JP2007231449A - Acrylic fiber and method for producing the same - Google Patents

Acrylic fiber and method for producing the same Download PDF

Info

Publication number
JP2007231449A
JP2007231449A JP2006054177A JP2006054177A JP2007231449A JP 2007231449 A JP2007231449 A JP 2007231449A JP 2006054177 A JP2006054177 A JP 2006054177A JP 2006054177 A JP2006054177 A JP 2006054177A JP 2007231449 A JP2007231449 A JP 2007231449A
Authority
JP
Japan
Prior art keywords
fiber
solution
spinning
acrylic
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006054177A
Other languages
Japanese (ja)
Inventor
Kazuya Matsuda
和也 松田
Kenji Kikuchi
謙児 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006054177A priority Critical patent/JP2007231449A/en
Publication of JP2007231449A publication Critical patent/JP2007231449A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably provide an acrylic fiber being rich in lightweight property, heat retaining property and hygroscopic property while keeping high thermal stability and crimp-retaining property without depending on a complicated spinning method. <P>SOLUTION: The acrylic fiber has a plurality of continuous porous parts randomly continuing in the axis direction of the fiber in an axial cross section and has a comb tooth shape alternately having protruded parts and recessed parts continuing in the axis direction of the fiber in a part of a single fiber surface. A method for producing the acrylic fiber comprises using, as a spinning dope, a solution obtained by mixing a solution obtained by dissolving a copolymer composed of ≥90 mol% acrylonitrile and ≤10 mol% unsaturated vinyl compound into an organic solvent with a solution obtained by dissolving a polyether ester block polymer into an organic solvent and then carrying out graft polymerization of the mixture and spinning the drop by a wet spinning method to provide a fiber and then bringing the fiber into contact with an alkali solution. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、軽量性、保温性、吸湿性に優れ、かつ高次加工性が良好で安定した製造が可能であるアクリル繊維及びその製造方法に関するものである。   The present invention relates to an acrylic fiber that is excellent in lightness, heat retention, moisture absorption, high-order workability, and capable of stable production, and a method for producing the same.

アクリル繊維は、発色性、嵩高性に優れ、衣料分野を始め、装身具分野、インテリア分野等に広く用いられている。近年、消費者のアクリル繊維に対する更なる快適志向に対し軽量性、保温性、吸湿性の付与を目的とした試みが多数なされてきた。例えば、芯部と鞘部で異なるポリマーあるいは共重合成分を異にしたポリマーを使用して芯鞘紡糸を行い、製造工程にて芯部と鞘部が界面剥離することで、中空部を形成することが提案された(特許文献1、2、3)。また紡糸原液に酢酸セルロース、ポリアルキレンオキサイド等をを添加し、紡出後、延伸工程でポリマー間に相分離を起こし、ミクロボイドを形成することが提案された(特許文献4,5)。しかし、芯鞘紡糸による方法では、ポリマー間の高度な粘度調整が要求される上、芯鞘構造の特性上、良好な紡糸性を得る為には紡糸口金のホール数が制限される。さらにミクロボイドを紡糸工程で形成する方法では、ミクロボイドが熱的に不安定な為、乾燥、捲縮付与時において十分な高温処理が行えない。これにより、得られる繊維の形態安定性、捲縮保持性が懸念される。これを改善する為にチオシアン酸塩水溶液を溶剤とする方法(特許文献6)が提案されたが、溶媒の回収工程が煩雑となる。
特開平7−70824号公報(特許請求の範囲) 特開2002−13029号公報(特許請求の範囲) 特開平7−90721号公報(特許請求の範囲) 特公昭60−11124号公報(特許請求の範囲) 特公昭59−53365号公報(特許請求の範囲) 特開平10−273821号公報(特許請求の範囲)
Acrylic fibers are excellent in color developability and bulkiness, and are widely used in the clothing field, the jewelry field, the interior field, and the like. In recent years, many attempts have been made to impart lightness, heat retention, and hygroscopicity to the consumer's further comfort orientation with respect to acrylic fibers. For example, core-sheath spinning is performed using different polymers or polymers having different copolymerization components in the core part and the sheath part, and the core part and the sheath part are peeled at the interface in the manufacturing process to form a hollow part. (Patent Documents 1, 2, and 3). Further, it has been proposed that cellulose acetate, polyalkylene oxide, etc. are added to the spinning dope, and after spinning, phase separation occurs between the polymers in the stretching process to form microvoids (Patent Documents 4 and 5). However, the core-sheath spinning method requires a high degree of viscosity adjustment between the polymers, and the number of holes in the spinneret is limited in order to obtain good spinnability due to the characteristics of the core-sheath structure. Furthermore, in the method of forming microvoids in the spinning process, the microvoids are thermally unstable, so that sufficient high-temperature treatment cannot be performed during drying and crimping. Thereby, there are concerns about the shape stability and crimp retention of the resulting fiber. In order to improve this, a method using a thiocyanate aqueous solution as a solvent has been proposed (Patent Document 6), but the solvent recovery step becomes complicated.
JP-A-7-70824 (Claims) JP 2002-13029 A (Claims) JP-A-7-90721 (Claims) Japanese Patent Publication No. 60-11124 (Claims) Japanese Patent Publication No. 59-53365 (Claims) Japanese Patent Laid-Open No. 10-238221 (Claims)

本発明の目的は、繊維機能性として軽量性、保温性、吸湿性を付与した新規なアクリル繊維を提供することであり、さらに該繊維を特殊な紡糸方法に拠らず、かつ安定して製造することが可能である方法を提供することにある。   An object of the present invention is to provide a novel acrylic fiber imparted with lightness, heat retention and moisture absorption as fiber functionality, and the fiber is not produced by a special spinning method and is stably produced. It is to provide a method that is possible.

本発明者らは、紡糸原液にアルカリ溶出性ポリマーを添加、撹拌・分散させた後に紡出する事で得られた繊維を高次加工段階でのアルカリ処理により、添加ポリマーを溶出させることで、繊維形状に特殊な空隙(ポーラス)が形成されることを見いだした。これにより軽量性、保温性、吸湿性に富んだアクリル繊維が得られることも見出した。   The present inventors added an alkali-eluting polymer to the spinning dope, stirred and dispersed, and then spun the fiber obtained by spinning in a high-order processing stage to elute the added polymer, It has been found that a special void is formed in the fiber shape. It has also been found that an acrylic fiber rich in lightness, heat retention and moisture absorption can be obtained.

すなわち、本発明は、繊維軸断面に複数かつランダムに繊維軸方向に連続した空隙(ポーラス)を有し、かつ単繊維表面の一部に繊維軸方向に連続した凸部および凹部を交互に有する櫛目形状を有することを特徴とするアクリル繊維であり、さらに、90モル%以上のアクリルニトリルと10モル%以下の不飽和ビニル化合物との共重合体を有機溶媒に溶解せしめた溶液にポリエーテルエステルブロックポリマーを同有機溶媒に溶解せしめた溶液とを混合してグラフト重合せしめた溶液を紡糸原液として湿式紡糸法にて紡糸して繊維を得、該繊維をその後アルカリ溶液に接触させることを特徴とする請求項1記載アクリル繊維の製造方法である。   That is, the present invention has a plurality of and random voids (porous) in the fiber axis cross section in the fiber axis cross section, and alternately has convex portions and concave portions continuous in the fiber axis direction on a part of the single fiber surface. It is an acrylic fiber characterized by having a comb shape, and further a polyether ester in a solution in which a copolymer of 90 mol% or more of acrylonitrile and 10 mol% or less of an unsaturated vinyl compound is dissolved in an organic solvent. A solution obtained by mixing a solution obtained by dissolving a block polymer in the same organic solvent and graft polymerization is used as a spinning stock solution to obtain a fiber by spinning with a wet spinning method, and the fiber is then contacted with an alkaline solution. The method for producing acrylic fiber according to claim 1.

かくして本発明によれば、高い空隙率から軽量性、保温性、吸湿性に富んだアクリル繊維を複雑な紡糸方法によらず、かつ安定して得ることが可能である。   Thus, according to the present invention, it is possible to stably and stably obtain acrylic fibers having high porosity, light weight, heat retention, and moisture absorption, regardless of complicated spinning methods.

本発明のアクリル繊維は90モル%以上のアクリルニトリルと10モル%以下の不飽和ビニル化合物との共重合体を有機溶媒に溶解せしめた溶液にポリエーテルエステルブロックポリマーを混合してグラフト重合せしめた溶液を紡糸原液として湿式紡糸法にて紡糸することによって得られる。   The acrylic fiber of the present invention was graft polymerized by mixing a polyether ester block polymer in a solution in which a copolymer of 90 mol% or more of acrylonitrile and 10 mol% or less of an unsaturated vinyl compound was dissolved in an organic solvent. It is obtained by spinning a solution as a spinning stock solution by a wet spinning method.

すなわち本発明のアクリル繊維はアクリルポリマーにアルカリ溶出性ポリマーを添加することで得られる。本発明で使用するアクリルポリマーは、少なくとも90モル%のアクリルニトリル(以下ANという)からなる重合体で、10モル%以内で他の共重合性不飽和ビニル化合物と共重合可能である。共重合せず単独の重合体も使用可能である。   That is, the acrylic fiber of the present invention can be obtained by adding an alkali-eluting polymer to an acrylic polymer. The acrylic polymer used in the present invention is a polymer composed of at least 90 mol% acrylonitrile (hereinafter referred to as AN), and can be copolymerized with other copolymerizable unsaturated vinyl compounds within 10 mol%. A single polymer can be used without copolymerization.

AN系重合体中に含まれる共重合成分としては、アクリル酸,メタクリル酸又はこれらのエステル類、アクリルアミド、メタクリルアミド、酢酸ビニル、塩化ビニル、塩化ビニリデンおよびビニルスルホン酸、アクリルスルホン酸,メタリルスルホン酸,P−スチレンスルホン酸などの不飽和スルホン酸又はこれらの塩類などの酸性モノマなどが挙げられる。スルホン酸基を有するビニルモノマの共重合率は通常0.2〜0.7モル%、好ましくは0.3〜0.5モル%がよい。0.2モル%未満では染色性が不良であり一方0.7モル%をこえると延伸性の低下、或いは単糸間の膠着を生じ易くなる。また中性単量体の共重合率は、通常2〜7モル%、好ましくは3〜6モル%がよい。   The copolymer component contained in the AN polymer includes acrylic acid, methacrylic acid or esters thereof, acrylamide, methacrylamide, vinyl acetate, vinyl chloride, vinylidene chloride and vinyl sulfonic acid, acrylic sulfonic acid, methallyl sulfone. Acid, unsaturated sulfonic acid such as P-styrene sulfonic acid, or acidic monomers such as salts thereof. The copolymerization rate of the vinyl monomer having a sulfonic acid group is usually 0.2 to 0.7 mol%, preferably 0.3 to 0.5 mol%. If it is less than 0.2 mol%, the dyeability is poor. On the other hand, if it exceeds 0.7 mol%, the drawability tends to deteriorate or the single yarn tends to stick. The copolymerization ratio of the neutral monomer is usually 2 to 7 mol%, preferably 3 to 6 mol%.

本発明で使用するアクリルポリマーの重合方法は懸濁重合法,乳化重合法,溶液重合法等のうちいずれでも良いが、その効果が有機溶媒のジメチルスルホキシド(以下DMSOという)系湿式紡糸において特に顕著であることから重合方法もDMSOを使った溶液重合が好ましい。   The polymerization method of the acrylic polymer used in the present invention may be any of suspension polymerization method, emulsion polymerization method, solution polymerization method, etc., but the effect is particularly remarkable in dimethyl sulfoxide (hereinafter referred to as DMSO) type wet spinning as an organic solvent. Therefore, the polymerization method is preferably solution polymerization using DMSO.

本発明にて使用するアルカリ溶出性ポリマーは、ANのグラフト重合が可能であれば特に限定されるものではないが、アルカリ溶出性ポリマーとしてはポリエーテルエステルを選択することが好ましい。ポリエステル成分としては、アジピン酸、アゼライン酸、エチレングリコールからなるエステル化合物、ポリエーテル成分としては、ポリエチレングリコールが例として挙げられる。ポリエーテルエステルはブロックポリマーとなっていることが好ましい。これらの2成分から成る重合物をAN系重合体と同じ有機溶媒中に溶解させ、ANを添加混合して、グラフト重合を行う。このように得られた重合液にはAN系重合体が共存する。かかる重合液を紡糸原液とする。このときのポリエーテルエステルブロックポリマー添加量としては、紡糸原液全体に対し、5〜40重量%、好ましくは25〜30重量%が良い。   The alkali-eluting polymer used in the present invention is not particularly limited as long as the graft polymerization of AN is possible, but it is preferable to select a polyether ester as the alkali-eluting polymer. Examples of the polyester component include ester compounds composed of adipic acid, azelaic acid and ethylene glycol, and examples of the polyether component include polyethylene glycol. The polyether ester is preferably a block polymer. A polymer comprising these two components is dissolved in the same organic solvent as the AN polymer, and AN is added and mixed to carry out graft polymerization. An AN polymer coexists in the polymerization solution thus obtained. Such a polymerization solution is used as a spinning dope. The addition amount of the polyetherester block polymer at this time is 5 to 40% by weight, preferably 25 to 30% by weight, based on the whole spinning dope.

ポリエーテルエステルブロックポリマーに有機溶媒中にて、アクリロニトリルをグラフト重合させることで、水凝固性を付与することができる。これによりポリエーテルエステルブロックポリマーが凝固浴中で溶出すること無く、また製造工程中でミクロボイドを発生すること無く、アクリル共重合体とともに繊維形状の形成が可能となる。   Water coagulation can be imparted by graft polymerization of acrylonitrile to the polyether ester block polymer in an organic solvent. This makes it possible to form a fiber shape together with the acrylic copolymer without the polyether ester block polymer eluting in the coagulation bath and without generating microvoids in the production process.

紡糸原液としての重合体濃度は20〜25重量%が望ましい。重合体濃度が20重量%より少ないと得られる繊維が失透し光沢が失われるとともに発色性低下をきたす。一方重合体濃度が25重量%をこえると紡糸性が著しく悪化する。かくして調製された紡糸原液は、通常の湿式紡糸装置を使用して紡糸される。なお、紡糸浴としてはDMSO、ジメチルホルムアミド、ジメチルアセトアミド等の有機溶媒、特にDMSO水溶液が好ましい。   The polymer concentration as the spinning dope is preferably 20 to 25% by weight. When the polymer concentration is less than 20% by weight, the resulting fiber is devitrified and gloss is lost, and color developability is lowered. On the other hand, when the polymer concentration exceeds 25% by weight, the spinnability is remarkably deteriorated. The spinning dope thus prepared is spun using a normal wet spinning apparatus. The spinning bath is preferably an organic solvent such as DMSO, dimethylformamide, or dimethylacetamide, particularly a DMSO aqueous solution.

紡糸原液をDMSO水溶液中に紡出する際、紡糸ドラフトは通常1.5〜2.2の範囲が用いられ、好ましくは1.75〜2.05である。紡糸ドラフトが1.5未満であると口金から引取ローラーまでの糸が弛み、凝固浴液の乱流で糸が揺れ口金面で糸が切れるので好ましくなく、紡糸ドラフトが2.2を超えると糸が張りすぎ口金面で糸が切れるので好ましくない。   When the spinning dope is spun into a DMSO aqueous solution, the spinning draft is usually in the range of 1.5 to 2.2, preferably 1.75 to 2.05. If the spinning draft is less than 1.5, the yarn from the die to the take-up roller will loosen, and the yarn will sway due to the turbulent flow of the coagulation bath liquid, and the yarn will break at the die surface, and if the spinning draft exceeds 2.2, the yarn Is not preferable because the yarn is cut too much on the base.

凝固浴濃度としては55〜75重量%,好ましくは57〜65重量%の前記溶媒を含有する高濃度浴が望ましい。又、凝固浴温度としては一般に30〜50℃,好ましくは35〜45℃の温度範囲である。凝固浴濃度が高いところでは凝固浴温度を相対的に低目に設定することで、繊維断面が真円に近いものが得られ易く、表面平滑性が良好になる。繊維の断面形状についても特に限定されることはなく、異形断面であってもよい。   As the coagulation bath concentration, a high concentration bath containing 55 to 75% by weight, preferably 57 to 65% by weight of the above-mentioned solvent is desirable. The coagulation bath temperature is generally 30 to 50 ° C., preferably 35 to 45 ° C. When the coagulation bath concentration is high, by setting the coagulation bath temperature relatively low, it is easy to obtain a fiber cross section close to a perfect circle, and the surface smoothness becomes good. The cross-sectional shape of the fiber is not particularly limited, and may be an irregular cross-section.

上記凝固浴条件に加えて、原液温度を60〜90℃、好ましくは70〜80℃、紡糸ドラフトを1.75〜2.05の範囲にすることが好ましい。かくして調製された凝固糸条はDMSO水溶液中で、3.5〜5倍、好ましくは4.0〜4.5倍に延伸される。この延伸倍率が3.5倍より小さいと紡糸操業性が低下する。延伸された糸条は温水、例えば40〜60℃の水中で該糸条中に含まれている溶媒を除去した後、150℃以上、好ましくは155〜165℃の乾熱下、収縮率5%以下、好ましくは0〜3%の収縮率に保ちながら、乾燥・緻密化緊張熱処理が施される。加えて緻密化処理した繊維を少なくとも160℃以上で無緊張熱処理をすることで、収縮による糸条間の絡みが低減され、ピリングの発生を抑制する。なお、乾燥緻密化と無緊張熱処理は、通常分離せずに熱風乾燥機で行われるが、分離して無緊張熱処理工程を追加する方法を用いてもよい。   In addition to the above coagulation bath conditions, the stock solution temperature is preferably in the range of 60 to 90 ° C, preferably 70 to 80 ° C, and the spinning draft is in the range of 1.75 to 2.05. The coagulated yarn thus prepared is stretched 3.5 to 5 times, preferably 4.0 to 4.5 times in a DMSO aqueous solution. If the draw ratio is less than 3.5, the spinning operability is lowered. The drawn yarn is subjected to removal of the solvent contained in the yarn in warm water, for example, water at 40 to 60 ° C., and then the shrinkage is 5% under dry heat of 150 ° C. or more, preferably 155 to 165 ° C. Hereinafter, drying / densification tension heat treatment is preferably performed while maintaining a shrinkage rate of 0 to 3%. In addition, the densified fiber is subjected to non-tensile heat treatment at a temperature of at least 160 ° C., thereby reducing the entanglement between yarns due to shrinkage and suppressing the occurrence of pilling. In addition, although drying densification and tension free heat processing are normally performed with a hot air dryer, without isolate | separating, you may use the method of isolate | separating and adding a stress free heat processing.

その後は、捲縮付与・熱セット・乾燥を経て任意長にカットまたはトウとしてアクリル繊維が得られる。得られた繊維は、高次加工にてアルカリ水溶液に浸漬・撹拌させ、アルカリ可溶分を溶出させる。これをアルカリ処理という。高次加工におけるアルカリ処理はカットまたはトウ状など、アクリル繊維の形状による制約は受けない。   Thereafter, the acrylic fiber is obtained as a cut or tow of any length through crimping, heat setting, and drying. The obtained fiber is immersed and stirred in an alkaline aqueous solution by high-order processing to elute an alkali-soluble component. This is called alkali treatment. Alkali treatment in high-order processing is not limited by the shape of the acrylic fiber, such as cut or tow shape.

アルカリ処理の条件としては、0.03〜6.0wt%NaOH水溶液中で、温度30〜90℃、処理時間10〜180分、好ましくは0.3wt%NaOH水溶液、温度60℃、処理時間60分程度が良い。アルカリ濃度が濃いとアクリル繊維の黄変が懸念される。温度が高い場合、また処理時間が長い場合についても同様である。   The conditions for the alkali treatment are as follows: 0.03-6.0 wt% NaOH aqueous solution, temperature 30-90 ° C., treatment time 10-180 minutes, preferably 0.3 wt% NaOH aqueous solution, temperature 60 ° C., treatment time 60 minutes. Good degree. If the alkali concentration is high, the acrylic fiber may be yellowed. The same applies to the case where the temperature is high and the processing time is long.

処理後は10分程水洗した後、風乾させることで空隙(ポーラス)率15〜25%を有する軽量性、保温性、吸湿性に富んだアクリル繊維が得られる。   After the treatment, it is washed with water for about 10 minutes and then air-dried to obtain an acrylic fiber having a porosity of 15 to 25% and having excellent lightness, heat retention and moisture absorption.

かくして本発明の繊維が得られる。本発明の繊維は、繊維軸断面に複数かつランダムに繊維軸方向に連続した空隙(ポーラス)を有し、かつ単繊維表面の一部に繊維軸方向に連続した凸部および凹部を交互に有する櫛目形状を有することを特徴とする。すなわち、繊維軸すなわち長手方向に空隙(ポーラス)を有する。該空隙は繊維軸方向に沿って長く形成され、繊維軸断面に複数ありかつランダムに存在する。また、本発明の繊維は、短繊維の表面の一部に繊維軸方向に連続した凸部および凹部を交互に有する櫛目形状を形成している。この空隙と櫛目構造が相俟って優れた、軽量性、保温性、吸湿性を達成することができる。   Thus, the fiber of the present invention is obtained. The fiber of the present invention has plural and random voids (porous) continuously in the fiber axis direction on the fiber axis cross section, and alternately has convex portions and concave portions continuous in the fiber axis direction on a part of the single fiber surface. It has a comb shape. That is, it has a void (porous) in the fiber axis, that is, in the longitudinal direction. The voids are formed long along the fiber axis direction, and a plurality of the voids are present in the fiber axis cross section and are present at random. Moreover, the fiber of this invention forms the comb shape which has the convex part and recessed part which continued to the fiber-axis direction alternately in a part of surface of a short fiber. The lightness, heat retention, and hygroscopicity which were excellent in combination with the voids and the comb structure can be achieved.

また、本発明の繊維において、空隙率が1〜30%であることが好ましい。ここで空隙率とは、繊維軸に垂直な断面写真から空隙部分の面積を算出し、全断面積に占める割合いを算出したものである。   In the fiber of the present invention, the porosity is preferably 1 to 30%. Here, the porosity is calculated by calculating the area of the void portion from a cross-sectional photograph perpendicular to the fiber axis and occupying the total cross-sectional area.

以下、実施例及び比較例を示すことで本発明を具体的に説明するが、本発明は、これらに限定されるものではない。実施例及び比較例中の軽量性、保温性、吸湿性は次の方法に基づいて測定した。   Hereinafter, the present invention will be specifically described by showing Examples and Comparative Examples, but the present invention is not limited to these. The lightness, heat retention, and hygroscopicity in Examples and Comparative Examples were measured based on the following methods.

軽量性
軽量性については、アルカリ処理前後の重量減量率により定量的に評価した。重量減量率の算出方法は下記の式に基づいて実施した。
重合減量率 = (M−M)/M × 100
:アルカリ処理前の絶乾重量(g)
:アルカリ処理後の絶乾重量(g)
絶乾重量は、真空乾燥機(80℃)にて8Hr乾燥させた重量とする。
Lightweight The lightness was quantitatively evaluated by the weight loss rate before and after alkali treatment. The method for calculating the weight loss rate was performed based on the following formula.
Polymerization weight loss rate = (M 1 −M 2 ) / M 1 × 100
M 1 : absolute dry weight (g) before alkali treatment
M 2 : Absolute dry weight after alkali treatment (g)
The absolutely dry weight is the weight dried for 8 hours by a vacuum dryer (80 ° C.).

空隙率
空隙率については、下記の式に基づいて算出した。
アルカリ処理後における本発明繊維の任意箇所における繊維軸に垂直な断面写真を撮影し(倍率3000倍)、その写真における空隙部分の面積を図積分によりそれぞれ算出し、全断面積に占める割合を算出した。任意20箇所におけるそれぞれの割合の平均を空隙率とした。
空隙率 = A / B ×100
A:図積分により算出した空隙部分の断面積
B:繊維軸に垂直な横断面積。
Porosity The porosity was calculated based on the following formula.
Take a cross-sectional photograph perpendicular to the fiber axis at any location of the fiber of the present invention after alkali treatment (magnification 3000 times), calculate the area of the void in the photograph by integration, and calculate the ratio to the total cross-sectional area did. The average of the respective ratios at 20 arbitrary locations was defined as the porosity.
Porosity = A / B x 100
A: Cross-sectional area of void portion calculated by diagram integration B: Cross-sectional area perpendicular to fiber axis.

保温性
保温性については、クロー(CLO)値により評価した。1CLOとは気温21.2℃、湿度50%、風速10cm/sの大気中で、椅子に腰かけて安静にしている成人男子が、平均皮膚温33℃の快適な状態を継続できるのに必要な衣服の熱抵抗値と定義されている。したがって、この数値が高いほど保温性に優れることを示す。試料サンプルはアルカリ処理後の本発明繊維を用いて作成した試料(該繊維と綿を80:20の割合で混綿・紡績することで得られた30番手の紡績糸を用いて、作成した筒編み状の編み地、目付210g/m)を使用し、精密迅速熱物性測定装置を用いてCLO値を測定した。
Thermal insulation The thermal insulation was evaluated by the claw (CLO) value. 1CLO is necessary for an adult male who is sitting on a chair and resting in an atmosphere with an air temperature of 21.2 ° C, humidity of 50%, and wind speed of 10 cm / s to continue a comfortable condition with an average skin temperature of 33 ° C. It is defined as the thermal resistance value of clothes. Therefore, it shows that it is excellent in heat retention, so that this figure is high. A sample sample is a sample prepared using the inventive fiber after alkali treatment (cylindrical knitting made using 30th spun yarn obtained by blending and spinning the fiber and cotton at a ratio of 80:20. CLO value was measured using a precise rapid thermophysical property measuring apparatus using a knitted fabric with a weight of 210 g / m 2 ).

吸湿性
吸湿性については以下の式で定めた吸湿率(ΔMR)を用いて定量的に評価した。保温性の評価に用いた同様の試料を使用した。
ΔMR=(N−N)/N
:試料の絶乾重量(g)
:20℃×65%RH雰囲気下での試料重量(g)
:30℃×95%RH雰囲気下での試料重量(g)。
Hygroscopicity Hygroscopicity was quantitatively evaluated using the moisture absorption rate (ΔMR) defined by the following equation. The same sample used for evaluation of heat retention was used.
ΔMR = (N 2 −N 1 ) / N 0
N 0 : Absolute dry weight of the sample (g)
N 1 : Sample weight (g) in an atmosphere of 20 ° C. × 65% RH
N 2 : Sample weight (g) under an atmosphere of 30 ° C. × 95% RH.

実施例1
ANの共重合成分として、アクリル酸メチル、メタリルスルホン酸ソーダを、モル比において95.5/4.2/0.3の比率で混合し、それぞれDMSO溶媒中に調製した。該液に重合開始剤を添加、重合条件に基づき温調を行い、重合させてAN系重合体の重合原液Aを得る。これとは別にアジピン酸、アゼライン酸、エチレングリコールからなるエステル化合物とポリエチレングリコールをDMSO中に溶解させ、ANとグラフト重合させることで、ポリエーテルエステルとANの共重合原液Bを得た。ポリマー濃度23%の重合原液Aとポリマー濃度22%の重合原液Bを8:2の割合で添加した。これによりポリマー濃度22.8重量%の紡糸原液を得た。
Example 1
As a copolymerization component of AN, methyl acrylate and sodium methallyl sulfonate were mixed at a molar ratio of 95.5 / 4.2 / 0.3, and each was prepared in a DMSO solvent. A polymerization initiator is added to the solution, the temperature is adjusted based on the polymerization conditions, and polymerization is performed to obtain a polymerization stock solution A of AN polymer. Separately, an ester compound composed of adipic acid, azelaic acid and ethylene glycol and polyethylene glycol were dissolved in DMSO and graft polymerized with AN to obtain a copolymer stock solution B of polyether ester and AN. Polymerization stock solution A having a polymer concentration of 23% and polymerization stock solution B having a polymer concentration of 22% were added at a ratio of 8: 2. As a result, a spinning dope having a polymer concentration of 22.8% by weight was obtained.

得られた紡糸原液を濃度65%、温度35℃のDMSO水溶液中に紡糸口金より吐出させ、常法に従って水洗、延伸、乾燥、熱処理を施して2.2DTEXのアクリル繊維を得た。紡糸を実施するに際し、口金詰りや糸切れといったトラブルはなく、紡糸性は安定していた。得られた繊維を0.3wt%NaOH水溶液の濃度の水酸化ナトリウム水溶液中に浸漬・撹拌してアルカリ処理することで、アルカリ易溶ポリマーが溶出する事で、繊維内部に空隙(ポーラス)を有する本発明繊維を得た。この繊維の形状の写真を図1に示す。この繊維の重量減率23wt%であった。この繊維と綿を80:20の割合で混綿し、30番手の紡績糸を得た。この紡績糸を用いて、表1に示す目付の筒編み地状の試料サンプルを作製し、重量減率、保温性、吸湿性を測定し、結果を表1に示す。   The obtained spinning dope was discharged from a spinneret into a DMSO aqueous solution having a concentration of 65% and a temperature of 35 ° C., and subjected to water washing, stretching, drying, and heat treatment according to a conventional method to obtain 2.2 DTEX acrylic fibers. When carrying out the spinning, there was no trouble such as clogging of the base or yarn breakage, and the spinnability was stable. The obtained fiber is immersed and stirred in a sodium hydroxide aqueous solution having a concentration of 0.3 wt% NaOH aqueous solution and subjected to an alkali treatment, so that the alkali-soluble polymer is eluted and has a void inside the fiber. The fiber of the present invention was obtained. A photograph of the shape of this fiber is shown in FIG. The weight loss rate of this fiber was 23 wt%. This fiber and cotton were blended at a ratio of 80:20 to obtain 30th spun yarn. Using this spun yarn, a sample specimen with a fabric-like cylindrical knitted fabric shown in Table 1 was prepared, and the weight loss rate, heat retention, and moisture absorption were measured. The results are shown in Table 1.

実施例2
実施例1で作成した重合原液A及びBを使用し、重合原液Aのポリマー濃度を22.4%として、原液Bのポリマー濃度を20%として添加した。これによりポリマー濃度21.5重量%の紡糸原液を得た。得られた紡糸原液を用いて、実施例1と同様の方法により、筒編み状の試料サンプルを作成し、表1に示す評価の測定をそれぞれ実施した。結果を表1に示す。
Example 2
Using the polymerization stock solutions A and B prepared in Example 1, the polymer concentration of the polymerization stock solution A was set to 22.4%, and the polymer concentration of the stock solution B was added to 20%. As a result, a spinning solution having a polymer concentration of 21.5% by weight was obtained. Using the obtained spinning dope, a cylindrical knitted sample sample was prepared in the same manner as in Example 1, and the evaluation measurements shown in Table 1 were performed. The results are shown in Table 1.

比較例1
ANのみからなるアクリル繊維(繊度2.2DTEX)及び綿を80:20の割合で混綿し、30番手の紡績糸を得た。この紡績糸を用いて、実施例1と同様にして筒編み地状の試料サンプルを作成し、表1に示す評価の測定をそれぞれ実施した。結果を表1に示す。
Comparative Example 1
Acrylic fibers (fineness: 2.2DTEX) consisting only of AN and cotton were mixed at a ratio of 80:20 to obtain 30th spun yarn. Using this spun yarn, a cylindrical knitted fabric sample was prepared in the same manner as in Example 1, and the evaluation measurements shown in Table 1 were performed. The results are shown in Table 1.

比較例2
PET繊維(繊度2.2DTEX)及び綿を80:20の割合で混綿し、30番手の紡績糸を得る。この紡績糸を用いて、実施例1と同様にして筒編み地状の試料サンプルを作成し、表1に示す評価の測定をそれぞれ実施した。結果を表1に示す。
Comparative Example 2
PET fiber (fineness 2.2 DTEX) and cotton are blended at a ratio of 80:20 to obtain 30th spun yarn. Using this spun yarn, a cylindrical knitted fabric sample was prepared in the same manner as in Example 1, and the evaluation measurements shown in Table 1 were performed. The results are shown in Table 1.

比較例3
綿を100重量%使用した30番手の紡績糸を用いて、実施例1と同様にして筒編み地状の試料サンプルを作成し、表1に示す評価の測定をそれぞれ実施した。結果を表1に示す。
Comparative Example 3
Using a 30th spun yarn using 100% by weight of cotton, a cylindrical knitted fabric sample was prepared in the same manner as in Example 1, and the evaluation measurements shown in Table 1 were performed. The results are shown in Table 1.

Figure 2007231449
Figure 2007231449

本発明の繊維より得られる編み地は、繊維が有する機能を具備することから、インナーウェア類、裏地類、資材類までの幅広い分野に適応可能である。   Since the knitted fabric obtained from the fiber of the present invention has the function of the fiber, it can be applied to a wide range of fields such as innerwear, lining, and materials.

実施例1で製造したアクリル繊維の繊維軸に垂直な断面を斜めから見た繊維の形状を示す写真(倍率3000倍)A photograph (magnification 3000 times) showing the shape of the fiber as seen from an oblique section perpendicular to the fiber axis of the acrylic fiber produced in Example 1

Claims (4)

繊維軸断面に複数かつランダムに繊維軸方向に連続した空隙(ポーラス)を有し、かつ単繊維表面の一部に繊維軸方向に連続した凸部および凹部を交互に有する櫛目形状を有することを特徴とするアクリル繊維。   Having a plurality of and random voids (porous) in the fiber axis direction on the fiber axis cross section, and a comb-like shape having alternately convex portions and concave portions continuous in the fiber axis direction on a part of the single fiber surface Characteristic acrylic fiber. 繊維の空隙率が、1〜30%であることを特徴とする請求項1に記載のアクリル繊維。   The acrylic fiber according to claim 1, wherein the fiber has a porosity of 1 to 30%. 90モル%以上のアクリルニトリルと10モル%以下の不飽和ビニル化合物との共重合体を有機溶媒に溶解せしめた溶液にポリエーテルエステルブロックポリマーを有機溶媒に溶解せしめた溶液とを混合してグラフト重合せしめた溶液を紡糸原液として湿式紡糸を行い、得られた繊維をアルカリ水溶液中に浸漬・撹拌させることを特徴とする請求項1記載アクリル繊維の製造方法。   Grafting is carried out by mixing a solution in which a copolymer of 90 mol% or more of acrylonitrile and 10 mol% or less of an unsaturated vinyl compound is dissolved in an organic solvent with a solution in which a polyether ester block polymer is dissolved in the organic solvent. 2. The method for producing acrylic fiber according to claim 1, wherein wet spinning is performed using the polymerized solution as a spinning solution, and the obtained fiber is immersed and stirred in an aqueous alkali solution. 請求項1または2に記載のアクリル繊維からなる繊維製品。   A textile product comprising the acrylic fiber according to claim 1 or 2.
JP2006054177A 2006-02-28 2006-02-28 Acrylic fiber and method for producing the same Pending JP2007231449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054177A JP2007231449A (en) 2006-02-28 2006-02-28 Acrylic fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054177A JP2007231449A (en) 2006-02-28 2006-02-28 Acrylic fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007231449A true JP2007231449A (en) 2007-09-13

Family

ID=38552326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054177A Pending JP2007231449A (en) 2006-02-28 2006-02-28 Acrylic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007231449A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831806A (en) * 2010-05-05 2010-09-15 山东理工大学 Manufacturing method of protein modified fiber in acrylic fiber surface ingrafted bean juice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101831806A (en) * 2010-05-05 2010-09-15 山东理工大学 Manufacturing method of protein modified fiber in acrylic fiber surface ingrafted bean juice

Similar Documents

Publication Publication Date Title
JP3737969B2 (en) Acrylonitrile fiber bundle for carbon fiber precursor and method for producing the same
JP3656311B2 (en) Anti-pill ultrafine acrylic fiber and method for producing the same
JP2008038309A (en) Anti-pilling acrylic fiber and method for producing the same
JP2007231449A (en) Acrylic fiber and method for producing the same
JP4480858B2 (en) Lightweight composite acrylic fiber and method for producing the same
JP4102582B2 (en) Acrylic modified cross-section fine fiber manufacturing method
JP3364099B2 (en) Dividable acrylic synthetic fiber and method for producing the same
JP4895280B2 (en) Anti-pill acrylic fiber and production method thereof
JP4764378B2 (en) Acrylic triangular cross-section fiber and manufacturing method thereof
JP3756886B2 (en) High shrinkable acrylic fiber
JPH11107034A (en) Acrylic fiber excellent in moist heat characteristic and its production
JPH05148709A (en) Acrylic modified cross section fiber and its production
JP2007126794A (en) Method for producing porous acrylic fiber
JPS6356323B2 (en)
JPH0364605B2 (en)
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP5014799B2 (en) Hollow acrylic synthetic fiber
JPH11200141A (en) Production of pilling-resistant acrylic fiber
JP3720635B2 (en) Acrylonitrile-based synthetic fiber and method for producing the same
JP2006045720A (en) Hollow acrylic fiber and method for producing the same
JPH0673607A (en) Sheath-core acrylic synthetic fiber and its production
JPS6211083B2 (en)
JP2009161863A (en) Anti-pilling acrylic fiber and method for producing the same
JP2007077552A (en) Core-sheath type acrylic conjugate fiber and method for producing the same
JPH0978355A (en) Hollow acrylic fiber and its production