湿熱延伸を施した後の乾燥前の膨潤繊維の膨潤度が70重量%以下にある繊維は、表層部と繊維内部とが均一に配向していることを意味するものであり、第1凝固浴中での凝固糸の製造の際の「凝固糸の引き取り速度/ノズルからの紡糸原液の吐出線速度」を下げることによって、第1凝固浴中での凝固糸の凝固を均一なものにした後、これを第2凝固浴中にて延伸することにより、内部まで均一に配向した繊維にし、これによって湿熱延伸を施した後の乾燥前の膨潤繊維の膨潤度が70重量%以下であるようにすることができる。
【0047】
すなわち、第1凝固浴中での凝固糸の製造の際の「凝固糸の引き取り速度/ノズルからの紡糸原液の吐出線速度」を高くすると、該第1凝固浴中での凝固糸の凝固と延伸とが同時に起こるために第1凝固浴中での凝固糸の凝固が不均一になる。従って、これを第2凝固浴中で延伸する工程を採っても、湿熱延伸を施した後の乾燥前の膨潤繊維は膨潤度の高いものになってしまい、繊維内部まで均一に配向した繊維にはならない。
【0048】
乾燥前の膨潤状態にある繊維の膨潤度は、膨潤状態にある繊維の付着液を遠心分離機(3000rpm、15分)によって除去した後の重量wと、これを110℃×2時間の熱風乾燥機で乾燥した後の重量w0 とにより、膨潤度(%)=(w−w0 )×100/w0 によって求めた数値である。
【0049】
更に本発明のアクリロニトリル系合成繊維の製造方法にあっては、第2凝固浴中での延伸とそれに続く湿熱延伸とを行なった後の繊維を、公知の方法によって乾燥し、目的とするアクリロニトリル系合成繊維を得るものである。
【0050】
【実施例】
以下、実施例に基づいて本発明のアクリロニトリル系合成繊維及びその製造方法の具体的な構成を説明する。
【0051】
実施例1
アクリロニトリル92重量%、酢酸ビニル8重量%からなる単量体組成物を過硫酸アンモニウム−亜硫酸水素ナトリウムによる水系懸濁重合にて重合し、平均分子量130,000のアクリロニトリル系重合体を得た後、この重合体をジメチルアセトアミドに溶解し、濃度24重量%の紡糸原液を調製した。
【0052】
次いで、この紡糸原液を孔数40,000、孔径60μmの紡糸口金を通して温度40℃、濃度50重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.4倍の引き取り速度で引き取った後、温度40℃、濃度50重量%のジメチルアセトアミド水溶液からなる第2凝固浴中にて1.5倍の延伸を施し、更に水洗と同時に2.7倍、熱水中で1.9倍の延伸を行ない、続いてオイリングし、温度150℃の熱ロールで乾燥を行ない、ケン縮、熱処理、切断して単繊維太さ3.3dtexの原綿を得た。
【0053】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.1μmであった。又、得られた単繊維の強度は3.2cN/dtexであり、伸度は45%であり、原綿の光沢や風合も良好であった。
【0054】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.8の楕円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ25μm,20μm,20μm,18μmの4本の亀裂部の発生が確認された。
【0055】
実施例2
第1凝固浴及び第2凝固浴の温度を46℃、有機溶剤の濃度を60重量%にする以外は、実施例1と同様にして、単繊維太さ3.3dtexの原綿を得た。
【0056】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.08μmであった。又、得られた単繊維の強度は3.5cN/dtexであり、伸度は37%であり、原綿の光沢や風合も良好であった。
【0057】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.1の略真円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ25μm,24μm,20μm,18μm,15μmの5本の亀裂部の発生が確認された。
【0058】
実施例3
実施例1で使用した紡糸原液と同じ紡糸原液を孔数40,000、孔径60μmの紡糸口金を通して、温度40℃、濃度67重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.3倍の引き取り速度で引き取った後、温度40℃、濃度67重量%のジメチルアセトアミド水溶液からなる第2凝固浴中にて1.5倍の延伸を施し、更に水洗と同時に2.7倍、熱水中で1.9倍の延伸を行ない、続いてオイリングし、温度150℃の熱ロールで乾燥を行ない、ケン縮、熱処理、切断して単繊維太さ2.2dtexの原綿を得た。
【0059】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.07μmであった。又、得られた単繊維の強度は3.4cN/dtexであり、伸度は40%であり、原綿の光沢や風合も良好であった。
【0060】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.05の略真円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ30μm、26μm、22μm、21μm、18μm、15μmの6本の亀裂部の発生が確認された。
【0061】
実施例4
第1凝固浴及び第2凝固浴の温度を46℃、有機溶剤の濃度を60重量%にする以外は、実施例3と同様にして、単繊維太さ2.2dtexの原綿を得た。
【0062】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.09μmであった。又、得られた単繊維の強度は2.9cN/dtexであり、伸度は37%であり、原綿の光沢や風合も良好であった。
【0063】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.1の略真円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ26μm、24μm、21μmの3本の亀裂部の発生が確認された。
【0064】
実施例5
第1凝固浴及び第2凝固浴の温度を45℃、有機溶剤の濃度を58重量%にする以外は、実施例3と同様にして、単繊維太さ2.2dtexの原綿を得た。
【0065】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.1μmであった。又、得られた単繊維の強度は2.8cN/dtexであり、伸度は37%であり、原綿の光沢や風合も良好であった。
【0066】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.2の略真円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ25μm、20μmの2本の亀裂部の発生が確認された。
【0067】
実施例6
第1凝固浴及び第2凝固浴の温度を38℃、有機溶剤の濃度を65重量%にする以外は、実施例3と同様にして、単繊維太さ2.2dtexの原綿を得た。
【0068】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.06μmであった。又、得られた単繊維の強度は3.3cN/dtexであり、伸度は39%であり、原綿の光沢や風合も良好であった。
【0069】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.15の略真円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ31μm、27μm、23μm、20μm、18μmの5本の亀裂部の発生が確認された。
【0070】
比較例1
実施例1で使用した紡糸原液と同じ紡糸原液を孔数40,000、孔径60μmの紡糸口金を通して、温度40℃、濃度50重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を紡糸原液の吐出線速度の1.0倍の引き取り速度で引き取った後、水洗と同時に2.7倍、続いて熱水中で1.9倍の延伸を行ない、更にオイリングし、温度150℃の熱ロールで乾燥を行ない、ケン縮、熱処理、切断して単繊維太さ3.3dtexの原綿を得た。
【0071】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.4μmであった。又、得られた単繊維の強度は2.4cN/dtexであり、伸度は45%であり、原綿の光沢や風合も良好であった。
【0072】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.8の略楕円形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ20μm以上の亀裂部は観察することができなかった。
【0073】
比較例2
熱水延伸に続いて、更に1.2倍の乾熱延伸を行なう工程を付加する以外は比較例1と同様の手順によって、太さ3.3dtexの原綿を得た。
【0074】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.4μmであった。又、得られた単繊維の強度は3.2cN/dtexであり、伸度は30%であった。
【0075】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.8の空豆形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ20μm以上の亀裂部は観察することができなかった。
【0076】
比較例3
実施例3の方法と同様の方法によって凝固糸を得る際に、第1凝固浴中からの凝固糸を、紡糸原液の吐出線速度の1.2倍の引き取り速度で引き取る以外は実施例3と同様にして原綿を得たが、第1凝固液中での糸切れの発生が多く、安定した紡糸ができなかった。
【0077】
比較例4
実施例1で使用した紡糸原液と同じ紡糸原液を孔数40,000、孔径60μmの紡糸口金を通して、温度40℃、濃度67重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.8倍の引き取り速度で引き取った後、空気中での乾熱延伸を行なったところ、糸切れの発生が多く、安定した延伸を行なうことができなかった。
【0078】
比較例5
実施例1で使用した紡糸原液と同じ紡糸原液を孔数40,000、孔径60μmの紡糸口金を通して、温度40℃、濃度50重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を紡糸原液の吐出線速度の0.9倍の引き取り速度で引き取った後、温度40℃、濃度50重量%のジメチルアセトアミド水溶液からなる第2凝固浴中にて1.05倍の延伸を施し、更に水洗と同時に2.7倍、熱水中で1.9倍の延伸を行ない、続いてオイリングし、温度150℃の熱ロールで乾燥を行ない、ケン縮、熱処理、切断して単繊維太さ3.3dtexの原綿を得た。
【0079】
上記の工程中、第1凝固浴中から引き出した凝固糸の単繊維断面を透過型電子顕微鏡で観察したところ、スキン層の厚さは0.3μmであった。又、得られた単繊維の強度は2.5cN/dtexであり、伸度は45%であった。
【0080】
更に、走査型電子顕微鏡による単繊維の断面、及び単繊維の引っ張り破断側面を観察したところ、繊維断面は長軸/短軸比が1.8の空豆形をなしており、引っ張り破断側面には繊維軸方向に伸びる長さ20μm以上の亀裂部は観察することができなかった。
【0081】
なお、上記の原綿はその弾力性が不十分であり、これを使用した布帛には反発力が不足しており、セーターなどの衣料素材やパイルなどの建寝装素材にするのに必要な風合いが備わっていなかった。
【0082】
【発明の効果】
本発明のアクリロニトリル系合成繊維は、表層部と繊維内部との配向が均一であって、強度、伸度及び染色性において優れた性質を具備しており、ウールライクな風合いを有するものであるので、例えばセーターなどの衣料素材やパイルなどの建寝装素材等の用途を目的とする合成繊維として極めて好適である。
【0083】
又本発明のアクリロニトリル系合成繊維の製造方法は、凝固糸の段階でのスキン層の厚さを抑えることによって繊維内部まで均一に凝固した凝固糸にする、つまり繊維内部の溶剤の拡散が不十分になるのを抑えることによって洗浄時に溶剤が急激に拡散するのを防止することにより、表層部と繊維内部との配向を均一にするものであり、強度、伸度及び染色性において優れた性質を具備するアクリロニトリル系合成繊維を容易、かつ的確に製造することができる。
【図面の簡単な説明】
【図1】下記の式(1)〜(3)による関係式を有する凝固浴の温度(℃)Yと有機溶剤の濃度(重量%)Xとを、X,Y座標に表わしたグラフである。
Y=−X+105 ・・・・・・・・・・・・・・・・・・(1)
Y=−(1/2)X+77.5 ・・・・・・・・・・・・・・・・・・(2)
Y=−4X+315 ・・・・・・・・・・・・・・・・・・(3)
【図2】走査型電子顕微鏡によって観察される単繊維の引っ張り破断側面に発生した亀裂部の状態を示す模型図である。
【図3】走査型電子顕微鏡によって観察される単繊維の引っ張り破断側面に亀裂部の発生の無い状態を示す模型図である。
【符号の説明】
B・・・・亀裂部の基部
S・・・・亀裂部の先端部
L・・・・亀裂部の基部Bから亀裂部の先端部S迄の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an acrylonitrile-based synthetic fiber suitable mainly for clothing use and a method for producing the same.
[0002]
[Prior art]
Acrylonitrile-based synthetic fibers suitable for clothing use are required to have a balance of fiber strength, elongation and dyeability.
[0003]
When producing acrylonitrile-based synthetic fibers by wet spinning, the ratio of “coagulated yarn take-off speed / spinning solution discharge linear velocity from nozzle hole” in the coagulation bath is increased, and the subsequent draw ratio is increased. As a result, a high-strength fiber having a high degree of orientation can be obtained.
[0004]
By the way, increasing the ratio of “coagulated yarn take-up speed / spinning solution discharge line speed from nozzle hole” in the coagulation bath, that is, increasing the take-up speed of coagulated yarn is the coagulation of the spin stock solution in the coagulation bath. The time is shortened, and coagulation and drawing are simultaneously performed in a coagulation bath, and a skin layer develops on the coagulated yarn, so that solvent substitution inside the fiber becomes insufficient.
[0005]
Therefore, in this case, since the surface layer portion has a highly oriented structure with fibrillation developed, the inside of the fiber becomes a coarse structure fiber without fibrillation development. When stretched, it becomes a fiber having a reduced elongation, cannot be made into a fiber yarn having a good texture, and the fiber in which the orientation is nonuniform between the surface layer portion and the inside of the fiber has insufficient elasticity of the raw cotton, The fabric using this is not provided with a sufficient repulsive force and lacks the texture necessary for clothing use.
[0006]
Furthermore, the fiber whose surface layer portion has an unnecessarily high degree of orientation also has a drawback that the dyeability deteriorates because the diffusion of the dye in the dyeing process is inhibited by the highly oriented surface layer portion.
[0007]
In Japanese Patent Publication No. 5-65603, a spinning method using a high concentration coagulation bath in the skin layer impossible concentration range is described, but the skin layer impossible concentration range in the case of using an organic solvent aqueous solution as the coagulation bath. Is a region where the concentration of organic solvent is high, and since the coagulation rate becomes slow, it becomes impossible to increase the take-up rate of the coagulated yarn, not only the productivity is extremely reduced, but also coagulation spots and fusion of fibers etc. appear.
[0008]
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is that the orientation of the surface layer portion and the inside of the fiber is uniform, the elasticity of the raw cotton is sufficient, and the fabric using this has a sufficient repulsive force, In addition, an object of the present invention is to provide an acrylonitrile-based synthetic fiber having properties excellent in strength, elongation and dyeability.
[0009]
Another problem to be solved by the present invention is to reduce the thickness of the skin layer at the stage of the coagulated yarn so that the coagulated yarn is uniformly coagulated to the inside of the fiber, that is, the solvent does not diffuse inside the fiber. By taking measures to prevent the solvent from abruptly diffusing at the time of washing by suppressing it to be sufficient, the orientation of the surface layer part and the inside of the fiber is uniform, and the properties excellent in strength, elongation and dyeability It is an object of the present invention to provide a method for producing an acrylonitrile-based synthetic fiber, which can easily and accurately obtain an acrylonitrile-based synthetic fiber having the following.
[0010]
[Means for Solving the Problems]
Said subject is solved by the acrylonitrile type | system | group synthetic fiber of this invention by the structure described below, and its manufacturing method.
That is, the present invention is a synthetic fiber made of an acrylonitrile-based polymer containing acrylonitrile units of 80% by weight to less than 95% by weight, and the single fiber strength is 2.5 to 4.0 (cN / dtex). Yes, single fiber elongation is 35 to 50%, and using a tensile tester, a single fiber having a test length of 20 mm is pulled and fractured at 23 ° C. and 50% RH in a deformation rate of 100% / min. When formed, it is made of an acrylonitrile-based synthetic fiber characterized in that a cracked portion having a length of 20 μm or more extending in the fiber axis direction is formed on the tensile fracture side surface of the single fiber.
[0011]
In the acrylonitrile-based synthetic fiber of the present invention having the above-described configuration, the fiber cross section is preferably a circle having a major axis / minor axis ratio of 1.0 to 2.0, and the major axis / minor axis ratio is 1. A circular shape of 0 to 1.2 is more preferable.
[0012]
Further, the method for producing an acrylonitrile-based synthetic fiber according to the present invention includes a spinning stock solution comprising an organic solvent solution of an acrylonitrile-based polymer containing acrylonitrile units of 80% by weight to less than 95% by weight, and an organic solvent for the acrylonitrile-based polymer. The coagulated yarn is discharged into a first coagulation bath made of an organic solvent aqueous solution having a solvent concentration of 40 to 70% by weight and a temperature of 30 to 50 ° C. to form a coagulated yarn. A second coagulation bath comprising an organic solvent aqueous solution having a concentration of 40 to 70% by weight of the organic solvent with respect to the acrylonitrile polymer and a temperature of 30 to 50 ° C. It includes a step of performing 1.1 to 2.0 times stretching in the inside, and further performing wet heat stretching of 3 times or more. Furthermore, it is characterized by the following.
[0013]
That is, a spinning stock solution composed of a dimethylacetamide solution of an acrylonitrile polymer, a first coagulation bath composed of a dimethylacetamide aqueous solution, and a second coagulation bath composed of a dimethylacetamide aqueous solution having the same temperature and composition as the first coagulation bath are used. To do.
[0014]
Furthermore, in the manufacturing method of the acrylonitrile type | system | group synthetic fiber of this invention provided with said structure, when the temperature (degreeC) of a coagulation bath is set to Y and the density | concentration (weight%) of an organic solvent is set to X, the 1st The temperature (° C.) Y of the coagulation bath and the second coagulation bath and the concentration (% by weight) X of the organic solvent are within the range surrounded by the following formulas (1) to (3) expressed in the X and Y coordinates. Preferably there is.
Y = -X + 105 (1)
Y =-(1/2) X + 77.5 (2)
Y = -4X + 315 (3)
In addition, what expressed said Formula (1)-(3) to the X, Y coordinate is shown as [FIG. 1].
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The acrylonitrile-based synthetic fiber of the present invention is a synthetic fiber suitable for use in clothing applications mainly composed of clothing materials such as sweaters and bedding materials such as piles, and is a polymer fiber at the stage of fiberization by wet spinning. From the viewpoint of solubility and stability of the spinning dope, the copolymer is made of a fiber having a relatively low amount of acrylonitrile units, ie, an acrylonitrile-based polymer having an acrylonitrile unit of less than 95% by weight.
[0016]
When the amount of the acrylonitrile unit of the acrylonitrile polymer used as the fiber raw material is less than 80% by weight, the wool-like texture necessary for the acrylonitrile synthetic fiber for the purpose of, for example, a sweater or a pile product is lowered. Therefore, it is not preferable.
[0017]
The above acrylonitrile-based polymer is a copolymer of acrylonitrile and a monomer that can be copolymerized with acrylonitrile. The monomer used as a copolymerization component is not particularly limited, and the acrylonitrile unit is 80% by weight. It may be a mixture of acrylonitrile-based polymers in an amount of ˜95% by weight.
[0018]
Examples of monomers that can be copolymerized with acrylonitrile include (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and hexyl (meth) acrylate. , Vinyl halides such as vinyl chloride, vinyl bromide, vinylidene chloride, acids such as (meth) acrylic acid, itaconic acid, crotonic acid and their salts, maleic imide, phenylmaleimide, (meth) acrylamide, styrene Polymerizable unsaturated monomers containing a sulfo group such as α-methylstyrene, vinyl acetate, sodium styrene sulfonate, sodium allyl sulfonate, sodium β-styrene sulfonate, sodium methallyl sulfonate, 2-vinyl pyridine, Pyridine such as 2-methyl-5-vinylpyridine Examples thereof include polymerizable unsaturated monomers containing a gin group.
[0019]
The acrylonitrile-based polymer used as the fiber raw material can be easily obtained by other polymerization methods including, for example, redox polymerization using an aqueous solution, suspension polymerization to be heterogeneous, and emulsion polymerization using a dispersant.
[0020]
The acrylonitrile-based synthetic fiber of the present invention has a single fiber strength of 2.5 to 4.0 (cN / dtex), a single fiber elongation of 35 to 50%, and a fiber on the tensile fracture side of the single fiber. A crack having a length of 20 μm or more extending in the axial direction is generated.
[0021]
If the strength of a single fiber of acrylonitrile-based synthetic fiber is lower than 2.5 (cN / dtex) or if the elongation exceeds 50%, the generation of fluff due to single yarn breakage in the spinning process increases. The passability is deteriorated and the spinnability is remarkably deteriorated.
[0022]
In addition, when the strength of the single fiber is higher than 4.0 (cN / dtex) or the elongation is less than 35%, acrylonitrile is intended for applications such as clothing materials such as sweaters and bedding materials such as piles. Wool-like texture necessary for synthetic fibers is impaired.
[0023]
Furthermore, the characteristic that a crack portion having a length of 20 μm or more extending in the fiber axis direction is formed on the tensile fracture side surface of the single fiber is a structure in which the orientation is uniformly applied not only to the surface layer of the fiber but also to the inside of the fiber. It is a characteristic.
[0024]
That is, an acrylonitrile-based synthetic fiber that is uniformly oriented to the inside of the fiber and in which the surface layer portion of the fiber and the orientation of the inside of the fiber are uniform has a plurality of tensile fracture surfaces when the tensile fracture test is performed. When the tensile fracture test is performed on the fiber having a rough structure inside the fiber and the surface layer portion is oriented, the fracture point is one point on the tensile fracture surface. Therefore, there is no occurrence of a crack portion extending in the fiber axis direction on the tensile fracture side surface of the single fiber.
[0025]
In addition, when the tensile fracture test was performed, the crack portion of the single fiber that caused the crack portion extending in the fiber axis direction on the tensile fracture side surface by being fractured so as to tear at a plurality of points in the tensile fracture surface, As shown in FIG. 2, when the length L from the base B of the cracked portion to the tip S of the cracked portion is 20 μm or more, it was uniformly oriented not only in the surface layer of the fiber but also inside the fiber. It has been confirmed that it has a structure.
[0026]
Therefore, the acrylonitrile-based synthetic fiber of the present invention is composed of fibers in which the surface layer portion and the fiber interior are uniformly oriented in the same manner, and this has a length of 20 μm extending in the fiber axis direction on the tensile fracture side surface of the single fiber. It is characterized by creating the above cracks.
[0027]
On the other hand, the fiber with the surface layer portion oriented and the inside of the fiber having a rough structure breaks in a state where the breaking point is one point on the tensile fracture surface when the tensile breaking test is performed. As shown in [FIG. 3], a crack having a length of 20 μm or more extending in the fiber axis direction is formed on the side surface of the tensile fracture without causing a crack portion having a certain length extending in the fiber axis direction on the tensile fracture side surface of the fiber. The clothing made of clothing materials such as sweaters and bedding materials such as piles, where the part cannot be observed, the elasticity of the raw cotton is insufficient, and the fabric using this is not sufficiently repulsive The texture required for the fabric of the application cannot be satisfied.
[0028]
In addition, the state of the tensile fracture side as a result of the tensile fracture test of the above-mentioned single fiber was as follows: Tensilon UTM-II, 23 ° C., 50% RH, test length 20 mm, deformation rate 100% / min. After preparing a sample in which the single fiber was broken by the above, the outer surface of the sample was adhered to the SEM sample stage and Au was sputtered to a thickness of about 10 nm, and then using a PHILIPS XL20 scanning electron microscope. This is a result of observation under the conditions of an acceleration voltage of 7.00 kV and a working distance of 31 mm.
[0029]
Furthermore, the acrylonitrile-based synthetic fiber of the present invention preferably has a fiber cross-section of a perfect circle or close to it in terms of spinnability, gloss, color development, wool-like elasticity, and the like. A circular shape of 1.0 to 2.0 is preferable, and a circular shape having a major axis / minor axis ratio of 1.0 to 1.2 is more preferable.
[0030]
The major axis / minor axis ratio of the fiber cross section was prepared by passing a acrylonitrile synthetic fiber for measurement through a tube made of vinyl chloride resin having an inner diameter of 1 mm and then cutting it with a knife. Was bonded to an SEM sample stage so that the cross section of the acrylonitrile-based synthetic fiber was facing upward, and Au was sputtered to a thickness of about 10 nm, and then an acceleration voltage of 7.00 kV was measured with a PHILIPS XL20 scanning electron microscope. Measured under the condition of a working distance of 31 mm.
[0031]
The method for producing an acrylonitrile-based synthetic fiber according to the present invention includes a spinning dope comprising an organic solvent solution of an acrylonitrile-based polymer containing 80% by weight to less than 95% by weight of an acrylonitrile unit, and an organic solvent for the acrylonitrile-based polymer. The coagulated yarn is discharged into a first coagulation bath made of an organic solvent aqueous solution having a concentration of 40 to 70% by weight and a temperature of 30 to 50 ° C., and the coagulated yarn is discharged from the first coagulation bath into the discharge line of the spinning dope. In the second coagulation bath comprising an organic solvent aqueous solution having a concentration of 40 to 70% by weight of the organic solvent with respect to the acrylonitrile polymer and a temperature of 30 to 50 ° C. 1.1 to 2.0 times of stretching, and further a wet heat stretching of 3 times or more.
[0032]
In the method for producing an acrylonitrile-based synthetic fiber of the present invention by the above steps, examples of the organic solvent for the acrylonitrile-based polymer used in the spinning dope include dimethylacetamide, dimethylsulfoxide, dimethylformamide, etc. The spinning dope has little deterioration in properties due to the hydrolysis of the solvent, and has good spinnability.
[0033]
In the method for producing an acrylonitrile-based synthetic fiber according to the present invention, in order to enhance the orientation of the obtained acrylonitrile-based synthetic fiber, the first coagulation when the spinning dope is discharged from the spinneret into the first coagulation bath to form a coagulated yarn. As the bath, an organic solvent aqueous solution having an organic solvent concentration of 40 to 70% by weight and a temperature of 30 to 50 ° C. with respect to the acrylonitrile polymer is used, and the coagulated yarn taken from the first coagulation bath is used as an organic solvent for the acrylonitrile polymer. It is necessary to subject the film to stretching 1.1 to 2.0 times in a second coagulation bath made of an organic solvent aqueous solution having a solvent concentration of 40 to 70% by weight and a temperature of 30 to 50 ° C.
[0034]
Here, the concentration of the organic solvent in the first coagulation bath and the second coagulation bath is made the same, the temperature of the first coagulation bath and the second coagulation bath are made the same, and further, the organic solvent in the spinning solution and the first coagulation bath By taking measures such as making the organic solvent used for the second coagulation bath the same as the organic solvent used for the second coagulation bath, it is easy to adjust the first coagulation bath and the second coagulation bath, and the merit in recovering the solvent There can be something.
[0035]
When a spinning dope consisting of a dimethylacetamide solution of an acrylonitrile polymer, a first coagulation bath comprising a dimethylacetamide aqueous solution, and a second coagulation bath comprising a dimethylacetamide aqueous solution having the same temperature and composition as the first coagulation bath are used. It is necessary to facilitate the production of a synthetic fiber having a circular cross-section with a perfect circular shape or a long / short axis ratio of 1.0 to 1.2.
[0036]
Furthermore, when the temperature (° C.) of the coagulation bath is Y and the concentration (wt%) of the organic solvent is X, the temperature (° C.) Y of the first coagulation bath and the second coagulation bath and the concentration (weight) of the organic solvent. %) When X is within the range surrounded by the following formulas (1) to (3) expressed in the X and Y coordinates, the synthetic fiber having the perfect circular shape or the circular cross section close thereto is further obtained. It becomes possible to manufacture accurately.
Y = -X + 105 (1)
Y =-(1/2) X + 77.5 (2)
Y = -4X + 315 (3)
[0037]
In the method for producing an acrylonitrile-based synthetic fiber according to the present invention, the coagulated yarn pulled up from the first coagulation bath has an organic solvent concentration in the liquid contained in the coagulated yarn. Since the concentration of the solvent is exceeded, only the surface of the coagulated yarn becomes a coagulated yarn in a semi-solidified state, and the coagulated yarn has good stretchability in the second coagulation bath in the next step.
[0038]
Moreover, the thickness of the skin layer of the coagulated yarn is reduced by setting the take-up speed of the coagulated yarn from the first coagulation bath to 0.3 to 0.6 times the discharge linear velocity of the spinning dope. It becomes possible to make it 0.05-0.15 micrometer.
[0039]
When the skin layer of the coagulated yarn drawn out from the first coagulation bath is thinner than 0.05 μm, the fibers in the coagulation bath tend to adhere to each other or coagulation spots, resulting in fibers with low cotton quality. . Further, when the skin layer is thicker than 0.15 μm, the solidification of the coagulated yarn is inhibited by the skin layer, the inside of the fiber has a rough structure, and the surface layer portion has a high degree of orientation. Become a structural fiber.
[0040]
The skin layer of the coagulated yarn is measured by the following method.
First, after the solidified yarn drawn out from the first coagulation bath is immersed in an organic solvent aqueous solution having the same composition as the first coagulation bath, the organic solvent aqueous solution / ethanol ratio is gradually changed at room temperature. It is immersed in a mixed solution of solvent aqueous solution / ethanol and ethanol in turn to replace with ethanol.
Subsequently, the mixture was gradually immersed in a mixed solution in which the ratio of ethanol / Spurr Resin (epoxy resin for embedding an electron microscope sample) was gradually changed, and Spurr Resin, and replaced with Spurr Resin. A sample is prepared by embedding, and this sample is sliced using a microtome and then observed with a transmission electron microscope at an acceleration voltage of 40 kV to measure the thickness of the skin layer of the coagulated yarn.
[0041]
In the method for producing an acrylonitrile-based synthetic fiber by the above-described process, the coagulated yarn in a swollen state containing the coagulation liquid drawn from the first coagulation bath can be drawn in the air. By adopting a means for drawing in the second coagulation bath as in the above-described method of the present invention, coagulation of the coagulated yarn can be promoted, and temperature control in the drawing process is facilitated.
[0042]
Also, if the draw ratio in the second coagulation bath is lower than 1.1 times, uniformly oriented fibers cannot be obtained, and if it is higher than 2.0 times, single fiber breakage is likely to occur. The spinning stability is lowered, and the stretchability in the subsequent wet heat stretching step is deteriorated.
[0043]
Furthermore, the wet heat drawing after the drawing step in the second coagulation bath is for further enhancing the fiber orientation, and the swollen fibers that have been drawn in the second coagulation bath are subjected to water washing. However, it is preferable to perform stretching in hot water from the viewpoint of high productivity. In addition, when the draw ratio in this wet heat drawing process is made lower than 3 times, the improvement of fiber orientation becomes insufficient.
[0044]
The fiber that has been subjected to the stretching process in the second coagulation bath can be stretched after it is dried. However, if the process of stretching after drying is employed, static electricity is likely to be generated and the converging property is significantly reduced. On the other hand, according to the method of the present invention in which the stretching after the stretching step in the second coagulation bath is performed by wet heat stretching, a remarkable decrease in the converging property accompanying the stretching step can be avoided.
[0045]
Furthermore, in the method for producing an acrylonitrile-based synthetic fiber of the present invention, it is preferable that the swelling degree of the swollen fiber after drying after wet heat stretching is 70% by weight or less.
[0046]
That is, the fiber in which the swelling degree of the swollen fiber before drying after the wet heat stretching is 70% by weight or less means that the surface layer portion and the inside of the fiber are uniformly oriented. The coagulation of the coagulated yarn in the first coagulation bath can be made uniform by lowering the "take-up speed of coagulated yarn / the discharge linear speed of the spinning dope from the nozzle" during the production of the coagulated yarn in the coagulation bath. Then, this is stretched in the second coagulation bath to make fibers uniformly oriented to the inside, whereby the swelling degree of the swollen fibers after drying after wet heat stretching is 70% by weight or less. Can be.
[0047]
That is, if the “coagulated yarn take-up speed / the discharge linear speed of the spinning dope from the nozzle” in the production of the coagulated yarn in the first coagulation bath is increased, the coagulation of the coagulated yarn in the first coagulation bath is increased. Since drawing occurs simultaneously, coagulation of the coagulated yarn in the first coagulation bath becomes non-uniform. Therefore, even if it takes the process of extending | stretching this in a 2nd coagulation bath, the swollen fiber before drying after performing wet heat stretching will become a thing with a high degree of swelling, and it becomes the fiber oriented uniformly to the inside of a fiber. Must not.
[0048]
The degree of swelling of the fibers in the swollen state before drying is determined by removing the adhering solution of the swollen fibers with a centrifuge (3000 rpm, 15 minutes) and drying with hot air at 110 ° C. for 2 hours. Weight after drying in machine 0 And the degree of swelling (%) = (w−w 0 ) × 100 / w 0 Is the numerical value obtained by
[0049]
Furthermore, in the manufacturing method of the acrylonitrile type | system | group synthetic fiber of this invention, the fiber after performing the extending | stretching in a 2nd coagulation bath and subsequent wet heat drawing is dried by a well-known method, and the target acrylonitrile type | system | group is used. Synthetic fibers are obtained.
[0050]
【Example】
Hereinafter, based on an Example, the specific structure of the acrylonitrile type | system | group synthetic fiber of this invention and its manufacturing method is demonstrated.
[0051]
Example 1
A monomer composition consisting of 92% by weight of acrylonitrile and 8% by weight of vinyl acetate was polymerized by aqueous suspension polymerization with ammonium persulfate-sodium hydrogen sulfite to obtain an acrylonitrile-based polymer having an average molecular weight of 130,000. The polymer was dissolved in dimethylacetamide to prepare a spinning stock solution having a concentration of 24% by weight.
[0052]
Next, the spinning solution is discharged into a first coagulation bath made of a dimethylacetamide aqueous solution having a temperature of 40 ° C. and a concentration of 50% by weight through a spinneret having a number of holes of 40,000 and a hole diameter of 60 μm. The coagulated yarn is taken out from the coagulation bath at a take-off speed 0.4 times the discharge linear velocity of the spinning solution, and then 1 in a second coagulation bath made of a dimethylacetamide aqueous solution having a temperature of 40 ° C. and a concentration of 50% by weight. .5 times stretching, 2.7 times at the same time as washing with water, and 1.9 times stretching in hot water, followed by oiling, drying with a hot roll at a temperature of 150 ° C., squeezing, heat treatment To obtain raw cotton having a single fiber thickness of 3.3 dtex.
[0053]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.1 μm. Further, the strength of the obtained single fiber was 3.2 cN / dtex, the elongation was 45%, and the gloss and texture of the raw cotton were good.
[0054]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section was an ellipse having a major axis / minor axis ratio of 1.8, and the tensile fracture side surface The occurrence of four cracks having lengths of 25 μm, 20 μm, 20 μm, and 18 μm extending in the fiber axis direction was confirmed.
[0055]
Example 2
A raw cotton having a single fiber thickness of 3.3 dtex was obtained in the same manner as in Example 1 except that the temperature of the first coagulation bath and the second coagulation bath was 46 ° C. and the concentration of the organic solvent was 60% by weight.
[0056]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.08 μm. Further, the strength of the obtained single fiber was 3.5 cN / dtex, the elongation was 37%, and the gloss and texture of the raw cotton were good.
[0057]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section was a substantially true circle having a major axis / minor axis ratio of 1.1, and the tensile fracture side surface was It was confirmed that five cracks having lengths of 25 μm, 24 μm, 20 μm, 18 μm and 15 μm extending in the fiber axis direction were generated.
[0058]
Example 3
The same spinning dope as used in Example 1 was discharged through a spinneret having a pore number of 40,000 and a pore diameter of 60 μm into a first coagulation bath composed of an aqueous dimethylacetamide solution at a temperature of 40 ° C. and a concentration of 67% by weight to coagulate. In addition to forming a yarn, the coagulated yarn was taken out from the first coagulation bath at a take-off speed of 0.3 times the discharge linear velocity of the spinning raw solution, and then composed of a dimethylacetamide aqueous solution having a temperature of 40 ° C. and a concentration of 67% by weight. Stretching 1.5 times in the second coagulation bath, further 2.7 times at the same time as washing with water, and 1.9 times in hot water, followed by oiling, with a hot roll at a temperature of 150 ° C Drying was performed, crimping, heat treatment and cutting were performed to obtain a raw cotton having a single fiber thickness of 2.2 dtex.
[0059]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.07 μm. The strength of the obtained single fiber was 3.4 cN / dtex, the elongation was 40%, and the gloss and texture of the raw cotton were good.
[0060]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section had a substantially perfect circle with a major axis / minor axis ratio of 1.05, and the tensile fracture side surface was It was confirmed that six cracks having lengths of 30 μm, 26 μm, 22 μm, 21 μm, 18 μm, and 15 μm extending in the fiber axis direction were generated.
[0061]
Example 4
A raw cotton having a single fiber thickness of 2.2 dtex was obtained in the same manner as in Example 3 except that the temperature of the first coagulation bath and the second coagulation bath was 46 ° C. and the concentration of the organic solvent was 60% by weight.
[0062]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.09 μm. The strength of the obtained single fiber was 2.9 cN / dtex, the elongation was 37%, and the gloss and texture of the raw cotton were good.
[0063]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section was a substantially true circle having a major axis / minor axis ratio of 1.1, and the tensile fracture side surface was It was confirmed that three cracks having lengths of 26 μm, 24 μm and 21 μm extending in the fiber axis direction were generated.
[0064]
Example 5
A raw cotton having a single fiber thickness of 2.2 dtex was obtained in the same manner as in Example 3 except that the temperature of the first coagulation bath and the second coagulation bath was 45 ° C. and the concentration of the organic solvent was 58% by weight.
[0065]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.1 μm. The strength of the obtained single fiber was 2.8 cN / dtex, the elongation was 37%, and the gloss and texture of the raw cotton were good.
[0066]
Further, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section had a substantially perfect circle with a major axis / minor axis ratio of 1.2, and the tensile fracture side surface was The occurrence of two cracks having a length of 25 μm and 20 μm extending in the fiber axis direction was confirmed.
[0067]
Example 6
A raw cotton having a single fiber thickness of 2.2 dtex was obtained in the same manner as in Example 3 except that the temperature of the first coagulation bath and the second coagulation bath was 38 ° C. and the concentration of the organic solvent was 65% by weight.
[0068]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.06 μm. Further, the strength of the obtained single fiber was 3.3 cN / dtex, the elongation was 39%, and the gloss and texture of the raw cotton were good.
[0069]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section had a substantially perfect circle with a major axis / minor axis ratio of 1.15, and the tensile fracture side surface It was confirmed that five cracks having lengths of 31 μm, 27 μm, 23 μm, 20 μm and 18 μm extending in the fiber axis direction were generated.
[0070]
Comparative Example 1
The same spinning dope as the spinning dope used in Example 1 was discharged through a spinneret having a pore number of 40,000 and a pore diameter of 60 μm into a first coagulation bath composed of a dimethylacetamide aqueous solution at a temperature of 40 ° C. and a concentration of 50% by weight to coagulate. In addition to forming a yarn, the coagulated yarn was taken out from the first coagulation bath at a take-up speed of 1.0 times the discharge linear speed of the spinning raw solution, then 2.7 times at the same time as washing with water, and then 1 in hot water. The film was stretched 9 times, further oiled, dried with a hot roll at a temperature of 150 ° C., crimped, heat-treated and cut to obtain a raw cotton having a single fiber thickness of 3.3 dtex.
[0071]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.4 μm. The strength of the obtained single fiber was 2.4 cN / dtex, the elongation was 45%, and the gloss and texture of the raw cotton were good.
[0072]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section was substantially oval with a major axis / minor axis ratio of 1.8, and the tensile fracture side surface was No cracks with a length of 20 μm or more extending in the fiber axis direction could be observed.
[0073]
Comparative Example 2
Subsequent to hot water stretching, a raw cotton having a thickness of 3.3 dtex was obtained by the same procedure as in Comparative Example 1 except that a step of performing dry heat stretching of 1.2 times was added.
[0074]
During the above process, when the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope, the thickness of the skin layer was 0.4 μm. The obtained single fiber had a strength of 3.2 cN / dtex and an elongation of 30%.
[0075]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section had a hollow bean shape with a major axis / minor axis ratio of 1.8. A crack having a length of 20 μm or more extending in the fiber axis direction could not be observed.
[0076]
Comparative Example 3
When obtaining a coagulated yarn by the same method as in Example 3, the coagulated yarn from the first coagulation bath is taken up at a rate of 1.2 times the discharge linear velocity of the spinning stock solution, and Example 3 is taken. In the same manner, raw cotton was obtained, but there were many occurrences of yarn breakage in the first coagulation liquid, and stable spinning could not be performed.
[0077]
Comparative Example 4
The same spinning dope as the spinning dope used in Example 1 was discharged through a spinneret having a pore number of 40,000 and a pore diameter of 60 μm into a first coagulation bath composed of a dimethylacetamide aqueous solution at a temperature of 40 ° C. and a concentration of 67% by weight to coagulate. When this coagulated yarn was taken out from the first coagulation bath at a take-off speed of 0.8 times the discharge linear velocity of the spinning dope and then subjected to dry heat drawing in air, There was a lot of occurrence and stable stretching could not be performed.
[0078]
Comparative Example 5
The same spinning dope as the spinning dope used in Example 1 was discharged through a spinneret having a pore number of 40,000 and a pore diameter of 60 μm into a first coagulation bath composed of a dimethylacetamide aqueous solution at a temperature of 40 ° C. and a concentration of 50% by weight to coagulate. The coagulated yarn was taken out from the first coagulation bath at a take-off speed 0.9 times the discharge linear velocity of the spinning stock solution, and then a dimethylacetamide aqueous solution having a temperature of 40 ° C. and a concentration of 50% by weight was obtained. 2 Stretching 1.05 times in a coagulation bath, 2.7 times stretching at the same time as washing with water and 1.9 times stretching in hot water, followed by oiling and drying with a hot roll at 150 ° C. Were subjected to crimping, heat treatment and cutting to obtain a raw cotton having a single fiber thickness of 3.3 dtex.
[0079]
During the above process, the cross section of the single fiber of the coagulated yarn drawn out from the first coagulation bath was observed with a transmission electron microscope. The thickness of the skin layer was 0.3 μm. The strength of the obtained single fiber was 2.5 cN / dtex, and the elongation was 45%.
[0080]
Furthermore, when the cross section of the single fiber and the tensile fracture side surface of the single fiber were observed with a scanning electron microscope, the fiber cross section had a hollow bean shape with a major axis / minor axis ratio of 1.8, and the tensile fracture side surface A crack having a length of 20 μm or more extending in the fiber axis direction could not be observed.
[0081]
In addition, the above-mentioned raw cotton is insufficient in elasticity, and the fabric using it is insufficient in the repulsive force, and the texture necessary for making a clothing material such as a sweater and a bedding material such as a pile. Was not provided.
[0082]
【The invention's effect】
The acrylonitrile-based synthetic fiber of the present invention has a uniform orientation between the surface layer portion and the inside of the fiber, has excellent properties in strength, elongation and dyeability, and has a wool-like texture. For example, it is extremely suitable as a synthetic fiber intended for use as a clothing material such as a sweater or a bedding material such as a pile.
[0083]
In addition, the method for producing an acrylonitrile-based synthetic fiber of the present invention reduces the thickness of the skin layer at the stage of the coagulated yarn to obtain a coagulated yarn that is uniformly coagulated to the inside of the fiber, that is, insufficient diffusion of the solvent inside the fiber. By preventing the solvent from abruptly diffusing at the time of washing, the orientation of the surface layer and the inside of the fiber is made uniform, and the properties excellent in strength, elongation and dyeability are obtained. The provided acrylonitrile-based synthetic fiber can be produced easily and accurately.
[Brief description of the drawings]
FIG. 1 is a graph showing the temperature (° C.) Y of a coagulation bath and the concentration (% by weight) X of an organic solvent in relation to the following formulas (1) to (3) in the X and Y coordinates. .
Y = -X + 105 (1)
Y =-(1/2) X + 77.5 (2)
Y = -4X + 315 (3)
FIG. 2 is a model diagram showing a state of a crack portion generated on a tensile fracture side surface of a single fiber observed by a scanning electron microscope.
FIG. 3 is a model diagram showing a state in which no crack portion is generated on a tensile fracture side surface of a single fiber observed by a scanning electron microscope.
[Explanation of symbols]
B ... Base of crack
S · · · tip of crack
L: Length from the base B of the crack to the tip S of the crack

Claims (5)

80重量%以上〜95重量%未満のアクリロニトリル単位を含有するアクリロニトリル系重合体からなる合成繊維であって、その単繊維強度が2.5〜4.0(cN/dtex)であり、単繊維伸度が35〜50%であり、しかも引っ張り試験装置を使用して、試長20mmの単繊維を23℃、50%RHの環境下で、変形速度100%/minで引っ張り破断させたとき、単繊維の引っ張り破断側面に繊維軸方向に伸びる長さ20μm以上の亀裂部を生じることを特徴とするアクリロニトリル系合成繊維。A synthetic fiber comprising an acrylonitrile-based polymer containing acrylonitrile units of 80% by weight to less than 95% by weight, the single fiber strength of which is 2.5 to 4.0 (cN / dtex), and the single fiber elongation When the tensile strength is 35 to 50% and a single fiber having a test length of 20 mm is pulled and broken at a deformation rate of 100% / min in an environment of 23 ° C. and 50% RH using a tensile tester , An acrylonitrile-based synthetic fiber characterized in that a cracked portion having a length of 20 μm or more extending in the fiber axis direction is formed on the tensile fracture side surface of the fiber. 繊維断面が、長軸/短軸比1.0〜2.0の円形であることを特徴とする請求項1に記載のアクリロニトリル系合成繊維。  The acrylonitrile-based synthetic fiber according to claim 1, wherein the fiber cross section is a circle having a major axis / minor axis ratio of 1.0 to 2.0. 繊維断面が、長軸/短軸比1.0〜1.2の円形であることを特徴とする請求項1に記載のアクリロニトリル系合成繊維。  The acrylonitrile-based synthetic fiber according to claim 1, wherein the fiber cross section is a circle having a major axis / minor axis ratio of 1.0 to 1.2. 80重量%以上〜95重量%未満のアクリロニトリル単位を含有するアクリロニトリル系重合体の有機溶剤溶液からなる紡糸原液を、該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.3〜0.6倍の引き取り速度で引き取り、次いで該アクリロニトリル系重合体に対する有機溶剤の濃度40〜70重量%、温度30〜50℃の有機溶剤水溶液からなる第2凝固浴中にて1.1〜2.0倍の延伸を施し、更に3倍以上の湿熱延伸を行なうことを特徴とするアクリロニトリル系合成繊維の製造方法において、紡糸原液がアクリロニトリル系重合体のジメチルアセトアミド溶液であり、第1凝固浴がジメチルアセトアミド水溶液であり、第2凝固浴が第1凝固浴と同じ温度及び組成成分のジメチルアセトアミド水溶液であることを特徴とするアクリロニトリル系合成繊維の製造方法。A spinning stock solution composed of an organic solvent solution of an acrylonitrile polymer containing 80% by weight or more and less than 95% by weight of an acrylonitrile unit is used. The coagulated yarn is discharged into a first coagulation bath made of an organic solvent aqueous solution to obtain a coagulated yarn, and the coagulated yarn is taken out from the first coagulation bath at 0.3 to 0.6 times the discharge linear velocity of the spinning dope. The film is taken up at a speed, and then stretched 1.1 to 2.0 times in a second coagulation bath comprising an organic solvent aqueous solution having a concentration of 40 to 70% by weight and a temperature of 30 to 50 ° C. with respect to the acrylonitrile polymer. subjected, in the manufacturing method of the acrylonitrile synthetic fibers, characterized by performing the further 3 times more wet heat stretching, the spinning solution is acrylonitrile polymer dimethylacetamide A bromide solution, the first coagulation bath is dimethylacetamide solution, method for producing acrylonitrile synthetic fibers, wherein the second coagulation bath are dimethylacetamide solution at the same temperature and composition components as the first coagulation bath. 凝固浴の温度(℃)をYとし、有機溶剤の濃度(重量%)をXとしたときに、第1凝固浴及び第2凝固浴の温度(℃)Yと有機溶剤の濃度(重量%)Xとが、X,Y座標に表記した下記の式(1)〜(3)によって囲繞される範囲内にあることを特徴とする請求項4に記載のアクリロニトリル系合成繊維の製造方法。
Y=−X+105 ・・・・・・・・・・・・・・・・・・(1)
Y=−(1/2)X+77.5 ・・・・・・・・・・・・・・・・・・(2)
Y=−4X+315 ・・・・・・・・・・・・・・・・・・(3)
When the temperature (° C.) of the coagulation bath is Y and the concentration (wt%) of the organic solvent is X, the temperature (° C.) Y of the first coagulation bath and the second coagulation bath and the concentration (wt%) of the organic solvent. The method for producing an acrylonitrile-based synthetic fiber according to claim 4, wherein X is in a range surrounded by the following formulas (1) to (3) expressed in X and Y coordinates.
Y = -X + 105 (1)
Y =-(1/2) X + 77.5 (2)
Y = -4X + 315 (3)
JP18027599A 1999-06-25 1999-06-25 Acrylonitrile-based synthetic fiber and method for producing the same Expired - Lifetime JP3720635B2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
JP18027599A JP3720635B2 (en) 1999-06-25 1999-06-25 Acrylonitrile-based synthetic fiber and method for producing the same
CNB200410004516XA CN1270005C (en) 1999-06-25 2000-06-23 Acrylic fiber and mfg. process therefor
CNB2004100045189A CN1268794C (en) 1999-06-25 2000-06-23 Acrylic fiber and mfg. process therefor
PCT/JP2000/004127 WO2001000910A1 (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof
US10/019,026 US6610403B1 (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof
CNB008090971A CN1170016C (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for prodn. thereof
DE60031138T DE60031138T2 (en) 1999-06-25 2000-06-23 SYNTHETIC FIBER OF ACRYLONITRILE AND MANUFACTURING METHOD
KR10-2001-7016571A KR100417265B1 (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof
TW089112436A TW588129B (en) 1999-06-25 2000-06-23 An acrylic fiber and a manufacturing process therefor
CNB2004100045193A CN1276136C (en) 1999-06-25 2000-06-23 Acrylic fiber and its producing process
EP00940817A EP1209261B1 (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof
ES00940817T ES2269153T3 (en) 1999-06-25 2000-06-23 SYNTHETIC FIBER BASED ON ACRILONITRILE AND PROCEDURE FOR MANUFACTURING.
MXPA01013400A MXPA01013400A (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof.
PT00940817T PT1209261E (en) 1999-06-25 2000-06-23 Acrylonitrile-based synthetic fiber and method for production thereof
TR2001/03698T TR200103698T2 (en) 1999-06-25 2000-06-23 An acrylic fiber and its method of manufacture.
US10/429,822 US6696156B2 (en) 1999-06-25 2003-05-06 Acrylic fiber and a manufacturing process therefor
US10/429,821 US6733881B2 (en) 1999-06-25 2003-05-06 Acrylic fiber and a manufacturing process therefor
US10/774,605 US20040155377A1 (en) 1999-06-25 2004-02-10 Acrylic fiber and a manufacturing process therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18027599A JP3720635B2 (en) 1999-06-25 1999-06-25 Acrylonitrile-based synthetic fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001011728A JP2001011728A (en) 2001-01-16
JP3720635B2 true JP3720635B2 (en) 2005-11-30

Family

ID=16080384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18027599A Expired - Lifetime JP3720635B2 (en) 1999-06-25 1999-06-25 Acrylonitrile-based synthetic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP3720635B2 (en)

Also Published As

Publication number Publication date
JP2001011728A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
KR100417265B1 (en) Acrylonitrile-based synthetic fiber and method for production thereof
US4316937A (en) Water absorbent acrylic fiber
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
JP3720635B2 (en) Acrylonitrile-based synthetic fiber and method for producing the same
JP2007046195A (en) Precursor fiber for carbon fiber, method for producing the same and method for producing ultrafine carbon fiber
JP2013174033A (en) Anti-pill acrylic fiber having v-shaped cross section and method for producing the same
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP4102582B2 (en) Acrylic modified cross-section fine fiber manufacturing method
JP3767995B2 (en) Super gloss flat acrylic fiber and its fiber products
JP3714594B2 (en) Acrylic fiber and method for producing the same
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP2968377B2 (en) Method for producing acrylic precursor yarn for carbon fiber
JP4895280B2 (en) Anti-pill acrylic fiber and production method thereof
JPH11107034A (en) Acrylic fiber excellent in moist heat characteristic and its production
JP3892132B2 (en) Acrylic fiber and method for producing the same
JP2008285778A (en) Acrylic fiber with triangle cross-section and method for producing the same
JP2017179627A (en) High full-dull fine-denier acrylic fiber
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP3897430B2 (en) Acrylic binder fiber
JP2007231449A (en) Acrylic fiber and method for producing the same
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JP6299341B2 (en) White anti-pill acrylic fiber and process for producing the same
CN116103777A (en) Method for preparing regenerated silk fiber and regenerated silk fiber
JP2004076208A (en) Method for producing carbon fiber precursor bundle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050908

R151 Written notification of patent or utility model registration

Ref document number: 3720635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term