JP2020165044A - Conductive composite fiber and method for producing the same - Google Patents

Conductive composite fiber and method for producing the same Download PDF

Info

Publication number
JP2020165044A
JP2020165044A JP2019067414A JP2019067414A JP2020165044A JP 2020165044 A JP2020165044 A JP 2020165044A JP 2019067414 A JP2019067414 A JP 2019067414A JP 2019067414 A JP2019067414 A JP 2019067414A JP 2020165044 A JP2020165044 A JP 2020165044A
Authority
JP
Japan
Prior art keywords
conductive
composite fiber
conductive composite
roller
conductive component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019067414A
Other languages
Japanese (ja)
Inventor
直哉 山内
Naoya Yamauchi
直哉 山内
純一 丸谷
Junichi Marutani
純一 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2019067414A priority Critical patent/JP2020165044A/en
Publication of JP2020165044A publication Critical patent/JP2020165044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

To provide a conductive composite fiber having excellent conductive performance and conductive performance uniform in the longitudinal direction.SOLUTION: A conductive composite fiber comprises a non-conductive component containing a thermoplastic polymer and a conductive component containing a thermoplastic polymer and 10 to 40 mass% of conductive particles. The electric resistance value of the conductive composite fiber is 1×104 to 1×1010 Ω/cm, and the CV value of the electric resistance value in the longitudinal direction of the fiber is 6%. The elongation of the conductive composite fiber is preferably 50% or more and 90% or less.SELECTED DRAWING: Figure 1

Description

本発明は、導電性複合繊維、およびその製造方法に関する。 The present invention relates to a conductive composite fiber and a method for producing the same.

従来から、優れた導電性能を有する導電性複合繊維が知られている(例えば、特許文献1)。こうした導電性複合繊維おいて、長手方向における導電性能のバラツキを抑制することが様々に検討されている。長手方向における導電性能のバラツキが抑制された導電性複合繊維は、織編物に用いられた場合に、全体の導電性が均一なものとなるために好ましい。 Conventionally, conductive composite fibers having excellent conductive performance have been known (for example, Patent Document 1). In such conductive composite fibers, various studies have been made to suppress variations in conductive performance in the longitudinal direction. A conductive composite fiber in which variation in conductive performance in the longitudinal direction is suppressed is preferable because when used in a woven or knitted fabric, the overall conductivity becomes uniform.

特開2004−44071号公報Japanese Unexamined Patent Publication No. 2004-44071

しかし、特許文献1の導電性複合繊維においては、長手方向における導電性能のバラツキについて改善の余地を残している。 However, in the conductive composite fiber of Patent Document 1, there is room for improvement in the variation in the conductive performance in the longitudinal direction.

本発明の課題は、上記のような従来技術の欠点を解消するものであり、優れた導電性能を有し、長手方向における導電性能のバラツキが抑制されて、均一な導電性能を有する導電性複合繊維を得ることを目的とする。 An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to have excellent conductive performance, to suppress variations in conductive performance in the longitudinal direction, and to have uniform conductive performance. The purpose is to obtain fibers.

本発明者は、特定の条件で複合紡糸して得られた導電性複合繊維は、優れた導電性能を有し、長手方向における導電性能のバラツキが抑制されて、均一な導電性能を有するものとなることを知見し、本発明を完成させた。 According to the present inventor, the conductive composite fiber obtained by composite spinning under specific conditions has excellent conductive performance, the variation in conductive performance in the longitudinal direction is suppressed, and the conductive composite fiber has uniform conductive performance. It was found that the present invention was completed.

すなわち、本発明は以下の(1)〜(9)を要旨とする。
(1)熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子10〜40質量%を含む導電性成分と、からなる導電性複合繊維であって、前記導電性複合繊維の電気抵抗値が1×10〜1×1010Ω/cmであり、かつ繊維の長手方向の電気抵抗値のCV値が6%である、導電性複合繊維。
(1)糸斑が3.5%以下である、(1)の導電性複合繊維。
(3)伸度が50%以上90%以下である、(1)または(2)の導電性複合繊維。
(4)沸水収縮率が3%以上20%以下である、(1)〜(3)の何れかの導電性複合繊維。
(5)以下の工程(イ)〜(ハ)をこの順に含む、導電性複合繊維の製造方法。
(イ)熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子を含む導電性成分と、を準備する工程。
(ロ)前記導電性成分と前記非導電性成分とを、複合紡糸する工程。
(ハ)第一引取ローラーで引き取った後、第二引取ローラーで引き取る工程。
ただし、第一引取ローラーの引取速度を4000〜6000m/分、第一引取ローラーと第二引取ローラーとの速度比を1.0以上1.1以下とし、かつ第二引取ローラーで引き取った後に実質的に延伸を施さないものとする。
(6)工程(ロ)における紡糸温度を250〜310℃とする、(5)の導電性複合繊維の製造方法。
(7)(1)〜(4)の何れかの導電性複合繊維を含む、織編物。
(8)(7)の織編物を含む、衣服。
(9)(1)〜(4)の何れかの導電性複合繊維を含む、ブラシ。
That is, the gist of the present invention is the following (1) to (9).
(1) A conductive composite fiber composed of a non-conductive component containing a thermoplastic polymer and a conductive component containing the thermoplastic polymer and conductive particles in an amount of 10 to 40% by mass, and the electricity of the conductive composite fiber. A conductive composite fiber having a resistance value of 1 × 10 4 to 1 × 10 10 Ω / cm and a CV value of 6% of the electrical resistance value in the longitudinal direction of the fiber.
(1) The conductive composite fiber of (1) having thread spots of 3.5% or less.
(3) The conductive composite fiber of (1) or (2) having an elongation of 50% or more and 90% or less.
(4) The conductive composite fiber according to any one of (1) to (3), which has a boiling water shrinkage rate of 3% or more and 20% or less.
(5) A method for producing a conductive composite fiber, which comprises the following steps (a) to (c) in this order.
(A) A step of preparing a non-conductive component containing a thermoplastic polymer and a conductive component containing a thermoplastic polymer and conductive particles.
(B) A step of composite spinning the conductive component and the non-conductive component.
(C) The process of picking up with the first pick-up roller and then picking up with the second pick-up roller.
However, the take-up speed of the first take-up roller shall be 4000 to 6000 m / min, the speed ratio between the first take-up roller and the second take-up roller shall be 1.0 or more and 1.1 or less, and after being picked up by the second take-up roller, it is substantially No stretching is applied.
(6) The method for producing a conductive composite fiber according to (5), wherein the spinning temperature in step (b) is 250 to 310 ° C.
(7) A woven or knitted fabric containing the conductive composite fiber according to any one of (1) to (4).
(8) Clothing including the woven and knitted fabric of (7).
(9) A brush containing the conductive composite fiber according to any one of (1) to (4).

本発明の導電性複合繊維は、複合紡糸した後に、第一引取ローラーの引取速度、および第一引取ローラーと第二引取ローラーとの速度比を特定範囲とすることにより、優れた導電性能を有しつつ、長手方向における導電性能のバラツキが抑制されて均一な導電性能を有するものとなるために、導電性能が要求される織編物またはブラシに好適に使用することができる。 The conductive composite fiber of the present invention has excellent conductive performance by setting the take-up speed of the first take-up roller and the speed ratio between the first take-up roller and the second take-up roller within a specific range after the composite spinning. However, since the variation in the conductive performance in the longitudinal direction is suppressed and the conductive performance is uniform, it can be suitably used for a woven or knitted fabric or a brush that requires the conductive performance.

本発明の導電性複合繊維における複合形態の一例を示す模式図である。It is a schematic diagram which shows an example of the composite form in the conductive composite fiber of this invention. 本発明の導電性複合繊維における複合形態の一例を示す模式図である。It is a schematic diagram which shows an example of the composite form in the conductive composite fiber of this invention. 本発明の導電性複合繊維における複合形態の一例を示す模式図である。It is a schematic diagram which shows an example of the composite form in the conductive composite fiber of this invention. 本発明の導電性複合繊維における複合形態の一例を示す模式図である。It is a schematic diagram which shows an example of the composite form in the conductive composite fiber of this invention.

以下、本発明について詳細に説明する。
本発明の導電性複合繊維は、熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子10〜40質量%を含む導電性成分とからなる。
Hereinafter, the present invention will be described in detail.
The conductive composite fiber of the present invention comprises a non-conductive component containing a thermoplastic polymer and a conductive component containing 10 to 40% by mass of the thermoplastic polymer and conductive particles.

非導電性成分における熱可塑性ポリマーとしては、ポリエステル樹脂が好ましい。中でも、イソフタル酸を共重合成分として共重合させたポリエチレンテレフタレート(以下、PET樹脂という)であることがより好ましい。これにより、ポリマーの柔軟性が向上し、紡糸工程をスムーズに行うことができ、導電性粒子の配列状態(ストラクチャ)をいっそう向上させることができ、長手方向における導電性能のバラツキを抑制して、均一な導電性能を有するものとすることができる。 As the thermoplastic polymer in the non-conductive component, a polyester resin is preferable. Of these, polyethylene terephthalate (hereinafter referred to as PET resin) obtained by copolymerizing isophthalic acid as a copolymerization component is more preferable. As a result, the flexibility of the polymer is improved, the spinning process can be smoothly performed, the arrangement state (structure) of the conductive particles can be further improved, and the variation in the conductive performance in the longitudinal direction is suppressed. It can have uniform conductive performance.

非導電性成分を形成する熱可塑性ポリマー中のイソフタル酸の共重合量は、5〜15モル%であることが好ましく、6〜12モル%がより好ましい。共重合量が5モル%未満では、ポリマーの柔軟性が低く高速紡糸時に曳糸性が悪化する場合がある。一方、15モル%を超えると、非晶性が高くなり過ぎて沸水収縮率の制御が困難となり、ひいては長手方向における導電性能のバラツキを抑制することが困難となる場合がある。 The copolymerization amount of isophthalic acid in the thermoplastic polymer forming the non-conductive component is preferably 5 to 15 mol%, more preferably 6 to 12 mol%. If the copolymerization amount is less than 5 mol%, the flexibility of the polymer is low and the spinnability may be deteriorated during high-speed spinning. On the other hand, if it exceeds 15 mol%, the amorphous property becomes too high, and it becomes difficult to control the boiling water shrinkage rate, and it may be difficult to suppress the variation in the conductive performance in the longitudinal direction.

非導電性成分を形成する熱可塑性ポリマーの固有粘度(IV)は、0.50〜0.80でることが好ましく、0.60〜0.70であることがより好ましい。IVが0.50未満であるとポリマーの造粒性が悪化し、ペレット化することが困難となりやすい場合がある。IVが0.80を超えるとポリマーの流動性・結晶性が悪化して、導電性能が劣るものとなりやすい場合がある。 The intrinsic viscosity (IV) of the thermoplastic polymer forming the non-conductive component is preferably 0.50 to 0.80, more preferably 0.60 to 0.70. If the IV is less than 0.50, the granulation property of the polymer deteriorates, and it may be difficult to pelletize the polymer. If IV exceeds 0.80, the fluidity and crystallinity of the polymer may deteriorate, and the conductive performance may be inferior.

非導電性成分に含有される熱可塑性ポリマーには、艶消剤、顔料、着色料、安定剤、制電剤等の添加剤を加えることもできる。 Additives such as a matting agent, a pigment, a coloring agent, a stabilizer, and an antistatic agent can be added to the thermoplastic polymer contained in the non-conductive component.

非導電性成分における、熱可塑性ポリマーの含有量は70質量%以上が好ましく、80質量%以上がより好ましく、100質量%がさらに好ましい。 The content of the thermoplastic polymer in the non-conductive component is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 100% by mass.

導電性成分における熱可塑性ポリマーとしては、ポリエステル樹脂が好ましい。中でも、ポリエチレンテレフタレート(以下、PETという)、ポリエチレンオキシベンゾエート、ポリブチレンテレフタレート(以下、PBTという)等が挙げられる。特にPBTが好ましい。PBT樹脂は非常に結晶性の高い樹脂であることから、比較的低い導電性粒子の含有量で比較的高い導電性能を発現することができる。また、目的に応じてこれらのポリマーの共重合体や変性体としてもよい。 As the thermoplastic polymer in the conductive component, a polyester resin is preferable. Among them, polyethylene terephthalate (hereinafter referred to as PET), polyethylene oxybenzoate, polybutylene terephthalate (hereinafter referred to as PBT) and the like can be mentioned. PBT is particularly preferable. Since the PBT resin is a highly crystalline resin, it is possible to exhibit relatively high conductive performance with a relatively low content of conductive particles. Further, it may be a copolymer or a modified product of these polymers depending on the purpose.

また、その他の共重合成分を、PBTの結晶性を損なわない範囲で含有することができ、例えば、フタル酸、1.3−プロパンジオール、セバシン酸、ダイマー酸、ドデカン二酸、キシリレングリコール、ポリテトラメチレングリコール、ポリエチレングリコール等が挙げられる。 In addition, other copolymerization components can be contained within a range that does not impair the crystallinity of PBT, for example, phthalic acid, 1.3-propanediol, sebacic acid, dimer acid, dodecanedioic acid, xylylene glycol, and the like. Examples thereof include polytetramethylene glycol and polyethylene glycol.

導電性成分を形成する共重合PETの固有粘度(IV)は、0.4〜0.8とすることが好ましい。IVが0.4未満であるとポリマーの流動性は上がり、ポリマー中への導電性粒子の分散性は向上するが、その後の造粒性が悪化し、ペレット化することが困難となりやすい場合がある。IVが0.8を超えるとポリマーの流動性または結晶性が悪化して、導電性能が劣るものとなりやすい場合がある。 The intrinsic viscosity (IV) of the copolymerized PET forming the conductive component is preferably 0.4 to 0.8. When the IV is less than 0.4, the fluidity of the polymer is increased and the dispersibility of the conductive particles in the polymer is improved, but the subsequent granulation property is deteriorated and it may be difficult to pelletize. is there. If IV exceeds 0.8, the fluidity or crystallinity of the polymer may deteriorate, and the conductive performance may be deteriorated.

非導電性繊維における熱可塑性ポリマーには、艶消剤、顔料、着色料、安定剤、制電剤等の添加剤を加えることもできる。 Additives such as matting agents, pigments, colorants, stabilizers and antistatic agents can also be added to the thermoplastic polymer in the non-conductive fibers.

導電性成分に用いられる導電性粒子としては、例えば導電性カーボンブラックや金属粉末(銀、ニッケル、銅、鉄、錫あるいはこれらの合金等)、硫化銅、沃化銅、硫化亜鉛、硫化カドミウム等の金属化合物が挙げられる。また、酸化錫に酸化アンチモンを少量添加したり、酸化亜鉛に酸化アルミニウムを少量添加したりして導電性粒子としたものも挙げられる。さらには、酸化チタンの表面に酸化錫をコーティングし、酸化アンチモンを混合焼成し、導電性粒子としたものも用いることができる。中でも、導電性繊維の性能向上として汎用的に使用され、他の金属粒子と比較し、ポリマーの流動性を阻害しにくいために、導電性を有するカーボンブラック(アセチレンブラック、ケッチェンブラック等)が好ましい。 Examples of the conductive particles used for the conductive component include conductive carbon black, metal powder (silver, nickel, copper, iron, tin or alloys thereof, etc.), copper sulfide, copper iodide, zinc sulfide, cadmium sulfide, etc. Metal compounds of. In addition, a small amount of antimony oxide is added to tin oxide, and a small amount of aluminum oxide is added to zinc oxide to obtain conductive particles. Further, those obtained by coating the surface of titanium oxide with tin oxide and mixing and firing antimony oxide to obtain conductive particles can also be used. Among them, carbon black (acetylene black, ketjen black, etc.) having conductivity is used because it is generally used for improving the performance of conductive fibers and is less likely to inhibit the fluidity of the polymer as compared with other metal particles. preferable.

上記の導電性粒子は、特に限定されるものではないが、比抵抗値が1×10Ω/cm以下のものが好ましく、1×10Ω/cm以下のものがより好ましい。比抵抗値が10Ω/cmを超えるものを用いると、所望の導電性能を得るために、多量の導電性粒子をポリマー中に分散させることが必要な場合があり、繊維物性に悪影響を及ぼすばかりか、さらには曳糸性に問題を生じる可能性がある。 The above-mentioned conductive particles are not particularly limited, but those having a specific resistance value of 1 × 10 4 Ω / cm or less are preferable, and those having a specific resistance value of 1 × 10 2 Ω / cm or less are more preferable. If the specific resistance is used in excess of 10 4 Ω / cm, in order to obtain the desired conductive performance, there may be necessary to disperse a large amount of conductive particles in the polymer adversely affect the fiber properties Not only that, it can also cause problems with spinnability.

また、導電性粒子の粒径は、特に限定されるものではないが、平均粒径が1μm以下のものが好ましく、0.5μm以下のものがより好ましい。平均粒子径が1μmを超えると、導電性粒子のポリマー中への分散性が悪くなりやすく、導電性能、強伸度のような特性が低下した繊維となりやすい。 The particle size of the conductive particles is not particularly limited, but the average particle size is preferably 1 μm or less, and more preferably 0.5 μm or less. If the average particle size exceeds 1 μm, the dispersibility of the conductive particles in the polymer tends to deteriorate, and the fibers tend to have deteriorated properties such as conductivity performance and strong elongation.

導電性成分における導電性粒子の含有量については、導電性成分中の10〜40質量%であり、さらに好ましくは15〜35質量%である。含有量が10質量%未満では、導電性能が不十分になる場合があり、また、40質量%を超えると、導電性粒子のポリマー中への分散が難しくなる場合があるために好ましくない。 The content of the conductive particles in the conductive component is 10 to 40% by mass, more preferably 15 to 35% by mass in the conductive component. If the content is less than 10% by mass, the conductive performance may be insufficient, and if it exceeds 40% by mass, it may be difficult to disperse the conductive particles in the polymer, which is not preferable.

さらに、導電性成分および非導電性成分には、本発明の効果を損なわない範囲で、目的に応じて、ワックス類、ポリアルキレンオキシド類、各種界面活性剤、有機電解質等の分散剤や酸化防止剤、紫外線吸収剤等の安定剤、着色剤、顔料、流動性改善剤、その他の添加剤を加えることもできる。 Further, the conductive component and the non-conductive component may be used as a dispersant such as waxes, polyalkylene oxides, various surfactants, organic electrolytes, and antioxidants, as long as the effects of the present invention are not impaired. Agents, stabilizers such as UV absorbers, colorants, pigments, fluidity improvers, and other additives can also be added.

そして、本発明の複合繊維において、非導電性成分と導電性成分の複合比率としては、非導電性成分が60〜90質量%、導電性成分が40〜10質量%とすることが好ましく、非導電性成分が70〜85質量%、導電性成分が30〜15質量%であることがより好ましい。導電性成分の複合比率が10質量%未満では、導電性能が十分でない場合があり、一方、導電性成分の複合比率が40質量%を超えると、強伸度特性等の糸質性能が劣り、曳糸性に悪影響を及ぼす場合がある。 In the composite fiber of the present invention, the composite ratio of the non-conductive component and the conductive component is preferably 60 to 90% by mass for the non-conductive component and 40 to 10% by mass for the conductive component. It is more preferable that the conductive component is 70 to 85% by mass and the conductive component is 30 to 15% by mass. If the composite ratio of the conductive components is less than 10% by mass, the conductive performance may not be sufficient, while if the composite ratio of the conductive components exceeds 40% by mass, the yarn quality performance such as strong elongation characteristics is inferior. May adversely affect spinnability.

次に、本発明の導電性複合繊維における複合形態について図面を用いて説明する。複合形態については特に限定するものではないが、図1〜4に示すような断面形状のものとすることが好ましい。 Next, the composite form of the conductive composite fiber of the present invention will be described with reference to the drawings. The composite form is not particularly limited, but it is preferably a cross-sectional shape as shown in FIGS. 1 to 4.

まず、図1は、非導電性成分2を導電性成分1で分割した形状となるタイプのものである。導電性成分の列数は1つであっても複数であってもよいが、2〜8であることが好ましい。図1は列数が3つでかつ交差しているものを示す。図2は、導電性成分1の一部が繊維表面に露出したタイプのものであり、露出する導電性成分1は1箇所であっても複数箇所であってもよいが、好ましくは2〜8箇所で露出しているものである。図2は導電性成分が3箇所で露出しているものを示す。図3は、導電性成分1の一部が繊維表面に露出したタイプのものであり、導電性成分1が4箇所で露出しているものである。図4は、導電性成分2と非導電性成分1とが芯鞘構造を呈するものであり、導電性成分1が鞘部として繊維表面を被覆したタイプのものである。 First, FIG. 1 shows a type in which the non-conductive component 2 is divided by the conductive component 1. The number of rows of the conductive components may be one or a plurality, but it is preferably 2 to 8. FIG. 1 shows three columns and intersecting ones. FIG. 2 shows a type in which a part of the conductive component 1 is exposed on the fiber surface, and the exposed conductive component 1 may be at one place or at a plurality of places, but preferably 2 to 8 places. It is exposed in places. FIG. 2 shows the conductive components exposed at three locations. FIG. 3 shows a type in which a part of the conductive component 1 is exposed on the fiber surface, and the conductive component 1 is exposed at four places. FIG. 4 shows a type in which the conductive component 2 and the non-conductive component 1 exhibit a core-sheath structure, and the conductive component 1 covers the fiber surface as a sheath portion.

(物性)
本発明の導電性複合繊維の導電性能としては、電気抵抗値が1×10〜1×1010Ω/cmである。複合繊維の電気抵抗値が1×1010Ω/cmを超えると、導電性能が不十分となる。一方、1×10Ω/cm未満にしようとすると、導電性粒子をポリマーに多量に含有させることが必要となり、繊維物性に悪影響を及ぼすばかりか、更には曳糸性に問題を生じる。
(Physical properties)
The conductive performance of the conductive composite fiber of the present invention has an electric resistance value of 1 × 10 4 to 1 × 10 10 Ω / cm. If the electrical resistance value of the composite fiber exceeds 1 × 10 10 Ω / cm, the conductive performance becomes insufficient. On the other hand, if it is attempted to be less than 1 × 10 4 Ω / cm, it is necessary to contain a large amount of conductive particles in the polymer, which not only adversely affects the physical properties of the fiber but also causes a problem in the spinnability.

中でも、電気抵抗値は1×10Ω/cm〜1×10Ω/cmであることが好ましい。1×10Ω/cm以下とすることで、得られた織編物またはブラシを通常の環境で使用した場合に、帯電をほとんどなくすことが可能となる。また、1×10Ω/cm以上とすることで、繊維物性、曳糸性ともに問題を生じる可能性が少なくなる。 Above all, the electric resistance value is preferably 1 × 10 5 Ω / cm to 1 × 10 9 Ω / cm. By setting the value to 1 × 10 9 Ω / cm or less, it is possible to almost eliminate the charge when the obtained woven or knitted fabric or brush is used in a normal environment. Further, by setting it to 1 × 10 5 Ω / cm or more, the possibility of causing problems in both fiber physical properties and spinnability is reduced.

なお、本発明における電気抵抗値は、AATCC76法に準じて以下のようにして測定するものである。
まず、1本の導電性複合繊維を長手方向にカットして、長さ15cmのサンプルを10個採取する。このサンプルの両端の表面に導電性ペースト(フクダ電子株式会社製、商品名「ケラチンクリーム」、型式「OJE−01D」)を塗布し、この両端表面部分を金属端子に接続する。ここで、試料の測定長が10cmとなるようにして(つまり、試料10cmの長手方向の電気抵抗値を測定するようにして)、金属端子に接続する。温度20℃、かつ相対湿度20%RHの環境下、抵抗値測定機(東亜電波工業株式会社製の「SM−10E」)を使用して50Vの直流電流を印加して電流値を測定し、下記式で電気抵抗値を算出した。
電気抵抗値=E/(I×L)
E:電圧(V)
I:測定電流(A)
L:測定長(cm)
そして、算出した10個のサンプルの電気抵抗値の相加平均値とする。
The electric resistance value in the present invention is measured as follows according to the AATCC76 method.
First, one conductive composite fiber is cut in the longitudinal direction, and 10 samples having a length of 15 cm are collected. Conductive paste (manufactured by Fukuda Denshi Co., Ltd., trade name "keratin cream", model "OJE-01D") is applied to the surfaces at both ends of this sample, and the surface portions at both ends are connected to the metal terminals. Here, the sample is connected to the metal terminal so that the measurement length of the sample is 10 cm (that is, the electrical resistance value in the longitudinal direction of the sample 10 cm is measured). In an environment with a temperature of 20 ° C and a relative humidity of 20% RH, a resistance value measuring device (“SM-10E” manufactured by Toa Denpa Kogyo Co., Ltd.) was used to apply a DC current of 50 V to measure the current value. The electric resistance value was calculated by the following formula.
Electrical resistance = E / (I × L)
E: Voltage (V)
I: Measured current (A)
L: Measurement length (cm)
Then, it is used as the arithmetic mean value of the calculated electrical resistance values of the 10 samples.

さらに、上記のようにして算出する10個のサンプルの電気抵抗値の最大値と最小値と相加平均値から、下記式から算出する導電性のバラツキ(繊維の長手方向の電気抵抗値のCV値)においても、本発明の導電性複合繊維はCV値が6%以下であり、さらには5%以下であることが好ましい。繊維の長手方向の電気抵抗値のCV値が6%以下であることにより、長手方向に導電性能のバラツキがいっそう抑制されて均一であることが示される。 Further, from the maximum and minimum electric resistance values of the 10 samples calculated as described above and the arithmetic mean value, the conductivity variation (CV of the electric resistance value in the longitudinal direction of the fiber) calculated from the following formula. In terms of value), the conductive composite fiber of the present invention has a CV value of 6% or less, and more preferably 5% or less. When the CV value of the electrical resistance value in the longitudinal direction of the fiber is 6% or less, it is shown that the variation in the conductive performance in the longitudinal direction is further suppressed and is uniform.

繊維の長手方向の電気抵抗値のCV(%)=(V/E(X))×100
V:電気抵抗値の不偏分散の平方根
E(X):電気抵抗値の平均値
不偏分散は以下のようにして求める。つまり全ての試験片に対し、電気抵抗値と電気抵抗値の平均の差を、それぞれ求める。これらの差を二乗して得られた値の総和を(試験片の数−1)で除して、得られた値を不偏分散とする。
CV (%) = (V / E (X)) × 100 of electrical resistance value in the longitudinal direction of the fiber
V: Square root of the unbiased variance of the electrical resistance value E (X): The average value of the electrical resistance value The unbiased variance is obtained as follows. That is, the difference between the average electric resistance value and the average electric resistance value is obtained for all the test pieces. The sum of the values obtained by squaring these differences is divided by (number of test pieces-1), and the obtained values are used as the unbiased variance.

本発明の導電性複合繊維の糸斑は3.5%以下であることが好ましく、3%以下であることがより好ましい。糸斑が3.5%を超えると上記のCV値が本発明の範囲を超えて大きくなり、すなわち長手方向における導電性能のバラツキが大きくなる場合がある。 The thread unevenness of the conductive composite fiber of the present invention is preferably 3.5% or less, and more preferably 3% or less. If the thread unevenness exceeds 3.5%, the above CV value may increase beyond the range of the present invention, that is, the variation in conductive performance in the longitudinal direction may increase.

本発明の導電性複合繊維の伸度は、50%以上90%以下であることが好ましく、60%以上80%以下であることがより好ましい。伸度が50%未満であると、配向結晶化が進み過ぎ後工程での切糸が発生する場合があり、一方90%を超えると配向結晶化が低く導電性能が低くなる場合がある。 The elongation of the conductive composite fiber of the present invention is preferably 50% or more and 90% or less, and more preferably 60% or more and 80% or less. If the elongation is less than 50%, the orientation crystallization may proceed too much and cutting threads may occur in the post-process, while if it exceeds 90%, the orientation crystallization may be low and the conductive performance may be low.

本発明の導電性複合繊維の沸水収縮率は、3%以上20%以下であることが好ましく、5%以上15%以下であることがより好ましい。沸水収縮率が3%未満であると、他の繊維と複合して使用する際に複合相手の繊維との沸水収縮率差により熱セット時に布帛が波打ってしまう場合があり、一方20%を超えると、布帛とした際の熱セットによる収縮で導電性能のバラツキが大きくなる場合がある。 The boiling water shrinkage rate of the conductive composite fiber of the present invention is preferably 3% or more and 20% or less, and more preferably 5% or more and 15% or less. If the boiling water shrinkage rate is less than 3%, the fabric may undulate during heat setting due to the difference in boiling water shrinkage rate with the fiber of the composite partner when used in combination with other fibers, while 20%. If it exceeds, the variation in conductive performance may increase due to shrinkage due to heat setting when the fabric is made.

本発明の導電性複合繊維においては、上記のCV値を6%とすることを目的として、糸斑を3.5%以下とするために、後述するような特定の製造方法を採用することが必須である。すなわち、複合紡糸した後に、特定の引き取り速度の第一引取ローラーで引き取った後、第一引取ローラーと第二引取ローラーとの速度比を1.0以上1.1以下として第二引取ローラーで引き取り、かつ第二引取ローラーで引き取った後に実質的に延伸を施さないものとすることが必須である。または、複合紡糸時の導電性成分および非導電性成分の溶融粘度を特定範囲とすることもできる。 In the conductive composite fiber of the present invention, it is essential to adopt a specific manufacturing method as described later in order to reduce the thread unevenness to 3.5% or less for the purpose of setting the above CV value to 6%. Is. That is, after composite spinning, after picking up with the first pick-up roller at a specific pick-up speed, the speed ratio between the first pick-up roller and the second pick-up roller is set to 1.0 or more and 1.1 or less, and then picked up by the second pick-up roller. In addition, it is essential that the drawing is not substantially stretched after being picked up by the second pick-up roller. Alternatively, the melt viscosities of the conductive component and the non-conductive component at the time of composite spinning can be set in a specific range.

(製造方法)
本発明の導電性複合繊維の製造方法は、以下の工程(イ)〜(ハ)をこの順に含む。
(イ)熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子を含む導電性成分と、を準備する工程。
(ロ)前記導電性成分と前記非導電性成分とを、複合紡糸する工程。
(ハ)第一引取ローラーで引き取った後、第二引取ローラーで引き取る工程。
ただし、第一引取ローラーの引取速度を4000〜6000m/分、第一引取ローラーと第二引取ローラーとの速度比を1.0以上1.1以下とし、かつ第二引取ローラーで引き取った後に実質的に延伸を施さないものとする。
(Production method)
The method for producing a conductive composite fiber of the present invention includes the following steps (a) to (c) in this order.
(A) A step of preparing a non-conductive component containing a thermoplastic polymer and a conductive component containing a thermoplastic polymer and conductive particles.
(B) A step of composite spinning the conductive component and the non-conductive component.
(C) The process of picking up with the first pick-up roller and then picking up with the second pick-up roller.
However, the take-up speed of the first take-up roller shall be 4000 to 6000 m / min, the speed ratio between the first take-up roller and the second take-up roller shall be 1.0 or more and 1.1 or less, and after being picked up by the second take-up roller, it is substantially No stretching is applied.

工程(イ)について、導電性成分を得る方法としては、特に限定されるものではなく、ベースとなるポリマーの重合段階で導電性粒子を添加する方法、導電性粒子を後工程でポリマーに添加して溶融混練する方法等がある。用いるポリマーによっては重合段階での添加が困難なものもあるので、後工程で溶融混練する方法が好ましい。 Regarding the step (a), the method for obtaining the conductive component is not particularly limited, and the method of adding the conductive particles at the polymerization stage of the base polymer and the method of adding the conductive particles to the polymer in the subsequent step. There is a method of melting and kneading. Depending on the polymer used, it may be difficult to add it at the polymerization stage, so a method of melt-kneading in a subsequent step is preferable.

このようにして得られた導電性成分と、非導電性成分とを用い、必要に応じて乾燥等の処理を行ってチップ化する。次いで、工程(ロ)に付して複合紡糸する。複合紡糸の手法としては、特に限定されるものではなく、通常の二成分系の複合溶融紡糸装置を用いることができる。 The conductive component and the non-conductive component thus obtained are used and subjected to a treatment such as drying as necessary to form chips. Then, it is subjected to the step (b) to perform composite spinning. The method of composite spinning is not particularly limited, and a normal two-component composite melt spinning apparatus can be used.

工程(ロ)において、紡糸温度は250〜310℃であることが好ましく、中でも使用する樹脂の融点に対して+10℃〜+30℃であることがより好ましい。紡糸温度が250℃未満であると、溶融紡糸性に劣る場合があり、310℃を超えると樹脂の分解が発生し物性に劣ったり、切糸が発生したりする場合がある。 In the step (b), the spinning temperature is preferably 250 to 310 ° C., and more preferably + 10 ° C. to + 30 ° C. with respect to the melting point of the resin used. If the spinning temperature is less than 250 ° C., the melt spinning property may be inferior, and if it exceeds 310 ° C., the resin may be decomposed and the physical properties may be deteriorated, or yarn may be cut.

工程(ロ)において、導電性成分および非導電性成分の溶融粘度を特定範囲とすることが好ましい。導電性成分の溶融粘度を500〜2800dPa・Sとすることが好ましく、800〜2400dPa・Sとすることがより好ましい。非導電性成分の溶融粘度を500〜2600dPa・Sとすることが好ましく、1000〜2000dPa・Sとすることがより好ましい。両者の溶融粘度を上記範囲とすることで、上記のような高速の紡糸に好適となり、糸斑を抑制することができ、導電性のバラツキにいっそう顕著に優れた複合繊維が得られる。 In step (b), it is preferable to set the melt viscosities of the conductive component and the non-conductive component within a specific range. The melt viscosity of the conductive component is preferably 500 to 2800 dPa · S, more preferably 800 to 2400 dPa · S. The melt viscosity of the non-conductive component is preferably 500 to 2600 dPa · S, more preferably 1000 to 2000 dPa · S. By setting the melt viscosities of both in the above range, it becomes suitable for high-speed spinning as described above, thread unevenness can be suppressed, and a composite fiber having more remarkably excellent conductivity variation can be obtained.

工程(ハ)において、第一引取ローラーの引取速度は4000〜6000m/分であり、4500〜6000m/分であることが好ましい。こうした従来よりも高速の引取り速度とすることで、導電性成分および非導電性成分の何れもが、溶融状態で高速に配向することで繊維を形成するポリマーの配向結晶化が適切に進行するために、導電性粒子のストラクチャが発達して糸斑が抑制され、導電性のバラツキに顕著に優れた複合繊維が得られる。さらに、沸水収縮率を低くすることができる。 In the step (c), the take-up speed of the first take-up roller is 4000 to 6000 m / min, preferably 4000 to 6000 m / min. By setting the take-up speed faster than before, both the conductive component and the non-conductive component are oriented at high speed in the molten state, so that the orientation crystallization of the polymer forming the fiber proceeds appropriately. Therefore, the structure of the conductive particles is developed and the thread unevenness is suppressed, and a composite fiber having remarkably excellent variation in conductivity can be obtained. Further, the boiling water shrinkage rate can be lowered.

工程(ハ)において第一引取ローラーと第二引取ローラーとの速度比は1.0以上1.1以下であり、1.0以上1.05以下であることが好ましい。本発明においては、第一引取ローラーと第二引取ローラーとの速度比をこうした範囲とし実質的に延伸させず、かつ、その後の工程においても実質的に延伸させないことを必須とする。これにより、糸斑を抑制し、導電性能のバラツキを低減することができる。 In the step (c), the speed ratio between the first take-up roller and the second take-up roller is 1.0 or more and 1.1 or less, and preferably 1.0 or more and 1.05 or less. In the present invention, it is essential that the speed ratio between the first take-up roller and the second take-up roller is set within such a range and is not substantially stretched, and is not substantially stretched in the subsequent steps. As a result, it is possible to suppress thread unevenness and reduce variations in conductive performance.

本発明の織編物は、本発明の導電性複合繊維を含むものである。本発明の織編物中に占める本発明の導電性複合繊維の割合は、特に限定されるものではないが0.01〜20質量%であることが好ましい。 The woven or knitted fabric of the present invention contains the conductive composite fiber of the present invention. The ratio of the conductive composite fiber of the present invention to the woven or knitted fabric of the present invention is not particularly limited, but is preferably 0.01 to 20% by mass.

本発明の織編物は、織物の場合、経糸と緯糸のどちらか一方もしくは両方に本発明の導電性複合繊維を用い、織物中に導電性複合繊維を10mm以下の間隔で配置されるように用いるものが好ましい。より好ましくは5mm以下の間隔とする。織組織としては、特に限定されるものではなく、平織、綾織、朱子織、二重織、絡み織等を挙げることができる。 In the case of a woven fabric, the woven or knitted fabric of the present invention uses the conductive composite fibers of the present invention for either or both of the warp and the weft, and the conductive composite fibers are arranged in the woven fabric at intervals of 10 mm or less. Those are preferable. More preferably, the interval is 5 mm or less. The weave structure is not particularly limited, and examples thereof include plain weave, twill weave, satin weave, double weave, and leno weave.

編物の場合は、丸編、緯編、経編のいずれでもよく、丸編、緯編の場合は、10mm以下好ましくは5mm以下の間隔で本発明の導電性複合繊維をボーダー状に挿入することが好ましい。経編の場合も本発明の導電性複合繊維を10mm以下好ましくは5mm以下の間隔でストライプ状に挿入することが好ましい。 In the case of knitted fabric, any of circular knitting, weft knitting, and warp knitting may be used, and in the case of circular knitting and weft knitting, the conductive composite fibers of the present invention shall be inserted in a border shape at intervals of 10 mm or less, preferably 5 mm or less. Is preferable. Also in the case of warp knitting, it is preferable that the conductive composite fibers of the present invention are inserted in stripes at intervals of 10 mm or less, preferably 5 mm or less.

本発明の織編物においては、本発明の導電性複合繊維をそのまま用いてもよいが、導電性複合繊維を他の繊維と合撚、混繊したものを用いてもよい。他の繊維としては特に限定されるものではなく、ポリアミド、ポリエステル、ポリエチレン等の合成繊維やレーヨン等の再生繊維、綿、麻、ウール等の天然繊維等が挙げられ、中でも導電性複合繊維と同じであることからポリエステル繊維が好ましい。 In the woven and knitted fabric of the present invention, the conductive composite fiber of the present invention may be used as it is, or the conductive composite fiber may be twisted and mixed with other fibers. Other fibers are not particularly limited, and examples thereof include synthetic fibers such as polyamide, polyester, and polyethylene, recycled fibers such as rayon, and natural fibers such as cotton, linen, and wool, which are the same as conductive composite fibers. Therefore, polyester fiber is preferable.

本発明の織編物の好ましい用途としては、例えば各種衣服、アウトドア用品、インテリア用品などが挙げられる。 Preferred uses of the woven and knitted fabric of the present invention include, for example, various clothes, outdoor products, interior products and the like.

本発明のブラシは、本発明の導電性複合繊維を少なくとも一部に用いたものである。本発明のブラシ中に占める本発明の導電性複合繊維の割合は、特に限定されるものではないが10〜100質量%であることが好ましい。 The brush of the present invention uses at least a part of the conductive composite fiber of the present invention. The ratio of the conductive composite fiber of the present invention to the brush of the present invention is not particularly limited, but is preferably 10 to 100% by mass.

本発明のブラシは、例えば、電子写真複写機、電子写真プリンター等の現像用ブラシ、接触帯電用ブラシ及び感光ドラムクリーナー用ブラシなどに好適に用いられる。 The brush of the present invention is suitably used for, for example, a developing brush for an electrophotographic copying machine, an electrophotographic printer, a contact charging brush, a photosensitive drum cleaner brush, and the like.

以下に実施例及び比較例を示して本発明を詳細に説明する。ただし、本発明は、以下の実施例に限定されない。
なお、それぞれの物性の測定方法又は評価方法は以下の通りである。
(1)糸斑
導電性複合繊維を50m採取し、これを1mずつ50本に切断した。これら50本に対し、サーチ製のデニールコンピューター「DC−11B」を用いて各々の単糸繊度を測定し、50本の繊度の平均値をX、繊度の最大値をXmax、繊度の最小値をXminとして、以下の式によって求めた。
糸斑[%]=(|X−Xmax|/X×100+|X−Xmin|/X×100)÷2
The present invention will be described in detail below with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.
The measurement method or evaluation method of each physical property is as follows.
(1) Thread spots 50 m of conductive composite fibers were collected and cut into 50 fibers of 1 m each. For these 50 yarns, the fineness of each single yarn was measured using a denier computer "DC-11B" manufactured by Search, and the average value of the fineness of the 50 yarns was X, the maximum fineness was Xmax, and the minimum fineness was set. It was calculated as Xmin by the following formula.
Thread spots [%] = (| X-Xmax | / Xx100 + | X-Xmin | / Xx100) / 2

(2)繊維の長手方向の電気抵抗値、繊維の長手方向の電気抵抗値のCV値
AATCC76法により、以下のようにして測定した。
導電性複合繊維を15cm程度にカットして、10サンプルを採取した。このサンプルの両端の表面に導電性ペースト(フクダ電子株式会社製、商品名「ケラチンクリーム」、型式「OJE−01D」)を塗布し、この両端表面部分を金属端子に接続した。ここで、試料の測定長が10cmとなるようにして(つまり、10cmの長手方向の電気抵抗値を測定するようにして)、金属端子に接続した。温度20℃、かつ相対湿度20%RHの環境下、抵抗値測定機(東亜電波工業株式会社製の「SM−10E」)を使用して50Vの直流電流を印加して電流値を測定し、下記式で電気抵抗値を算出した。
X=E/(I×L)
X:電気抵抗値(Ω/cm)
E:電圧(V)
I:測定電流(A)
L:測定長(cm)
(2) Electrical resistance value in the longitudinal direction of the fiber, CV value of the electrical resistance value in the longitudinal direction of the fiber The measurement was carried out as follows by the AATCC76 method.
The conductive composite fiber was cut to about 15 cm, and 10 samples were taken. A conductive paste (manufactured by Fukuda Denshi Co., Ltd., trade name "keratin cream", model "OJE-01D") was applied to the surfaces at both ends of this sample, and the surface portions at both ends were connected to metal terminals. Here, the sample was connected to the metal terminal so that the measurement length of the sample was 10 cm (that is, the electrical resistance value in the longitudinal direction of 10 cm was measured). In an environment with a temperature of 20 ° C and a relative humidity of 20% RH, a resistance value measuring device (“SM-10E” manufactured by Toa Denpa Kogyo Co., Ltd.) was used to apply a DC current of 50 V to measure the current value. The electric resistance value was calculated by the following formula.
X = E / (I × L)
X: Electrical resistance value (Ω / cm)
E: Voltage (V)
I: Measured current (A)
L: Measurement length (cm)

そして、下記式に従って繊維の長手方向の電気抵抗値のCV値を算出した。
繊維の長手方向の電気抵抗値のCV(%)=(V/E(X))×100
V:電気抵抗値の不偏分散の平方根
E(X):電気抵抗値の平均値
不偏分散は以下のようにして求めた。つまり全ての試験片に対し、電気抵抗値と電気抵抗値の平均の差を、それぞれ求めた。これらの差を二乗して得られた値の総和を(試験片の数−1)で除して、得られた値を不偏分散とした。
Then, the CV value of the electrical resistance value in the longitudinal direction of the fiber was calculated according to the following formula.
CV (%) = (V / E (X)) × 100 of electrical resistance value in the longitudinal direction of the fiber
V: Square root of unbiased variance of electrical resistance E (X): Mean of electrical resistance The unbiased variance was determined as follows. That is, the difference between the average electric resistance value and the average electric resistance value was obtained for all the test pieces. The sum of the values obtained by squaring these differences was divided by (number of test pieces-1), and the obtained values were defined as unbiased variance.

(3)沸水収縮率
得られた繊維を検尺機で20回かせ取りを行い、0.03(cN/dtex)の荷重下で糸長L0を測定し、次いで無荷重下で沸水中に入れ30分間処理した。その後、風乾し、再度0.03(cN/dtex)の荷重下で収縮後の長さL1を測定し、沸水収縮率を次式で算出するものである。
沸水収縮率(%)=〔(L0−L1)/L0〕×100
(3) Boiling water shrinkage rate The obtained fiber is squeezed 20 times with a measuring machine, the yarn length L0 is measured under a load of 0.03 (cN / dtex), and then placed in boiling water under no load. Treated for 30 minutes. Then, it is air-dried, the length L1 after shrinkage is measured again under a load of 0.03 (cN / dtex), and the boiling water shrinkage ratio is calculated by the following formula.
Boiling water shrinkage rate (%) = [(L0-L1) / L0] × 100

(4)固有粘度[η]
フェノールと四塩化エタンとの等質量混合物を溶媒として、試料濃度0.9質量%、温度20℃の条件下で常法に基づき測定した。
(4) Intrinsic viscosity [η]
The measurement was carried out by a conventional method under the conditions of a sample concentration of 0.9% by mass and a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.

(5)溶融粘度
フローテスター(島津製作所製、型式「CFT−500」)を用いて、温度270℃、剪断速度1000sec−1の条件で測定した。
(5) Melt Viscosity Measured using a flow tester (manufactured by Shimadzu Corporation, model "CFT-500") under the conditions of a temperature of 270 ° C. and a shear rate of 1000 sec -1 .

(6)断面形状の観察
導電性複合繊維の横断面を、キーエンス社製のデジタルマイクロスコープ「VHX−600」を用いて観察した(倍率;1000倍)。
(6) Observation of cross-sectional shape The cross-sectional shape of the conductive composite fiber was observed using a digital microscope "VHX-600" manufactured by KEYENCE Co., Ltd. (magnification: 1000 times).

<実施例1>
非導電性成分としてIPA(イソフタル酸)が8モル%の割合で共重合されたPETを使用した。導電性成分としてカーボンブラックを25質量%含有し、270℃での溶融粘度が1581dPa・s(固有粘度が0.54)のPBTを使用した。これら各々の成分を、通常の複合紡糸装置に供給し、繊維の断面形状が図1となるよう設計された紡糸口金を用いて、紡糸温度270℃、導電性成分の複合比率が20質量%となるように溶融紡糸した。図1においては、非導電性成分を導電性成分で分割した形状となるタイプのもので、導電性成分の列数は3つでかつ交差しているものである。紡出した糸条を冷却し、オイリングしながら、第一引取ローラーで4000m/分の速度で引き取り、続けて第二引取ローラーで速度比1.002にて実質的に延伸せずに引き取り、実施例1の導電性複合繊維(28dtex/3f)を得た。
<Example 1>
As a non-conductive component, PET in which IPA (isophthalic acid) was copolymerized at a ratio of 8 mol% was used. PBT containing 25% by mass of carbon black as a conductive component and having a melt viscosity at 270 ° C. of 1581 dPa · s (intrinsic viscosity of 0.54) was used. Each of these components is supplied to a normal composite spinning apparatus, and a spinning base designed so that the cross-sectional shape of the fiber is as shown in FIG. 1 is used, the spinning temperature is 270 ° C., and the composite ratio of the conductive components is 20% by mass. It was melt-spun so that it would be. In FIG. 1, it is a type in which a non-conductive component is divided by a conductive component, and the number of rows of the conductive component is three and intersects. The spun yarn was cooled and oiled while being picked up by the first pick-up roller at a speed of 4000 m / min, and then picked up by the second pick-up roller at a speed ratio of 1.002 without substantially stretching. The conductive composite fiber (28dtex / 3f) of Example 1 was obtained.

<実施例2、3><比較例2>
第一引取ローラーの引取速度をそれぞれ5000m/分、6000m/分、3000m/分に変更した以外は実施例1と同様に行って、実施例2、3および比較例2の導電性複合繊維を得た。
<Examples 2 and 3><Comparative example 2>
The same procedure as in Example 1 was carried out except that the take-up speed of the first take-up roller was changed to 5000 m / min and 6000 m / min and 3000 m / min, respectively, to obtain the conductive composite fibers of Examples 2, 3 and Comparative Example 2. It was.

<実施例4、5><比較例5>
導電性成分として含有するカーボンブラック量を35質量%、15質量%、5質量%に変更し、それに伴い溶融粘度を1793dPa・s、1145dPa・s、940dPa・sに変化させた以外は実施例1と同様に行って、実施例4、5および比較例5の導電性複合繊維を得た。
<Examples 4 and 5><Comparative example 5>
Example 1 except that the amount of carbon black contained as a conductive component was changed to 35% by mass, 15% by mass, and 5% by mass, and the melt viscosities were changed to 1793 dPa · s, 1145 dPa · s, and 940 dPa · s accordingly. The same procedure was carried out to obtain conductive composite fibers of Examples 4, 5 and Comparative Example 5.

<実施例6、7><比較例3、4>
導電性成分の固有粘度、および非導電性成分の固有粘度を、それぞれ表1に示したように変更し、それに伴い溶融粘度を、それぞれ表1に示したように変化させた以外は実施例1と同様に行って、実施例6、7および比較例3、4の導電性複合繊維を得た。
<Examples 6 and 7><Comparative Examples 3 and 4>
Example 1 except that the intrinsic viscosity of the conductive component and the intrinsic viscosity of the non-conductive component were changed as shown in Table 1, and the melt viscosity was changed accordingly as shown in Table 1. The same procedure was carried out to obtain the conductive composite fibers of Examples 6 and 7 and Comparative Examples 3 and 4.

<実施例8、9、10>
繊維の断面形状を図2、図3、図4に変更した以外は実施例1と同様に行って、実施例8、9、10の導電性複合繊維を得た。
<Examples 8, 9, and 10>
The same procedure as in Example 1 was carried out except that the cross-sectional shape of the fiber was changed to FIGS. 2, 3 and 4, to obtain conductive composite fibers of Examples 8, 9 and 10.

<比較例1>
非導電性成分としてIPAが8モル%共重合されたPETを使用した。導電性成分としてカーボンブラックを25質量%含有し、270℃での溶融粘度が1581dPa・s(固有粘度が0.54)のPBTを使用した。これらを、通常の複合紡糸装置に各々の成分を供給し、繊維の断面形状が図1となるよう設計された紡糸口金を用いて、紡糸温度270℃、導電性成分の複合比率が20質量%となるように溶融紡糸した。図1においては、非導電性成分を導電性成分で分割した形状となるタイプのもので、導電性成分の列数は3つでかつ交差しているものである。紡出した糸条を冷却し、オイリングしながら、第一引取ローラーで1500m/分の速度で引き取り、続けて第二引取ローラーで速度比1.002にて実質的に延伸せずに引き取り、74dtex/3fの未延伸糸を得た。この未延伸糸を90℃の熱ローラーを介して2.64倍に延伸し、更に140℃のヒートプレートで熱処理を行った後に捲き取り、図1の断面形状を呈する比較例1の導電性複合繊維(28dtex/3f)を得た。
<Comparative example 1>
As a non-conductive component, PET in which 8 mol% of IPA was copolymerized was used. PBT containing 25% by mass of carbon black as a conductive component and having a melt viscosity at 270 ° C. of 1581 dPa · s (intrinsic viscosity of 0.54) was used. Each component is supplied to a normal composite spinning device, and a spinning base designed so that the cross-sectional shape of the fiber is as shown in FIG. 1 is used, the spinning temperature is 270 ° C., and the composite ratio of the conductive component is 20% by mass. It was melt-spun so as to be. In FIG. 1, it is a type in which a non-conductive component is divided by a conductive component, and the number of rows of the conductive component is three and intersects. The spun yarn was cooled and oiled while being picked up by the first pick-up roller at a speed of 1500 m / min, and then picked up by the second pick-up roller at a speed ratio of 1.002 without substantially stretching, and 74 dtex. An undrawn yarn of / 3f was obtained. This undrawn yarn is stretched 2.64 times through a hot roller at 90 ° C., further heat-treated with a heat plate at 140 ° C., and then wound up to exhibit the cross-sectional shape of Comparative Example 1. Fiber (28dtex / 3f) was obtained.

実施例および比較例にて得られた導電性複合繊維の評価を、表1および表2にまとめて示す。 The evaluations of the conductive composite fibers obtained in Examples and Comparative Examples are summarized in Tables 1 and 2.

表1および2から理解できるように、実施例1〜10で得られた本発明の導電性複合繊維は、導電性能に優れ、糸斑が抑制されて導電性のバラツキが顕著に低減されていた。 As can be understood from Tables 1 and 2, the conductive composite fibers of the present invention obtained in Examples 1 to 10 were excellent in conductive performance, thread spots were suppressed, and variations in conductivity were remarkably reduced.

比較例1においては、第一引取ローラーの引取速度が遅く、かつ第二引取ローラーで引き取った後に、倍率2.7倍の延伸工程を経たため、得られた導電性複合繊維は、糸斑が非常に悪く導電性のバラツキも大きくなった。 In Comparative Example 1, the take-up speed of the first take-up roller was slow, and after taking up with the second take-up roller, a drawing step of 2.7 times was performed, so that the obtained conductive composite fiber had very fine thread spots. Badly, the variation in conductivity also increased.

比較例2においては、第一引取ローラーの引取速度が遅かったため、得られた導電性複合繊維は、糸斑が悪く導電性のバラツキも大きくなった。また、導電性成分および非導電性成分の何れにおいても配向結晶化が適切に進んでいないため、沸水収縮率も高くなった。さらに配向結晶化が適切に進んでいないため、導電性粒子のストラクチャも発達しておらず、導電性能のバラツキも低くなった。 In Comparative Example 2, since the take-up speed of the first take-up roller was slow, the obtained conductive composite fiber had poor thread unevenness and a large variation in conductivity. In addition, since the orientation and crystallization of both the conductive component and the non-conductive component did not proceed appropriately, the boiling water shrinkage rate was also high. Furthermore, since the orientation and crystallization did not proceed properly, the structure of the conductive particles was not developed, and the variation in the conductive performance was reduced.

比較例3においては、導電性成分に含まれるポリマーの溶融粘度が高く、比較例4においては、導電性成分に含まれるポリマーの溶融粘度が低く、本発明のような高速紡糸(すなわち、第一の引取ローラーの引取速度が4000〜6000m/分)に適した好ましい範囲ではないため、配向結晶化が適切に進まず、導電性能が低くなった。また、糸斑も悪いため、導電性能のバラツキも大きくなった。 In Comparative Example 3, the melt viscosity of the polymer contained in the conductive component is high, and in Comparative Example 4, the melt viscosity of the polymer contained in the conductive component is low, and high-speed spinning as in the present invention (that is, first Since the take-up speed of the take-up roller is not in a preferable range suitable for 4000 to 6000 m / min), the orientation crystallization does not proceed properly and the conductive performance is lowered. In addition, since the thread unevenness was also bad, the variation in conductive performance became large.

比較例5においては、導電性粒子の含有量が少なかったため、導電性能に劣る導電性複合繊維しか得られなかった。 In Comparative Example 5, since the content of the conductive particles was small, only the conductive composite fiber having inferior conductive performance was obtained.

1 導電性成分
2 非導電性成分
1 Conductive component 2 Non-conductive component

Claims (9)

熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子10〜40質量%を含む導電性成分と、からなる導電性複合繊維であって、前記導電性複合繊維の電気抵抗値が1×10〜1×1010Ω/cmであり、かつ繊維の長手方向の電気抵抗値のCV値が6%である、導電性複合繊維。 A conductive composite fiber composed of a non-conductive component containing a thermoplastic polymer and a conductive component containing the thermoplastic polymer and conductive particles in an amount of 10 to 40% by mass, wherein the electric resistance value of the conductive composite fiber is A conductive composite fiber having a CV value of 1 × 10 4 to 1 × 10 10 Ω / cm and an electrical resistance value in the longitudinal direction of the fiber of 6%. 糸斑が3.5%以下である、請求項1に記載の導電性複合繊維。 The conductive composite fiber according to claim 1, wherein the thread unevenness is 3.5% or less. 伸度が50%以上90%以下である、請求項1または2に記載の導電性複合繊維。 The conductive composite fiber according to claim 1 or 2, wherein the elongation is 50% or more and 90% or less. 沸水収縮率が3%以上20%以下である、請求項1〜3の何れかに記載の導電性複合繊維。 The conductive composite fiber according to any one of claims 1 to 3, wherein the boiling water shrinkage rate is 3% or more and 20% or less. 以下の工程(イ)〜(ハ)をこの順に含む、導電性複合繊維の製造方法。
(イ)熱可塑性ポリマーを含む非導電性成分と、熱可塑性ポリマーおよび導電性粒子を含む導電性成分と、を準備する工程。
(ロ)前記導電性成分と前記非導電性成分とを、複合紡糸する工程。
(ハ)第一引取ローラーで引き取った後、第二引取ローラーで引き取る工程。
ただし、第一引取ローラーの引取速度を4000〜6000m/分、第一引取ローラーと第二引取ローラーとの速度比を1.0以上1.1以下とし、かつ第二引取ローラーで引き取った後に実質的に延伸を施さないものとする。
A method for producing a conductive composite fiber, which comprises the following steps (a) to (c) in this order.
(A) A step of preparing a non-conductive component containing a thermoplastic polymer and a conductive component containing a thermoplastic polymer and conductive particles.
(B) A step of composite spinning the conductive component and the non-conductive component.
(C) The process of picking up with the first pick-up roller and then picking up with the second pick-up roller.
However, the take-up speed of the first take-up roller shall be 4000 to 6000 m / min, the speed ratio between the first take-up roller and the second take-up roller shall be 1.0 or more and 1.1 or less, and after being picked up by the second take-up roller, it is substantially No stretching is applied.
工程(ロ)における紡糸温度を250〜310℃とする、請求項5に記載の導電性複合繊維の製造方法。 The method for producing a conductive composite fiber according to claim 5, wherein the spinning temperature in the step (b) is 250 to 310 ° C. 請求項1〜4の何れかに記載の導電性複合繊維を含む、織編物。 A woven or knitted fabric containing the conductive composite fiber according to any one of claims 1 to 4. 請求項7に記載の織編物を含む、衣服。 A garment comprising the woven or knitted fabric according to claim 7. 請求項1〜4の何れかに記載の導電性複合繊維を含む、ブラシ。

A brush comprising the conductive composite fiber according to any one of claims 1 to 4.

JP2019067414A 2019-03-29 2019-03-29 Conductive composite fiber and method for producing the same Pending JP2020165044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067414A JP2020165044A (en) 2019-03-29 2019-03-29 Conductive composite fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067414A JP2020165044A (en) 2019-03-29 2019-03-29 Conductive composite fiber and method for producing the same

Publications (1)

Publication Number Publication Date
JP2020165044A true JP2020165044A (en) 2020-10-08

Family

ID=72717086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067414A Pending JP2020165044A (en) 2019-03-29 2019-03-29 Conductive composite fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2020165044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080124A1 (en) * 2021-11-02 2023-05-11 日本エステル株式会社 Sheath-core type polyester composite fiber and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385114A (en) * 1986-09-25 1988-04-15 Unitika Ltd Electrically conductive yarn and production thereof
JPS6452818A (en) * 1987-08-19 1989-02-28 Unitika Ltd Electrically conductive polyester fiber and production thereof
WO2008004448A1 (en) * 2006-07-03 2008-01-10 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
JP2008101314A (en) * 2006-09-21 2008-05-01 Toray Ind Inc Conductive polyester fiber and brush product made of the same
JP2008184713A (en) * 2007-01-30 2008-08-14 Toray Ind Inc Electroconductive yarn
JP2009120990A (en) * 2007-11-15 2009-06-04 Toray Ind Inc Polyester resin composition, polyester fiber, and textile product using the same
JP2009174089A (en) * 2008-01-25 2009-08-06 Toray Ind Inc Conductive polyester fiber and brush product made therefrom
JP2010037664A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Electroconductive fiber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385114A (en) * 1986-09-25 1988-04-15 Unitika Ltd Electrically conductive yarn and production thereof
JPS6452818A (en) * 1987-08-19 1989-02-28 Unitika Ltd Electrically conductive polyester fiber and production thereof
WO2008004448A1 (en) * 2006-07-03 2008-01-10 Kuraray Co., Ltd. Conductive sheath-core conjugate fiber and process for producing the same
JP2008101314A (en) * 2006-09-21 2008-05-01 Toray Ind Inc Conductive polyester fiber and brush product made of the same
JP2008184713A (en) * 2007-01-30 2008-08-14 Toray Ind Inc Electroconductive yarn
JP2009120990A (en) * 2007-11-15 2009-06-04 Toray Ind Inc Polyester resin composition, polyester fiber, and textile product using the same
JP2009174089A (en) * 2008-01-25 2009-08-06 Toray Ind Inc Conductive polyester fiber and brush product made therefrom
JP2010037664A (en) * 2008-07-31 2010-02-18 Toray Ind Inc Electroconductive fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023080124A1 (en) * 2021-11-02 2023-05-11 日本エステル株式会社 Sheath-core type polyester composite fiber and method for producing same
JP7340183B1 (en) 2021-11-02 2023-09-07 日本エステル株式会社 Core-sheath type polyester composite fiber and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4916460B2 (en) Core-sheath composite type conductive fiber
JP4923174B2 (en) Conductive composite yarn and conductive fabric
JP4367038B2 (en) Fiber and fabric
JP4280546B2 (en) Conductive composite fiber and conductive woven / knitted fabric
JP5220673B2 (en) Conductive sewing thread and knitted fabric
JP2020165044A (en) Conductive composite fiber and method for producing the same
JP7332693B2 (en) Conductive composite fiber and fiber structure using the same
JP2007002374A (en) Conductive conjugated fiber and conductive fabric
JP2004225214A (en) Electroconductive conjugated fiber
JPH01292116A (en) Electrically conductive fiber and production thereof
JP5504048B2 (en) Conductive composite fiber
JP2005194650A (en) Conductive conjugate fiber
JP7340183B1 (en) Core-sheath type polyester composite fiber and its manufacturing method
JP7394439B2 (en) Conductive multifilament, method for manufacturing conductive multifilament, woven or knitted fabric, and brush
JP5504030B2 (en) Conductive composite fiber
JP4763451B2 (en) Conductive composite fiber
JP6118561B2 (en) Conductive composite fiber
CN117813425A (en) Core-sheath type polyester composite fiber and manufacturing method thereof
JP2004036040A (en) Antistatic woven or knitted fabric and dustproof clothing
JP7107226B2 (en) conductive composite fiber
JP2007092200A (en) Conductive conjugate fiber having moist heat resistance and conductive fabric having moist heat resistance
JP2004044035A (en) Conductive conjugate fiber
JPH03241010A (en) Electrically conductive conjugate fiber
KR950000723B1 (en) Composite fiber having an electrical conductivity and being prepared 3 other components
JPS62299516A (en) Antistatic polyester conjugated fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240417