JP2017179627A - High full-dull fine-denier acrylic fiber - Google Patents

High full-dull fine-denier acrylic fiber Download PDF

Info

Publication number
JP2017179627A
JP2017179627A JP2016065135A JP2016065135A JP2017179627A JP 2017179627 A JP2017179627 A JP 2017179627A JP 2016065135 A JP2016065135 A JP 2016065135A JP 2016065135 A JP2016065135 A JP 2016065135A JP 2017179627 A JP2017179627 A JP 2017179627A
Authority
JP
Japan
Prior art keywords
mass
acrylonitrile
spinning
titanium oxide
acrylic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016065135A
Other languages
Japanese (ja)
Inventor
智広 脇坂
Tomohiro Wakisaka
智広 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2016065135A priority Critical patent/JP2017179627A/en
Publication of JP2017179627A publication Critical patent/JP2017179627A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high full-dull fine-denier acrylic fiber excellent in fiber-forming property and spinning property even with containing titanium oxide.SOLUTION: The invention is for solving the above described problem, the high full-dull fine-denier acrylic fiber consists of an acrylonitrile-based copolymer containing acrylonitrile of 85 to 94 mass%, a vinyl monomer having copolymerizability with acrylonitrile of 2 to 10 mass% and a vinyl monomer having a sulfonic acid group of 1 to 6 mass% as copolymerization components, contains titanium oxide with average particle diameter of 0.5 to 1.0 μm of 2 to 7 mass% and has single fiber fineness of 0.7 to 2.2 dtex and tensile strength of 2.0 cN/dtex or more.SELECTED DRAWING: None

Description

本発明は、高フルダル細繊度アクリル系繊維に関するものである。   The present invention relates to a high full-dal fineness acrylic fiber.

アクリル系繊維は羊毛に似た風合いを持つことから、セーターや靴下などの衣料製品、あるいは獣毛調の風合いや光沢を生かし、獣毛調立毛製品のパイル素材に用いられてきた。中でもインナーなどの衣料用途に用いられる衣料用製品ではよりソフトな風合いが求められ、使用する繊維の細繊度化が進められてきた。   Since acrylic fibers have a texture similar to wool, they have been used for clothing products such as sweaters and socks, or for pile materials of animal hair-like raised products, taking advantage of the texture and gloss of animal hair. Above all, clothing products used for clothing such as innerwear are required to have a softer texture, and the fineness of the fibers used has been reduced.

一方、カーディガン、カットソーなど、特に春夏用の外衣として用いられる衣料製品においては、日焼け予防として紫外線遮蔽性が求められる。繊維に紫外線遮蔽性を付与する手段の1つとして、無機粒子を練り込む手段が提案されている。   On the other hand, in clothing products used as outer garments for spring and summer, such as cardigans and cut-and-sews, UV shielding is required to prevent sunburn. A means for kneading inorganic particles has been proposed as one means for imparting ultraviolet shielding properties to fibers.

例えば、特許文献1では平均粒子径が80nm以下であるルチル型酸化チタンを1〜3質量%含有させることで紫外線遮蔽性を付与している。   For example, in patent document 1, ultraviolet shielding property is provided by containing 1-3 mass% of rutile type titanium oxide whose average particle diameter is 80 nm or less.

また、特許文献2では、2層以上の多層構造からなる複合繊維とすることで紡績性を向上させる手段を提案している。   Patent Document 2 proposes means for improving spinnability by using a composite fiber having a multilayer structure of two or more layers.

特開2006−200062号公報JP 2006-200062 A 特開2005−120512号公報JP 2005-120512 A

細繊度繊維に紫外線遮蔽性を付与させる場合、生地目付が低くなることから、紫外線遮蔽性粒子の含有率を高める必要がある。   In the case of imparting ultraviolet shielding properties to the fine fiber, the fabric weight per unit area is lowered, so that it is necessary to increase the content of the ultraviolet shielding particles.

しかしながら、特許文献1の方法では、酸化チタン粒子が凝集することにより、製糸工程における糸切れが多発するという問題点があった。また、無機粒子を高濃度に添加した繊維を紡績糸に加工する際、カード工程でのフライ、ネップの発生や、ローラー巻付きなどのトラブルを引き起こし、工程通過性の不良、糸質低下による製品の品位低下、及びトラブル対応による機会損失という問題があった。   However, the method of Patent Document 1 has a problem in that thread breakage frequently occurs in the yarn making process due to aggregation of titanium oxide particles. Also, when processing fibers with high concentration of inorganic particles into spun yarn, it causes troubles such as frying and nep in the card process and winding with rollers, resulting in poor processability and decreased yarn quality. There was a problem of loss of opportunity and loss of opportunity due to troubleshooting.

また、特許文献2の方法では、複合紡糸を行うための専用の設備が必要となり、設備導入のための技術、コストが必要となることが問題であった。   In addition, the method of Patent Document 2 requires a dedicated facility for performing composite spinning, which requires a technology and cost for introducing the facility.

そこで、本発明は、酸化チタンを高濃度に含む細繊度繊維であっても、製糸性、紡績性に優れた高フルダル細繊度アクリル系繊維を提供することを目的とする。   Therefore, an object of the present invention is to provide a high-fuller fineness acrylic fiber excellent in yarn-making property and spinnability even if it is a fineness fiber containing titanium oxide at a high concentration.

本発明は、上記の課題を解決せんとするものであって、本発明の高フルダル細繊度アクリル系繊維は、アクリロニトリル85〜94質量%、アクリロニトリルと共重合性を有するビニルモノマー2〜10質量%、およびスルホン酸基を有するビニルモノマー1〜6質量%を共重合成分として含むアクリロニトリル系共重合体からなる高フルダル細繊度アクリル系繊維であって、平均粒径が0.5〜1.0μmの酸化チタンを2〜7質量%含み、単繊維繊度が0.7〜2.2dtexであり、引っ張り強度が2.0cN/dtex以上である。   The present invention is intended to solve the above-mentioned problems, and the high-fuller fineness acrylic fiber of the present invention comprises 85 to 94% by mass of acrylonitrile and 2 to 10% by mass of a vinyl monomer copolymerizable with acrylonitrile. And acrylonitrile-based copolymer comprising 1 to 6% by weight of a vinyl monomer having a sulfonic acid group as a copolymerization component, and having an average particle size of 0.5 to 1.0 μm. It contains 2 to 7% by mass of titanium oxide, the single fiber fineness is 0.7 to 2.2 dtex, and the tensile strength is 2.0 cN / dtex or more.

本発明によれば、酸化チタンを高濃度に含むことで紫外線遮蔽性を有し、かつ細繊度で風合いに優れ、なおかつ製糸性、紡績性を損なうことのない高フルダル細繊度アクリル系繊維を提供することができる。   According to the present invention, there is provided a high full-fine fineness acrylic fiber having ultraviolet shielding properties by containing titanium oxide at a high concentration, excellent in fineness and texture, and without impairing the yarn-making property and spinning property. can do.

本発明の高フルダル細繊度アクリル系繊維は、アクリロニトリル85〜94質量%、アクリロニトリルと共重合性を有するビニルモノマー2〜10質量%、およびスルホン酸基を有するビニルモノマー1〜6質量%を共重合成分として含むアクリロニトリル系共重合体からなる高フルダル細繊度アクリル系繊維であって、平均粒径が0.5〜1.0μmの酸化チタンを2〜7質量%含み、単繊維繊度が0.7〜2.2dtexであり、引っ張り強度が2.0cN/dtex以上である。なお、本発明において、共重合体が、あるモノマーを共重合成分として含むとは、未重合のモノマーを含むことを指すのではなく、当該モノマーを重合して得られる構造を共重合体内に有することを指す。   The high-fuller fineness acrylic fiber of the present invention is a copolymer of 85 to 94% by mass of acrylonitrile, 2 to 10% by mass of vinyl monomer copolymerizable with acrylonitrile, and 1 to 6% by mass of vinyl monomer having a sulfonic acid group. It is a high fuldal fineness acrylic fiber made of an acrylonitrile-based copolymer contained as a component, and contains 2 to 7% by mass of titanium oxide having an average particle size of 0.5 to 1.0 μm, and a single fiber fineness is 0.7. The tensile strength is 2.0 cN / dtex or more. In the present invention, the phrase that a copolymer contains a monomer as a copolymerization component does not mean that an unpolymerized monomer is included, but has a structure obtained by polymerizing the monomer in the copolymer. Refers to that.

本発明に用いられるアクリロニトリル系共重合体は、85〜94質量%のアクリロニトリルを共重合成分として含む。アクリロニトリルの共重合比率が85質量%未満の場合は、強度の低下を引き起こし、紡績工程での工程通過性が悪化するとともに、紡績糸の品質低下を招く。また、前記共重合比率が94質量%より大きい場合は、延伸性が著しく低下し、生産性を損なう。なお、本発明において、共重合比率とは、アクリロニトリル系共重合体全体の質量を100質量%としたときの各共重合成分の質量比率である。   The acrylonitrile-based copolymer used in the present invention contains 85 to 94% by mass of acrylonitrile as a copolymerization component. When the copolymerization ratio of acrylonitrile is less than 85% by mass, the strength is lowered, the process passability in the spinning process is deteriorated, and the quality of the spun yarn is lowered. Moreover, when the said copolymerization ratio is larger than 94 mass%, ductility will fall remarkably and productivity will be impaired. In addition, in this invention, a copolymerization ratio is a mass ratio of each copolymer component when the mass of the whole acrylonitrile-type copolymer is 100 mass%.

本発明に用いられるアクリロニトリル系共重合体は、2〜10質量%のアクリロニトリルと共重合性を有するビニルモノマーを共重合成分として含む。前記アクリロニトリルと共重合性を有するビニルモノマーの共重合比率は、好ましくは3〜7質量%である。前記アクリロニトリルと共重合性を有するビニルモノマーの共重合比率が2質量%未満の場合は、紡糸工程での延伸性が乏しく安定した生産が困難となる。一方、前記アクリロニトリルと共重合性を有するビニルモノマーの共重合比率が10質量%より多くなると、布帛の抗ピリング性が低下し、衣料製品としたときの毛玉の発生が増大する。   The acrylonitrile-based copolymer used in the present invention contains 2 to 10% by mass of acrylonitrile and a vinyl monomer copolymerizable as a copolymerization component. The copolymerization ratio of the vinyl monomer copolymerizable with acrylonitrile is preferably 3 to 7% by mass. When the copolymerization ratio of the vinyl monomer copolymerizable with acrylonitrile is less than 2% by mass, the stretchability in the spinning process is poor and stable production becomes difficult. On the other hand, when the copolymerization ratio of the vinyl monomer copolymerizable with the acrylonitrile is more than 10% by mass, the anti-pilling property of the fabric is lowered, and the generation of pills when used as a clothing product increases.

前記アクリロニトリルと共重合性を有するビニルモノマーの例として、アクリル酸、メタクリル酸またはこれらのエステル類、アクリルアミド、メタクリルアミド、酢酸ビニル、塩化ビニル、塩化ビニリデンなどが挙げられる。中でも、得られるアクリロニトリル系共重合体の製糸工程における延伸性が優れる点から、アクリル酸のエステル類であるアクリル酸メチルが好ましく用いられる。   Examples of vinyl monomers copolymerizable with acrylonitrile include acrylic acid, methacrylic acid or esters thereof, acrylamide, methacrylamide, vinyl acetate, vinyl chloride, vinylidene chloride, and the like. Of these, methyl acrylate, which is an ester of acrylic acid, is preferably used from the viewpoint of excellent stretchability in the spinning process of the acrylonitrile-based copolymer obtained.

本発明に用いられるアクリロニトリル系共重合体は、1〜6質量%のスルホン酸基を有するビニルモノマーを共重合成分として含む。前記スルホン酸基を有するビニルモノマーの共重合比率は、好ましくは1.2〜5質量%である。前記スルホン酸基を有するビニルモノマーの共重合比率が1質量%未満の場合は十分な染色性能が得られず、6質量%より多くなると、染色性は高まるものの、染め斑の原因となる。また、繊維の緻密性は高まるが、凝固が遅く、紡糸工程で繊維同士の接着や糸切れが発生し易くなる。   The acrylonitrile-based copolymer used in the present invention contains 1 to 6% by mass of a vinyl monomer having a sulfonic acid group as a copolymerization component. The copolymerization ratio of the vinyl monomer having a sulfonic acid group is preferably 1.2 to 5% by mass. When the copolymerization ratio of the vinyl monomer having a sulfonic acid group is less than 1% by mass, sufficient dyeing performance cannot be obtained, and when it exceeds 6% by mass, the dyeability increases, but it causes dyeing spots. Further, although the denseness of the fibers is increased, the solidification is slow, and the fibers tend to be bonded or broken during the spinning process.

前記スルホン酸基を有するビニルモノマーの例として、アリルスルホン酸、ビニルスルホン酸、アクリルスルホン酸、メタリルスルホン酸、p−スチレンスルホン酸などの不飽和スルホン酸またはこれらの塩類が挙げられる。中でも、得られるアクリロニトリル系共重合体から得られる繊維製品の染色時における発色性に優れる点からメタリルスルホン酸ナトリウムが好ましく用いられる。   Examples of the vinyl monomer having a sulfonic acid group include unsaturated sulfonic acids such as allyl sulfonic acid, vinyl sulfonic acid, acrylic sulfonic acid, methallyl sulfonic acid, and p-styrene sulfonic acid, or salts thereof. Among these, sodium methallyl sulfonate is preferably used from the viewpoint of excellent color developability at the time of dyeing a fiber product obtained from the obtained acrylonitrile-based copolymer.

本発明で用いられるアクリロニトリル系共重合体の重合方法は、懸濁重合法、乳化重合法、溶液重合法など、いずれの重合方法を用いてもよい。また、重合に使用する有機溶媒の例として、ジメチルスルホキシド(以下、DMSOということがある。)、ジメチルアセトアミド、ジメチルホルムアミド等の有機溶媒が挙げられる。中でも、本発明に用いられるアクリロニトリル共重合体が、DMSO系湿式紡糸において製糸性に優れることから、重合方法および重合溶媒は、DMSOを用いた溶液重合法が好ましい。   The polymerization method of the acrylonitrile copolymer used in the present invention may be any polymerization method such as a suspension polymerization method, an emulsion polymerization method, or a solution polymerization method. Examples of the organic solvent used for the polymerization include organic solvents such as dimethyl sulfoxide (hereinafter sometimes referred to as DMSO), dimethylacetamide, dimethylformamide, and the like. Among these, since the acrylonitrile copolymer used in the present invention is excellent in yarn-making property in DMSO wet spinning, the polymerization method and the polymerization solvent are preferably solution polymerization methods using DMSO.

本発明に用いられるアクリロニトリル系共重合体の重合反応溶液は、必要に応じて、添加剤として、重合開始剤、pH調整剤および分子量調整剤等を含有することができる。   The polymerization reaction solution of the acrylonitrile-based copolymer used in the present invention can contain a polymerization initiator, a pH adjuster, a molecular weight adjuster, and the like as additives as necessary.

本発明の高フルダル細繊度アクリル系繊維は、平均粒径が0.5〜1.0μmの酸化チタンを含む。前記平均粒径が0.5μmより小さいと、酸化チタンを溶液に分散した際に凝集しやすく、細繊度のアクリル系繊維を紡糸する際に糸切れを発生させる原因となる。また、1.0μmを超えると、凝集が起こらない場合でも、その粒径の大きさにより糸切れを誘発する。   The high full-dull fineness acrylic fiber of the present invention contains titanium oxide having an average particle size of 0.5 to 1.0 μm. When the average particle size is smaller than 0.5 μm, the titanium oxide is easily aggregated when dispersed in a solution, and causes thread breakage when spinning fine fibers of acrylic fiber. On the other hand, when the thickness exceeds 1.0 μm, thread breakage is induced by the size of the particle diameter even when aggregation does not occur.

本発明の高フルダル細繊度アクリル系繊維は、前記酸化チタンを2〜7質量%含み、好ましくは2.5〜5質量%含む。酸化チタンの含有率が2質量%より小さい場合、高フルダル細繊度アクリル系繊維の紫外線遮蔽性能が十分なものとはならない。また、7質量%を超える場合、分散液中で酸化チタンの凝集が発生し、紡糸時の糸切れが増加する。なお、本発明において、酸化チタンの含有率とは、高フルダル細繊度アクリル系繊維全体の質量を100質量%としたときの酸化チタンの質量比率である。   The high fuller fine fineness acrylic fiber of the present invention contains 2 to 7% by mass, preferably 2.5 to 5% by mass of the titanium oxide. When the content of titanium oxide is less than 2% by mass, the ultraviolet shielding performance of the high full-fine fineness acrylic fiber is not sufficient. On the other hand, when the content exceeds 7% by mass, aggregation of titanium oxide occurs in the dispersion and yarn breakage during spinning increases. In addition, in this invention, the content rate of a titanium oxide is a mass ratio of a titanium oxide when the mass of the whole high fludder fineness acrylic fiber is 100 mass%.

酸化チタンのアクリル系繊維への添加方法は特に限定されないが、紡糸原液に用いる有機溶媒、または紡糸原液に用いるものと同一のアクリロニトリル系共重合体を5〜15質量%の濃度で溶解させた溶液に、酸化チタンの粒子を加えて分散処理し、分散液とした後、紡糸原液ラインの途中で紡糸原液と混合する方法などが挙げられる。   The method of adding titanium oxide to the acrylic fiber is not particularly limited, but a solution in which the organic solvent used for the spinning stock solution or the same acrylonitrile copolymer used for the spinning stock solution is dissolved at a concentration of 5 to 15% by mass. In addition, there may be mentioned a method in which titanium oxide particles are added and dispersed to form a dispersion, and then mixed with the spinning dope in the middle of the spinning dope line.

紡糸原液全体に対するアクリロニトリル系共重合体の割合は、20〜25質量%が好ましく、その際、有機溶媒の割合を75〜80質量%となることが好ましい。紡糸原液全体に対するアクリロニトリル系共重合体の割合は、より好ましくは21〜24質量%であり、有機溶媒の割合は、より好ましくは76〜79質量%である。   The ratio of the acrylonitrile copolymer to the whole spinning dope is preferably 20 to 25% by mass, and in that case, the ratio of the organic solvent is preferably 75 to 80% by mass. The ratio of the acrylonitrile copolymer relative to the entire spinning dope is more preferably 21 to 24% by mass, and the ratio of the organic solvent is more preferably 76 to 79% by mass.

紡糸原液において、アクリロニトリル系共重合体の割合が20質量%以上であると、得られる繊維が失透しにくく光沢が失われにくくなるとともに染色斑、発色性が向上しやすくなる。一方、アクリロニトリル系共重合体の割合が25質量%以下であると製糸性が向上しやすくなる。   If the ratio of the acrylonitrile copolymer is 20% by mass or more in the spinning dope, the resulting fibers are less likely to be devitrified and the gloss is not easily lost, and dyeing spots and color developability are easily improved. On the other hand, when the ratio of the acrylonitrile-based copolymer is 25% by mass or less, the spinning property is easily improved.

このようにして作製された紡糸原液は、通常の紡糸装置を使用して紡糸することができる。   The spinning dope thus prepared can be spun using a normal spinning device.

湿式紡糸の場合に凝固浴として使用する有機溶媒としては、DMSO、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。中でも、溶媒の拡散係数が高く、アクリロニトリル系重合体を湿式紡糸した際の製糸性に優れるDMSO水溶液が好ましく用いられる。   Examples of the organic solvent used as a coagulation bath in the case of wet spinning include DMSO, dimethylformamide, dimethylacetamide and the like. Among them, a DMSO aqueous solution that has a high solvent diffusion coefficient and excellent spinning properties when wet-spun acrylonitrile-based polymer is preferably used.

本発明の高フルダル細繊度アクリル系繊維は、単繊維繊度が0.7〜2.2dtexである。前記単繊維繊度は、好ましくは1.1〜1.7dtexである。前記単繊維繊度が、0.7dtexより小さいと、紡績加工時にカード工程でシリンダーへの沈み綿の増加や、ドッファへの移行不良が発生し、紡績性が著しく低下する。また、2.2dtexを超えると、衣料製品としたときに風合いが硬くなり、衣料製品に適さない。   The high full dull fineness acrylic fiber of the present invention has a single fiber fineness of 0.7 to 2.2 dtex. The single fiber fineness is preferably 1.1 to 1.7 dtex. When the single fiber fineness is less than 0.7 dtex, an increase in sinking cotton into the cylinder and a poor transfer to the doffer occur during the carding process, and the spinnability is significantly reduced. Moreover, when it exceeds 2.2 dtex, a texture will become hard when it is set as clothing products, and it is not suitable for clothing products.

本発明の高フルダル細繊度アクリル系繊維は、引っ張り強度が2.0cN/dtex以上である。これにより、高濃度に酸化チタン粒子を添加した細繊度アクリル系繊維であっても、紡績時の工程通過性が良好に保つことが可能であり、引っ張り強度が2.0cN/dtexより低いと紡績糸に加工する際、カード工程でのフライ、ネップの発生や、ローラー巻付きなどのトラブルを引き起こし、生産性が著しく低下する。前記引っ張り強度は、例えば、アクリロニトリルの共重合比率を高めることや、酸化チタンの含有率を低減すること、延伸倍率を高くすること、乾燥緻密化条件をより高温、長時間とすることなどにより、高くすることができる。   The high full-dull fineness acrylic fiber of the present invention has a tensile strength of 2.0 cN / dtex or more. As a result, even if it is a fine-fine acrylic fiber to which titanium oxide particles are added at a high concentration, it is possible to maintain good process passability during spinning, and if the tensile strength is lower than 2.0 cN / dtex, spinning is possible. When processing into yarn, troubles such as frying and nep in the carding process and roller wrapping are caused, and the productivity is significantly reduced. The tensile strength, for example, by increasing the copolymerization ratio of acrylonitrile, reducing the content of titanium oxide, increasing the draw ratio, making the drying densification conditions higher temperature, longer time, etc. Can be high.

本発明の高フルダル細繊度アクリル系繊維における断面形状は、特に限定されるものではなく、丸型、β型、C型、三角、扁平、ドックボーン型、多葉型等、いずれの断面形状であってもよい。   The cross-sectional shape of the high-full-dull fineness acrylic fiber of the present invention is not particularly limited, and may be any cross-sectional shape such as a round shape, a β shape, a C shape, a triangular shape, a flat shape, a dock bone shape, and a multileaf shape. There may be.

本発明の高フルダル細繊度アクリル系繊維は、単一の本発明に用いられるアクリロニトリル系共重合体からなるもの、本発明に用いられるアクリロニトリル系共重合体と他の本発明に用いられるアクリロニトリル系共重合体とが不均一に混合されたもの、本発明に用いられるアクリロニトリル系共重合体と他の本発明に用いられるアクリロニトリル系共重合体とが芯鞘構造やサイドバイサイド構造、多層構造などの複合構造を有するものであってもよい。また、本発明の高フルダル細繊度アクリル系繊維は、長さ方向に均一なものでも太細のあるものでもよい。   The high fuller fine fineness acrylic fiber of the present invention is composed of a single acrylonitrile copolymer used in the present invention, an acrylonitrile copolymer used in the present invention, and another acrylonitrile copolymer used in the present invention. The polymer is mixed inhomogeneously, and the acrylonitrile copolymer used in the present invention and the other acrylonitrile copolymer used in the present invention are a composite structure such as a core-sheath structure, a side-by-side structure, or a multilayer structure. It may have. In addition, the high full-dull fineness acrylic fiber of the present invention may be uniform or thick in the length direction.

本発明の高フルダル細繊度アクリル系繊維は、例えば、以下の方法により製造することができる。本発明の高フルダル細繊度アクリル系繊維を得るための紡糸法として、酸化チタンを含むアクリロニトリル系共重合体を紡糸口金孔から空気または不活性雰囲気中に吐出した後、熱で溶媒を気化し凝固する乾式紡糸や、紡糸口金孔から吐出された重合体を凝固浴中に直接吐出する湿式紡糸、紡糸口金孔から吐出された重合体を一旦空気または不活性雰囲気中に吐出した後、凝固浴に導入する乾湿式紡糸などの各種紡糸法を採用することができる。各種紡糸法により紡糸を行った後、熱延伸、水洗、乾燥緻密化させ、油剤を付与し、捲縮および熱緩和処理を施すことにより、高フルダル細繊度アクリル系繊維を得ることができる。   The high full-dal fineness acrylic fiber of the present invention can be produced, for example, by the following method. As a spinning method for obtaining the high fuller fine fineness acrylic fiber of the present invention, an acrylonitrile-based copolymer containing titanium oxide is discharged from a spinneret hole into air or an inert atmosphere, and then the solvent is evaporated by heat to solidify. Dry spinning, wet spinning in which the polymer discharged from the spinneret hole is directly discharged into the coagulation bath, and the polymer discharged from the spinneret hole is once discharged into air or an inert atmosphere and then into the coagulation bath. Various spinning methods such as dry and wet spinning to be introduced can be employed. After spinning by various spinning methods, high-fuller fineness acrylic fibers can be obtained by heat drawing, washing with water, drying and densifying, applying an oil agent, and performing crimping and heat relaxation treatment.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

(1)酸化チタンの平均粒径
酸化チタンの平均粒径については、添加する酸化チタン10mgをDMSO150mL中に分散させ、HORIBA社のレーザー回折/散乱式粒子径分布測定装置LA−920装置を用いて湿式法、フロー方式にて測定した。
(1) Average particle diameter of titanium oxide Regarding the average particle diameter of titanium oxide, 10 mg of titanium oxide to be added is dispersed in 150 mL of DMSO, and the laser diffraction / scattering particle size distribution measuring apparatus LA-920 manufactured by HORIBA is used. It measured by the wet method and the flow system.

(2)単繊維繊度、引っ張り強度
JIS L1015:2010化学繊維ステープル試験方法に準拠して測定した。
(2) Single fiber fineness and tensile strength Measured according to JIS L1015: 2010 chemical fiber staple test method.

(3)製糸性の評価
製糸性については、口金面での糸切れ、延伸ローラーへの巻き付きがないものを「A」とし製糸性としての合格とした。また、口金面での糸切れ、ローラーへの単繊維巻き付きが若干あるものを「B」、頻繁にあるものを「C」とし製糸性不合格とした。
(3) Evaluation of yarn-making property Regarding the yarn-making property, “A” indicates that there is no yarn breakage on the die surface and no wrap around the drawing roller, and the yarn-making property was accepted. Further, “B” indicates that the yarn breakage on the base and some single fiber winding around the roller are “B”, and “C” indicates that the yarn is frequently wound.

(4)紡績性の評価
紡績性については、カードでのシリンダー巻き付きがなく、各工程での酸化チタンの脱落が少ないものを「A」とし紡績性としての合格とした。また、カードでのシリンダー巻き付きや酸化チタンの脱落が若干あるものを「B」、頻繁にあるものを「C」として紡績性不合格とした。
(4) Evaluation of spinnability With respect to spinnability, the case where there was no cylinder winding around the card and titanium oxide was not dropped off in each step was designated as “A”, and the spinnability passed. Also, the spinning performance was rejected as “B” for the case where the cylinder was wound around the card and the titanium oxide was slightly dropped, and “C” for the case where the titanium oxide was frequently removed.

(5)紫外線遮蔽率の評価
実施例、比較例で得られた高フルダル細繊度アクリル系繊維をそれぞれ38mmにカットし、短紡によりAc100、2/53番手の紡績糸とした。その紡績糸をスムース編、18ゲージで編成した。得られた編地を1.0%owfの繁成化学社製アクリックホワイトTK染料溶液で浴比1:15、温度97℃、時間30分間の条件で染色を行い編地を作製した。この編地について、分光光度計により波長280nm〜400nmの紫外線を照射し、その平均の透過率を測定した。100から平均の透過率を引いた値を紫外線遮蔽率とした。
・紫外線遮蔽率(%)=100−[波長280〜400nmの平均透過率(%)]
評価は、紫外線遮蔽率95%以上をAA、90%以上95%未満を「A」、90%未満を「C」とし、「AA、A」を合格、「C」を不合格とした。
(5) Evaluation of UV shielding ratio The high-full dull fineness acrylic fibers obtained in the examples and comparative examples were each cut to 38 mm, and spun yarns of Ac100 and 2/53 were obtained by short spinning. The spun yarn was knitted with a smooth knitting and 18 gauge. The obtained knitted fabric was dyed with a 1.0% owf Clicklic White TK dye solution manufactured by Shigensei Chemical Co., Ltd. under a bath ratio of 1:15, a temperature of 97 ° C., and a time of 30 minutes to prepare a knitted fabric. The knitted fabric was irradiated with ultraviolet rays having a wavelength of 280 nm to 400 nm by a spectrophotometer, and the average transmittance was measured. The value obtained by subtracting the average transmittance from 100 was defined as the ultraviolet shielding rate.
UV shielding factor (%) = 100− [average transmittance (%) at a wavelength of 280 to 400 nm]
In the evaluation, an ultraviolet shielding ratio of 95% or more was AA, 90% or more and less than 95% was “A”, less than 90% was “C”, “AA, A” was passed, and “C” was rejected.

(6)編地風合いの評価
編地風合いの評価方法は、5人の判定員が、その風合い評価用の編地を触感判定し、十分なソフト性を有していると判断されるものに「A」、ソフト性に欠ける、あるいはシャリ感が出ていると判断されるものに「C」をつけた。5人全員がAをつけた場合の判定結果をAAとし、Aが3人以上いた場合の判定結果をAとし「AA、A」は風合いの合格とし、また、Cが3人以上いた場合の判定結果をCとして「C」を風合いの不合格と評価した。
(6) Evaluation of the texture of the knitted fabric The evaluation method of the texture of the knitted fabric is such that five judges judge the feeling of the knitted fabric for the texture evaluation and are judged to have sufficient softness. “C” was assigned to “A”, which was judged to be lacking in softness or to have a sharp feeling. When all 5 people wear A, the judgment result is AA, when A is 3 or more, the judgment result is A, “AA, A” is a passing texture, and when C is 3 or more The determination result was C, and “C” was evaluated as a failure of the texture.

[実施例1]
DMSOを溶媒とする溶液重合により、アクリロニトリル91.3質量%、アクリル酸メチル5.0質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が2.5質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.7dtex、引っ張り強度2.8cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 1]
By solution polymerization using DMSO as a solvent, an acrylonitrile copolymer concentration containing 91.3% by mass of acrylonitrile, 5.0% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm was added so that the content of titanium oxide was 2.5% by mass with respect to the mass of high-fuller fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 1.7 dtex and a tensile strength of 2.8 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[実施例2]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.7dtex、引っ張り強度2.6cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 2]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm was added so that the content of titanium oxide was 5.0% by mass with respect to the mass of the high fuller fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 1.7 dtex and a tensile strength of 2.6 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[実施例3]
DMSOを溶媒とする溶液重合により、アクリロニトリル85.0質量%、アクリル酸メチル3.5質量%、メタリルスルホン酸ナトリウム4.5質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が1.0μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が7.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.055mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度2.2dtex、引っ張り強度2.2cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 3]
By solution polymerization using DMSO as a solvent, an acrylonitrile copolymer concentration containing 85.0% by mass of acrylonitrile, 3.5% by mass of methyl acrylate, and 4.5% by mass of sodium methallyl sulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 1.0 μm was added so that the content of titanium oxide was 7.0% by mass with respect to the mass of high-full-dal fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a pore diameter of 0.055 mm. Further, it is stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimps, single fiber fineness of 2.2 dtex, and tensile strength of 2.2 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[実施例4]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.0dtex、引っ張り強度2.4cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 4]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm was added so that the content of titanium oxide was 5.0% by mass with respect to the mass of the high fuller fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 1.0 dtex and a tensile strength of 2.4 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[実施例5]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が1.0μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.0dtex、引っ張り強度2.3cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 5]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 1.0 μm was added so that the content of titanium oxide was 5.0% by mass with respect to the mass of high-full-dull fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film is stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimps, a single fiber fineness of 1.0 dtex, and a tensile strength of 2.3 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[実施例6]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、高フルダル細繊度アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度0.7dtex、引っ張り強度2.6cN/dtexの高フルダル系細繊度アクリル系繊維を得た。
[Example 6]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm was added so that the content of titanium oxide was 5.0% by mass with respect to the mass of the high fuller fineness acrylic fiber. Mixing was performed to prepare a spinning dope. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimps, single fiber fineness 0.7 dtex, and tensile strength 2.6 cN. An / dtex high-fludal fine fineness acrylic fiber was obtained.

[比較例1]
DMSOを溶媒とする溶液重合により、アクリロニトリル92.7質量%、アクリル酸メチル6.0質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が0.1質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.7dtex、引っ張り強度3.0cN/dtexのアクリル系繊維を得た。
[Comparative Example 1]
By solution polymerization using DMSO as a solvent, the concentration of acrylonitrile-based copolymer containing 92.7% by mass of acrylonitrile, 6.0% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm is added and mixed so that the content of titanium oxide is 0.1% by mass with respect to the mass of acrylic fiber, and spinning is performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 1.7 dtex, tensile strength of 3.0 cN An acrylic fiber of / dtex was obtained.

[比較例2]
DMSOを溶媒とする溶液重合により、アクリロニトリル84.0質量%、アクリル酸メチル4.8質量%、メタリルスルホン酸ナトリウム4.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が7.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で5倍に延伸し、水による洗浄、150℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.7dtex、引っ張り強度1.7cN/dtexのアクリル系繊維を得た。
[Comparative Example 2]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 84.0% by mass of acrylonitrile, 4.8% by mass of methyl acrylate, and 4.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm is added and mixed so that the content of titanium oxide is 7.0% by mass with respect to the mass of acrylic fiber, and spinning is performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Furthermore, it is stretched 5 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 150 ° C. for 1 minute, imparted crimps, and has a single fiber fineness of 1.7 dtex and a tensile strength of 1.7 cN. An acrylic fiber of / dtex was obtained.

[比較例3]
DMSOを溶媒とする溶液重合により、アクリロニトリル85.3質量%、アクリル酸メチル3.6質量%、メタリルスルホン酸ナトリウム1.1質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が1.0μmである酸化チタンを、繊維重量に対して酸化チタンの含有率が10.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で5倍に延伸し、水による洗浄、150℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度2.2dtex、引っ張り強度1.8cN/dtexのアクリル系繊維を得た。
[Comparative Example 3]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 85.3% by mass of acrylonitrile, 3.6% by mass of methyl acrylate, and 1.1% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile copolymer solution, titanium oxide having an average particle diameter of 1.0 μm was added and mixed so that the content of titanium oxide was 10.0% by mass with respect to the fiber weight, and the spinning dope was Prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film is stretched 5 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 150 ° C. for 1 minute, imparted with crimps to give a single fiber fineness of 2.2 dtex and a tensile strength of 1.8 cN. An acrylic fiber of / dtex was obtained.

[比較例4]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.05μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.7dtex、引っ張り強度2.1cN/dtexのアクリル系繊維を得た。
[Comparative Example 4]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.05 μm was added and mixed so that the content of titanium oxide was 5.0% by mass with respect to the mass of acrylic fiber, and spinning was performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, it is stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted crimps, and has a single fiber fineness of 1.7 dtex and a tensile strength of 2.1 cN. An acrylic fiber of / dtex was obtained.

[比較例5]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が1.5μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.0dtex、引っ張り強度2.3cN/dtexのアクリル系繊維を得た。
[Comparative Example 5]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 1.5 μm was added and mixed so that the content of titanium oxide was 5.0% by mass with respect to the mass of acrylic fiber, and spinning was performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film is stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimps, a single fiber fineness of 1.0 dtex, and a tensile strength of 2.3 cN. An acrylic fiber of / dtex was obtained.

[比較例6]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が1.0μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度3.3dtex、引っ張り強度2.7cN/dtexのアクリル系繊維を得た。
[Comparative Example 6]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 1.0 μm is added and mixed so that the content of titanium oxide is 5.0% by mass with respect to the mass of acrylic fiber, and spinning is performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimps, single fiber fineness of 3.3 dtex, and tensile strength of 2.7 cN. An acrylic fiber of / dtex was obtained.

[比較例7]
DMSOを溶媒とする溶液重合により、アクリロニトリル88.9質量%、アクリル酸メチル4.9質量%、メタリルスルホン酸ナトリウム1.2質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が5.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度0.1dtex、引っ張り強度2.6cN/dtexのアクリル系繊維を得た。
[Comparative Example 7]
By solution polymerization using DMSO as a solvent, an acrylonitrile-based copolymer concentration containing 88.9% by mass of acrylonitrile, 4.9% by mass of methyl acrylate, and 1.2% by mass of sodium methallylsulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle diameter of 0.6 μm is added and mixed so that the content of titanium oxide is 5.0% by mass with respect to the mass of acrylic fiber, and spinning is performed. Stock solutions were prepared. Using the above spinning solution, wet spinning was carried out into a 60% by mass DMSO aqueous solution from a round hole cap having a pore diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 0.1 dtex and a tensile strength of 2.6 cN. An acrylic fiber of / dtex was obtained.

[比較例8]
DMSOを溶媒とする溶液重合により、アクリロニトリル87.1質量%、アクリル酸メチル1.6質量%、メタリルスルホン酸ナトリウム8.3質量%を共重合成分として含む、アクリロニトリル系共重合体濃度が22.4質量%のアクリロニトリル系共重合体溶液を得た。このアクリロニトリル系共重合体溶液に、平均粒径が0.6μmである酸化チタンを、アクリル系繊維質量に対して酸化チタンの含有率が3.0質量%となるように加えて混合し、紡糸原液を調製した。前記紡糸原液を用いて孔径0.050mmの丸孔口金より60質量%のDMSO水溶液に湿式紡糸した。さらに95℃の熱水中で6倍に延伸し、水による洗浄、160℃の熱風による1分間の乾燥緻密化を行い、捲縮を付与して単繊維繊度1.0dtex、引っ張り強度2.6cN/dtexのアクリル系繊維を得た。
[Comparative Example 8]
By solution polymerization using DMSO as a solvent, an acrylonitrile copolymer concentration containing 87.1% by mass of acrylonitrile, 1.6% by mass of methyl acrylate, and 8.3% by mass of sodium methallyl sulfonate as a copolymerization component is 22 A 4% by mass acrylonitrile copolymer solution was obtained. To this acrylonitrile-based copolymer solution, titanium oxide having an average particle size of 0.6 μm was added and mixed so that the content of titanium oxide was 3.0% by mass with respect to the mass of acrylic fiber, and spinning was performed. Stock solutions were prepared. The spinning solution was used for wet spinning into a 60% by mass DMSO aqueous solution from a round hole cap having a hole diameter of 0.050 mm. Further, the film was stretched 6 times in hot water at 95 ° C., washed with water, dried and densified with hot air at 160 ° C. for 1 minute, imparted with crimp, and a single fiber fineness of 1.0 dtex and a tensile strength of 2.6 cN. An acrylic fiber of / dtex was obtained.

実施例1〜8、および比較例1〜8で作製した高フルダル細繊度アクリル系繊維については、上述の(3)製糸性の評価、(4)紡績性の評価、(5)紫外線遮蔽率の評価、(6)編地風合いの評価を行い、結果を表1、表2に示した。その結果、本発明における高フルダル細繊度アクリル系繊維は、編地風合いと紫外線遮蔽性に優れ、かつ製糸性と紡績性にも優れていることが明確であった。   About the high full-dull fineness acrylic fiber produced in Examples 1-8 and Comparative Examples 1-8, the above-mentioned (3) Evaluation of yarn-making property, (4) Evaluation of spinnability, (5) Ultraviolet shielding rate Evaluation, (6) Evaluation of knitted fabric texture was performed, and the results are shown in Tables 1 and 2. As a result, it was clear that the high-full-dull fineness acrylic fiber in the present invention was excellent in knitted fabric texture and ultraviolet shielding properties, and also excellent in yarn production and spinnability.

Figure 2017179627
Figure 2017179627

Figure 2017179627
Figure 2017179627

Claims (1)

アクリロニトリル85〜94質量%、アクリロニトリルと共重合性を有するビニルモノマー2〜10質量%、およびスルホン酸基を有するビニルモノマー1〜6質量%を共重合成分として含むアクリロニトリル系共重合体からなる高フルダル細繊度アクリル系繊維であって、平均粒径が0.5〜1.0μmの酸化チタンを2〜7質量%含み、単繊維繊度が0.7〜2.2dtexであり、引っ張り強度が2.0cN/dtex以上である、高フルダル細繊度アクリル系繊維。   High fuldal comprising acrylonitrile-based copolymer containing acrylonitrile 85 to 94 mass%, vinyl monomer 2 to 10 mass% copolymerizable with acrylonitrile, and vinyl monomer 1 to 6 mass% having sulfonic acid group as copolymerization components It is a fine fiber acrylic fiber, contains 2 to 7% by mass of titanium oxide having an average particle size of 0.5 to 1.0 μm, single fiber fineness is 0.7 to 2.2 dtex, and tensile strength is 2. High full dull fineness acrylic fiber that is 0 cN / dtex or more.
JP2016065135A 2016-03-29 2016-03-29 High full-dull fine-denier acrylic fiber Pending JP2017179627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016065135A JP2017179627A (en) 2016-03-29 2016-03-29 High full-dull fine-denier acrylic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016065135A JP2017179627A (en) 2016-03-29 2016-03-29 High full-dull fine-denier acrylic fiber

Publications (1)

Publication Number Publication Date
JP2017179627A true JP2017179627A (en) 2017-10-05

Family

ID=60005493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016065135A Pending JP2017179627A (en) 2016-03-29 2016-03-29 High full-dull fine-denier acrylic fiber

Country Status (1)

Country Link
JP (1) JP2017179627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302985A (en) * 2019-08-23 2022-04-08 三菱化学株式会社 Acrylic fiber, spun yarn and knitted fabric comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114302985A (en) * 2019-08-23 2022-04-08 三菱化学株式会社 Acrylic fiber, spun yarn and knitted fabric comprising same

Similar Documents

Publication Publication Date Title
CN106661771B (en) Gloss pilling-resistant acrylic fiber, process for producing the same, and yarn and knitted fabric comprising the same
JP5128540B2 (en) Spun yarn containing acrylic fiber and knitted fabric using the same
JP2017179627A (en) High full-dull fine-denier acrylic fiber
JP7167991B2 (en) Acrylic fiber, spun yarn and knitted fabric containing said fiber
JP2018053378A (en) Acrylic fiber excellent in ultraviolet shielding property
JP2007100225A (en) Acrylic fiber and method for producing the same
JP3767995B2 (en) Super gloss flat acrylic fiber and its fiber products
JP2013174033A (en) Anti-pill acrylic fiber having v-shaped cross section and method for producing the same
WO1996000319A1 (en) Acrylic fiber with high optical brightness
JPWO2003072618A1 (en) Synthetic resin for acrylic synthetic fiber, acrylic synthetic fiber comprising the same, and method for producing acrylic synthetic fiber
JP2020059939A (en) Hygroscopic and exothermic acrylic fiber
JP2018096009A (en) Synthetic fiber and production method thereof
JP2908046B2 (en) Anti-pilling acrylic fiber and method for producing the same
JPH01104828A (en) Acrylic modified cross-section fiber
JP3372100B2 (en) Improved acrylic composite fiber
JP3756886B2 (en) High shrinkable acrylic fiber
JP2003147630A (en) Acrylic modified cross section fiber and method for producing the same
JP2019173190A (en) Small fineness acrylic fiber, and method for producing the same
JP2019127673A (en) Moisture absorption exothermic acrylic fiber
JP2007314923A (en) Long-short composite yarn and fabric using the same
JPH05148709A (en) Acrylic modified cross section fiber and its production
JPS6211083B2 (en)
JP3720635B2 (en) Acrylonitrile-based synthetic fiber and method for producing the same
JPH073530A (en) Pill-resistant acrylic yarn and production thereof
JP2018145538A (en) Flat acrylic fiber and method for manufacturing the same