JP2007224448A - Electrically conductive conjugate fiber - Google Patents

Electrically conductive conjugate fiber Download PDF

Info

Publication number
JP2007224448A
JP2007224448A JP2006046282A JP2006046282A JP2007224448A JP 2007224448 A JP2007224448 A JP 2007224448A JP 2006046282 A JP2006046282 A JP 2006046282A JP 2006046282 A JP2006046282 A JP 2006046282A JP 2007224448 A JP2007224448 A JP 2007224448A
Authority
JP
Japan
Prior art keywords
sheath
conductive
yarn
core
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006046282A
Other languages
Japanese (ja)
Inventor
Tomohiro Oguchi
朝弘 小口
Yoshitoki Mori
義斉 森
Hiroyuki Kurokawa
浩亨 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006046282A priority Critical patent/JP2007224448A/en
Publication of JP2007224448A publication Critical patent/JP2007224448A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrically conductive conjugate fiber excellent in fiber manufacturability and high-order process passableness and having high electrical conductivity. <P>SOLUTION: The electrically conductive conjugate fiber with triple sheath/core structure is characterized in that the melting point of polyethylene terephthalate constituting the cores is 240°C or lower, the polyamide constituting the sheathes covering the cores contains carbon black, and the sheath constituting the outermost layer consists of polylactic acid. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は導電性複合繊維に関するものであり、詳しくは導電性能が高く、製糸工程や製織工程での工程通過性に優れた導電性複合繊維に関するものである。   The present invention relates to an electrically conductive conjugate fiber, and more particularly to an electrically conductive conjugate fiber having high electrical conductivity and excellent process passability in a yarn making process and a weaving process.

ポリエステル系熱可塑性樹脂からなる合成繊維は広く衣料用のみならず、産業用分野にまで利用されている。しかしながら、これらの合成繊維は電気抵抗が著しく高く、静電気を帯びやすいという致命的な欠点を有し、衣類においては脱着時の不快感、裾のまとわりつき、汚れの付着等の問題があり、特に作業衣として用いる場合は可燃ガスへの引火の危険性や、精密機器類の破壊の問題がある。これら静電気による欠点を排除すべく、これまで種々の方法が提案されている。   Synthetic fibers made of polyester thermoplastic resins are widely used not only for clothing but also for industrial fields. However, these synthetic fibers have extremely high electrical resistance and have the fatal drawback of being easily charged with static electricity. In clothing, there are problems such as discomfort during detachment, clinging to the hem, and adhesion of dirt. When used as clothing, there are dangers of ignition to combustible gas and destruction of precision instruments. Various methods have been proposed so far in order to eliminate these defects caused by static electricity.

従来から、導電性カーボンブラックを均一分散させたポリマー単体より導電性繊維を得る方法が提案されているが、この導電性繊維はカーボンブラックを多量に含有するために繊維の製造が難しく、且つ繊維物性が著しく低下するという問題があった。これらの問題を解決するため、芯鞘複合タイプ複合繊維の芯成分ポリマーに導電性カーボンブラックを含有させ、それを通常の繊維形成性ポリマーからなる鞘で包み込もうという提案がある(特許文献1)が、この場合、繊維性能を保つため芯部を非導電性の鞘が厚く包囲しているため、十分な導電性が得られない。   Conventionally, a method for obtaining conductive fibers from a single polymer in which conductive carbon black is uniformly dispersed has been proposed. However, since these conductive fibers contain a large amount of carbon black, it is difficult to produce the fibers. There was a problem that the physical properties deteriorated remarkably. In order to solve these problems, there is a proposal to contain conductive carbon black in the core component polymer of the core-sheath composite type composite fiber and enclose it in a sheath made of a normal fiber-forming polymer (Patent Document 1). However, in this case, in order to maintain the fiber performance, the core portion is thickly surrounded by the non-conductive sheath, so that sufficient conductivity cannot be obtained.

この問題を解決するため、カーボンブラックを含有した導電層成分が繊維表面の一部または全てに露出した導電性複合繊維が数々提案されている(特許文献2)が、これらの導電性繊維は繊維表面に導電層が露出しているため、製糸・製織工程における毛羽、糸道ガイド類との擦過による導電層成分の剥離、糸道ガイド類の摩耗等、種々の問題があった。   In order to solve this problem, a number of conductive composite fibers in which the conductive layer component containing carbon black is exposed on part or all of the fiber surface have been proposed (Patent Document 2). Since the conductive layer is exposed on the surface, there are various problems such as fluff in the yarn making and weaving process, peeling of the conductive layer component due to rubbing with the yarn path guides, and wear of the thread path guides.

製糸および製織工程での通過性を向上させるため、導電性粒子が含まれる芯成分に対し、鞘の厚さが繊維直径の1/7以下とし、後工程で溶剤で鞘成分を溶解させることにより芯成分を表面に露出させる複合繊維の製造方法が提案されている(特許文献3)。この方法では確かに工程通過性は良好であるが、鞘成分を常に均一に溶出させることは困難であり、芯成分の表面露出状態を均一に制御できないため、導電性能にバラツキが生じるという問題があった。
特開昭55−1337号公報(特許請求の範囲) 特開2004−225214号公報(請求項1) 特開昭61−174469号公報(特許請求の範囲)
In order to improve the passability in the yarn making and weaving process, the sheath thickness is set to 1/7 or less of the fiber diameter with respect to the core component containing the conductive particles, and the sheath component is dissolved in a solvent in the subsequent process. A method for producing a composite fiber in which a core component is exposed on the surface has been proposed (Patent Document 3). In this method, the process passability is certainly good, but it is difficult to always elute the sheath component uniformly, and the surface exposure state of the core component cannot be controlled uniformly, so there is a problem that the conductive performance varies. there were.
JP 55-1337 A (Claims) JP 2004-225214 A (Claim 1) JP-A-61-174469 (Claims)

本発明は、上記従来技術では達成できなかった、製糸および製織工程での毛羽、糸道ガイド類の摩耗を改善し、かつ溶出処理後での導電性能バラツキのなく優れた導電性能を有した導電性複合繊維を提供するものである。   The present invention improves the wear of fuzz and yarn path guides in the yarn production and weaving process, which could not be achieved by the above prior art, and has excellent conductivity performance without variation in conductivity performance after elution treatment. An improved composite fiber is provided.

上記本発明の目的は、以下によって達成することができる。すなわち、三重芯鞘構造からなる複合繊維において、芯を形成するポリエチレンテレフタレートの融点が240℃以下で、芯を被覆する鞘を形成するポリアミドが導電性カーボンブラックを含有し、さらに最外層を形成する鞘がポリ乳酸からなる導電性複合繊維である。   The object of the present invention can be achieved by the following. That is, in a composite fiber having a triple core sheath structure, the melting point of polyethylene terephthalate forming the core is 240 ° C. or less, the polyamide forming the sheath covering the core contains conductive carbon black, and further forms the outermost layer. A conductive composite fiber whose sheath is made of polylactic acid.

本発明により製糸工程や高次工程での工程通過性に優れ、かつ高い導電性を有する導電性複合繊維を得ることができる。   According to the present invention, it is possible to obtain a conductive conjugate fiber that is excellent in process passability in a yarn making process and a higher order process and has high conductivity.

本発明における導電性複合繊維は、三重芯鞘構造の芯が、融点が240℃以下のポリエチレンテレフタレートからなることが必要である。本発明でいうポリエチレンテレフタレートとは、エチレンテレフタレートを主たる繰り返し単位とするものであるが、ここで主たるとは全繰り返し単位の60モル%以上、好ましくは70モル%以上であることを意味する。複合繊維の芯成分をポリエチレンテレフタレートとすることで、複合繊維に十分な機械的特性を持たせることが可能となり、かつ融点を240℃以下とすることで、鞘を形成するポリアミドおよび最外層を形成するポリ乳酸と、同一紡糸温度で安定的に製糸することが可能となる。芯を形成するポリエチレンテレフタレートは、融点が240℃以下であればよく、テレフタル酸成分およびエチレングリコール成分以外の第3成分を共重合させたポリエチレンテレフタレートが例示できる。ここで、第3成分としては、酸成分として、例えば、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸およびセバシン酸などのジカルボン酸類が挙げられ、一方、グリコール成分として、例えば、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコールなどを例示することができるが、融点降下の効率から特にイソフタル酸が好ましく、ポリエチレンテレフタレートの全酸性分に対してイソフタル酸が5〜30モル%共重合していることが特に好ましい。また、艶消剤としての二酸化チタン、滑剤としてのシリカやアルミナの微粒子、抗酸化剤としてのヒンダードフェノール誘導体、および着色顔料などを必要に応じて添加したものであってもよい。   In the conductive conjugate fiber in the present invention, the core of the triple core sheath structure needs to be made of polyethylene terephthalate having a melting point of 240 ° C. or lower. The term “polyethylene terephthalate” as used in the present invention refers to ethylene terephthalate as the main repeating unit. Here, “mainly” means 60 mol% or more, preferably 70 mol% or more of all repeating units. By using polyethylene terephthalate as the core component of the composite fiber, it is possible to give the composite fiber sufficient mechanical properties, and by forming the melting point at 240 ° C. or less, the polyamide that forms the sheath and the outermost layer are formed. Thus, it is possible to stably produce yarn at the same spinning temperature as that of polylactic acid. The polyethylene terephthalate forming the core may have a melting point of 240 ° C. or lower, and examples thereof include polyethylene terephthalate obtained by copolymerizing a third component other than the terephthalic acid component and the ethylene glycol component. Here, as the third component, examples of the acid component include dicarboxylic acids such as isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, and sebacic acid. On the other hand, examples of the glycol component include ethylene glycol and diethylene glycol. , Butanediol, neopentyl glycol, cyclohexanedimethanol, polyethylene glycol and polypropylene glycol, etc., but isophthalic acid is particularly preferred from the viewpoint of melting point lowering efficiency, and isophthalic acid is 5 with respect to the total acid content of polyethylene terephthalate. It is particularly preferred that the copolymerization is ˜30 mol%. Further, titanium dioxide as a matting agent, silica or alumina fine particles as a lubricant, hindered phenol derivatives as an antioxidant, and coloring pigments may be added as necessary.

次に、本発明の導電性複合繊維は、芯を被覆する鞘はポリアミドで形成されていることが必要であり、さらに該ポリアミドが導電性カーボンブラックを含有していることが必要である。本発明の導電繊維は、製糸、製織・製編工程後にアルカリ成分で最外層のポリ乳酸を溶出除去し、導電性カーボンブラックを含む鞘を繊維表面に露出することで優れた導電性を発揮する。鞘を形成するポリマーをポリアミドとすることで、最外層のポリ乳酸をアルカリ成分で溶出処理しても、鞘のポリアミドはアルカリ成分で影響を受けないため、最外層を溶出した段階で溶出は終了し、カーボンブラックの脱落や、溶出バラツキによる溶出後の繊維断面の不均一化といった問題が発生することはない。従って、導電性能に優れ、なお且つ導電性能バラツキがない導電性複合繊維を得ることができる。本発明でいうポリアミドとは、ナイロン6やナイロン66、ナイロン10、ナイロン12、およびそれらの共重合体等のポリアミド系熱可塑性樹脂を好ましく用いることができる。また、本発明でいうポリアミドには、導電性能を損なわない範囲内であれば耐熱剤や流動化剤等を添加してもよい。   Next, in the conductive conjugate fiber of the present invention, the sheath covering the core needs to be formed of polyamide, and the polyamide needs to contain conductive carbon black. The conductive fiber of the present invention exhibits excellent conductivity by eluting and removing the outermost polylactic acid with an alkaline component after the yarn-making, weaving and knitting processes, and exposing the sheath containing the conductive carbon black to the fiber surface. . By using polyamide as the polymer that forms the sheath, even if the polylactic acid in the outermost layer is eluted with an alkali component, the polyamide in the sheath is not affected by the alkali component, so the elution ends when the outermost layer is eluted. However, there is no problem of carbon black falling off or non-uniform fiber cross section after elution due to elution variation. Therefore, it is possible to obtain a conductive composite fiber that is excellent in conductive performance and has no variation in conductive performance. As the polyamide in the present invention, polyamide-based thermoplastic resins such as nylon 6, nylon 66, nylon 10, nylon 12, and copolymers thereof can be preferably used. In addition, a heat-resistant agent, a fluidizing agent, and the like may be added to the polyamide referred to in the present invention as long as the conductive performance is not impaired.

また、本発明において、鞘を形成するポリアミドは導電性カーボンブラックを含有することが必要である。鞘に導電性カーボンブラックが含有されていることで、最外層の溶出処理後に鞘が表面に露出され、結果優れた導電性を発揮することが可能となる。導電性カーボンブラックは、本発明に用いる導電性カーボンブラックとしては、10−3〜10Ωcmの固有体積抵抗を有するものが良く、具体的にはファーネスブラック、ケッチェンブラック、アセチレンブラックを好適に用いることができる。ポリアミド中の導電性カーボンブラックの含有量は、製糸性、導電性の点から15〜50重量%の範囲であることが好ましい。 In the present invention, the polyamide that forms the sheath needs to contain conductive carbon black. By containing conductive carbon black in the sheath, the sheath is exposed to the surface after the elution treatment of the outermost layer, and as a result, excellent conductivity can be exhibited. As the conductive carbon black used in the present invention, a conductive carbon black having an intrinsic volume resistance of 10 −3 to 10 2 Ωcm is preferable. Specifically, furnace black, ketjen black, and acetylene black are preferably used. Can be used. The content of the conductive carbon black in the polyamide is preferably in the range of 15 to 50% by weight from the viewpoints of yarn production and conductivity.

さらに、本発明の導電性複合繊維の最外層を形成する鞘は、ポリ乳酸で形成されていることが必要である。最外層がポリ乳酸で被覆されることにより、カーボンブラックを含有した鞘成分が直接表面に露出している場合と比較して、製糸時には紡糸口金汚れを大幅に抑制することが可能であり、また高次加工時にはホットプレートや糸道ガイド、筬の摩耗を大幅に低減することが可能となる。   Furthermore, the sheath that forms the outermost layer of the conductive conjugate fiber of the present invention needs to be formed of polylactic acid. By coating the outermost layer with polylactic acid, it is possible to greatly suppress the spinneret stain during spinning, compared to the case where the sheath component containing carbon black is directly exposed on the surface, During high-order machining, wear of the hot plate, yarn path guide, and heel can be greatly reduced.

本発明の導電性複合繊維は、最外層のポリ乳酸をアルカリ溶出処理せず、そのまま用いてもよいが、最外層をアルカリ溶出し、カーボンブラック成分を含有したポリアミドを表面に露出させることで、導電性能を飛躍的に向上させることが可能である。また、最外層を溶出した場合、糸表面は全て導電性成分で被覆されるため、耐摩耗、耐洗濯性等の耐久性にも優れたものとなる。   The conductive conjugate fiber of the present invention may be used as it is without alkali elution treatment of the outermost layer polylactic acid, but by eluting the outermost layer with alkali and exposing the polyamide containing the carbon black component to the surface, It is possible to dramatically improve the conductive performance. Further, when the outermost layer is eluted, the entire surface of the yarn is covered with a conductive component, so that durability such as wear resistance and washing resistance is excellent.

ポリエステル系合成繊維において、溶出成分としては、有機金属塩を共重合したポリエステルが一般的に用いられるが、ポリ乳酸は、有機金属塩を共重合したポリエステルよりも一般的にアルカリ溶出速度が速いため、容易に溶出除去することが可能であり、溶出不良が発生することもない。本発明でいうポリ乳酸は、数平均分子量は5万〜10万のものが好ましく、さらには純度が95.0%〜99.5%のL−乳酸からなるポリ乳酸が好ましい。このようなポリ乳酸であれば、各製造工程での強度を維持できるほか、適度な生分解性が得られることから溶出した後の廃液の環境負荷が小さい。なお、L−乳酸やD−乳酸のほかにエステル形成能を有するその他の成分を共重合した共重合ポリ乳酸であってもよい。   In polyester-based synthetic fibers, polyesters copolymerized with organic metal salts are generally used as elution components, but polylactic acid generally has a higher alkali elution rate than polyesters copolymerized with organic metal salts. Elution and removal can be easily performed, and no elution failure occurs. The polylactic acid referred to in the present invention preferably has a number average molecular weight of 50,000 to 100,000, more preferably polylactic acid composed of L-lactic acid having a purity of 95.0% to 99.5%. Such polylactic acid can maintain the strength in each production process, and can obtain appropriate biodegradability, so that the environmental load of the waste liquid after elution is small. Copolymerized polylactic acid obtained by copolymerizing other components having ester forming ability in addition to L-lactic acid or D-lactic acid may be used.

特に好ましいポリ乳酸としては、高融点と低屈折率の観点から、L−乳酸を主成分とするポリエステルであるポリ乳酸、およびグリコール酸を主成分とするポリエステルであるポリグリコール酸を挙げることができる。L−乳酸を主成分とするとは、構成成分の60重量%以上がL−乳酸よりなっていることを意味しており、40重量%を超えない範囲でD−乳酸を含有するポリエステルであってもよい。また、艶消し剤、消臭剤、難燃剤、糸摩擦低減剤、抗酸化剤および着色顔料等として無機微粒子や有機化合物を必要に応じて添加することができる。   Particularly preferable polylactic acid includes polylactic acid, which is a polyester mainly composed of L-lactic acid, and polyglycolic acid, which is a polyester mainly composed of glycolic acid, from the viewpoint of a high melting point and a low refractive index. . “L-lactic acid as a main component” means that 60% by weight or more of the constituent components is made of L-lactic acid, and is a polyester containing D-lactic acid within a range not exceeding 40% by weight. Also good. In addition, inorganic fine particles and organic compounds can be added as necessary as matting agents, deodorants, flame retardants, yarn friction reducing agents, antioxidants, and coloring pigments.

本発明の導電性複合繊維を形成する各成分の複合比率については、用途に応じて決定すればよいが、アルカリ溶出処理後の繊度変化による織編物空隙部分の増加、および製糸、製織・製編工程での安定性を考慮すると、最外層を形成する鞘成分の複合比率は、5〜20重量%であることが好ましい。   The composite ratio of each component forming the conductive conjugate fiber of the present invention may be determined according to the use. However, the increase in the void portion of the woven / knitted fabric due to the change in the fineness after the alkali elution treatment, and the yarn making, weaving / knitting Considering the stability in the process, the composite ratio of the sheath component forming the outermost layer is preferably 5 to 20% by weight.

また、本発明の導電性複合繊維の断面形状は、三重芯鞘構造であることが必要であり、丸断面のみならず、扁平や三角、さらには複数の突起部を有する異形断面を好ましく例示できる。また三重芯鞘の形態は、同心円状であっても良いし、芯が鞘に対して偏芯した構造であっても良い。   In addition, the cross-sectional shape of the conductive conjugate fiber of the present invention needs to be a triple-core sheath structure, and not only a round cross-section but also a flat cross-section, a triangular cross-section, and a modified cross-section having a plurality of protrusions can be preferably exemplified. . The form of the triple core sheath may be concentric, or may be a structure in which the core is eccentric with respect to the sheath.

本発明の導電性複合繊維の製造方法は、三重芯鞘の複合形態を満足すればよく、一例として、芯、鞘、最外層の各成分のポリマーを別々に溶融し、複合紡糸パックに導入後、三重芯鞘複合口金の吐出孔から紡出し、紡出した糸条を所定の速度で引取った後、一旦パッケージに巻上げ、得られた未延伸糸を延伸機にて延伸する方法があげられる。また、紡出糸を一旦巻取ることなく連続して加熱延伸を行ってもよく、例えば、紡出糸を1000〜5000m/分で引取り、引続いて3000〜6000m/分で延伸・熱固定する方法が挙げられる。   The method for producing the conductive conjugate fiber of the present invention only needs to satisfy the composite form of the triple core sheath, and as an example, the core, sheath, and outermost component polymers are separately melted and introduced into the composite spin pack. There is a method of spinning from the discharge hole of the triple-core-sheath composite die, taking up the spun yarn at a predetermined speed, winding it once on a package, and drawing the obtained undrawn yarn with a drawing machine. . Further, the drawn yarn may be continuously heated and drawn without being wound once. For example, the drawn yarn is taken up at 1000 to 5000 m / min, and subsequently drawn and heat-set at 3000 to 6000 m / min. The method of doing is mentioned.

以下に本発明を詳細に説明する。尚、実施例中の評価は以下の評価方法に従った。   The present invention is described in detail below. In addition, the evaluation in an Example followed the following evaluation methods.

A.極限粘度[η]
オルトクロロフェノール10mlに対し試料0.10gを溶解し、温度25℃においてオストワルド粘度計を用いて測定した。
A. Intrinsic viscosity [η]
A sample of 0.10 g was dissolved in 10 ml of orthochlorophenol and measured using an Ostwald viscometer at a temperature of 25 ° C.

B.布帛表面抵抗値(Ω)
ZHI SHENG INDUSTRIAL社製SURFACE RESISTANCE CHECKER SRM−100を用い後述する実施例で得られた布帛の表面電気抵抗を測定し、表示抵抗値(Ω)の常用対数で評価した。なお、7以下を合格とした。
B. Fabric surface resistance (Ω)
The surface electrical resistance of the fabric obtained in the Example mentioned later was measured using SURFACE REISTANCE CHECKER SRM-100 made by ZHI SHENG INDUSTRIAL, and evaluated with the common logarithm of the display resistance value (Ω). In addition, 7 or less was set as the pass.

C.融点
Perkin−E1mer社製のDSC−IB型で、昇温速度10℃/分で測定し、融解曲線の主ピーク温度を融点とした。
C. Melting point A DSC-IB type manufactured by Perkin-E1mer was used and measured at a heating rate of 10 ° C./min, and the main peak temperature of the melting curve was taken as the melting point.

D.製糸性
後述する実施例の方法で導電性複合繊維を得るに当たり、チップ原料1000kgから得られた導電性複合繊維の収率が100%以下85%以上を○、85%未満〜70%以上を△、70%未満を×とし、○および△を合格とした。
D. In order to obtain conductive conjugate fibers by the method of Examples described later, the yield of conductive conjugate fibers obtained from 1000 kg of chip raw materials is 100% or less 85% or more, and less than 85% to 70% or more Δ , Less than 70% was evaluated as x, and ◯ and Δ were regarded as acceptable.

E.高次工程通過性
後述する実施例の方法で導電性複合繊維から布帛を得るにあたり、導電性複合繊維のガイドおよび糸道での毛羽、糸切れ発生頻度(導電性複合繊維1kg当たり)が5回未満を○とし、6〜10回を△、11回以上を×とし、○および△を合格とした。
E. Higher process passability In obtaining a fabric from a conductive conjugate fiber by the method of the embodiment described later, the guide frequency of the conductive conjugate fiber and the occurrence of fuzz and yarn breakage on the yarn path (per 1 kg of the conductive conjugate fiber) are 5 times. Less than was made into (circle), 6-10 times was set to (triangle | delta), 11 times or more was set to x, and (circle) and (triangle | delta) were set as pass.

F.総合評価
布帛抵抗値、製糸性、高次工程通過性の中で、一つでも不合格な項目がある場合を×、製糸性・高次工程通過性のいずれか/両方が△であり、布帛抵抗値が合格な場合を△、製糸性・高次工程通過性の両方が○であり、布帛抵抗値が合格な場合を○とし、○および△を合格とした。
F. Comprehensive evaluation When there is at least one item that is unacceptable among the fabric resistance value, the yarn-making property, and the high-order process passability, ×, either or both of the yarn-making property and the high-order process passability are △ The case where the resistance value was acceptable was evaluated as Δ, both the yarn-making property and the high-order process passability were evaluated as ○, the case where the fabric resistance value was acceptable was evaluated as ○, and ○ and Δ were regarded as acceptable.

実施例1
イソフタル酸を全酸性分に対して12.7モル%共重合した、融点が224.0℃、極限粘度[η]が0.65のポリエチレンテレフタレートチップ(芯成分)、および導電性カーボンブラックが35重量%となるよう常法にて溶融混錬したN6チップ(鞘成分)、また光学純度98.0%、数平均分子量84,000のポリ−L−乳酸チップ(最外層成分)をそれぞれ別のプレッシャメルターにて溶融押出しし、紡糸温度255℃で三重芯鞘複合口金より紡糸した。各成分の複合比率は芯成分70重量%、鞘成分20重量%、最外層成分10重量%とした。紡糸した糸条は空冷し、紡糸油剤を付与した後、1500m/分の速度で巻き取り、導電性複合繊維の未延伸糸を得た。得られた未延伸糸の断面は各成分が同心円状に配列した複合状態であった。この未延伸糸を表面温度88℃のホットローラーにて加熱した後、2.7倍の延伸倍率を付与しつつ、表面温度160℃のホットプレート上を通過させた後、ボビン状に巻き取り、28dtex3フィラメントの導電性複合繊維を得た。製糸性は収率93%と良好であった。
Example 1
Polyethylene terephthalate chip (core component) having a melting point of 224.0 ° C. and an intrinsic viscosity [η] of 0.65, copolymerized with 12.7 mol% of isophthalic acid with respect to the total acid content, and conductive carbon black was 35 Separately, N6 chips (sheath components) melt-kneaded by a conventional method so as to be weight%, and poly-L-lactic acid chips (outermost layer components) having an optical purity of 98.0% and a number average molecular weight of 84,000 are separately provided. It was melt-extruded by a pressure melter and spun from a triple core sheath composite die at a spinning temperature of 255 ° C. The composite ratio of each component was 70% by weight of the core component, 20% by weight of the sheath component, and 10% by weight of the outermost layer component. The spun yarn was air-cooled, and after applying a spinning oil, it was wound up at a speed of 1500 m / min to obtain an undrawn yarn of a conductive conjugate fiber. The cross section of the obtained undrawn yarn was a composite state in which the components were arranged concentrically. After heating this unstretched yarn with a hot roller having a surface temperature of 88 ° C., passing it on a hot plate having a surface temperature of 160 ° C. while giving a stretching ratio of 2.7 times, winding it in a bobbin shape, A 28 dtex 3 filament conductive composite fiber was obtained. The spinning performance was as good as 93% yield.

得られた導電性複合繊維はダウンツイスターにて、33dtex12フィラメントのポリエステル繊維と300T/mの条件で合撚した。得られた合撚糸はタテ・ヨコ共に84dtex72フィラメントのポリエステル繊維に対して80本に1本の間隔でウォータージェットルーム製織機を用い、タテ糸密度35本/cm、ヨコ糸密度25本/cmのツイル布帛とした。高次工程通過性としては、糸切れ発生頻度は3回であり、問題なく生産可能なレベルであった。   The obtained conductive conjugate fiber was twisted with a polyester fiber of 33 dtex 12 filaments under a condition of 300 T / m by a down twister. The resulting twisted yarns were both warp and horizontal using a water jet loom weaving machine at intervals of 80 per 84 dtex 72 filament polyester fiber, with a warp yarn density of 35 yarns / cm and a horizontal yarn density of 25 yarns / cm. A twill fabric was obtained. As the high-order process passability, the yarn breakage occurrence frequency was 3 times, which was a level that could be produced without problems.

得られた布帛を水酸化ナトリウム30(g/l)濃度の80℃温水中で50分間処理して、最外層のポリ乳酸を溶出処理した。このようにして得られた布帛の表面電気抵抗値の常用対数は6と優れた導電性能を有していた。   The obtained fabric was treated for 50 minutes in 80 ° C. warm water having a sodium hydroxide concentration of 30 (g / l) to elute the outermost polylactic acid. The common logarithm of the surface electrical resistance value of the fabric thus obtained had an excellent conductive performance of 6.

実施例2
芯成分および最外層成分の複合比率をそれぞれ75重量%、5重量%に変更した以外は実施例1と同様の方法で導電性複合繊維を得た。製糸性は収率91%と良好であった。実施例1と同様に糸加工、製織を実施したところ、高次工程での糸切れ発生頻度は4回と良好な結果であった。さらに実施例1と同様の方法でアルカリ処理を行って得られた布帛の表面抵抗値の常用対数は7であり、良好な導電性能を有していた。結果を表1に示す。
Example 2
A conductive conjugate fiber was obtained in the same manner as in Example 1 except that the composite ratio of the core component and the outermost layer component was changed to 75% by weight and 5% by weight, respectively. The spinning property was as good as 91% yield. Yarn processing and weaving were carried out in the same manner as in Example 1. As a result, the frequency of occurrence of yarn breakage in the high-order process was as good as 4 times. Furthermore, the common logarithm of the surface resistance value of the fabric obtained by carrying out the alkali treatment in the same manner as in Example 1 was 7, and the fabric had good conductive performance. The results are shown in Table 1.

実施例3
芯成分および最外層成分の複合比率をそれぞれ60重量%、20重量%に変更した以外は実施例1と同様の方法で導電性複合繊維を得、さらに実施例1と同様の方法で糸加工、製織して布帛を得た。製糸性は収率88%と問題なく、高次工程での糸切れ発生頻度も3回と良好な結果であった。その後実施例1と同様の方法でアルカリ処理を行い、得られた布帛の表面抵抗値の常用対数は6であり、優れた導電性能を有していた。結果を表1に示す。
Example 3
Except for changing the composite ratio of the core component and the outermost layer component to 60% by weight and 20% by weight, respectively, a conductive composite fiber is obtained by the same method as in Example 1, and further, the yarn is processed by the same method as in Example 1. A fabric was obtained by weaving. The yarn-making property was satisfactory with a yield of 88%, and the frequency of occurrence of yarn breakage in the high-order process was three times. Thereafter, alkali treatment was carried out in the same manner as in Example 1, and the common logarithm of the surface resistance value of the obtained fabric was 6, which had excellent conductive performance. The results are shown in Table 1.

実施例4
イソフタル酸の共重合量を、全酸性分に対し5.0モル%に変更した、融点が240℃のポリエチレンテレフタレートチップを芯成分に用い、それ以外は実施例1と同様の方法で製糸を行い、導電性複合繊維を得、さらに実施例1と同様の方法で糸加工、製織して布帛を得た。製糸性は収率90%で問題なく、高次工程での糸切れ発生頻度も3回と良好な結果であった。実施例1と同様の方法でアルカリ処理を行ったところ、得られた布帛の表面抵抗値の常用対数は6であり、優れた導電性を有していた。結果を表1に示す。
Example 4
Using a polyethylene terephthalate chip having a melting point of 240 ° C., the copolymer amount of isophthalic acid of which is changed to 5.0 mol% based on the total acid content, as the core component, yarn production is performed in the same manner as in Example 1. Then, a conductive conjugate fiber was obtained, and a yarn was processed and woven in the same manner as in Example 1 to obtain a fabric. The yarn-making property was 90% in yield with no problem, and the yarn breakage occurrence frequency in the high-order process was also a good result of 3 times. When the alkali treatment was performed in the same manner as in Example 1, the logarithm of the surface resistance value of the obtained fabric was 6, and it had excellent conductivity. The results are shown in Table 1.

実施例5
イソフタル酸の共重合量を、全酸性分に対し30.0モル%に変更した、融点が182℃のポリエチレンテレフタレートチップを芯成分に用い、紡糸温度を250℃とした以外は実施例1と同様の方法で製糸を行い、導電性複合繊維を得、さらに実施例1と同様の方法で糸加工、製織して布帛を得た。製糸性は収率88%で問題なく、高次工程での糸切れ発生頻度も4回と良好な結果であった。実施例1と同様の方法でアルカリ処理を行ったところ、得られた布帛の表面抵抗値の常用対数は6であり、優れた導電性を有していた。結果を表1に示す。
Example 5
The same as Example 1 except that the copolymerization amount of isophthalic acid was changed to 30.0 mol% with respect to the total acid content, a polyethylene terephthalate chip having a melting point of 182 ° C was used as the core component, and the spinning temperature was 250 ° C. The yarn was produced by the method described above to obtain a conductive conjugate fiber, and the yarn was processed and woven in the same manner as in Example 1 to obtain a fabric. The yarn-making property was 88% in yield with no problem, and the yarn breakage occurrence frequency in the high-order process was a good result of 4 times. When the alkali treatment was carried out in the same manner as in Example 1, the common logarithm of the surface resistance value of the obtained fabric was 6, and it had excellent conductivity. The results are shown in Table 1.

比較例1
第3成分を共重合していない、融点が260℃のポリエチレンテレフタレートチップを芯成分に用い、紡糸温度270℃とした以外は実施例1と同様に製糸を実施したが、ポリ乳酸の融点に対して紡糸温度が高いため、ポリ乳酸の劣化、分解が激しく、製糸不可能であった。
Comparative Example 1
The yarn was produced in the same manner as in Example 1 except that a polyethylene terephthalate chip having a melting point of 260 ° C., which was not copolymerized with the third component, was used as the core component and the spinning temperature was 270 ° C. Since the spinning temperature was high, polylactic acid was severely deteriorated and decomposed, making it impossible to produce yarn.

比較例2
芯および鞘成分を実施例1と同一のポリエチレンテレフタレートおよびカーボンブラック含有ナイロン6とし、それぞれを別のプレッシャメルターにて溶融押出しし、紡糸温度255℃、各成分の複合比率は芯成分80重量%、鞘成分20重量%とし、芯鞘複合口金より紡糸した以外は実施例1と同様の方法で導電性繊維を得、さらに実施例1と同様の方法で糸加工、製織して布帛を得た。紡糸においては口金汚れ発生頻度が高く、収率が72%であった。また、高次工程での糸切れ発生頻度は12回と不良であり、量産可能なレベルではなかった。
Comparative Example 2
The core and sheath components are the same polyethylene terephthalate and carbon black-containing nylon 6 as in Example 1, and each is melt-extruded in a separate pressure melter, the spinning temperature is 255 ° C., the composite ratio of each component is 80% by weight of the core component, A conductive fiber was obtained by the same method as in Example 1 except that the sheath component was 20% by weight, and the fiber was spun from a core / sheath composite base, and further, yarn was processed and woven by the same method as in Example 1 to obtain a fabric. In spinning, the frequency of occurrence of base stains was high, and the yield was 72%. Further, the yarn breakage occurrence frequency in the high-order process was as bad as 12 times, and it was not at a level capable of mass production.

Figure 2007224448
Figure 2007224448

本発明の導電性複合繊維は、これまでにない優れた製糸性と高次通過性を有していることに加え、高い導電性能、耐久性を有していることから、防塵衣、低発塵衣、手術衣等に好ましく用いられる他、OA機器用ブラシ等の用途にも幅広く使用でき有用である。   The conductive conjugate fiber of the present invention has high conductivity performance and durability, in addition to having excellent yarn-making properties and high-order passage properties that have never been seen before. In addition to being preferably used for dust clothes, surgical clothes, etc., it can be used for a wide range of applications such as brushes for OA equipment.

Claims (3)

三重芯鞘構造からなる複合繊維において、芯を形成するポリエチレンテレフタレートの融点が240℃以下で、芯を被覆する鞘を形成するポリアミドが導電性カーボンブラックを含有し、さらに最外層を形成する鞘がポリ乳酸からなることを特徴とする導電性複合繊維。   In a composite fiber having a triple core sheath structure, the melting point of polyethylene terephthalate forming the core is 240 ° C. or less, the polyamide forming the sheath covering the core contains conductive carbon black, and the sheath forming the outermost layer An electrically conductive conjugate fiber comprising polylactic acid. 最外層を形成する鞘成分の複合比率が5〜20重量%であることを特徴とする請求項1記載の導電性複合繊維。   The conductive composite fiber according to claim 1, wherein the composite ratio of the sheath component forming the outermost layer is 5 to 20% by weight. 芯を形成するポリエチレンテレフタレートが、全酸性分に対してイソフタル酸を5〜30モル%共重合していることを特徴とする請求項1または2に記載の導電性複合繊維。   The conductive composite fiber according to claim 1 or 2, wherein the polyethylene terephthalate forming the core is copolymerized with 5 to 30 mol% of isophthalic acid based on the total acid content.
JP2006046282A 2006-02-23 2006-02-23 Electrically conductive conjugate fiber Pending JP2007224448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046282A JP2007224448A (en) 2006-02-23 2006-02-23 Electrically conductive conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046282A JP2007224448A (en) 2006-02-23 2006-02-23 Electrically conductive conjugate fiber

Publications (1)

Publication Number Publication Date
JP2007224448A true JP2007224448A (en) 2007-09-06

Family

ID=38546513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046282A Pending JP2007224448A (en) 2006-02-23 2006-02-23 Electrically conductive conjugate fiber

Country Status (1)

Country Link
JP (1) JP2007224448A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103498212A (en) * 2013-09-23 2014-01-08 绍兴文理学院 Toughening type conductive polylactic acid fiber and preparation method and application thereof
KR101369035B1 (en) 2013-01-23 2014-03-03 주식회사 효성 Conductive conjugated fiber with modified cross-section and fiber product using the same
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101369035B1 (en) 2013-01-23 2014-03-03 주식회사 효성 Conductive conjugated fiber with modified cross-section and fiber product using the same
CN103498212A (en) * 2013-09-23 2014-01-08 绍兴文理学院 Toughening type conductive polylactic acid fiber and preparation method and application thereof
CN103498212B (en) * 2013-09-23 2016-06-01 绍兴文理学院 Toughening type conductive polylactic acid fiber and its preparation method and application
CN113026139A (en) * 2019-12-25 2021-06-25 宇部爱科喜模株式会社 Black synthetic fiber

Similar Documents

Publication Publication Date Title
JP4902545B2 (en) Conductive conjugate fiber and method for producing the same
JP2008156810A (en) Core-sheath composite conductive fiber
JP2011047068A (en) Water-repelling polyester blended yarn
JP2010053484A (en) High-shrinkage polyester fiber, method for producing the same and use of the same
JP4818004B2 (en) Antistatic polyester false twisted yarn and method for producing the same
JP2007224448A (en) Electrically conductive conjugate fiber
JP2009150022A (en) Sheath-core conjugate fiber and fiber fabric thereof
WO2020261914A1 (en) Electroconductive composite fibers and fiber structure using same
JP4773920B2 (en) Screen filament monofilament
WO2003093547A1 (en) Polyester conjugate filament thick-fine yarn fabric and method for production thereof
JP4923519B2 (en) Conductive mixed yarn
JP2011157647A (en) Wiping cloth
JP2006161263A (en) Polyester core-sheath conjugate fiber and fabric therefrom
JP2007131980A (en) Polyester sheath-core conjugated fiber and fiber fabric thereof
JP2009209478A (en) Ultrafine drawn yarn having antistatic property and method for producing the same
WO2001023650A1 (en) Poly(trimethylene terephthalate) multifilament yarn
JP2008081881A (en) Antistatic conjugate fiber
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP2019026991A (en) Black spun-dyed polyester fiber
JP2014198917A (en) Side-by-side type fiber
JP2007321274A (en) Electroconductive polyester fiber and electroconductive brush using the same
JP2018162531A (en) Cation-dyeable polyester thick and thin multifilament
JP2008057054A (en) Polyester fiber
JP4985358B2 (en) Shrinkage difference mixed yarn
JP2003278031A (en) Highly durable conductive fiber