JP2006101638A - スイッチング電源装置 - Google Patents

スイッチング電源装置 Download PDF

Info

Publication number
JP2006101638A
JP2006101638A JP2004284973A JP2004284973A JP2006101638A JP 2006101638 A JP2006101638 A JP 2006101638A JP 2004284973 A JP2004284973 A JP 2004284973A JP 2004284973 A JP2004284973 A JP 2004284973A JP 2006101638 A JP2006101638 A JP 2006101638A
Authority
JP
Japan
Prior art keywords
voltage
winding
transformer
power supply
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004284973A
Other languages
English (en)
Inventor
Mamoru Tsuruya
守 鶴谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2004284973A priority Critical patent/JP2006101638A/ja
Publication of JP2006101638A publication Critical patent/JP2006101638A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】直流出力を負荷に供給し、交流出力を放電灯に供給するとともに、高効率化、低コスト化及び小型化を図る。
【解決手段】直流電源Vdc1の直流電圧をトランスTの1次巻線5aに接続されるスイッチング素子Q1のオン/オフにより高周波電圧に変換し、2次巻線5bの高周波電圧を整流平滑回路D1,Coにより直流電圧に変換して負荷RLに供給するスイッチング電源装置において、3次巻線5cの両端に可変リアクトルLvとコンデンサCrとが直列に接続された共振回路と、各々が1次巻線7aと2次巻線7bとを有し、コンデンサCrの両端に各1次巻線7aが接続された複数の昇圧トランスT1〜Tnと、複数の昇圧トランスT1〜Tnに対応して設けられ、2次巻線7bの両端に接続された複数の冷陰極管11〜11とを備え、可変リアクトルLvのインダクタンスを調整することにより複数の冷陰極管11〜11に流れる電流を制御する。
【選択図】図1

Description

本発明は、直流電力を負荷に供給すると共に多灯の冷陰極管(CCFL)や外部電極蛍光灯や蛍光灯等の放電灯を点灯するスイッチング電源装置に関する。
図11に従来のスイッチング電源装置の構成図を示す。図11に示すスイッチング電源装置は、例えば、液晶を使用するテレビジョン用の電源であり、直流電源Vdc1の両端には、トランスTの1次巻線5a(巻数np)とMOSFET等からなるスイッチング素子Q1との直列回路が接続されている。スイッチング素子Q1は、制御回路3のPWM制御によりオン/オフする。
また、トランスTの1次巻線5aとトランスTの2次巻線5b(巻数nd)とは互いに同相電圧が発生するように巻回されており、トランスTの2次巻線5bには、ダイオードD1とコンデンサCoとからなる整流平滑回路が接続されている。この整流平滑回路は、トランスTの2次巻線5bに誘起された電圧(オン/オフ制御されたパルス電圧)を整流平滑して直流出力を負荷RLに出力する。
制御回路3は、図示しない演算増幅器及びフォトカプラを有し、演算増幅器は、検出回路1で検出された負荷RLの出力電圧と基準電圧とを比較し、負荷RLの出力電圧が基準電圧以上となったときに、スイッチング素子Q1に印加されるパルスのオン幅を狭くするように制御する。すなわち、負荷RLの出力電圧が基準電圧以上となったときに、スイッチング素子Q1のパルスのオン幅を狭くすることで、出力電圧を一定電圧に制御する。
また、トランスTの3次巻線5c(巻数na)には、ダイオードD2とコンデンサC1とからなる整流平滑回路が接続されている。コンデンサC1の一端には複数のインバータ50〜50が接続され、複数のインバータ50〜50の出力側は、複数の昇圧トランスT1〜Tnの1次巻線7a(巻数n1)に接続されている。複数の昇圧トランスT1〜Tnの2次巻線7b(巻数n2)の両端は、放電灯としての冷陰極管11〜11と電流検出部13〜13との直列回路に接続されている。電流検出部13〜13は、複数の冷陰極管11〜11に流れる電流を検出し、検出された電流を複数のインバータ50〜50に出力する。
以上の構成によれば、スイッチング素子Q1が制御回路3からの信号によりオン/オフすることにより、直流電源Vdc1の直流電圧は、高周波電圧に変換され、トランスTの2次巻線5bに発生した高周波電圧は、ダイオードD1及びコンデンサCoにより直流電圧に変換されて負荷RLに供給される。
一方、トランスTの3次巻線5cに発生した高周波電圧は、ダイオードD2及びコンデンサC1により直流電圧に変換されて複数のインバータ50〜50に供給される。複数のインバータ50〜50は、入力された直流電圧を交流電圧に変換し、複数の昇圧トランスT1〜Tnは、交流電圧を昇圧して複数の冷陰極管11〜11に電流を流す。このため、複数の冷陰極管11〜11が点灯する。
なお、図11に示した従来のスイッチング電源装置に類似した技術が特許文献1に記載されている。
特開昭61−157263号公報(第1図、第4図)
しかしながら、図11に示す従来のスイッチング電源装置にあっては、直流電力を負荷RLに供給すると共に、1つのインバータを用いて1灯の冷陰極管を点灯させていたため、冷陰極管の灯数と同数のインバータが必要であった。即ち、冷陰極管の灯数の増加に伴ってインバータの数も比例して増加するため、コストがかなりアップしていた。
また、ダイオードD2及びコンデンサC1で直流電圧に変換した後にインバータにより昇圧していたため、損失が増大し、効率が低下するという課題を有していた。
本発明は、直流出力を負荷に供給し、交流出力を放電灯に供給するとともに、高効率化、低コスト化及び小型化を図ることができるスイッチング電源装置を提供することにある。
上記課題を解決するために、請求項1の発明は、直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、前記トランスの3次巻線の両端に可変リアクトルとコンデンサとが直列に接続された共振回路と、各々が1次巻線と2次巻線とを有し、前記共振回路の前記コンデンサの両端に各1次巻線が接続された複数の昇圧トランスと、この複数の昇圧トランスに対応して設けられ、この複数の昇圧トランスの2次巻線の両端に接続された複数の放電灯とを備え、前記可変リアクトルのインダクタンスを調整することにより、前記複数の放電灯に流れる電流を制御することを特徴とする。
請求項2の発明は、直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、前記トランスの3次巻線の両端に可変リアクトルとコンデンサとが直列に接続された共振回路と、複数の放電灯と、この複数の放電灯に直列に接続されたバランサとを備え、前記複数の放電灯と前記バランサとの直列回路が前記共振回路の前記コンデンサの両端に接続され、前記可変リアクトルのインダクタンスを調整することにより、前記複数の放電灯に流れる電流を制御することを特徴とする。
請求項3の発明では、請求項2記載のスイッチング電源装置において、前記バランサは、前記複数の放電灯に対応して複数の第2トランスを設け、前記第2トランスの2次巻線は各放電灯に直列に接続され、前記放電灯と前記第2トランスの2次巻線との直列回路の各々が前記共振回路の前記コンデンサの両端に接続され、前記複数の第2トランスの1次巻線が直列に接続されていることを特徴とする。
請求項4の発明では、請求項1乃至請求項3のいずれか1項記載のスイッチング電源装置において、前記可変リアクトルは、無帰還の磁気増幅器であることを特徴とする。
請求項5の発明は、請求項1乃至請求項4のいずれか1項記載のスイッチング電源装置において、前記複数の放電灯に流れる電流を検出する電流検出部を備え、前記可変リアクトルは、前記電流検出部で検出された電流に基づき前記インダクタンスが調整されることを特徴とする。
請求項6の発明では、請求項1乃至請求項5のいずれか1項記載のスイッチング電源装置において、前記変換回路は、前記直流電源の両端に接続され、第1スイッチング素子と第2スイッチング素子とが直列に接続された第1直列回路と、前記第1スイッチング素子又は前記第2スイッチング素子の両端に接続され且つ前記トランスの1次巻線と共振用リアクトルと共振用コンデンサとが直列に接続された第2直列回路と、前記第1スイッチング素子と前記第2スイッチング素子とのオン/オフにより前記高周波電圧を出力する前記トランスの2次巻線及び3次巻線とを備えることを特徴とする。
請求項1の発明によれば、トランスの2次巻線の高周波電圧を整流平滑して直流出力を得るとともに、可変リアクトルとコンデンサとの共振回路により、可変リアクトルのインダクタンスを制御することにより高周波電圧を調整し、調整された高周波電圧を複数の昇圧トランスを介して複数の放電灯に印加することにより複数の放電灯を点灯させる。即ち、インバータを削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで放電灯を点灯するので、整流器の損失が減少し、高効率化できる。
請求項2の発明によれば、トランスの2次巻線の高周波電圧を整流平滑して直流出力を得るとともに、可変リアクトルとコンデンサとの共振回路により、可変リアクトルのインダクタンスを制御することにより高周波電圧を調整し、調整された高周波電圧がバランサによりバランスされて複数の放電灯に印加されて複数の放電灯が点灯する。即ち、インバータ、昇圧トランスを削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで放電灯を点灯するので、整流器の損失が減少し、高効率化できる。
請求項3の発明によれば、放電灯と第2トランスの2次巻線との直列回路の各々がコンデンサの両端に接続され、複数の第2トランスの1次巻線が直列に接続されているので、全ての第2トランスの1次巻線電流は同じになる。また、各放電灯の電流は、第2トランスの1次巻線電流と巻数比で決まり、巻数が同じであれば、全ての放電灯の電流は同じになるので、放電灯の電流のバラツキがなくなるので、良好な点灯特性が得られる。
請求項4の発明によれば、可変リアクトルが無帰還の磁気増幅器であるので、インダクタンスが可変できる。
請求項5の発明によれば、可変リアクトルは、電流検出部で検出された電流に基づきインダクタンスが調整され、調整された可変リアクトルとコンデンサとの共振によりコンデンサの電圧が上昇してこの上昇電圧により放電灯の電流を制御することができる。
請求項6の発明によれば、第1スイッチング素子と第2スイッチング素子とを交互にオン/オフさせることにより、直流電圧を高周波電圧に変換し、この高周波電圧をトランス及び共振回路を介して複数の放電灯に供給するので、複数の放電灯に印加される電圧の対象性が良くなり、放電灯を長寿命化できる。
以下、本発明のスイッチング電源装置の実施の形態を図面を参照しながら説明する。
本発明は、トランスの2次巻線の高周波電圧を整流平滑して直流電圧を得るとともに、トランスの3次巻線の高周波電圧(交流電圧)を可変リアクトルとコンデンサとの共振回路に入力し、可変リアクトルのインダクタンスを制御することにより高周波電圧を制御し、制御された高周波電圧を昇圧トランスにより昇圧して複数の放電灯に印加することにより複数の放電灯を点灯させ、高効率化、低コスト化及び小型化を図ることを特徴とする。
図1は本発明の実施例1のスイッチング電源装置の構成図である。図1に示すスイッチング電源装置は、図11に示す従来のスイッチング電源装置に対して、トランスTの3次巻線5cの出力側の構成が異なるのみであるので、ここでは、異なる部分の構成のみを説明する。
なお、実施例1のスイッチング電源装置は、直流電源Vdc1の直流電圧をトランスTの1次巻線5aに接続されるスイッチング素子Q1のオン/オフにより高周波電圧に変換し該高周波電圧をトランスTの出力巻線である2次巻線5b及び3次巻線5cに出力する。この構成が本発明の変換回路に対応する。
トランスTの3次巻線5c(巻数na)には、可変リアクトルLvとコンデンサCrとの直列共振回路が接続されている。可変リアクトルLvは、コアに交流巻線9a(巻数Na)と制御巻線9c(巻数Nc)とが巻回され、制御巻線9cに流れる電流に応じて交流巻線9aに流れる電流が可変して、インダクタンスの値が可変する。可変リアクトルLvは、冷陰極管11〜11に流れる電流に応じてインダクタンスが可変する。
図3は可変リアクトルの例である無帰還型の磁気増幅器の構造図である。図4は図3に示す無帰還型の磁気増幅器の回路図である。図4に示すように、交流巻線9aは、第1交流巻線9a1(巻数Na1)と第2交流巻線9a2(巻数Na2)とが同相で直列に接続され、制御巻線9cは、第1制御巻線9c1(巻数Nc1)と第2制御巻線9c2(巻数Nc2)とが逆相で直列に接続されている。
また、図3に示すように、無帰還型の磁気増幅器は、中央脚20aと2つの側脚20b,20cとを有する日の字状のコア20に交流巻線9aと制御巻線9cとが巻回されてなる。より詳細には、無帰還型の磁気増幅器は、側脚20bに、第1交流巻線9a1を巻回し且つこの第1交流巻線9a1上に第1制御巻線9c1を巻回し、側脚20cに、第2交流巻線9a2を巻回し且つこの第2交流巻線9a2上に第2制御巻線9c2を巻回し、第1交流巻線9a1と第2交流巻線9a2とを直列に接続し、第1制御巻線9c1と第2制御巻線9c2との電圧をキャンセルするように接続している。
この無帰還型の磁気増幅器において、交流巻線9aに交流電圧を印加し、制御巻線9cに直流電流Icを流すと、等アンペア−ターンの法則により、Na×Ia=Nc×Icの関係が成立する交流電流Iaが交流巻線9aに流れる。交流巻線9aの巻数Naに対して、制御巻線9cの巻数Ncを大きくすると、少ない直流電流Icで大きな交流電流Iaを制御することができる。制御電力は、制御巻線9cの直流抵抗と制御巻線9cに流れる制御電流により決定され、直流抵抗は、非常に小さいため、小さな直流電力で交流電力を制御することができる。
図5は制御巻線9cに流れる制御電流とインダクタンスとの関係を示す図である。図5からもわかるように、制御電流を増加させることにより、インダクタンスを小さくすることができる。即ち、可変リアクトルLvとして無帰還型の磁気増幅器を用い、制御電流を制御させることにより、交流巻線9aに流れる電流を制御して、可変リアクトルLvのインダクタンスを可変させることができる。
また、コンデンサCrの両端には、複数の昇圧トランスT1〜Tnの1次巻線7aが接続されている。複数の昇圧トランスT1〜Tnの2次巻線7bには、複数の冷陰極管11〜11が接続されている。変流器13は、1次巻線(巻数n3)の一端が複数の昇圧トランスT1〜Tnの2次巻線7bに接続され、1次巻線の他端が複数の冷陰極管11〜11に接続され、複数の冷陰極管11〜11に流れる電流を検出する。この変流器13は、本発明の電流検出部に対応する。
全波整流回路15は、変流器13の2次巻線(巻数n4)に接続されて検出された電流を全波整流して整流電流を抵抗R2及びコンデンサC2の並列回路に出力する。誤差増幅器17は、−入力端子に抵抗R2からの直流電圧を入力し、+入力端子に基準電圧Eを入力し、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧を増幅する。誤差増幅器17の出力端子は、抵抗R1を介して可変リアクトルLvの制御巻線9cの一端に接続され、制御巻線9cの他端は、直流電源Vの正極に接続されている。
次に、このように構成された実施例1のスイッチング電源装置の動作を説明する。まず、スイッチング素子Q1が制御回路3からの信号によりオン/オフすることにより、直流電源Vdc1の直流電圧は、高周波電圧に変換され、トランスTの2次巻線5bに発生した高周波電圧は、ダイオードD1及びコンデンサCoにより直流電圧に変換されて負荷RLに供給される。検出回路1は、この直流電圧を検出し、制御回路3は、検出された電圧に基づき、スイッチング素子Q1をオン/オフ制御することにより出力電圧を一定値に制御する。
一方、トランスTの3次巻線5cに接続された可変リアクトルLvとコンデンサCrとの直列共振回路により、可変リアクトルLvのインダクタンスを可変することにより、コンデンサCrの電圧は、図2に示すように変化する。図2に示すように、可変リアクトルLvのインダクタンスを変化させていくと、コンデンサCrと可変リアクトルLvとの共振周波数がスイッチング素子Q1のスイッチング周波数に一致したときに、コンデンサCrの電圧が最大値となる。
この実施例では、可変リアクトルLvのインダクタンスの調整範囲として、コンデンサCrの電圧が最大値になるインダクタンス値Lwよりも大きい範囲を用いている。つまり、インダクタンスをインダクタンス値Lwよりも小さくするには、制御巻線9cにかなりの電流を流す必要があり、消費電力が大となるからである。
次に、変流器13で検出された電流に基づき、可変リアクトルLvを可変する動作について説明する。
まず、3次巻線5cに高周波電圧が発生した時点では、可変リアクトルLvのインダクタンスは、大きく、例えばLaである。このときのコンデンサCrの比較的低い電圧は、複数の昇圧トランスT1〜Tnにより昇圧され、昇圧された電圧により複数の冷陰極管11〜11に電流が流れる。
複数の冷陰極管11〜11に流れる電流は、変流器13で検出され、検出された電流は、全波整流回路15により全波整流されて抵抗R1及びコンデンサC2で直流電圧に変換される。そして、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧が誤差増幅器17で増幅されて出力される。この誤差増幅電圧と直流電源Vとの差電圧により制御巻線9cに制御電流が流れる。このため、交流巻線9aに大きな電流が流れて、図5に示すように、可変リアクトルLvのインダクタンスの値が小さくなる。
このため、図2に示すように、可変リアクトルLvのインダクタンスは、例えばLaより小さくなり、コンデンサCrの電圧は上昇する。そして、この上昇したコンデンサCrの電圧に対応する増加した電流が複数の冷陰極管11〜11に流れる。すると、この増加した電流により、抵抗R2からの直流電圧と基準電圧Eとの誤差電圧はより小さくなるので、誤差増幅器17で増幅された誤差増幅電圧と直流電源Vとの差電圧は、より大きくなる。このため、制御巻線9cに制御電流がさらに大きく流れるため、交流巻線9aにさらに大きな電流が流れて、図5に示すように、可変リアクトルLvのインダクタンスの値がさらに小さくなる。
このようにして、誤差増幅器17の−入力端子に入力される電圧が基準電圧Eと同じ電圧となったとき、図2に示すように、可変リアクトルLvのインダクタンスは、例えばLbになる。即ち、可変リアクトルLvのインダクタンスを調整することにより、コンデンサCrの電圧が上昇してこの上昇電圧により複数の冷陰極管11〜11に流れる電流を制御することができる。そして、昇圧された高周波電圧は、複数の冷陰極管11〜11に印加されるので、複数の冷陰極管11〜11を点灯することができる。
また、複数の冷陰極管11〜11の輝度は、可変リアクトルLvを可変して高周波電圧を可変することで任意に調整でき、複数の冷陰極管11〜11に流れる電流は、複数の昇圧トランスT1〜Tnのリーケージインダクタンスによりバランスする。
このように、実施例1のスイッチング電源装置によれば、複数のインバータ50〜50を削除できるため、電源装置を小型化できる。また、交流を直流に変換せずに交流出力のままで複数の冷陰極管11〜11を点灯するので、整流器(図11に示すダイオードD2)の損失が減少し、高効率化できる。
なお、可変リアクトルLvは、可飽和リアクトルでも良い。可飽和リアクトルは、飽和前には高いインピーダンスを有し、飽和後には短絡に近い状態を示し、リアクトルに流れるリセット電流を調整することにより、インダンタンスを可変することができる。
図6は本発明の実施例2のスイッチング電源装置の構成図である。図6に示す実施例2のスイッチング電源装置は、図1に示す実施例1のスイッチング電源装置に対して、複数の昇圧トランスT1〜Tnに代えて、バランサ19を用いたことを特徴とし、その他の構成は、図1に示す構成と同一構成であるので、同一部分には同一部符号を付し、異なる部分の構成のみを説明する。
図6において、コンデンサCrの一端には、複数の冷陰極管11〜11の一端が接続され、複数の冷陰極管11〜11の他端は、バランサ19の一端に接続され、バランサ19の他端は、変流器13の1次巻線を介してコンデンサCrの他端に接続されている。バランサ19は、バラスト素子であり、バラスト素子としては、コンデンサ、リアクトル、トランスのリーケージインダクタンスの少なくとも1つからなる。複数の冷陰極管11〜11に、バラスト素子として例えば複数のコンデンサC〜Cn(図示せず)を直列に接続しても良い。
以上の構成によれば、トランスTの3次巻線5cに接続された可変リアクトルLvとコンデンサCrとの直列共振回路により、可変リアクトルLvのインダクタンスを可変することにより、コンデンサCrの電圧を高圧化し、バランサ19により複数の冷陰極管11〜11に流れる電流がバランスされて均一になる。このため、複数の冷陰極管11〜11が点灯し、良好な点灯特性を得ることができる。
このように、実施例2のスイッチング電源装置によれば、複数のインバータ50〜50及び複数の昇圧トランスT1〜Tnを削除できるので、更なる高効率化、小型化を図ることができる。
図7は本発明の実施例3のスイッチング電源装置の構成図である。図7に示す実施例3のスイッチング電源装置は、図6に示す実施例2のスイッチング電源装置に対して、バランサ19として、複数の変流器CT1〜CTn(カレントトランス)を用いたことを特徴とし、その他の構成は、図6に示す構成と同一構成であるので、同一部分には同一部符号を付し、異なる部分の構成のみを説明する。変流器13の1次巻線n3の一端は、変流器CTnの1次巻線21aに接続され、変流器13の1次巻線n3の他端は、変流器CT1の1次巻線21aに接続されている。複数の変流器CT1〜CTnは、本発明の第2トランスに対応する。
図7において、各冷陰極管11〜11には、直列に各変流器CT1〜CTnの2次巻線21b(巻数n2)が接続され、コンデンサCrの両端には、冷陰極管11〜11と変流器CT1〜CTnの2次巻線21bとの直列回路の各々が接続されている。各変流器CT1〜CTnの1次巻線21a(巻数n1)は、直列に接続されて、閉ループを形成している。
次に、このように構成された実施例3のスイッチング電源装置の動作を説明する。まず、各変流器CT1〜CTnにおいては、I1(1次巻線電流)×n1(1次巻線の巻数)=I2(2次巻線電流)×n2(2次巻線の巻数)という関係がある。また、各変流器CT1〜CTnの1次巻線21aが直列に接続されているので、各変流器CT1〜CTnの1次巻線電流は同じになる。このため、上記関係式より巻数が同じであれば、各変流器CT1〜CTnの2次巻線電流は、同じになるので、各冷陰極管11〜11の電流も同じになる。従って、冷陰極管11〜11の各電流のバラツキがなくなる。また、力率が略1になる。
また、冷陰極管11〜11のホットエンドが並列に接続されているので、浮遊容量による冷陰極管11〜11の各電流のバラツキを防ぐこともできる。
次に、冷陰極管11〜11の起動時の動作を説明する。トランスTの3次巻線5cに接続された可変リアクトルLvとコンデンサCrとの直列共振回路により、可変リアクトルLvのインダクタンスを可変することにより、コンデンサCrの電圧を高圧化し、該高電圧が起動電圧を超えると、n灯の冷陰極管11〜11が次々と点灯していく。
ここで、例えば、(n−1)灯の冷陰極管11〜11(n−1)が点灯して冷陰極管11が未点灯とすると、変流器CTnの2次巻線21b側が無負荷に近いため、変流器CTnの2次巻線21b側が開放(オープン)された状態と同じになり、高電圧が発生する。このため、冷陰極管11には高電圧が印加されるので、冷陰極管11は、直ぐに点灯する。
従って、冷陰極管が遅れて点灯しても供給される電圧が上昇し、最後の冷陰極管11の方が点灯しやすくなり、冷陰極管1灯だけ点灯できないということがなくなる。即ち、n灯の中の点灯し易い冷陰極管の起動電圧を超えると、全ての冷陰極管が点灯できることになる。また、コンデンサCrも低電圧で済み、信頼性も向上し、また、バラスト素子のインピーダンスがないだけ点灯時に低電圧で済み、コンデンサCrが低電圧で済み信頼性が向上する。即ち、各冷陰極管毎にバラスト素子を用いることなく良好な点灯特性を得ることができる。
各冷陰極管11〜11が点灯した後には、上記関係式に従って各冷陰極管11〜11の電流は、同じ値に保たれる。各冷陰極管11〜11の電圧にバラツキがある時には、差分の電圧が各変流器CT1〜CTnに印加されて、各変流器CT1〜CTnが吸収する。即ち、各変流器CT1〜CTnにばらついた電圧が印加され、各冷陰極管11〜11に流れる電流は、変流器CT1〜CTnの1次巻線電流と巻数比で決まった一定電流が流れる。
次に、具体的に起動電圧及び点灯電圧を設定した時における動作を説明する。定常時には変流器CT1〜CTnの各電圧は、ほぼ零に保たれる。例えば、定常時の冷陰極管11〜11の点灯電圧がAC700Vとし、起動電圧が1200Vとすると、全点灯している定常時には冷陰極管11〜11の各電圧はAC700Vであり、バラツキがないとすると、変流器CT1〜CTnの各電圧は零Vになる。
1灯が未点灯のときには、未点灯の冷陰極管11だけにAC1200Vが印加され、点灯の冷陰極管11〜11(n−1)にAC700Vが印加されることになる。すると、合計電圧は、AC700V×(n−1)+AC1200Vになり、n灯の平均電圧は、{AC700V×(n−1)+AC1200V}÷nになる。ここで、灯数n=5とすると、コンデンサCrの出力電圧は、AC800Vの高電圧を出力し、変流器CT1〜CT4の各電圧は、AC800V−AC700V=AC100Vの電圧になり、未点灯の冷陰極管11の変流器CT5の電圧は、AC1200V−AC800V=AC400Vの電圧になる。
図8は本発明の実施例4のスイッチング電源装置の構成図である。図8に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、直流電源Vdc1の直流電圧を高周波電圧に変換し該高周波電圧をトランスTの2次巻5b及び3次巻線5cに出力する変換回路に、プッシュプル方式の回路を用いることにより、複数の冷陰極管に印加される電圧の対象性を良くして長寿命化したことを特徴とする。このため、図8に示すスイッチング電源装置は、図1に示す実施例1のスイッチング電源装置に対して、トランスTの1次側の変換回路が異なるので、この変換回路の構成のみを説明する。
変換回路は、直流電源Vdc1からの直流電圧を、制御回路3aに有する発振制御部29が発振する高周波信号(スイッチング周波数)で制御回路3aに有する駆動部31を介してMOSFETからなるスイッチング素子Q1とスイッチング素子Q2とを交互にスイッチングさせることにより、高周波電圧に変換し、この高周波電圧をトランスTの2次巻5b及び3次巻線5cに出力する。
変換回路において、直流電源Vdc1の両端には、スイッチング素子Q1とスイッチング素子Q2とが直列に接続されている。スイッチング素子Q1のソースにはスイッチング素子Q2のドレインが接続され、スイッチング素子Q2のソースは接地されている。スイッチング素子Q1,Q2の各々のゲートには、駆動部31から高周波信号(スイッチング周波数)が入力されるようになっている。スイッチング素子Q2の両端には、共振用コンデンサCcと共振用リアクトルL1とトランスTの1次巻線5aとの直列回路が接続されている。スイッチング素子Q1のゲート及びスイッチング素子Q2のゲートには、制御回路3a内の駆動部33から高周波信号(スイッチング周波数)が入力されるようになっている。スイッチング素子Q1とスイッチング素子Q2とのオン/オフにより高周波電圧がトランスTの2次巻線5b及び3次巻線5cとに出力されるようになっている。
なお、共振用コンデンサCcと共振用リアクトルL1とトランスTの1次巻線5aとの直列回路は、スイッチング素子Q2の両端に代えて、スイッチング素子Q1の両端に接続しても良い。
次に変換回路の動作を説明する。まず、駆動部31からの高周波信号によりスイッチング素子Q1がオンすると、Vdc1→Q1→Cc→L1→5a→接地の経路で電流が流れる。即ち、電流共振が発生して、1次巻線5aに上方向から下方向へ正弦波状の電流が流れる。次に、スイッチング素子Q1がオフし、スイッチング素子Q2がオンすると、5a→L1→Cc→Q2→接地の経路で電流が流れる。即ち、電流共振が発生して、1次巻線5aに下方向から上方向へ正弦波状の電流が流れる。このため、トランスTの3次巻線5cには高周波電圧が発生し、この高周波電圧は、可変リアクトルLvとコンデンサCrとの共振回路及び複数の昇圧トランスT1〜Tnを介して冷陰極管11〜11に供給される。従って、高圧された高周波電圧により複数の冷陰極管11〜11に流れる電流を制御することができる。
このように、実施例4のスイッチング電源装置によれば、スイッチング素子Q1とスイッチング素子Q2とを交互にオン/オフさせることにより、直流電圧を高周波電圧に変換し、この高周波電圧をトランスT、共振回路、複数の昇圧トランスT1〜Tnを介して複数の冷陰極管11〜11に供給するので、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
図9は本発明の実施例5のスイッチング電源装置の構成図である。図9に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、図6に示す実施例2のスイッチング電源装置の変換回路に対して、図8に示すプッシュプル方式の変換回路を用いたことを特徴とする。
このような構成によれば、実施例2の効果が得られるとともに、図8に示すプッシュプル方式の変換回路を用いることで、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
図10は本発明の実施例6のスイッチング電源装置の構成図である。図10に示すスイッチング電源装置は、プッシュプル方式の共振型変換器の例であり、図7に示す実施例3のスイッチング電源装置の変換回路に対して、図8に示すプッシュプル方式の変換回路を用いたことを特徴とする。
このような構成によれば、実施例3の効果が得られるとともに、図8に示すプッシュプル方式の変換回路を用いることで、複数の冷陰極管11〜11に印加される電圧の対象性が良くなり、複数の冷陰極管11〜11を長寿命化できる。
本発明は、複数の冷陰極管や外部電極蛍光灯や蛍光灯等の放電灯を点灯する放電灯点灯回路を備えたスイッチング電源装置に適用可能である。
本発明の実施例1のスイッチング電源装置の構成図である。 可変リアクトルのインダクタンスを可変したときのコンデンサの電圧の変化を示す図である。 可変リアクトルの例である無帰還型の磁気増幅器の構造図である。 図3に示す無帰還型の磁気増幅器の回路図である。 図4に示す制御巻線に流れる制御電流とインダクタンスとの関係を示す図である。 本発明の実施例2のスイッチング電源装置の構成図である。 本発明の実施例3のスイッチング電源装置の構成図である。 本発明の実施例4のスイッチング電源装置の構成図である。 本発明の実施例5のスイッチング電源装置の構成図である。 本発明の実施例6のスイッチング電源装置の構成図である。 従来のスイッチング電源装置の構成図である。
符号の説明
1 検出回路
3,3a 制御回路
5a,7a,21a 1次巻線
5b,7b,21b 2次巻線
5c 3次巻線
9a 交流巻線
9c 制御巻線
11〜11 冷陰極管
13 変流器(電流検出部)
13〜13 電流検出部
15 全波整流回路
17 誤差増幅器
19 バランサ
20 コア
20a 中央脚
20b,20c 側脚
29 発振制御部
31 駆動部
50〜50 インバータ
Vdc1 直流電源
T トランス
T1〜Tn 昇圧トランス
CT1〜CTn 変流器
Lv 可変リアクトル
Q1,Q2 スイッチング素子
R1,R2 抵抗
D1,D2 ダイオード
Co,C1,Cr,Cc コンデンサ
L1 リアクトル
RL 負荷

Claims (6)

  1. 直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、
    前記トランスの3次巻線の両端に可変リアクトルとコンデンサとが直列に接続された共振回路と、
    各々が1次巻線と2次巻線とを有し、前記共振回路の前記コンデンサの両端に各1次巻線が接続された複数の昇圧トランスと、
    この複数の昇圧トランスに対応して設けられ、この複数の昇圧トランスの2次巻線の両端に接続された複数の放電灯とを備え、
    前記可変リアクトルのインダクタンスを調整することにより、前記複数の放電灯に流れる電流を制御することを特徴とするスイッチング電源装置。
  2. 直流電源の直流電圧をトランスの1次巻線に接続されるスイッチング素子のオン/オフにより高周波電圧に変換し該高周波電圧をトランスの2次巻線及び3次巻線に出力する変換回路を有し、前記トランスの2次巻線の高周波電圧を整流平滑回路により直流電圧に変換して負荷に供給するスイッチング電源装置において、
    前記トランスの3次巻線の両端に可変リアクトルとコンデンサとが直列に接続された共振回路と、
    複数の放電灯と、
    この複数の放電灯に直列に接続されたバランサとを備え、前記複数の放電灯と前記バランサとの直列回路が前記共振回路の前記コンデンサの両端に接続され、
    前記可変リアクトルのインダクタンスを調整することにより、前記複数の放電灯に流れる電流を制御することを特徴とするスイッチング電源装置。
  3. 前記バランサは、前記複数の放電灯に対応して複数の第2トランスを設け、前記第2トランスの2次巻線は各放電灯に直列に接続され、前記放電灯と前記第2トランスの2次巻線との直列回路の各々が前記共振回路の前記コンデンサの両端に接続され、前記複数の第2トランスの1次巻線が直列に接続されていることを特徴とする請求項2記載のスイッチング電源装置。
  4. 前記可変リアクトルは、無帰還の磁気増幅器であることを特徴とする請求項1乃至請求項3のいずれか1項記載のスイッチング電源装置。
  5. 前記複数の放電灯に流れる電流を検出する電流検出部を備え、
    前記可変リアクトルは、前記電流検出部で検出された電流に基づき前記インダクタンスが調整されることを特徴とする請求項1乃至請求項4のいずれか1項記載のスイッチング電源装置。
  6. 前記変換回路は、前記直流電源の両端に接続され、第1スイッチング素子と第2スイッチング素子とが直列に接続された第1直列回路と、前記第1スイッチング素子又は前記第2スイッチング素子の両端に接続され且つ前記トランスの1次巻線と共振用リアクトルと共振用コンデンサとが直列に接続された第2直列回路と、前記第1スイッチング素子と前記第2スイッチング素子とのオン/オフにより前記高周波電圧を出力する前記トランスの2次巻線及び3次巻線とを備えることを特徴とする請求項1乃至請求項5のいずれか1項記載のスイッチング電源装置。
JP2004284973A 2004-09-29 2004-09-29 スイッチング電源装置 Pending JP2006101638A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004284973A JP2006101638A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004284973A JP2006101638A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Publications (1)

Publication Number Publication Date
JP2006101638A true JP2006101638A (ja) 2006-04-13

Family

ID=36240916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004284973A Pending JP2006101638A (ja) 2004-09-29 2004-09-29 スイッチング電源装置

Country Status (1)

Country Link
JP (1) JP2006101638A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074945A (ja) * 2008-09-18 2010-04-02 Sanken Electric Co Ltd Dc/acコンバータ及びその制御回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074945A (ja) * 2008-09-18 2010-04-02 Sanken Electric Co Ltd Dc/acコンバータ及びその制御回路

Similar Documents

Publication Publication Date Title
TW529229B (en) Complex resonant DC-DC converter and high voltage generating circuit driven in a plurality of frequency regions
JP2008159545A (ja) 冷陰極管蛍光灯インバータ装置
US8525429B2 (en) Method for controlling gas discharge lamps
JPH11235054A (ja) 電子バラスト回路
JP2005507145A (ja) 負荷駆動システム
JP2006140055A (ja) バックライトインバータ及びその駆動方法
JP4868332B2 (ja) 放電灯点灯装置
US7154233B2 (en) Converter circuit with coupled inductances having asymmetrical air gap arrangement
JPH11507176A (ja) 力率補正機能を有する単一スイッチ・バラスト
JP4335236B2 (ja) 誘導方式の電流検出機能を有するバックライトインバータ
JP4529132B2 (ja) 多灯式放電灯点灯装置
US11381153B1 (en) Method to balance the secondary winding current to improve the current control stability
US20100060191A1 (en) Electric-discharge-lamp lighting apparatus
US20080303449A1 (en) Cold cathode fluorescent lighting discharge tube device
EP1550357B1 (en) Device and method for determining the current flowing through a gas discharge lamp
JP2006101638A (ja) スイッチング電源装置
JP2006024512A (ja) 放電灯点灯装置
JP2006101639A (ja) スイッチング電源装置
JPH10106784A (ja) 放電灯点灯装置
JP4321254B2 (ja) 放電灯点灯装置及びこれを備えた照明器具
JP2006012659A (ja) 放電灯点灯回路
JP6041532B2 (ja) 電子負荷装置
KR100306647B1 (ko) 내단락 및 자기복구 기능을 갖는 인버터방식의 안정기
JP2000208289A (ja) 放電灯点灯装置
JP4475073B2 (ja) 放電灯点灯装置およびそれを用いる照明器具