JP2006101639A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2006101639A
JP2006101639A JP2004284978A JP2004284978A JP2006101639A JP 2006101639 A JP2006101639 A JP 2006101639A JP 2004284978 A JP2004284978 A JP 2004284978A JP 2004284978 A JP2004284978 A JP 2004284978A JP 2006101639 A JP2006101639 A JP 2006101639A
Authority
JP
Japan
Prior art keywords
voltage
transformer
switching
power supply
switching element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284978A
Other languages
English (en)
Inventor
Mamoru Tsuruya
守 鶴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2004284978A priority Critical patent/JP2006101639A/ja
Publication of JP2006101639A publication Critical patent/JP2006101639A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】直流出力を負荷に供給し、交流出力を放電灯に供給するとともに、高効率化、低コスト化及び小型化を図る。
【解決手段】直流電源Vdc1の直流電圧をトランスTの1次巻線5aに接続されるスイッチング素子Q1のオン/オフにより高周波電圧に変換し、2次巻線5bの高周波電圧を整流平滑回路D1,Coにより直流電圧に変換して負荷RLに供給するスイッチング電源装置において、3次巻線5cの両端にリアクトルLvとコンデンサCrとが直列に接続された共振回路と、各々が1次巻線7aと2次巻線7bとを有し、コンデンサCrの両端に各1次巻線7aが接続された複数の昇圧トランスT1〜Tnと、複数の昇圧トランスT1〜Tnに対応して設けられ、2次巻線7bの両端に接続された複数の冷陰極管11〜11と、スイッチング周波数を調整することにより複数の冷陰極管11〜11に流れる電流を制御する制御回路3aとを備える。
【選択図】図1

Description

本発明は、直流電力を負荷に供給すると共に多灯の冷陰極管(CCFL)や外部電極蛍光灯や蛍光灯等の放電灯を点灯するスイッチング電源装置に関する。
図12に従来のスイッチング電源装置の構成図を示す。図12に示すスイッチング電源装置は、例えば、液晶を使用するテレビジョン用の電源であり、直流電源Vdc1の両端には、トランスTの1次巻線5a(巻数np)とMOSFET等からなるスイッチング素子Q1との直列回路が接続されている。スイッチング素子Q1は、制御回路3のPWM制御によりオン/オフする。
また、トランスTの1次巻線5aとトランスTの2次巻線5b(巻数nd)とは互いに同相電圧が発生するように巻回されており、トランスTの2次巻線5bには、ダイオードD1とコンデンサCoとからなる整流平滑回路が接続されている。この整流平滑回路は、トランスTの2次巻線5bに誘起された電圧(オン/オフ制御されたパルス電圧)を整流平滑して直流出力を負荷RLに出力する。
制御回路3は、図示しない演算増幅器及びフォトカプラを有し、演算増幅器は、検出回路1で検出された負荷RLの出力電圧と基準電圧とを比較し、負荷RLの出力電圧が基準電圧以上となったときに、スイッチング素子Q1に印加されるパルスのオン幅を狭くするように制御する。すなわち、負荷RLの出力電圧が基準電圧以上となったときに、スイッチング素子Q1のパルスのオン幅を狭くすることで、出力電圧を一定電圧に制御する。
また、トランスTの3次巻線5c(巻数na)には、ダイオードD2とコンデンサC1とからなる整流平滑回路が接続されている。コンデンサC1の一端には複数のインバータ50〜50が接続され、複数のインバータ50〜50の出力側は、複数の昇圧トランスT1〜Tnの1次巻線7a(巻数n1)に接続されている。複数の昇圧トランスT1〜Tnの2次巻線7b(巻数n2)の両端は、放電灯としての冷陰極管11〜11と電流検出部13〜13との直列回路に接続されている。電流検出部13〜13は、複数の冷陰極管11〜11に流れる電流を検出し、検出された電流を複数のインバータ50〜50に出力する。
以上の構成によれば、スイッチング素子Q1が制御回路3からの信号によりオン/オフすることにより、直流電源Vdc1の直流電圧は、高周波電圧に変換され、トランスTの2次巻線5bに発生した高周波電圧は、ダイオードD1及びコンデンサCoにより直流電圧に変換されて負荷RLに供給される。
一方、トランスTの3次巻線5cに発生した高周波電圧は、ダイオードD2及びコンデンサC1により直流電圧に変換されて複数のインバータ50〜50に供給される。複数のインバータ50〜50は、入力された直流電圧を交流電圧に変換し、複数の昇圧トランスT1〜Tnは、交流電圧を昇圧して複数の冷陰極管11〜11に電流を流す。このため、複数の冷陰極管11〜11が点灯する。
なお、図12に示した従来のスイッチング電源装置に類似した技術が特許文献1に記載されている。
特開昭61−157263号公報(第1図、第4図)
しかしながら、図12に示す従来のスイッチング電源装置にあっては、直流電力を負荷RLに供給すると共に、1つのインバータを用いて1灯の冷陰極管を点灯させていたため、冷陰極管の灯数と同数のインバータが必要であった。即ち、冷陰極管の灯数の増加に伴ってインバータの数も比例して増加するため、コストがかなりアップしていた。
また、ダイオードD2及びコンデンサC1で直流電圧に変換した後にインバータにより昇圧していたため、損失が増大し、効率が低下するという課題を有していた。
本発明は、直流出力を負荷に供給し、交流出力を放電灯に供給するとともに、高効率化、低コスト化及び小型化を図ることができるスイッチング電源装置を提供することにある。
上記課題を解決するために、請求項1の発明は、直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、前記トランスの3次巻線の両端にリアクトルとコンデンサとが直列に接続された共振回路と、各々が1次巻線と2次巻線とを有し、前記共振回路の前記コンデンサの両端に各1次巻線が接続された複数の昇圧トランスと、この複数の昇圧トランスに対応して設けられ、この複数の昇圧トランスの2次巻線の両端に接続された複数の放電灯と、前記スイッチング素子のスイッチング周波数を調整することにより、前記複数の放電灯に流れる電流を制御する制御回路とを備えることを特徴とする。
請求項2の発明は、直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、前記トランスの3次巻線の両端にリアクトルとコンデンサとが直列に接続された共振回路と、複数の放電灯と、この複数の放電灯に直列に接続されたバランサと、前記スイッチング素子のスイッチング周波数を調整することにより、前記複数の放電灯に流れる電流を制御する制御回路とを備え、前記複数の放電灯と前記バランサとの直列回路が前記共振回路の前記コンデンサの両端に接続されることを特徴とする。
請求項3の発明は、請求項2記載のスイッチング電源装置において、前記バランサは、前記複数の放電灯に対応して複数の第2トランスを設け、前記第2トランスの2次巻線は各放電灯に直列に接続され、前記放電灯と前記第2トランスの2次巻線との直列回路の各々が前記共振回路の前記コンデンサの両端に接続され、前記複数の第2トランスの1次巻線が直列に接続されていることを特徴とする。
請求項4の発明は、請求項1乃至請求項3のいずれか1項記載のスイッチング電源装置において、前記リアクトルは、前記トランスのリーケージインダクタンスからなることを特徴とする。
請求項5の発明は、請求項1乃至請求項4のいずれか1項記載のスイッチング電源装置において、前記複数の放電灯に流れる電流を検出する電流検出部を備え、前記制御回路は、前記電流検出部で検出された電流に応じて前記スイッチング素子のスイッチング周波数を制御する周波数制御手段を備えることを特徴とする。
請求項6の発明では、請求項1乃至請求項5のいずれか1項記載のスイッチング電源装置において、前記変換回路は、前記直流電源の両端に接続され、第1スイッチング素子と第2スイッチング素子とが直列に接続された第1直列回路と、前記第1スイッチング素子又は前記第2スイッチング素子の両端に接続され且つ前記トランスの1次巻線と共振用リアクトルと共振用コンデンサとが直列に接続された第2直列回路と、前記第1スイッチング素子と前記第2スイッチング素子とのオン/オフにより前記高周波電圧を出力する前記トランスの2次巻線及び3次巻線とを備え、前記制御回路は、前記第1スイッチング素子と前記第2スイッチング素子とを交互にオン/オフさせることを特徴とする。
請求項7の発明では、請求項1乃至請求項6のいずれか1項記載のスイッチング電源装置において、前記制御回路は、前記スイッチング周波数を所定範囲内で低下させることにより前記放電管の電流を低下させ、待機時には、前記スイッチング周波数を前記所定範囲内よりもさらに低下させることを特徴とする。
請求項1の発明によれば、トランスの2次巻線の高周波電圧を整流平滑して直流出力を得るとともに、リアクトルとコンデンサとの共振回路により、スイッチング周波数を制御することにより高周波電圧を調整し、調整された高周波電圧を複数の昇圧トランスを介して複数の放電灯に印加することにより複数の放電灯を点灯させる。即ち、インバータを削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで放電灯を点灯するので、整流器の損失が減少し、高効率化できる。
請求項2の発明によれば、トランスの2次巻線の高周波電圧を整流平滑して直流出力を得るとともに、リアクトルとコンデンサとの共振回路により、スイッチング周波数を制御することにより高周波電圧を調整し、調整された高周波電圧がバランサによりバランスされて複数の放電灯に印加されて複数の放電灯が点灯する。即ち、インバータ、昇圧トランスを削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで放電灯を点灯するので、整流器の損失が減少し、高効率化できる。
請求項3の発明によれば、放電灯と第2トランスの2次巻線との直列回路の各々がコンデンサの両端に接続され、複数の第2トランスの1次巻線が直列に接続されているので、全ての第2トランスの1次巻線電流は同じになる。また、各放電灯の電流は、第2トランスの1次巻線電流と巻数比で決まり、巻数が同じであれば、全ての放電灯の電流は同じになるので、放電灯の電流のバラツキがなくなるので、良好な点灯特性が得られる。
請求項4の発明によれば、リアクトルがトランスのリーケージインダクタンスからなるので、共振回路が簡単化できる。
請求項5の発明によれば、制御回路は、電流検出部で検出された電流に応じてスイッチング素子のスイッチング周波数を制御するので、制御されたスイッチング周波数におけるリアクトルとコンデンサとの共振により、コンデンサの電圧が上昇してこの上昇電圧により放電灯の電流を制御することができる。
請求項6の発明によれば、第1スイッチング素子と第2スイッチング素子とを交互にオン/オフさせることにより、直流電圧を高周波電圧に変換し、この高周波電圧をトランス及び共振回路を介して複数の放電灯に供給するので、複数の放電灯に印加される電圧の対象性が良くなり、放電灯を長寿命化できる。
請求項7の発明によれば、待機時には、スイッチング周波数を所定範囲内よりもさらに低下させることにより、高周波電圧を低下させれば、スイッチング損失も低減でき、待機時の効率を改善できる。
以下、本発明のスイッチング電源装置の実施の形態を図面を参照しながら説明する。
本発明は、トランスの2次巻線の高周波電圧を整流平滑して直流電圧を得るとともに、トランスの3次巻線の高周波電圧(交流電圧)をリアクトルとコンデンサとの共振回路に入力し、前記直流電圧をPWM制御により安定化させながら、スイッチング素子のスイッチング周波数を制御することにより高周波電圧を制御し、制御された高周波電圧を昇圧トランスにより昇圧して複数の放電灯に印加することにより複数の放電灯を点灯させ、高効率化、低コスト化及び小型化を図ることを特徴とする。
図1は本発明の実施例1のスイッチング電源装置の構成図である。図1に示すスイッチング電源装置は、図12に示す従来のスイッチング電源装置に対して、トランスTの3次巻線5cの出力側の構成と制御回路3aの構成が異なるのみであるので、ここでは、異なる部分の構成のみを説明する。
なお、実施例1のスイッチング電源装置は、直流電源Vdc1の直流電圧をトランスTの1次巻線5aに接続されるスイッチング素子Q1のオン/オフにより高周波電圧に変換し該高周波電圧をトランスTの出力巻線である2次巻線5b及び3次巻線5cに出力する。この構成が本発明の変換回路に対応する。
トランスTの3次巻線5c(巻数na)には、リアクトルLvとコンデンサCrとの直列共振回路が接続されている。なお、リアクトルLvは、トランスTの1次巻線5aと3次巻線5c間のリーケージインダクタンスであっても良い。
コンデンサCrの両端には、複数の昇圧トランスT1〜Tnの1次巻線7aが接続されている。複数の昇圧トランスT1〜Tnの2次巻線7bには、複数の冷陰極管11〜11が接続されている。変流器13は、1次巻線(巻数n3)の一端が複数の昇圧トランスT1〜Tnの2次巻線7bに接続され、1次巻線の他端が複数の冷陰極管11〜11に接続され、複数の冷陰極管11〜11に流れる電流を検出する。この変流器13は、本発明の電流検出部に対応する。全波整流回路15は、変流器13の2次巻線(巻数n4)に接続されて検出された電流を全波整流して整流電流を抵抗R2及びコンデンサC2の並列回路に出力する。
制御回路3aは、誤差増幅器31、コンパレータ32、誤差増幅器33、電圧制御発振器(VCO)34を有している。誤差増幅器31は、−入力端子にコンデンサCoからの直流電圧を入力し、+入力端子に基準電圧Eを入力し、コンデンサCoからの直流電圧と基準電圧Eとの誤差電圧を増幅して誤差電圧信号をコンパレータ32の+入力端子に出力する。
誤差増幅器33は、−入力端子に抵抗R2からの直流電圧を入力し、+入力端子に基準電圧Eを入力し、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧を増幅して誤差電圧信号をVCO34に出力する。VCO34は、電圧値に応じた周波数を持つ信号を発生するもので、誤差増幅器33からの誤差電圧信号の値に応じてスイッチング周波数を変化させた三角波信号を生成する。
コンパレータ32は、誤差増幅器31からの誤差電圧信号が+入力端子に入力され、VCO34からの三角波信号が−入力端子に入力され、誤差電圧信号の値が三角波信号の値以上のときにオンで、誤差電圧信号の値が三角波信号の値未満のときにオフとなるパルス信号を生成し、スイッチング素子Q1に出力する。
次に、このように構成された実施例1のスイッチング電源装置の動作を説明する。まず、スイッチング素子Q1が制御回路3aからの信号によりオン/オフすることにより、直流電源Vdc1の直流電圧は、高周波電圧に変換され、トランスTの2次巻線5bに発生した高周波電圧は、ダイオードD1及びコンデンサCoにより直流電圧に変換されて負荷RLに供給される。誤差増幅器31は、この直流電圧と基準電圧Eとの誤差電圧を増幅し、コンパレータ32は、誤差増幅器31からの誤差電圧信号とVCO34からの三角波信号とに基づきスイッチング素子Q1をPWM制御することにより出力電圧を一定値に制御する。
一方、トランスTの3次巻線5cに接続されたリアクトルLvとコンデンサCrとの直列共振回路により、スイッチング素子Q1のスイッチング周波数を可変することにより、コンデンサCrの電圧は、図2に示すように変化する。図2に示すように、スイッチング周波数を変化させていくと、コンデンサCrとリアクトルLvとの共振周波数がスイッチング周波数fwに一致したときに、コンデンサCrの電圧が最大値となる。
スイッチング周波数の調整範囲として、コンデンサCrの電圧が最大値になるスイッチング周波数fwよりも大きい範囲Hを用いる場合には、VCO34の誤差電圧信号(例えば電圧Va〜Vbの範囲)に対する周波数(例えば周波数fa〜fbの範囲)の特性は、図3に示すように正の傾きを持つ特性曲線CV1を用いればよい。
また、スイッチング周波数の調整範囲として、コンデンサCrの電圧が最大値になるスイッチング周波数fwよりも小さい範囲Lを用いる場合には、VCO34の誤差電圧信号(例えば電圧Vc〜Vdの範囲)に対する周波数(例えば周波数fc〜fdの範囲)の特性は、図4に示すように負の傾きを持つ特性曲線CV2を用いればよい。
ここでは、一例として、図3に示す特性曲線を持つVCO34を用いた場合において、変流器13で検出された電流に基づき、スイッチング周波数を可変する動作について説明する。
まず、スイッチング周波数をfa(電圧はVa)に設定すると、コンデンサCrの電圧がかなり低いため、複数の冷陰極管11〜11に小さい電流が流れる。
複数の冷陰極管11〜11に流れる電流は、変流器13で検出され、検出された電流は、全波整流回路15により全波整流されて抵抗R2及びコンデンサC2で直流電圧に変換される。そして、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧が誤差増幅器33で増幅されて誤差電圧信号として出力される。この誤差電圧信号(電圧Vaよりも小さい)によりVCO34は、スイッチング周波数faよりも低い周波数を有する三角波信号を発生してコンパレータ32に出力する。そして、スイッチング周波数faよりも低いスイッチング周波数でスイッチング素子Q1をオン/オフさせる。
このとき、図2に示すように、コンデンサCrの電圧は上昇する。そして、この上昇したコンデンサCrの電圧に対応する増加した電流が複数の冷陰極管11〜11に流れる。すると、この増加した電流により、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧はより小さくなる。このため、図3に示すように、スイッチング周波数は、さらに低くなる。
このようにして、図2に示すように、スイッチング周波数をfaからfbまで調整することにより、コンデンサCrの電圧が上昇してこの上昇電圧により複数の冷陰極管11〜11に流れる電流を制御することができる。そして、昇圧された高周波電圧は、複数の冷陰極管11〜11に印加されるので、複数の冷陰極管11〜11を点灯することができる。
また、複数の冷陰極管11〜11の輝度は、スイッチング周波数を可変して高周波電圧を可変することで任意に調整でき、複数の冷陰極管11〜11に流れる電流は、複数の昇圧トランスT1〜Tnのリーケージインダクタンスによりバランスする。
このように、実施例1のスイッチング電源装置によれば、複数のインバータ50〜50を削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで複数の冷陰極管11〜11を点灯するので、整流器(図12に示すダイオードD2)の損失が減少し、高効率化できる。
図5は本発明の実施例2のスイッチング電源装置の構成図である。図5に示す実施例2のスイッチング電源装置は、図1に示す実施例1のスイッチング電源装置に対して、複数の昇圧トランスT1〜Tnに代えて、バランサ19を用いたことを特徴とし、その他の構成は、図1に示す構成と同一構成であるので、同一部分には同一部符号を付し、異なる部分の構成のみを説明する。
図5において、コンデンサCrの一端には、複数の冷陰極管11〜11の一端が接続され、複数の冷陰極管11〜11の他端は、バランサ19の一端に接続され、バランサ19の他端は、変流器13の1次巻線を介してコンデンサCrの他端に接続されている。バランサ19は、バラスト素子であり、バラスト素子としては、コンデンサ、リアクトル、トランスのリーケージインダクタンスの少なくとも1つからなる。複数の冷陰極管11〜11に、バラスト素子として例えば複数のコンデンサC〜Cn(図示せず)を直列に接続しても良い。
以上の構成によれば、トランスTの3次巻線5cに接続されたリアクトルLvとコンデンサCrとの直列共振回路により、スイッチング周波数を可変することにより、コンデンサCrの電圧を高圧化し、バランサ19により複数の冷陰極管11〜11に流れる電流がバランスされて均一になる。このため、複数の冷陰極管11〜11が点灯し、良好な点灯特性を得ることができる。
このように、実施例2のスイッチング電源装置によれば、複数のインバータ50〜50及び複数の昇圧トランスT1〜Tnを削除できるので、更なる高効率化、小型化を図ることができる。
図6は本発明の実施例3のスイッチング電源装置の構成図である。図6に示す実施例3のスイッチング電源装置は、図5に示す実施例2のスイッチング電源装置に対して、バランサ19として、複数の変流器CT1〜CTn(カレントトランス)を用いたことを特徴とし、その他の構成は、図5に示す構成と同一構成であるので、同一部分には同一部符号を付し、異なる部分の構成のみを説明する。変流器13の1次巻線n3の一端は、変流器CTnの1次巻線21aに接続され、変流器13の1次巻線n3の他端は、変流器CT1の1次巻線21aに接続されている。複数の変流器CT1〜CTnは、本発明の第2トランスに対応する。
図6において、各冷陰極管11〜11には、直列に各変流器CT1〜CTnの2次巻線21b(巻数n2)が接続され、コンデンサCrの両端には、冷陰極管11〜11と変流器CT1〜CTnの2次巻線21bとの直列回路の各々が接続されている。各変流器CT1〜CTnの1次巻線21a(巻数n1)は、直列に接続されて、閉ループを形成している。
次に、このように構成された実施例3のスイッチング電源装置の動作を説明する。まず、各変流器CT1〜CTnにおいては、I1(1次巻線電流)×n1(1次巻線の巻数)=I2(2次巻線電流)×n2(2次巻線の巻数)という関係がある。また、各変流器CT1〜CTnの1次巻線21aが直列に接続されているので、各変流器CT1〜CTnの1次巻線電流は同じになる。このため、上記関係式より巻数が同じであれば、各変流器CT1〜CTnの2次巻線電流は、同じになるので、各冷陰極管11〜11の電流も同じになる。従って、冷陰極管11〜11の各電流のバラツキがなくなる。また、力率が略1になる。
また、冷陰極管11〜11のホットエンドが並列に接続されているので、浮遊容量による冷陰極管11〜11の各電流のバラツキを防ぐこともできる。
次に、冷陰極管11〜11の起動時の動作を説明する。トランスTの3次巻線5cに接続されたリアクトルLvとコンデンサCrとの直列共振回路により、スイッチング周波数を可変することにより、コンデンサCrの電圧を高圧化し、該高電圧が起動電圧を超えると、n灯の冷陰極管11〜11が次々と点灯していく。
ここで、例えば、(n−1)灯の冷陰極管11〜11(n−1)が点灯して冷陰極管11が未点灯とすると、変流器CTnの2次巻線21b側が無負荷に近いため、変流器CTnの2次巻線21b側が開放(オープン)された状態と同じになり、高電圧が発生する。このため、冷陰極管11には高電圧が印加されるので、冷陰極管11は、直ぐに点灯する。
従って、冷陰極管が遅れて点灯しても供給される電圧が上昇し、最後の冷陰極管11の方が点灯しやすくなり、冷陰極管1灯だけ点灯できないということがなくなる。即ち、n灯の中の点灯し易い冷陰極管の起動電圧を超えると、全ての冷陰極管が点灯できることになる。また、コンデンサCrも低電圧で済み、信頼性も向上し、また、バラスト素子のインピーダンスがないだけ点灯時に低電圧で済み、コンデンサCrが低電圧で済み信頼性が向上する。即ち、各冷陰極管毎にバラスト素子を用いることなく良好な点灯特性を得ることができる。
各冷陰極管11〜11が点灯した後には、上記関係式に従って各冷陰極管11〜11の電流は、同じ値に保たれる。各冷陰極管11〜11の電圧にバラツキがある時には、差分の電圧が各変流器CT1〜CTnに印加されて、各変流器CT1〜CTnが吸収する。即ち、各変流器CT1〜CTnにばらついた電圧が印加され、各冷陰極管11〜11に流れる電流は、変流器CT1〜CTnの1次巻線電流と巻数比で決まった一定電流が流れる。
次に、具体的に起動電圧及び点灯電圧を設定した時における動作を説明する。定常時には変流器CT1〜CTnの各電圧は、ほぼ零に保たれる。例えば、定常時の冷陰極管11〜11の点灯電圧がAC700Vとし、起動電圧が1200Vとすると、全点灯している定常時には冷陰極管11〜11の各電圧はAC700Vであり、バラツキがないとすると、変流器CT1〜CTnの各電圧は零Vになる。
1灯が未点灯のときには、未点灯の冷陰極管11だけにAC1200Vが印加され、点灯の冷陰極管11〜11(n−1)にAC700Vが印加されることになる。すると、合計電圧は、AC700V×(n−1)+AC1200Vになり、n灯の平均電圧は、{AC700V×(n−1)+AC1200V}÷nになる。ここで、灯数n=5とすると、コンデンサCrの出力電圧は、AC800Vの高電圧を出力し、変流器CT1〜CT4の各電圧は、AC800V−AC700V=AC100Vの電圧になり、未点灯の冷陰極管11の変流器CT5の電圧は、AC1200V−AC800V=AC400Vの電圧になる。
図7は本発明の実施例4のスイッチング電源装置の構成図である。図7に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、直流電源Vdc1の直流電圧を高周波電圧に変換し該高周波電圧をトランスTの2次巻線5b及び3次巻線5cに出力する変換回路に、プッシュプル方式の回路を用いることにより、複数の冷陰極管に印加される電圧の対象性を良くして長寿命化したことを特徴とする。このため、図7に示すスイッチング電源装置は、図1に示す実施例1のスイッチング電源装置に対して、トランスTの1次側の変換回路が異なるので、この変換回路の構成のみを説明する。
変換回路は、直流電源Vdc1からの直流電圧を、制御回路3bにより高周波信号(スイッチング周波数)でMOSFETからなるスイッチング素子Q1とスイッチング素子Q2とを交互にスイッチングさせることにより、高周波電圧に変換し、この高周波電圧をトランスTの2次巻線5b及び3次巻線5cに出力する。
変換回路において、直流電源Vdc1の両端には、スイッチング素子Q1とスイッチング素子Q2とが直列に接続されている。スイッチング素子Q1のソースにはスイッチング素子Q2のドレインが接続され、スイッチング素子Q2のソースは接地されている。スイッチング素子Q1のゲート及びスイッチング素子Q2のゲートには、制御回路3b内の駆動回路35から高周波信号(スイッチング周波数)が入力されるようになっている。スイッチング素子Q1とスイッチング素子Q2とのオン/オフにより高周波電圧がトランスTの2次巻線5b及び3次巻線5cとに出力されるようになっている。
スイッチング素子Q2の両端には、共振用コンデンサCcと共振用リアクトルL1とトランスTの1次巻線5aとの直列回路が接続されている。
なお、共振用コンデンサCcと共振用リアクトルL1とトランスTの1次巻線5aとの直列回路は、スイッチング素子Q2の両端に代えて、スイッチング素子Q1の両端に接続しても良い。
次に変換回路の動作を説明する。まず、駆動回路35からの高周波信号によりスイッチング素子Q1がオンすると、Vdc1→Q1→Cc→L1→5a→接地の経路で電流が流れる。即ち、電流共振が発生して、1次巻線5aに上方向から下方向へ正弦波状の電流が流れる。次に、スイッチング素子Q1がオフし、駆動回路35からの高周波信号によりスイッチング素子Q2がオンすると、5a→L1→Cc→Q2→接地の経路で電流が流れる。即ち、電流共振が発生して、1次巻線5aに下方向から上方向へ正弦波状の電流が流れる。このため、トランスTの3次巻線5cには高周波電圧が発生し、この高周波電圧は、リアクトルLvとコンデンサCrとの共振回路及び複数の昇圧トランスT1〜Tnを介して冷陰極管11〜11に供給される。従って、高圧された高周波電圧により複数の冷陰極管11〜11に流れる電流を制御することができる。
このように、実施例4のスイッチング電源装置によれば、スイッチング素子Q1とスイッチング素子Q2とを交互にオン/オフさせることにより、直流電圧を高周波電圧に変換し、この高周波電圧をトランスT、共振回路、複数の昇圧トランスT1〜Tnを介して複数の冷陰極管11〜11に供給するので、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
図8は本発明の実施例5のスイッチング電源装置の構成図である。図8に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、図5に示す実施例2のスイッチング電源装置の変換回路に対して、図7に示すプッシュプル方式の変換回路を用いたことを特徴とする。
このような構成によれば、実施例2の効果が得られるとともに、図7に示すプッシュプル方式の変換回路を用いることで、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
図9は本発明の実施例6のスイッチング電源装置の構成図である。図9に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、図6に示す実施例3のスイッチング電源装置の変換回路に対して、図7に示すプッシュプル方式の変換回路を用いたことを特徴とする。
このような構成によれば、実施例3の効果が得られるとともに、図7に示すプッシュプル方式の変換回路を用いることで、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
図10は本発明の実施例7のスイッチング電源装置の構成図である。図10に示すスイッチング電源装置は、動作時(重負荷時等)と待機時とを有する機器に適用したもので、待機時の消費電力を低減して、効率を向上したことを特徴とする。
図10に示すスイッチング電源装置は、図7に示すスイッチング電源装置に対して、制御回路3cの構成が異なるので、この部分のみを説明する。
制御回路3cは、図7に示す制御回路3bに対して、さらに、切替スイッチ36を有するとともに、VCO34が図4に示す特性曲線を持つ点が異なる。
切替スイッチ36は、動作時には、共通端子bが端子aに接続され、誤差増幅器33からの誤差電圧信号をVCO34に入力し、待機時には、外部からの待機信号により、共通端子bが端子cに接続され、電圧VoをVCO34に入力する。
VCO34は、動作時には、図4に示す特性曲線により、誤差電圧信号が大きいときには(基準電圧EとコンデンサC2の電圧との差が大きい)、スイッチング周波数を低くし、誤差電圧信号が小さいときには(基準電圧EとコンデンサC2の電圧との差が小さい)、スイッチング周波数を高くする。即ち、コンデンサC2の電圧が小さいとき、スイッチング周波数を低くし、コンデンサC2の電圧が大きいとき、スイッチング周波数を高くする。言い換えれば、動作時には、スイッチング周波数を低くした場合に、コンデンサC2の電圧が減少する範囲、即ち、図2に示す共振特性の調整範囲L(例えば周波数fc〜fdの範囲)を用いる。
また、VCO34は、待機時には、電圧Vo(Vo>Vc)によりスイッチング周波数fo(fo<fc)を持つ三角波信号を発生する。
次に、このように構成された実施例7のスイッチング電源装置の動作を図11に示すタイミングチャートを参照しながら説明する。図11では、動作時には、スイッチング素子Q1とスイッチング素子Q2とが交互にスイッチング周波数(fc〜fdの範囲内の周波数)で動作し、待機時には、スイッチング素子Q1とスイッチング素子Q2とが交互にスイッチング周波数foで動作している様子を示している。
まず、動作時には、切替スイッチ36により、端子aが選択されて、誤差増幅器33からの誤差電圧信号がVCO34に入力される。スイッチング周波数をfc(電圧はVc)に設定すると、コンデンサCrの電圧がかなり低いため、複数の冷陰極管11〜11に小さい電流が流れる。
複数の冷陰極管11〜11に流れる電流は、変流器13で検出され、検出された電流は、全波整流回路15により全波整流されて抵抗R2及びコンデンサC2で直流電圧に変換される。そして、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧が誤差増幅器33で増幅されて誤差電圧信号として出力される。この誤差電圧信号(電圧Vcよりも小さい)によりVCO34は、スイッチング周波数fcよりも高い周波数を有する三角波信号を発生してコンパレータ32に出力する。そして、スイッチング周波数fcよりも高いスイッチング周波数でスイッチング素子Q1をオン/オフさせる。
このとき、図2に示すように、コンデンサCrの電圧は上昇する。そして、この上昇したコンデンサCrの電圧に対応する増加した電流が複数の冷陰極管11〜11に流れる。すると、この増加した電流により、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧はより小さくなる。このため、図4に示すように、スイッチング周波数は、さらに高くなる。
このようにして、図2に示すように、スイッチング周波数をfcからfdまで調整することにより、コンデンサCrの電圧が上昇してこの上昇電圧により複数の冷陰極管11〜11に流れる電流を制御することができる。そして、高圧された高周波電圧は、複数の冷陰極管11〜11に印加されるので、複数の冷陰極管11〜11を点灯することができる。
なお、実際にスイッチング電源装置を使用している場合には、大きな電力を必要とするために、図11に示す動作時(最大周波数でのPWMモード)で使用される。この場合には、電力も大きく高周波で動作する。
次に、待機時には、切替スイッチ36により、端子aから端子cに切り替えられて、電圧VoがVCO34に入力される。VCO34は、電圧Voによりスイッチング周波数fcよりも低いスイッチング周波数foを持つ三角波信号を発生する。このため、待機時には、図11に示すように、動作時よりも低いスイッチング周波数でスイッチング素子Q1,Q2を交互にオン/オフさせるので、消費電力を大幅に低減でき、効率を向上できる。この場合、スイッチング周波数は、かなり低くなるが、オン幅を規定しているので、トランスの磁束密度は上昇せず損失は増大しない。
なお、本発明は、実施例1乃至実施例7のスイッチング電源装置に限定されるものではない。実施例7のスイッチング電源装置の動作時及び待機時の構成(切替スイッチ36、電圧Vo、図4に示す特性曲線を持つVCO34)は、実施例1乃至実施例6のスイッチング電源装置のいずれにも適用可能であり、これらの場合にも、実施例7の効果と同様の効果が得られる。
本発明は、複数の冷陰極管や外部電極蛍光灯や蛍光灯等の放電灯を点灯する放電灯点灯回路を備えたスイッチング電源装置に適用可能である。
本発明の実施例1のスイッチング電源装置の構成図である。 スイッチング周波数を可変したときのコンデンサの電圧の変化を示す図である。 VCOの誤差電圧信号に対する周波数の特性の一例を示す図である。 VCOの誤差電圧信号に対する周波数の特性の他の一例を示す図である。 本発明の実施例2のスイッチング電源装置の構成図である。 本発明の実施例3のスイッチング電源装置の構成図である。 本発明の実施例4のスイッチング電源装置の構成図である。 本発明の実施例5のスイッチング電源装置の構成図である。 本発明の実施例6のスイッチング電源装置の構成図である。 本発明の実施例7のスイッチング電源装置の構成図である。 本発明の実施例7のスイッチング電源装置の動作を示すタイミングチャートである。 従来のスイッチング電源装置の構成図である。
符号の説明
1 検出回路
3,3a〜3c 制御回路
5a,7a,21a 1次巻線
5b,7b,21b 2次巻線
5c 3次巻線
11〜11 冷陰極管
13 変流器(電流検出部)
13〜13 電流検出部
15 全波整流回路
19 バランサ
31,33 誤差増幅器
32 コンパレータ
34 VCO(電圧制御発振器)
35 駆動回路
36 切替スイッチ
50〜50 インバータ
Vdc1 直流電源
T トランス
T1〜Tn 昇圧トランス
CT1〜CTn 変流器
Lv リアクトル
Q1,Q2 スイッチング素子
R2 抵抗
D1,D2 ダイオード
Co,C1,Cr,Cc コンデンサ
L1 リアクトル
RL 負荷

Claims (7)

  1. 直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、
    前記トランスの3次巻線の両端にリアクトルとコンデンサとが直列に接続された共振回路と、
    各々が1次巻線と2次巻線とを有し、前記共振回路の前記コンデンサの両端に各1次巻線が接続された複数の昇圧トランスと、
    この複数の昇圧トランスに対応して設けられ、この複数の昇圧トランスの2次巻線の両端に接続された複数の放電灯と、
    前記スイッチング素子のスイッチング周波数を調整することにより、前記複数の放電灯に流れる電流を制御する制御回路と、
    を備えることを特徴とするスイッチング電源装置。
  2. 直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、
    前記トランスの3次巻線の両端にリアクトルとコンデンサとが直列に接続された共振回路と、
    複数の放電灯と、
    この複数の放電灯に直列に接続されたバランサと、
    前記スイッチング素子のスイッチング周波数を調整することにより、前記複数の放電灯に流れる電流を制御する制御回路と、
    を備え、
    前記複数の放電灯と前記バランサとの直列回路が前記共振回路の前記コンデンサの両端に接続されることを特徴とするスイッチング電源装置。
  3. 前記バランサは、前記複数の放電灯に対応して複数の第2トランスを設け、前記第2トランスの2次巻線は各放電灯に直列に接続され、前記放電灯と前記第2トランスの2次巻線との直列回路の各々が前記共振回路の前記コンデンサの両端に接続され、前記複数の第2トランスの1次巻線が直列に接続されていることを特徴とする請求項2記載のスイッチング電源装置。
  4. 前記リアクトルは、前記トランスのリーケージインダクタンスからなることを特徴とする請求項1乃至請求項3のいずれか1項記載のスイッチング電源装置。
  5. 前記複数の放電灯に流れる電流を検出する電流検出部を備え、
    前記制御回路は、前記電流検出部で検出された電流に応じて前記スイッチング素子のスイッチング周波数を制御する周波数制御手段を備えることを特徴とする請求項1乃至請求項4のいずれか1項記載のスイッチング電源装置。
  6. 前記変換回路は、前記直流電源の両端に接続され、第1スイッチング素子と第2スイッチング素子とが直列に接続された第1直列回路と、前記第1スイッチング素子又は前記第2スイッチング素子の両端に接続され且つ前記トランスの1次巻線と共振用リアクトルと共振用コンデンサとが直列に接続された第2直列回路と、前記第1スイッチング素子と前記第2スイッチング素子とのオン/オフにより前記高周波電圧を出力する前記トランスの2次巻線及び3次巻線とを備え、前記制御回路は、前記第1スイッチング素子と前記第2スイッチング素子とを交互にオン/オフさせることを特徴とする請求項1乃至請求項5のいずれか1項記載のスイッチング電源装置。
  7. 前記制御回路は、前記スイッチング周波数を所定範囲内で低下させることにより前記放電管の電流を低下させ、待機時には、前記スイッチング周波数を前記所定範囲内よりもさらに低下させることを特徴とする請求項1乃至請求項6のいずれか1項記載のスイッチング電源装置。

JP2004284978A 2004-09-29 2004-09-29 スイッチング電源装置 Pending JP2006101639A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284978A JP2006101639A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284978A JP2006101639A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2006101639A true JP2006101639A (ja) 2006-04-13

Family

ID=36240917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284978A Pending JP2006101639A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2006101639A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025154A1 (ja) * 2007-08-22 2009-02-26 Sanken Electric Co., Ltd. 交流電源装置
WO2009041261A1 (ja) * 2007-09-27 2009-04-02 Sanken Electric Co., Ltd. 交流電源装置
KR100967031B1 (ko) * 2008-04-01 2010-06-30 삼성전기주식회사 다중출력 직류/직류 컨버터

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009025154A1 (ja) * 2007-08-22 2009-02-26 Sanken Electric Co., Ltd. 交流電源装置
WO2009041261A1 (ja) * 2007-09-27 2009-04-02 Sanken Electric Co., Ltd. 交流電源装置
KR100967031B1 (ko) * 2008-04-01 2010-06-30 삼성전기주식회사 다중출력 직류/직류 컨버터
US7915757B2 (en) 2008-04-01 2011-03-29 Samsung Electro-Mechanics Co., Ltd. Multi-output DC/DC converter

Similar Documents

Publication Publication Date Title
US8525429B2 (en) Method for controlling gas discharge lamps
JP2008159545A (ja) 冷陰極管蛍光灯インバータ装置
JPH11235054A (ja) 電子バラスト回路
KR20060082419A (ko) 전류 공진형 방전관용 인버터 회로
JP2006230057A (ja) 電源装置
JP4868332B2 (ja) 放電灯点灯装置
US9119274B2 (en) Resonant converter control
US8164280B2 (en) Electronic ballast
KR20020088968A (ko) 압전트랜스를 이용한 디지탈 콘트롤 전자식 안정기
JP2000032750A (ja) Ac/dcコンバ―タ
JP2007173121A (ja) 高輝度放電ランプ点灯装置及びプロジェクタ
US7026590B2 (en) Low-output microwave, lighting system and flicker removing method using the same
JP2006101639A (ja) スイッチング電源装置
US20080303449A1 (en) Cold cathode fluorescent lighting discharge tube device
WO2007052514A1 (ja) 放電灯点灯装置
JPH10106784A (ja) 放電灯点灯装置
JP4321254B2 (ja) 放電灯点灯装置及びこれを備えた照明器具
JP2003332085A (ja) 無機エレクトロルミネセンス用電源装置
JP3517899B2 (ja) 電源装置
JP2006101638A (ja) スイッチング電源装置
JP2006012659A (ja) 放電灯点灯回路
JP6041532B2 (ja) 電子負荷装置
JP2000164386A (ja) 放電灯点灯装置
JP2006059761A (ja) 高周波電流点灯装置
KR100454423B1 (ko) 냉음극관 밝기 제어장치