JP2006090240A - 家庭用コジェネシステムの運転制御装置 - Google Patents

家庭用コジェネシステムの運転制御装置 Download PDF

Info

Publication number
JP2006090240A
JP2006090240A JP2004278021A JP2004278021A JP2006090240A JP 2006090240 A JP2006090240 A JP 2006090240A JP 2004278021 A JP2004278021 A JP 2004278021A JP 2004278021 A JP2004278021 A JP 2004278021A JP 2006090240 A JP2006090240 A JP 2006090240A
Authority
JP
Japan
Prior art keywords
load
day
cogeneration system
operation control
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278021A
Other languages
English (en)
Inventor
Koichi Katsurayama
弘一 葛山
Masatsugu Kojima
正嗣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2004278021A priority Critical patent/JP2006090240A/ja
Publication of JP2006090240A publication Critical patent/JP2006090240A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)
  • Control For Baths (AREA)

Abstract

【課題】精度よく、かつ簡潔にエネルギー負荷パターンを予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる家庭用コジェネシステムの運転制御装置を提供すること。
【解決手段】予測対象日のエネルギー負荷パターンを予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置に、エネルギー負荷記憶手段に記憶されてエネルギー負荷と、水温外気温記憶手段に記憶されている水温又は外気温とから、エネルギー負荷と水温又は外気温との相関式を算出する相関式算出手段と、予測対象日の水温又は外気温を予測する水温・外気温予測手段と、相関式算出手段が算出した相関式と、水温・外気温予測手段が予測した水温又は外気温とから予測対象日のエネルギー負荷パターンを予測するエネルギー負荷パターン予測手段と、を設ける。
【選択図】 図3

Description

本発明は、家庭用コジェネシステムの運転制御装置に関する。
コージェネレーションシステムには、例えば燃料電池などがあり、昨今、家庭用向けに開発されている。この家庭用コージェネレーションシステム(以下、「家庭用コジェネシステム」という。)は、家庭毎に設置して、発電した電力を電力機器に供給して電力負荷を賄うとともに、回収した排熱を熱機器に供給して熱負荷を賄うことから、次世代の省エネ機器として、その実用化・普及が期待されている。
コージェネレーションシステムについては、業務用・産業用など大規模のものは、すでに普及レベルにあるが、家庭用への導入に際しては、幾つかの障壁がある。すなわち、業務用・産業用コージェネレーションシステムは、使用者の負荷パターンを十分調査し、それに合わせた、システム構成やサイズ、運転パターンなどを設計する、いわゆるオーダーメードである。それに対し、家庭用コジェネシステムは、各家庭で消費エネルギー量がかなりバラツキがあるものの、現在のところ、1kWの1機種或いは2機種程度のラインナップである。各家庭の電力負荷や熱負荷は、例えば、夜型と朝型の生活パターンや外出の多少などによって大きく異なり、使用者毎の負荷パターンを調査して家庭用コジェネシステムの出力サイズや構成を設計することは、コスト面から難しい。仮に家庭用コジェネシステムを個々に設計することが可能であっても、家庭用コジェネシステムは、新築あるいは増改築された新規物件に導入されることが多く、システム導入前に使用者の負荷パターンを把握することは困難であり、大きなコストもかかる。そうしたことから、家庭用コジェネシステムには、家庭の使用負荷パターンに応じ、自動に最適な運転パターンを模索・決定し、省エネ性、経済性を最大限に発揮できるような運転制御装置が求められている。
その運転制御装置としては、過去の家庭のエネルギー負荷データから翌日のエネルギー負荷パターンを類推し、所定の方法に基づいて運転方法を決定するものがある。省エネ効果を得るためには、エネルギー負荷パターンの予測精度を向上させる必要がある。
これに対して、例えば、特許文献1に記載する第1従来技術では、時間データ、気象データ、電力需要量データという過去のデータを用いて予測モデルを学習させ、学習済みの予測モデルに、予測対象日を基準として過去数ヶ月、数週間前、または数日前から至近までの近来の入力データ(時間データ、気象データ、電力需要量データ)を入力したときに出力される電力負荷予測と、実際の電力需要量データとの出力誤差を算出し、出力誤差増大時は学習済み予測モデルを廃棄して学習前予測モデルを、また、出力誤差減少時は学習済み予測モデルを最良の予測モデルとして需要電力量を予測している。
また、例えば、特許文献2に記載する第2従来技術では、入力された熱負荷実績データを負荷予測用データとして採用するか否かを決定し、採用した数日分の熱負荷実績データの重み係数を算出し、重み付き移動平均処理を行って翌日の熱負荷パターンを予測している。
また、例えば、特許文献3に記載する第3従来技術では、電力負荷データ、熱負荷データ、気候・温度データなどを収集し、事例ベース推論或いは自己回帰モデルを用いて負荷予測を行っている。
また、例えば、特許文献4に記載する第4従来技術では、過去のエネルギー負荷の平均値を利用して、発電機を運転制御している。
さらに、例えば、特許文献5に記載する第5従来技術は、過去のエネルギー負荷を一週間前とそれ以前に区分し、それぞれについて重み係数を掛けて予測値としている。重み係数の値によって、喫緊のデータを重視した予測値にしたり、或いは一週間より以前の過去のデータを重視した予測値にすることが可能である。
特開2000−276460号公報 特開平11−125448号公報 特開2003−45460号公報 特開2002−335627号公報 特開2004−48838号公報
しかしながら、上記第1〜第5従来技術には、以下の問題があった。
(1)第1従来技術は、予測対象日の気象・気候などが近時傾向と異なる場合に配慮しているものの、ニューラルネットワークの特徴として、扱うデータが多く、また計算回数が膨大になるため、家庭用レベルの分散型電源の制御装置として使用することは難しかった。
第2従来技術は、データ量が少ないものの、エネルギー負荷データの採用条件がエネルギー負荷の変化が急激に発生しないということを前提に置いているため、季節の変わり目など、エネルギー負荷が大きく変化する場合には、重み係数を乗した結果、図20のD部8に示すように、実際と予測値が大きくずれることになり、精度が著しく低下していた。
第3従来技術は、エネルギー負荷のデータベースを作成する必要があるが、実際の制御装置のメモリ容量が小さいため実用が難しかった。
第4従来技術は、エネルギー負荷の平均値のみを使用して負荷パターンを予測するため、図20のD部に示すように、季節の変化に伴う外気温の変化、生活パターンの変化、等による急激なエネルギー負荷の変化時には実際値と予測値との間にズレが生じていた。
第5従来技術は、曜日毎に異なる生活パターンに配慮しているが、季節の変化に配慮していないため、図20のD部に示すように、季節の変化に伴う外気温の変化、生活パターンの変化等による急激なエネルギー負荷の変化時には実際値と予測値との間にズレが生じていた。また、不在日など通常とは異なるエネルギー負荷データを予測に使用すると、予測の精度が低下することがあった。
このように、第1〜第5従来例のいずれも、過去のエネルギー負荷のみに基づいて予測対象日のエネルギー負荷パターンを予測するものであり、エネルギー負荷が急激に変化したときに実際値と予測値との間に生じるズレを小さくして予測精度を向上させることと、最小限の計算によってエネルギー負荷パターンを予測すること、とを両立できておらず、実用性に乏しかった。
(2)また、第2,第4,第5従来技術は、予測に平均処理を用いているため、仮に熱負荷ピークの発生時間帯が等しければ、ある程度の精度で熱負荷ピーク量(風呂負荷量)とピーク時刻の算出が可能である。しかし、熱負荷ピークは必ずしも一つの時間帯に発生するとは限らず(風呂の湯はり時刻が毎日異なることもある)、平均処理の時間間隔の間で、熱負荷ピークが発生するとも限らない(風呂の湯はりが8:50〜9:10ということもある)。そういったケースに単純に平均処理を用いてしまうと熱負荷ピーク量が複数の時間帯に分散されてしまう。また、平均処理の時間間隔(例えば1時間)の間継続して熱負荷が発生するとも限らない(風呂の湯はりを1時間続けることがない)ため、単純な平均処理では、熱負荷ピーク時刻を8:00〜といった平均処理の区切りとしてしまい、ピーク時刻の精度が低くなる。そのため、予測の精度が低くなり、貯湯タンクの蓄熱状況を見誤って、湯切れが発生する、或いは貯湯タンクが満タンになって燃料電池等の発電機が停止する、などの事態が発生し省エネ性が悪化することがあった。
(3)加えて、従来技術は0時〜24時を1日の時間サイクルとして、その中で燃料電池の運転方法を決定している。これは、人の生活形態が24時までには就寝し、電力負荷、熱負荷が小さくなると仮定しているからである。しかし、実際には人の生活形態は千差万別で、図21のE部に示すように、24時に必ずしも電力負荷、熱負荷が小さくなるわけではない。そのため、生活形態に合わせた燃料電池の最適な運転方法を算出することができなかった。
そこで、本発明は、上記問題点を解決するためになされたものであり、季節の変わり目などエネルギー負荷の変動が大きいケースにおいても、精度よく、かつ簡潔にエネルギー負荷パターンを予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる家庭用コジェネシステムの運転制御装置を提供することを第1の目的とする。
また、本発明は、熱負荷ピーク時刻を精度良く予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる家庭用コジェネシステムの運転制御装置を提供することを第2の目的とする。
さらに、本発明は、家庭に応じた1日の時間サイクルを用いることで家庭のエネルギー負荷パターンに関する予測精度を向上させ、省エネ性及び経済性の高い発電機の運転パターンを計画できる家庭用コジェネシステムの運転制御装置を提供することを第3の目的とする。
本発明に係る家庭用コジェネシステムの運転制御装置は、上記第1の目的を達成するために次のような構成を有している。
(1)発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷パターンを予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、エネルギー負荷検出手段が所定間隔で検出したエネルギー負荷を記憶するエネルギー負荷記憶手段と、水温・外気温検出手段が所定間隔で検出した水温又は外気温を記憶する水温・外気温記憶手段と、エネルギー負荷記憶手段に記憶されているエネルギー負荷と、水温外気温記憶手段に記憶されている水温又は外気温とから、エネルギー負荷と水温又は外気温との相関式を算出する相関式算出手段と、予測対象日の水温又は外気温を予測する水温・外気温予測手段と、相関式算出手段が算出した相関式と、水温・外気温予測手段が予測した水温又は外気温とから予測対象日のエネルギー負荷パターンを予測するエネルギー負荷パターン予測手段と、を有することを特徴とする。
(2)(1)に記載の発明において、相関式算出手段は、所定期間分のデータについて最小二乗法を用いて相関式を算出することを特徴とする。
(3)(1)又は(2)に記載の発明において、過去の熱負荷と喫緊の日の熱負荷の有無が異なり、且つ、水温又は外気温が一定の増減傾向があるときに、喫緊の日の熱負荷データを用いて予測対象日の熱負荷パターンを予測する熱負荷選択手段を有することを特徴とする。
(4)(1)乃至(3)の何れか1つに記載の発明において、エネルギー負荷パターン予測手段が予測したエネルギー負荷パターンと、予測対象日当日のエネルギー負荷とを比較してエネルギー負荷パターンの的中率を算出し、的中率が設定値を下回るときに、予測対象日当日のエネルギー負荷をエネルギー負荷記憶手段から排除するデータ排除手段を有すること、を特徴とする。
(5)発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷パターンを予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、エネルギー負荷検出手段が検出したエネルギー負荷を記憶するエネルギー負荷記憶手段と、予測対象日から所定期間前までのエネルギー負荷をエネルギー負荷記憶手段から読み出し、古いデータから順に平均週分の移動平均値を算出する移動平均算出手段と、移動平均算出手段が算出した移動平均値に対して相関式を算出する相関式算出手段と、相関式算出手段が算出した相関式から予測対象日のエネルギー負荷パターンを予測するエネルギー負荷パターン予測手段とを有することを特徴とする。
また、本発明に係る家庭用コジェネシステムの運転制御装置は、上記第2の目的を達成するために次のような構成を有している。
(6)発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を用いて加熱した湯を貯湯タンクに貯めて家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、風呂の湯張りを開始する風呂時刻を検出する風呂時刻検出手段と、風呂時刻を記憶する風呂時刻記憶手段と、風呂時刻記憶手段に記憶されている風呂時刻から予測対象日の風呂時刻を予測する風呂時刻予測手段と、を有することを特徴とする。
(7)(6)に記載の発明において、エネルギー負荷パターンのうちの風呂負荷が予測対象日の風呂時刻に発生するように、エネルギー負荷パターンを補正する補正手段を有することを特徴とする。
(8)発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を用いて加熱した湯を貯湯タンクに貯めて家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、熱負荷検出手段が検出した熱負荷を記憶する熱負荷記憶手段と、熱負荷記憶手段に記憶されている熱負荷から熱負荷ピーク時刻を算出する熱負荷ピーク時刻算出手段と、熱負荷ピーク時刻算出手段が算出した熱負荷ピーク時刻を記憶する熱負荷ピーク時刻記憶手段と、熱負荷ピーク時刻記憶手段に記憶されている熱負荷ピーク時刻から予測対象日の熱負荷ピーク時刻を予測する熱負荷ピーク時刻予測手段と、を有することを特徴とする。
(9)(8)に記載の発明において、エネルギー負荷パターンの熱負荷ピーク量が予測対象日の熱負荷ピーク時刻に発生するように、エネルギー負荷パターンを補正する補正手段を有することを特徴とする。
さらに、本発明に係る家庭用コジェネシステムの運転制御装置は、上記第3の目的を達成するために次のような構成を有している。
(10)発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、予測対象日の時間サイクルを可変する時間サイクル可変手段を有することを特徴とする。
(11)(10)に記載の発明において、時間サイクル可変手段は、予測対象日前日の運転制御終了時刻から予測対象日翌日の所定時刻までの時間を二分割し、前半を第1日目と、後半を第2日目と仮決めし、第1日目と第2日目の組み合わせを複数作成する分割部と、分割手段によって作成された組み合わせ毎に、第1日目と第2日目の一次エネルギーが最小となる運転パターンを仮決定する運転パターン仮決定部と、運転パターン仮決定手段によって仮決定された運転パターンのうち、一次エネルギーが最小となる組み合わせを選択し、第1日目の時間サイクルを決定する時間サイクル決定部と、を有することを特徴とする。
上記構成を有する家庭用コジェネシステムの運転制御装置は、次のような作用効果を有する。
本発明の家庭用コジェネシステムの運転制御装置は、過去のエネルギー負荷と水温又は外気温との相関式を算出する一方、予測対象日の水温又は外気温を予測し、算出した相関式に予測した水温又は外気温をあてはめて、予測対象日のエネルギー負荷パターンを簡潔に予測する。エネルギー負荷パターンを予測するときに、過去のエネルギー負荷の他、気候変動に伴って変動する水温又は外気温を考慮するので、季節の変わり目などエネルギー負荷パターンが大きく変動するケースでも、予測値と実際値とのずれが小さく、エネルギー負荷パターンの予測精度が高い。家庭用コジェネシステムの運転制御装置は、精度良く予測したエネルギー負荷パターンに基づいて運転パターンを自動的に作成し、発電機を運転制御するため、熱不足や放熱損などを発生しにくく、家庭用コジェネシステムを効果的に運用しうる。
従って、本発明の家庭用コジェネシステムの運転制御装置によれば、季節の変わり目などエネルギー負荷の変動が大きいケースにおいても、精度良く且つ簡潔にエネルギー負荷パターンを予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる。
また、本発明の家庭用コジェネシステムの運転制御装置は、所定期間分のデータを最小二乗法を用いて相関式を算出するので、ニューラルネットワーク等より計算回数を減らし、簡潔にエネルギー負荷パターンを予測することができる。
また、本発明の家庭用コジェネシステムの運転制御装置は、例えば、過去数週間前には、熱負荷があったにもかかわらず、喫緊の日(例えば、予測対象日から3日〜1週間以内の日)から熱負荷がなくなり、かつ、水温又は外気温が増加傾向にある場合には、気温の上昇に従って熱負荷が無くなると考えられるので、喫緊の日の熱負荷データを用いて熱負荷パターンを予測すれば、熱負荷の有無にフレキシブルに対応して予測外れする可能性が低くなり、予測精度を向上させることができる。
また、本発明の家庭用コジェネシステムの運転制御装置は、予測対象日のエネルギー負荷パターンと、予測対象日当日のエネルギー負荷とを比較して、エネルギー負荷パターンの的中率を算出し、的中率が設定値を下回るときに、予測対象日のエネルギー負荷が通常日のエネルギー負荷と異なる挙動を示す特異日と判断し、当該特異日のエネルギー負荷をエネルギー負荷記憶手段から排除するので、後日エネルギー負荷パターンを予測する際に特異日のエネルギー負荷が考慮されず、より精度の高い負荷予測を行うことができる。
また、本発明の家庭用コジェネシステムの運転制御装置は、過去の所定期間分のエネルギー負荷を古いデータから数週間分の移動平均値を求めて相関式を算出し、その相関式から予測対象日のエネルギー負荷パターンを簡単に予測する。過去のエネルギー負荷の移動平均値を用いて相関式を作成することにより、気候変動などに伴うエネルギー負荷の変動を予測対象日のエネルギー負荷パターンに反映させるので、季節の変わり目などエネルギー負荷の変動が大きいケースでも、予測値と実際値とのずれが小さく、予測精度が高い。家庭用コジェネシステムの運転制御装置は、精度良く予測したエネルギー負荷パターンに基づいて運転パターンを自動的に作成し、発電機を運転制御するため、熱不足や放熱損などを発生しにくく、家庭用コジェネシステムを効果的に運用しうる。
従って、本発明の家庭用コジェネシステムの運転制御装置によれば、季節の変わり目などエネルギー負荷の変動が大きいケースにおいても、精度良く且つ簡潔にエネルギー負荷パターンを予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる。
また、本発明の家庭用コジェネシステムの運転制御装置は、風呂の湯張りを開始する風呂時刻を風呂時刻検出手段で検出して風呂時刻記憶手段に記憶しておき、風呂時刻記憶手段に記憶されている風呂時刻から予測対象日の風呂時刻を予測する。一般家庭では、貯湯タンクの湯は風呂の湯張りに最も多く使用されることが多く、家庭用コジェネシステムの運転制御装置は、精度良く予測した風呂時刻に向けて熱回収するように運転パターンを作成し、発電機を運転制御するので、熱不足や放熱損の発生を低減できる。
従って、本発明の家庭用コジェネシステムの運転制御装置によれば、熱負荷ピーク時刻を精度良く予測することができ、家庭用コジェネシステムの省エネ性及び経済性を高めることができる。
ここで、夏場には、風呂が使用されず、風呂時刻を検出できない場合がある。この場合には、熱負荷検出手段が検出した熱負荷を熱負荷記憶手段に記憶し、その熱負荷から熱負荷ピーク時刻を算出して熱負荷ピーク時刻記憶手段に記憶しておき、風呂時刻が検出できないときに、熱負荷ピーク時刻から予測対象日の熱負荷ピーク時刻を予測するようにすれば、精度良く予測した熱負荷ピーク時刻に向けて熱回収する運転パターンを作成し、家庭用コジェネシステムの省エネ性及び経済性を確保することができる。なお、風呂が使用される場合でも、熱負荷ピーク時刻を用いて熱負荷パターンを予測することも可能である。
そして、風呂負荷(又は熱負荷ピーク量)が風呂時刻(又は熱負荷ピーク時刻)に発生するようにエネルギー負荷パターンを補正すれば、風呂負荷(熱負荷ピーク量)が複数の時間帯に分散して発生することを防止できる。
また、本発明の家庭用コジェネシステムの運転制御装置は、予測対象日の時間サイクルを可変させるので、例えば、ある程度大きな熱負荷や電力負荷が日付変更をまたいで発生しても、日付変更後の時刻を予測対象日の運転制御終了時刻に設定するように時間サイクルを設定することができ、また例えば、午前中のみ熱負荷や電力負荷が発生する場合には、予測対象日の12時を運転制御終了時刻に設定して時間サイクルを設定したりすることができる。そして、設定した時間サイクルに合わせて予測対象日のエネルギー負荷パターンを予測して運転パターンを作成し、発電機を運転制御する。
従って、本発明の家庭用コジェネシステムの運転制御装置によれば、家庭に応じた1日の時間サイクルを用いることで家庭のエネルギー負荷パターンに関する予測精度を向上させ、省エネ性及び経済性の高い発電機の運転パターンを計画することができる。
特に、予測対象日前日の運転制御終了時刻から予測対象日翌日の所定時刻までの時間を二分割し、前半を第1日目とし、後半を第2日目と仮決めして、第1日目と第2日目の組み合わせを複数作成し、各組み合わせ毎に一次エネルギーが最小となる運転パターンを仮決めし、一次エネルギーが最小となる運転パターンを選択して、第1日目の時間サイクルを予測対象日の時間サイクルとすれば、予測対象日とその翌日の省エネ性まで考慮した運転パターンを作成することができ、省エネ性や経済性をより一層向上させることができる。
(第1実施の形態)
次に、本発明に係る家庭用コジェネシステムの運転制御装置の第1実施の形態について図面を参照して説明する。図1は、家庭用コジェネシステム1の概略構成図である。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Aは、予測対象日の熱負荷パターンを予測して発電機8(燃料電池、ガスエンジンなど)の運転パターンを作成し、家庭用コジェネシステム1の運転制御を行うものであり、特に、過去の熱負荷の他に水温を用いて熱負荷パターンを予測する点に特徴を有している。
家庭用コジェネシステム1は、容量が100〜200Lの貯湯タンク2を備え、貯湯タンク2が底部に接続する水道管3から水道水を供給されて常時満水状態にされている。貯湯タンク2の底部と頂部には、循環配管4が接続し、循環配管4に設置された第1ポンプ5を駆動することにより、貯湯タンク2の水を底部から取り出して上部に戻すようになっている。循環配管4は、第1ポンプ5の下流側に熱交換器6が設置され、熱交換器6を介して熱回収用循環配管7と連結している。熱回収用循環配管7は、発電機8に接続し、第2ポンプ9を駆動することにより熱回収用循環配管7を循環する循環水が発電機8の排熱を回収するようになっている。従って、発電機8が発電しているときに、第1ポンプ5と第2ポンプ9を駆動すれば、発電機8の排熱により熱回収用循環配管7の循環水を加熱し、熱交換器6において熱回収用循環配管7の循環水から循環配管4の水に熱伝達して、給湯水を貯湯タンク2に貯めることができる。
貯湯タンク2の上部には、出力用循環配管10が接続し、台所11A、風呂11B、洗面台11C、床暖房11D等の熱機器11に給湯水又は暖房温水を供給するようになっている。給湯温度は、出力用循環配管10上に設置された給湯温度センサ12により検出され、給湯温度が設定温度より高温の場合には、三方弁13で常温の水道水を加え、また、給湯温度が設定温度より低温の場合には、ガスボイラ14で給湯水を加熱するようにしている。このとき、熱機器11が消費する湯量(熱負荷)は、三方弁13の下流側に設置された流量計(「エネルギー負荷検出手段」に相当。)15によって計測される。一方、貯湯タンク2の貯湯量は、給湯水と水道水の境界面を貯湯温度センサ16で感知することにより検出され、また、水道水の温度は、水道管3に取り付けられた水温計(「水温・外気温検出手段」に相当。)17によって検出されている。
発電機8には、発電出力を取り出す電力線18が接続され、分電盤19に接続されている。分電盤19は、商用電力を供給する商用電力線20にも接続し、発電出力と商用電力とを連系して照明器具、テレビ、エアコン、パソコンなどの電力機器21に発電出力又は商用電力を供給するようになっている。分電盤19には、電力計(「エネルギー負荷検出手段」に相当。)22が設置され、電力機器21が消費した電力量を計測している。
発電機8、給湯温度センサ12、三方弁13、ガスボイラ14、流量計15、貯湯温度センサ16、水温計17、分電盤19、電力計22等には、運転制御装置30Aが接続している。
図2は、運転制御装置30Aのブロック図である。
運転制御装置30Aは、周知のマイクロコンピュータであって、入出力インターフェース31、CPU32、ROM33、RAM34を内蔵する。入出力インターフェース31には、給湯温度センサ12、流量計15、貯湯温度センサ16、水温計17、電力計22などが接続し、各種入力データを受信するようになっている。ここで、「入力データ」とは、エネルギー負荷データ、貯湯温度データ、給湯量データ、水温(外気温)データ、給湯温度データ等の各センサが検出したデータ、及び、初期データなど使用者等によって入力されたデータをいうものとする。 「エネルギー負荷データ」には、電力負荷データと熱負荷データが含まれるものとする。
また、入出力インターフェース31には、発電機8、三方弁13、ガスボイラ14、分電盤19などが接続し、出力データを送信するようになっている。ここで、「出力データ」とは、発電機8を運転制御する運転制御データ、検出結果を表示する表示データ、他の制御装置に送信される送信データなど、外部に出力されるデータをいうものとする。
ROM33には、家庭用コジェネシステム1を運用する上で必要な各種プログラムが格納され、例えば、後述する水温配慮型運転制御プログラム(「相関式算出手段」、「水温・外気温予測手段」、「エネルギー負荷パターン予測手段」に相当。)35が格納されている。
RAM34は、ROM33のプログラム等を実行する上で必要なデータを一時的に格納したり、各種データを蓄積して記憶するデータベース(「エネルギー負荷記憶手段」、「水温・外気温記憶手段」に相当。)36を構築する。なお、運転制御装置30Aにメモリを外付けし、そのメモリにデータベース36を構築することによりデータ容量を大きくしてもよい。
次に、家庭用コジェネシステム1の運転制御装置30Aの動作について、フローチャートを参照しながら説明する。図3は、水温配慮型運転制御処理のフローチャートである。図4は、水温と熱負荷の関係を示す図である。
家庭用コジェネシステム1の運転制御装置30Aは、水温配慮型運転制御プログラム35をROM33から読み出して水温配慮型運転処理を実行すると、先ずステップ1(以下「S11」と略記する。)において、所定間隔の積算(平均)データとして熱負荷データ、水温データを蓄積してデータベース化する。所定間隔は、任意に設定することが可能であり、一般的なマイクロコンピュータのデータ容量を考慮すると、30分〜2時間に設定することが望ましい。本実施の形態では、所定間隔を1時間に設定している。よって、本実施の形態では、運転制御装置30Aは、前回熱負荷データをデータベース化した後から1時間が経過するまでの間に流量計15が計測した流量を積算し、積算熱負荷データとして日付や曜日、天候などと関連づけてデータベース36に記憶する。またこのとき、水温計17が1時間の間に計測した水道水の水温を平均化し、平均化した水温を日付や曜日、天候などと関連づけてデータベース36に記憶する。
そして、S12において、予測対象日と同曜日の熱負荷、水温データをデータベース36から所定期間分読み込む。ここで、「予測対象日」とは、発電機8を運転パターンに従って運転制御する予定の日をいう。本実施の形態では、運転パターン作成日の翌日を予測対象日とする。予測対象日と同曜日のデータを読み込むのは、家庭生活が曜日毎にパターン化されていると考えられるからである。「所定期間分」は、任意に設定することができ、過去の熱負荷と水温のバラツキや気候変動、計算回数などを考慮すると、過去4〜12週分であることが望ましい。本実施の形態では、所定期間を4週間に設定している。よって、本実施の形態では、運転制御装置30Aは、例えば予測対象日が水曜日であれば、予測対象日から4週間前までの水曜日の熱負荷データと水温データをデータベース36から読み出す。
そして、S13において、予測対象日の喫緊の水温データをデータベース36から読み込む。「予測対象日の喫緊の水温データ」とは、季節の変わり目など気候が大きく変動することを考慮して、予測対象日から3日〜1週間前までの水温データをいう。本実施の形態では、予測対象日から5日前までを喫緊の日とする。
そして、S14において、熱負荷と水温とから最小二乗法を用いて各時間帯の相関式(熱負荷=a×水温+b)を算出する。水温及び熱負荷は、曜日や時間毎にバラツキを生じるため、S12において読み込んだ水温データと熱負荷データを用いて所定間隔毎(1時間毎)に最小二乗法を用いて相関式を算出する。ここで、熱負荷のみならず、水温に配慮するのは、熱負荷の変動が大きくなるのが季節の変わり目であるとし、そのときには、熱負荷のベースとなる水温が大きく変化すると考えられるからである。
そして、S15において、予測対象日の最後の時刻まで相関式を算出したか否かを判断する。例えば、予測対象日の運転制御開始時刻が0時であって、運転制御終了時刻が24時であり、1時間毎に相関式を算出する場合には、相関式が24個作成される。相関式が24個作成されるまでは(S15:NO)、相関式を算出し続ける。
一方、相関式が24個作成されると(S15:YES)、S16において、予測対象日の水温として、読み込んだ喫緊の水温データを平均化したものを使用する。季節の変わり目など気候が急激に変わるときには、水温変動が大きくなるため、S13において読み込んだ予測対象日の喫緊の水温データを平均化して、予測対象日の水温を所定間隔毎(1時間毎)に算出して使用する。
そして、S17において、S14において算出した相関式に、S16において算出した水温データを対応する時間帯毎にあてはめ、予測対象日の熱負荷データを1時間毎に算出する。例えば、S16において算出した午前9〜10時の水温が15℃であれば、午前9〜10時に対応する図4の相関式に水温15℃を当てはめ、予測対象日午前9時の熱負荷が約50MJであると予測する。このようにして、予測対象日の運転制御開始時刻から運転制御終了時刻までの熱負荷を1時間毎に予測し、熱負荷パターンを作成する。
そして、S18において、S17で算出した熱負荷パターンを用い、運転制御の基本ロジックに基づいて発電機8の予測対象日の運転パターンを決定する。ここで、運転制御の基本ロジックは、従来より種々のものが提案されているため(例えば従来技術1〜5など)、詳細な説明を省略する。一例を挙げて簡単に説明すると、例えば、予測対象日の熱負荷を賄うように発電機8の起動・停止時刻をずらしながら運転パターンを複数仮決定して、各運転パターンの一次エネルギー量を算出し、一次エネルギー量が最小となる運転パターンを予測対象日の運転パターンに本決定する。こうして予測対象日の運転パターンを決定したら、処理を終了する。
そして、予測対象日当日には、家庭用コジェネシステム1の運転制御装置30Aは、作成した運転パターンに従って発電機8を運転制御し、発電した電力を電力機器21に供給する一方、発電時に発生した熱で加熱した湯を貯湯タンク2から熱機器11に供給する。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Aでは、予測対象日と同曜日の熱負荷データと水温データを予測対象日から4週間分だけデータベース36から読み込んで相関式を時間帯別に求める一方(図3のS4〜S5及び図4参照)、予測対象日から5日前までの喫緊の水温データから予測対象日の水温を時間帯別に予測し(図3のS6参照)、各時間帯の相関式に予測対象日の水温をあてはめて、予測対象日のエネルギー負荷パターンを簡潔に予測する(図3のS7参照)。熱負荷パターンを予測するときに、過去の熱負荷の他、熱負荷のベースとなる水温を考慮するので、季節の変わり目など熱負荷パターンが大きく変動するケースでも、予測値と実際値とのずれが小さく、熱負荷パターンの予測精度が高い。家庭用コジェネシステム1の運転制御装置30Aは、精度良く予測した熱負荷パターンに基づいて運転パターンを自動的に作成し、発電機8を運転制御するため、予測対象日当日に熱不足や放熱損などを発生させにくく、家庭用コジェネシステム1を効果的に運用しうる。
よって、本実施の形態の家庭用コジェネシステム1の運転制御装置30Aによれば、季節の変わり目など熱負荷の変動が大きいケースにおいても、精度よく、かつ簡潔に熱負荷パターンを予測することができ、家庭用コジェネシステム1の省エネ性及び経済性を高めることができる。
また、4週間分読み出した熱負荷データと水温データを1時間毎に最小二乗法を用いて相関式を算出するので(図3のS14参照)、膨大な計算量を要するニューラルネットワーク等より計算回数を減らし、簡潔に熱負荷パターンを予測することができる。
(第2実施の形態)
次に、本発明の家庭用コジェネシステムの運転制御装置の第2実施の形態について図面を参照して説明する。図5は、家庭用コジェネシステム1の運転制御装置30Bのブロック図である。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Bは、データ排除プログラム37を備える点で第1実施の形態と相違する。そこで、ここでは、第1実施の形態と相違する構成を詳細に説明し、共通する構成については同一符号を用いて説明を適宜省略する。
家庭用コジェネシステム1は、例えば使用者が旅行などで外出しているときには、通常の生活パターンと相違する。かかる特異日のエネルギー負荷を通常日のエネルギー負荷と同列にデータベース化すると、後日エネルギー負荷を予測する際に特異日のデータが用いられ、予測精度を低下させるおそれがある。そのため、家庭用コジェネシステム1の運転制御装置30Bは、ROM33がデータ排除プログラム(「データ排除手段」に相当。)37を格納し、特異日のエネルギー負荷を通常日のエネルギー負荷と同列にデータベース36に記憶しないようにしている。
図6は、データ排除処理のフローチャートである。図7は、熱負荷と電力負荷の実際と予測を示す図である。
運転制御装置30Bは、ROM33からデータ排除プログラム37を読み出してデータ排除処理を実行すると、先ずS21において、所定間隔の積算(平均)データとして熱負荷、電力負荷を蓄積してデータベース36に記憶する。ここで、所定間隔は、任意に設定されるものであり、一般のマイクロコンピュータのデータ容量を考慮すると、30分〜2時間に設定することが望ましい。本実施の形態では所定間隔が1時間に設定されている。よって、本実施の形態では、前回電力負荷と熱負荷をデータベース化した後から1時間が経過するまでの間に電力計22と流量計15が計測した電力量と流量をそれぞれ積算し、データベース36に記憶する。
そして、S22において、1日の最終時刻になったか否かを判断する。1日とは、予測対象日をいう。例えば、予測対象日の運転制御開始時刻が午前0時、運転制御終了時刻が24時であれば、予測対象日の24時になったか否かを判断する。24時でなければ(S22:NO)、S21に戻って、電力負荷データと熱負荷データの収集を続ける。
予測対象日の24時になったら(S22:YES)、S23において、前日の1日分の総熱負荷と総電力負荷を算出する。ここで、前日とは予測対象日をいう。S21〜S22において、予測対象日の熱負荷と電力負荷の実測値が所定間隔毎(本実施形態では1時間毎)にデータベース36に記憶されているので、各時間帯の熱負荷と電力負荷をそれぞれ積算することにより予測対象日の総熱負荷と総電力負荷の実際値を算出する。
そして、S24において、運転パターン作成時に予測した熱負荷パターンと電力負荷パターンを用いて各時間帯の熱負荷と電力負荷を積算し、予測対象日1日分の総熱負荷と総電力負荷の予測値を算出する。
そして、S25において、S23で算出した実際値とS24で算出した予測値を用いて1日分の総熱負荷と総電力負荷の予測的中率を算出する。そして、S26において、総熱負荷的中率と総電力負荷的中率が設定値を下回るか否かを判断する。ここで、設定値は、任意に設定できる。総熱負荷的中率が設定値を下回り、且つ、総電力負荷的中率が設定値を下回る場合には(S26:YES)、図7のA1部及びA2部に示すように実際値と予測値との乖離が大きく、これを後日のエネルギー負荷パターンの予測に用いると、予測精度を低下させるおそれがあるので、S27において、ある一定期間内に所定回数以上のデータの排除を行っているか否かを判断する。ある一定期間内に所定回数以上のデータの排除を行っていない場合には(S27:NO)、S28において、特異日と判定し、データベース36から当該予測対象日の熱負荷と電力負荷を排除して、通常日の熱負荷及び電力負荷と同列にデータベース化しない。
この場合、当該予測対象日の熱負荷データと電力負荷データが欠落し、翌週、運転パターンを作成する際に問題になる。そこで、S29において、データベース36に記憶しないことで欠落するデータについては、欠落前1週間前のデータを予測対象日の日付や曜日、気候などと関連付けて補填し、データベース36に記憶する。そして、処理を終了する。
なお、特異日の熱負荷と電力負荷は、通常日の熱負荷及び電力負荷と区別してデータベース36に記憶しておいてもよい。この場合、発電機8の運転中に特異日の熱負荷又は電力負荷に類似するデータが発生したときに、特異日の運転パターンに変更して発電機8を運転するようにすれば、熱負荷や電力負荷変動に迅速に対応することが可能である。
もっとも、家庭用コジェネシステム1を使用しているうちに、使用者の生活パターンが変化し、家庭のエネルギー負荷が大きく変化することも考えられる。この場合には、生活パターンの過渡期に連続して特異日と判断され、新しい生活パターンに係るエネルギー負荷データを蓄積しにくく、予測精度が低下する恐れがある。そこで、ある一定期間内に所定回数以上のデータの排除を行っている場合には(S27:YES)、S30において、生活パターンが変化したと考え、通常日と判定しデータベース化する。
一方、総熱負荷的中率と総電力負荷的中率の少なくとも一方が設定値以上である場合には(S26:NO)、S31において、通常日と判定し、予測対象日の熱負荷と電力負荷の実際値を予測対象日の日付や曜日、気候などと関連付けてデータベース36に記憶した後、処理を終了する。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Bでは、予測対象日の熱負荷パターンと電力負荷パターンと、予測対象日当日の熱負荷と電力負荷とを比較して、総熱負荷的中率と総電力負荷的中率を算出し(図6のS26参照)、総熱負荷的中率と総電力負荷的中率とがともに設定値を下回るときに、予測対象日の熱負荷と電力負荷とが通常日の熱負荷及び電力負荷と異なる挙動を示す特異日と判断し、当該特異日の熱負荷と電力負荷をデータベース36から排除するので(図6のS26:YES、S27参照)、特異日の熱負荷と電力負荷が通常日の熱負荷及び電力負荷と同列にデータベース36に記憶されず、後日熱負荷パターンや電力負荷パターンを予測する際に該特異日の熱負荷や電力負荷が考慮されず、より精度の高い負荷予測を行うことができる。
(第3実施の形態)
次に、本発明の家庭用コジェネシステムの運転制御装置の第3実施の形態について図面を参照して説明する。図8は、家庭用コジェネシステム1の運転制御装置30Cのブロック図である。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Cは、熱負荷選択プログラム(「熱負荷選択手段」に相当。)38を備える点で第1実施の形態と相違する。そこで、ここでは、第1実施の形態と相違する構成を詳細に説明し、共通する構成については同一符号を用いて説明を適宜省略する。
図9は、ある時間帯の熱負荷の予測との乖離を示す図である。
例えば、洗面台11Cでは、水温がある温度以上であれば水のみが使用され、水温がある温度より低ければ湯が使用される。このように、湯は、水温の上昇とともに、ある温度を境に完全に不使用になることがある。それにもかかわらず、予測対象日と同曜日の熱負荷データを移動平均や加重平均して予測対象日の熱負荷パターンを予測すると、例えば図9のB部に示すように、実際には熱負荷がないにもかかわらず、熱負荷が発生すると予測され、予測値と実際値とが乖離する恐れがある。そのため、家庭用コジェネシステム1の運転制御装置30Cは、図8に示すように、ROM33が熱負荷選択プログラム38を格納し、熱負荷パターンを予測する際に使用するデータを使い分けている。
図10は、熱負荷選択処理のフローチャートである。
熱負荷選択処理では、S31において、所定間隔(本実施の形態では1時間)の積算(平均)データとして熱負荷、水温データを蓄積してデータベース36に記憶する。
そして、S32において、予測対象日と同曜日の熱負荷、水温データをデータベース36から所定期間分(本実施の形態では4週間分)読み込む。
そして、S33において、全ての時間帯における喫緊の日(本実施の形態では1週間前)の熱負荷をデータベースから読み出し、全ての時間帯における熱負荷の有無を調べる。予測対象日の気候は、数週間前よりも喫緊の日の方が類似する可能性が高いと考えられるため、予測対象日の喫緊の日を基準に熱負荷の有無を調べる。
喫緊の日に熱負荷が発生していると判断した場合には(S33:YES)、S34において、喫緊の日以外の日に熱負荷が未発生か否かを全ての時間帯について判断し、喫緊の日の熱負荷がそれ以前の熱負荷と異なる挙動を示しているかを調べる。喫緊の日以外の日に熱負荷が発生していない場合には(S34:YES)、喫緊の日以前には熱負荷がなかったが、喫緊の日から熱負荷が発生したと考えられるので、S35において、S32で読み込んだ水温データより、水温が減少傾向にあるか否かを判断する。水温が減少傾向にあれば(S35:YES)、水温の低下によって喫緊の日に引き続いて予測対象日にも湯が使われる可能性が高いので、S35において、予測対象日のある時間帯の熱負荷を予測する際に喫緊(例えば1週間前)の熱負荷データを使用することを決定し、処理を終了する。
一方、喫緊の日以外の日にも熱負荷が発生していれば(S34:YES)、喫緊の日とそれ以前とで熱負荷の挙動が同じであるため、S37において、通常通り、予測対象日のある時間帯の熱負荷を予測する際に、予測対象日と同曜日の熱負荷データと水温データとを使用することを決定し、処理を終了する。
これに対して、喫緊の日に熱負荷が発生していないと判断した場合には(S33:NO)、S38において、喫緊の日以外の日に熱負荷が発生したか否かを判断し、喫緊の日の熱負荷がそれ以前の日の熱負荷と異なる挙動であるかを調べる。喫緊の日以外の日に熱負荷が発生する場合には(S38:YES)、喫緊の日以前には熱負荷があったが、喫緊の日から熱負荷がなくなったと考えられるので、S39において、S32で読み込んだ水温データから水温が増加傾向にあるか否かを判断する。水温が増加傾向にあれば(S30:YES)、水温の上昇によって喫緊の日に引き続いて予測対象日にも湯が使われない可能性が高いので、S40において、予測対象日の熱負荷に喫緊(例えば1週間前)の熱負荷データを使用することを決定し、処理を終了する。
一方、喫緊の日以外の日に熱負荷が発生していなければ(S38:NO)、喫緊の日とそれ以前とで熱負荷の挙動が同じであるので、S41において、通常通り、熱負荷パターンを予測する際に予測対象日と同曜日の熱負荷データと水温データとを使用することを決定し、処理を終了する。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Cによれば、例えば、過去数週間前には、熱負荷があったにも関わらず、喫緊の日から熱負荷が無くなり、且つ、水温が増加傾向にあれば(図10のS33:NO、S38:YES、S39:YES、S40参照)、気温の上昇に従って熱負荷が無くなると考えられるので、喫緊の熱負荷データを用いて熱負荷パターンを予測すれば、熱負荷の有無にフレキシブルに対応して予測外れする可能性が低くなり、予測精度を向上させることができる。
(第4実施の形態)
次に、本発明の家庭用コジェネシステムの運転制御装置の第4実施の形態について図面を参照して説明する。図11は、家庭用コジェネシステム1の運転制御装置のブロック図である。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Dは、移動平均型運転制御プログラム39を備える点で第1実施の形態と相違している。よって、ここでは、第1実施の形態と相違する点を詳細に説明し、共通する点については同一符号を付して説明を適宜省略する。
図12は、移動平均型運転制御処理のフローチャートである。図13は、ある時間帯の移動平均値を用いた算出方法を概念的に示す図である。
家庭用コジェネシステム1の運転制御装置30Dが、ROM33から移動平均型運転制御プログラム39を読み出して移動平均型運転制御処理を実行すると、図12のS51において、30分から2時間程度(本実施の形態では1時間)の積算(平均)データとして熱負荷を蓄積してデータベース化する。
そして、S52において、予測対象日と同曜日の熱負荷を所定期間分(本実施の形態では4週間分)をデータベース36から読み込む。
そして、S53において、古いデータから順に、各時間帯の熱負荷に対して設定した平均週分(例えば、3週)の移動平均を算出する。例えば図13に示すように、ある時間帯の4週間分の熱負荷を読み出し、4週間前から3週分の平均値と3週間前から3週分の平均値とを求める。
そして、S54において、読み込んだデータ分の移動平均を算出したか否かを判断する。読み込んだデータ分の移動平均を時間帯別に算出し終わるまでは(S54:NO)、S53を繰り返し、移動平均の算出を続ける。
一方、読み込んだデータ分の移動平均を時間帯別に算出し終わったら(S54:YES)、S55において、算出した各時間帯の数点の移動平均値に対し、最小二乗法等を用いて相関式を算出する。本実施の形態では、図13に示すように移動平均値2点に対して相関式を1時間毎に算出するため、24個の相関式が作成される。
そして、S56において、S55で算出した時間帯別の相関式(例えば図13参照)を用いて、予測対象日の熱負荷(例えば図13の黒四角参照)を時間帯別に算出し、予測対象日の熱負荷パターンを予測する。
そして、S57において、S56で予測した熱負荷パターンを用い、運転制御の基本ロジックに基づいて発電機8の予測対象日の運転パターンを決定する。基本ロジックは、既技術であるため、説明を省略する。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Dによれば、過去4週間分の熱負荷を古いデータから3週間分の移動平均値を求めて相関式を算出し(図12のS55、図13参照)、その相関式から予測対象日の熱負荷パターンを簡単に予測する(図12のS56参照)。過去の熱負荷の移動平均値を用いて相関式を算出することにより、気候変動などに伴う熱負荷の変動を予測対象日の熱負荷パターンに反映させるので、季節の変わり目など熱負荷の変動が大きいケースでも、予測値と実際値とのずれが小さく、予測精度が高い。家庭用コジェネシステム1の運転制御装置30Dは、精度良く予測した熱負荷パターンに基づいて運転パターンを自動的に作成し、発電機8を運転制御するため、熱不足や放熱損などを発生しにくく、家庭用コジェネシステム1を効果的に運用しうる。
よって、本実施の形態の家庭用コジェネシステム1の運転制御装置30Dによれば、季節の変わり目など熱負荷の変動が大きいケースにおいても、精度良く且つ簡潔に熱負荷パターンを予測することができ、家庭用コジェネシステム1の省エネ性及び経済性を高めることができる。
(第5実施の形態)
次に、本発明の家庭用コジェネシステムの運転制御装置の第5実施の形態について図面を参照して説明する。図14は、家庭用コジェネシステム1の運転制御装置30Eのブロック図である。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Eは、風呂負荷予測プログラム40を備える点で第1実施の形態と相違している。よって、ここでは、第1実施の形態と相違する点について詳細に説明し、共通する構成については同一符号を用いて説明を適宜省略する。
風呂は、常に決まった時刻に湯張りするものではなく、また、湯張りが複数の時間帯をまたいで行われることがある。一方、家庭用コジェネシステム1では、風呂の湯張りに貯湯タンク2の湯を最も多く使用し、風呂負荷が熱負荷のピークとなることが多い。そのため、風呂の湯張りを開始する風呂時刻までに風呂負荷分の熱を貯湯タンク2に貯める必要があり、風呂時刻と風呂負荷を精度良く予測する必要がある。そこで、本実施の形態では、ROM33が風呂負荷予測プログラム40を格納し、予測対象日の風呂時刻と風呂負荷を予測している。
図15は、風呂負荷予測処理のフローチャートである。
運転制御装置30Eは、ROM33から風呂負荷予測プログラム40を読み出して風呂負荷予測処理を実行すると、まずS61において、所定間隔の積算(平均)データとして給湯負荷、風呂負荷、水温データと風呂時刻をデータベース36に蓄積して記憶する。「所定間隔」は、任意に設定することが可能であり、一般のマイクロコンピュータのデータ容量を考慮すると、30分〜2時間に設定することが望ましい。本実施の形態では、所定間隔を1時間に設定している。家庭用コジェネシステム1の流量計15は、風呂11Bに取り付けた流量計(「風呂時刻検出手段」に相当。)15Bを含み、流量計15Bが流量を検出し始めた風呂時刻が、日付や曜日、気候などと関連付けてデータベース(「風呂時刻検出手段」に相当。)36に記憶される。熱機器11全体の給湯負荷は、流量計15によって検出され、それと別に、風呂負荷が、流量計15Bによって検出される。また、水温は水温計17によって検出される。これらの検出データは、日付や曜日、気候などと関連付けてデータベース36に記憶される。
そして、S62において、予測対象日と同曜日の給湯負荷、風呂負荷、水温データ、風呂時刻をデータベース36から読み込む。家庭生活は、曜日毎にパターン化されると考えられるので、予測対象日と同曜日の給湯負荷、風呂負荷、水温データ、風呂時刻をデータベース36から所定期間分読み込む。「所定期間」は、任意に設定することができ、データ容量や気候の変動、計算回数などを考慮すると、4〜12週間の範囲で設定することが望ましい。本実施の形態では、所定期間を4週間に設定している。
そして、S63において、予測対象日の喫緊の日の水温データをデータベース36から読み込む。喫緊の日とは、予測対象日から3日〜1週間前までの日をいう。予測対象日の喫緊の水温データを読み込むのは、予測対象日の水温と類似すると考えられるからである。
そして、S64において、S62で読み込んだ風呂負荷を日別に積算し、その日1日分の風呂負荷を算出する。これにより、風呂負荷が風呂負荷発生時刻と無関係に1つにまとめて把握される。
そして、S65において、S62で読み込んだ水温データ(過去4〜12週分)の1日平均値を算出する。
そして、S66において、S63,S64で算出した1日分の積算風呂負荷と平均水温から所定間隔毎(本実施の形態では1時間毎)に最小二乗法(或いは平均処理)を用いて相関式を算出する。
そして、S67において、予測対象日の平均水温として、S63で読み込んだ喫緊の水温データを平均化したものを使用する。水温データは、1日平均の水温を用いても良いし、風呂時刻に対応する水温を用いてもよい。本実施の形態では、風呂時刻に対応する水温を用いている。
そして、S68において、S65で算出した相関式にS67で算出した予測対象日の平均水温をあてはめ、予測対象日1日分の風呂負荷を算出する。
そして、S69において、予測対象日の風呂時刻として、S62で読み込んだ過去の風呂時刻の最頻度や一週間前の風呂時刻とする。入浴時間は、通常、就寝前など生活パターンの中で決まっており、入浴時間に合わせて湯張りを行うのが一般的である。そのため、予測対象日の風呂時刻は、最も頻度の高い風呂時刻、あるいは、1週間前の同曜日の風呂時刻とする。
そして、S70において、S69で予測した風呂時刻にS68で算出した積算風呂負荷が発生するように、水温配慮型運転制御処理(図3参照)で作成した熱負荷パターンを補正し、処理を終了する。
図16は、風呂負荷の分散を示す図である。
上記処理を行わずに、過去の熱負荷データのみで熱負荷パターンを予測すると、例えば図16の塗りつぶした棒グラフに示すように、熱負荷ピーク(風呂負荷)が19:00と20:00に分散される(C部参照)。運転パターンは、各時間帯の熱負荷を賄うように作成されるため、19:00時点では、貯湯タンクに9MJ蓄熱することになる。しかし、実際の風呂負荷が約21MJである場合には、19:00から風呂の湯張りを開始すると、湯が不足してガスバーナ14を使用しなければならない。また、20:00の熱負荷は、実際には20:00の時点で既に風呂11Bに使用されて発生しないため、20:00の熱負荷を補うように発電すると、熱が貯湯タンク2に大量に余ってしまう。
これに対して、風呂負荷予測処理を行った場合には、例えば図16の斜線で塗りつぶした棒グラフに示すように、熱負荷ピークが19:00にまとまって発生し、複数の時間帯に分散して発生しない。そのため、実際の風呂負荷が約21MJである場合には、運転パターンは、19:00までに少なくとも21MJを貯湯タンク2に蓄熱するように作成され、風呂の湯張りに湯が不足して、ガスバーナ14で追い焚きしたり、貯湯タンク2に湯を余らせて大量の残熱を発生させる可能性が低く、家庭用コジェネシステム1が効率的に運用される。
このように、本実施の形態の家庭用コジェネシステム1の運転制御装置30Eでは、風呂11Bの湯張りを開始する風呂時刻を流量計15Bで検出してデータベース36に記憶しておき、データベース36に記憶されている風呂時刻から予測対象日の風呂時刻を予測する(図15のS69参照)。一般家庭では、貯湯タンク2の湯は風呂の湯張りに最も多く使用されることが多く、家庭用コジェネシステム1の運転制御装置30Eは、精度良く予測した風呂時刻に向けて熱回収するように運転パターンを作成し、発電機8を運転制御するので、熱不足や放熱損の発生を低減できる。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Eによれば、熱負荷ピーク時刻を精度良く予測することができ、家庭用コジェネシステム1の省エネ性及び経済性を高めることができる。
また、熱負荷ピーク量が風呂時刻に発生するようにエネルギー負荷パターンを補正するので(図15のS70参照)、熱負荷ピーク量が複数の時間帯に分散して発生することを防止できる。
ところで、夏場には、風呂が使用されず、風呂時刻を検出できない場合がある。この場合には、流量計15が計測した熱負荷をデータベース36に記憶し、熱負荷ピーク時刻を日別に算出してデータベース36に記憶しておき、風呂用流量計15Bが流量を検出せず、風呂時刻が発生しないと判断したときに、過去の熱負荷ピーク時刻から予測対象日の熱負荷ピーク時刻を予測する。ここで、熱負荷の記憶、熱負荷ピーク時刻の算出、熱負荷ピーク時刻の記憶、予測対象日の熱負荷ピーク時刻の予測等の処理は、図15のフローチャートにおいて「給湯負荷」と「風呂負荷」とを合わせて「熱負荷」とし、「風呂負荷」を「熱負荷ピーク量」に置き換え、「風呂時刻」を「熱負荷ピーク時刻」に置き換えれば、図15の処理と実質的に同じであるため、詳細な説明を省略する。これにより、風呂負荷がない場合でも、精度良く算出した熱負荷ピーク時刻に向けて熱回収するように運転パターンを作成することができ、家庭用コジェネシステム1の省エネ性及び経済性を確保できる。そして、予測した熱負荷パターンの熱負荷ピーク量が予測対象日の熱負荷ピーク時刻に発生するように、予測した熱負荷パターンを補正すれば、熱負荷ピークが複数の時間帯に分散して発生することを防止できる。なお、風呂負荷が発生している場合でも、熱負荷ピーク時刻や熱負荷ピーク量を用いて熱負荷パターンを予測することも可能である。
(第6実施の形態)
次に、本発明の家庭用コジェネシステムの運転制御装置の第6実施の形態について図面を参照して説明する。
本実施の形態の家庭用コジェネシステム1の運転制御装置30Fは、時間サイクル可変プログラム(「時間サイクル可変手段」に相当。)41を備える点で第1実施の形態と相違している。よって、ここでは、第1実施の形態と相違する点について詳細に説明し、共通する構成には同一符号を用いて説明を適宜省略する。
熱負荷や電力負荷は家庭の生活パターンに応じて発生し、ある程度大きな熱負荷や電力負荷が日をまたいで発生したり、1日の24時間より短いサイクルで発生したり、或いは、24時間より長いサイクルで発生することもある。このように、生活パターンは千差万別であり、時間サイクルを0時〜24時に固定すると、家庭用コジェネシステム1の最適な運転パターンを作成できない。そのため、本実施の形態の家庭用コジェネシステム1の運転制御装置30Fは、ROM33が時間サイクル可変プログラム41を格納し、1日目(予測対象日)の時間サイクルを予測対象日前日の運転制御終了時刻から予測対象日前日の運転制御終了時刻+48時間として、その中で最も省エネとなりうる時間帯を選ぶことで、その家庭にあった最適な時間サイクルを見つけている。
図17は、時間サイクル可変処理のフローチャートである。図19は、1日の時間サイクルを示す図である。
運転制御装置30Fは、ROM33から時間サイクル可変プログラム41を読み出して図17に示す時間サイクル可変処理を実行すると、先ずS81において、第1実施の形態と同様の手順(図3のS12〜S17参照)で予測対象日の熱負荷パターンを予測する。
そして、S82において、図19に示すように、1日目(予測対象日)の運転制御開始時刻を予測対象日前日の運転制御終了時刻とし、予測対象日の運転制御終了時刻を運転制御開始時刻から所定時間経過後までに仮決めして、予測対象日の時間サイクルHと仮決めする。本実施の形態では、0:00〜18:00を予測対象日の時間サイクルH1と仮決めする。また、予測対象日の熱負荷、電力負荷についても、その時間サイクルH1(0:00〜18:00)の範囲で算出するものとする。
そして、S83において、予測対象日の発電機8の運転パターンについても、S82で設定した時間サイクルH1(0:00〜18:00)の範囲内で作成するものとする。
そして、S84において、2日目(予測対象日翌日)の時間サイクルHAについては、図19に示すように、S82で仮決めした予測対象日の運転制御終了時刻を予測対象日翌日の運転制御開始時刻とし、S82で仮決めした予測対象日前日の運転制御終了時刻+48時間を予測対象日翌日の運転制御終了時刻と仮決めする。本実施の形態では、18:00〜48:00を予測対象日翌日の時間サイクルHA1と仮決めする。また、予測対象日翌日の熱負荷、電力負荷についても、その時間サイクルHA1(18:00〜48:00)の範囲で算出するものとする。
そして、S85において、予測対象日翌日の発電機8の運転パターンについても、S84で設定した時間サイクルHA1(18:00〜48:00)の範囲内で作成するものとする。
そして、S86において、時間サイクルH1,HA1で運転を実施したときに、最も省エネとなる運転時間D1を選択する。運転時間の選択方法としては、例えば、予測対象日に発電機8を起動・停止する時刻と予測対象日翌日に発電機8を起動・停止する時刻とをずらしながら一次エネルギーをそれぞれ算出し、一次エネルギーが最小となる運転時間D1を含む運転パターンを選択する。
そして、S87において、予測対象日の時間サイクルH1(0:00〜18:00)を1時間増やして時間サイクルH2(0:00〜19:00)とし、予測対象日翌日の時間サイクルHA1(18:00〜48:00)を1時間減らして時間サイクルHA2(19:00〜48:00)とする。
そして、S88において、S87で設定した時間サイクルH2,HA2の中で発電機8を運転したときに、最も省エネとなる運転時間D2をS86と同様にして選択する。
そして、S89において、予測対象日の時間を所定の時間分増加させたか否かを判断する。ここで、所定の時間は、予測対象日の時間サイクルHを24時間に限定しないようにするため、任意に設定することができる。本実施の形態では、所定の時間を12時間に設定している。予測対象日の運転制御終了時刻を18:00から12時間が経過した30:00まで増加させていない場合には(S89:NO)、S87に戻って処理を続行する。
一方、予測対象日の運転制御終了時間を18:00から12時間分増加させた場合には(S89:YES)、S90において、S82〜S89の処理で選択した運転時間Dの中で最も一次エネルギー量が少なく、省エネとなる運転時間Dnと時間サイクルHn,HAnを選択する。このとき、予測対象日の時間サイクルHを24時間に限定しないため、図19に示すように、家庭の熱負荷と電力負荷に合わせて予測対象日の時間サイクルHを0:00〜30:00に設定することが可能である。
そして、S91において、予測対象日の運転制御開始時刻になったら運転パターンに従って発電機8を運転制御する。
そして、S92において、予測対象日の運転制御終了時刻になったか否かを判断する。予測対象日の運転制御終了時刻前であれば(S92:NO)、S93において、発電機8の運転を継続する。一方、予測対象日の運転制御終了時刻になったら(S92:YES)、S94において、予測対象日の運転制御最終時刻を予測対象日の運転開始時刻として、S81以降の作業を繰り返す。
このように、本実施の形態の家庭用コジェネシステム1の運転制御装置30Fは、予測対象日の時間サイクルHを可変させるので(図18のS82〜S90参照)、例えばある程度大きな熱負荷や電力負荷が日付変更をまたいで発生しても、日付変更後の時刻を予測対象日の運転制御終了時刻に設定するように時間サイクルHを設定することができ、また例えば、午前中のみ熱負荷や電力負荷が発生する場合には、予測対象日の12時を運転制御終了時刻に設定して時間サイクルHを設定したりすることができる。そして、設定した時間サイクルHに合わせて予測対象日の熱負荷パターンを予測して運転パターンを作成し、発電機8を運転制御する。
従って、本実施の形態の家庭用コジェネシステム1の運転制御装置30Fによれば、家庭に応じた1日の時間サイクルHを用いることで家庭のエネルギー負荷パターンに関する予測精度を向上させ、省エネ性及び経済性の高い発電機8の運転パターンを計画することができる。
特に、予測対象日前日の運転制御終了時刻から予測対象日翌日の所定時刻までの時間を二分割し、前半を第1日目とし、後半を第2日目と仮決めして、第1日目と第2日目の組み合わせを複数作成し、各組み合わせ毎に一次エネルギーが最小となる運転パターンを仮決めし(図18のS82〜S89、図19参照)、一次エネルギーが最小となる運転パターンを選択して、第1日目の時間サイクルを予測対象日の時間サイクルとすれば(図18のS90参照)、予測対象日とその翌日の省エネ性まで考慮した運転パターンを作成することができ、省エネ性や経済性をより一層向上させることができる。
以上、本発明の実施の形態について説明したが、本発明は、上記実施の形態に限定されることなく、色々な応用が可能である。
(1)上記実施の形態では、水温を用いて熱負荷パターンを予測したが、外気温を用いて熱負荷パターンを予測してもよい。この場合、外気温センサで検出した外気温データを入力してもよいし、インターネットに運転制御装置を接続して、外気温の予測値を入力してもよい。
(2)例えば、上記第1実施の形態では、予測対象日の喫緊の水温データを時間帯別に平均処理して予測対象日の水温を時間帯別に予測した。これに対して、喫緊の水温を1日平均した平均値を予測対象日の水温と予測してもよい。また、運転制御装置30Aをインターネットに接続し、予測対象日の予測水温を入力するようにしてもよい。
(3)例えば、上記第4実施の形態では、移動平均値を2点設けたが、平均週を増やすことや相関式算出のためのデータ点数を増やしてもよい。
(4)例えば、上記第5実施の形態では、風呂時刻の算出方法として最頻度に熱負荷ピークが発生した時刻を用いたが、正規分布を用いて算出してもよい。
(5)例えば、上記第1〜第3実施の形態では、熱負荷パターンの予測について説明したが、電力負荷パターンの予測に第1〜第3実施の形態の処理を適用してもよい。
本発明の第1実施の形態に係り、家庭用コジェネシステムの概略構成図である。 同じく、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、水温配慮型運転制御処理のフローチャートである。 同じく、水温と熱負荷の関係を示す図であって、縦軸に熱負荷(MJ)を示し、横軸に水温(℃)を示している。 本発明の第2実施の形態に係り、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、データ排除処理のフローチャートである。 同じく、熱負荷と電力負荷の実際と予測を示す図であって、縦軸に総熱需要(MJ)及び総電力需要(kWh)を示し、横軸に日付を示している。 本発明の第3実施の形態に係り、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、ある時間帯の熱負荷の予測との乖離を示す図であって、縦軸に総需要(MJ)と水温(℃)を示し、横軸に日付を示している。 同じく、熱負荷選択処理のフローチャートである。 本発明の第4実施の形態に係り、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、移動平均型運転制御処理のフローチャートである。 同じく、ある時間帯の移動平均値を用いた算出方法を概念的に示す図であり、縦軸に熱負荷(MJ)を示す。 本発明の第5実施の形態に係り、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、風呂負荷予測処理のフローチャートである。 同じく、風呂負荷の分散を示す図であって、縦軸に熱需要(MJ)を示し、横軸に予測対象日の時刻を示している。 本発明の第6実施の形態に係り、家庭用コジェネシステムの運転制御装置のブロック図である。 同じく、時間サイクル可変処理のフローチャートである。 同じく、1日の時間サイクルを示す図であって、縦軸に電力負荷を示し、横軸に2日分の時刻を示す。 1日の総熱負荷の実際予測値を示す図であって、縦軸に総熱負荷(MJ)を示し、横軸に日付を示す。 2日分の電力負荷を示す図であって、縦軸に電力需要(W)を示し、横軸に2日分の時刻を示す。
符号の説明
1 家庭用コジェネシステム
2 貯湯タンク
8 発電機
11 熱機器
11B 風呂
21 電力機器
15 流量計
15B 流量計
17 水温計
30A,30B,30C,30D,30E,30F 運転制御装置
35 水温配慮型運転制御プログラム
36 データベース
37 データ排除プログラム
38 熱負荷選択プログラム
39 移動平均型運転制御プログラム
40 風呂負荷予測プログラム
41 時間サイクル可変プログラム

Claims (11)

  1. 発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷パターンを予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、
    エネルギー負荷検出手段が所定間隔で検出したエネルギー負荷を記憶するエネルギー負荷記憶手段と、
    水温・外気温検出手段が所定間隔で検出した水温又は外気温を記憶する水温・外気温記憶手段と、
    前記エネルギー負荷記憶手段に記憶されているエネルギー負荷と、前記水温外気温記憶手段に記憶されている水温又は外気温とから、エネルギー負荷と水温又は外気温との相関式を算出する相関式算出手段と、
    予測対象日の水温又は外気温を予測する水温・外気温予測手段と、
    前記相関式算出手段が算出した相関式と、前記水温・外気温予測手段が予測した水温又は外気温とから予測対象日のエネルギー負荷パターンを予測するエネルギー負荷パターン予測手段と、
    を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  2. 請求項1に記載する家庭用コジェネシステムの運転制御装置において、
    前記相関式算出手段は、所定期間分のデータについて最小二乗法を用いて相関式を算出することを特徴とする家庭用コジェネシステムの運転制御装置。
  3. 請求項1又は請求項2に記載する家庭用コジェネシステムの運転制御装置において、
    過去の熱負荷と喫緊の日の熱負荷の有無が異なり、且つ、水温又は外気温が一定の増減傾向があるときに、喫緊の日の熱負荷データを用いて予測対象日の熱負荷パターンを予測する熱負荷選択手段を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  4. 請求項1乃至請求項3の何れか1つに記載する家庭用コジェネシステムの運転制御装置において、
    前記エネルギー負荷パターン予測手段が予測したエネルギー負荷パターンと、予測対象日当日のエネルギー負荷とを比較してエネルギー負荷パターンの的中率を算出し、的中率が設定値を下回るときに、前記予測対象日当日のエネルギー負荷を前記エネルギー負荷記憶手段から排除するデータ排除手段を有すること、を特徴とする家庭用コジェネシステムの運転制御装置。
  5. 発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷パターンを予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、
    エネルギー負荷検出手段が検出したエネルギー負荷を記憶するエネルギー負荷記憶手段と、
    予測対象日から所定期間前までのエネルギー負荷を前記エネルギー負荷記憶手段から読み出し、古いデータから順に平均週分の移動平均値を算出する移動平均算出手段と、
    前記移動平均算出手段が算出した移動平均値に対して相関式を算出する相関式算出手段と、
    前記相関式算出手段が算出した相関式から予測対象日のエネルギー負荷パターンを予測するエネルギー負荷パターン予測手段とを有することを特徴とする家庭用コジェネシステムの運転制御装置。
  6. 発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を用いて加熱した湯を貯湯タンクに貯めて家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、
    風呂の湯張りを開始する風呂時刻を検出する風呂時刻検出手段と、
    前記風呂時刻を記憶する風呂時刻記憶手段と、
    前記風呂時刻記憶手段に記憶されている風呂時刻から予測対象日の風呂時刻を予測する風呂時刻予測手段と、を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  7. 請求項6に記載する家庭用コジェネシステムの運転制御装置において、
    前記エネルギー負荷パターンのうちの風呂負荷が前記予測対象日の風呂時刻に発生するように、前記エネルギー負荷パターンを補正する補正手段を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  8. 発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を用いて加熱した湯を貯湯タンクに貯めて家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、
    熱負荷検出手段が検出した熱負荷を記憶する熱負荷記憶手段と、
    前記熱負荷記憶手段に記憶されている熱負荷から熱負荷ピーク時刻を算出する熱負荷ピーク時刻算出手段と、
    前記熱負荷ピーク時刻算出手段が算出した熱負荷ピーク時刻を記憶する熱負荷ピーク時刻記憶手段と、
    前記熱負荷ピーク時刻記憶手段に記憶されている熱負荷ピーク時刻から予測対象日の熱負荷ピーク時刻を予測する熱負荷ピーク時刻予測手段と、を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  9. 請求項8に記載する家庭用コジェネシステムの運転制御装置において、
    前記エネルギー負荷パターンの熱負荷ピーク量が前記予測対象日の熱負荷ピーク時刻に発生するように、前記エネルギー負荷パターンを補正する補正手段を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  10. 発電機が発電した電力を家庭用の電力機器に供給する一方、発電機が発生する熱を回収して家庭用の熱機器に供給する家庭用コジェネシステムに備え付けられ、予測対象日のエネルギー負荷を予測して発電機の運転パターンを決定する家庭用コジェネシステムの運転制御装置において、
    予測対象日の時間サイクルを可変する時間サイクル可変手段を有することを特徴とする家庭用コジェネシステムの運転制御装置。
  11. 請求項10に記載する家庭用コジェネシステムの運転制御装置において、
    前記時間サイクル可変手段は、
    予測対象日前日の運転制御終了時刻から予測対象日翌日の所定時刻までの時間を二分割し、前半を第1日目と、後半を第2日目と仮決めし、第1日目と第2日目の組み合わせを複数作成する分割部と、
    前記分割手段によって作成された組み合わせ毎に、第1日目と第2日目の一次エネルギーが最小となる運転パターンを仮決定する運転パターン仮決定部と、
    前記運転パターン仮決定手段によって仮決定された運転パターンのうち、一次エネルギーが最小となる組み合わせを選択し、第1日目の時間サイクルを決定する時間サイクル決定部と、を有することを特徴とする家庭用コジェネシステムの運転制御装置。
JP2004278021A 2004-09-24 2004-09-24 家庭用コジェネシステムの運転制御装置 Pending JP2006090240A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278021A JP2006090240A (ja) 2004-09-24 2004-09-24 家庭用コジェネシステムの運転制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004278021A JP2006090240A (ja) 2004-09-24 2004-09-24 家庭用コジェネシステムの運転制御装置

Publications (1)

Publication Number Publication Date
JP2006090240A true JP2006090240A (ja) 2006-04-06

Family

ID=36231458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278021A Pending JP2006090240A (ja) 2004-09-24 2004-09-24 家庭用コジェネシステムの運転制御装置

Country Status (1)

Country Link
JP (1) JP2006090240A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006288037A (ja) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd エネルギ供給システム
JP2006329611A (ja) * 2005-04-25 2006-12-07 Osaka Gas Co Ltd コージェネレーションシステム
JP2008039261A (ja) * 2006-08-03 2008-02-21 Toho Gas Co Ltd コージェネレーションシステムの運転制御装置
JP2008057854A (ja) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd コジェネレーションシステム
JP2008175504A (ja) * 2007-01-22 2008-07-31 Gastar Corp ガス使用量の表示機能を備えている給湯器のリモコン
JP2008241208A (ja) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd コージェネレーションシステム
JP2008249198A (ja) * 2007-03-29 2008-10-16 Nippon Oil Corp コジェネレーションシステム
JP2008310997A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 燃料電池コージェネレーションシステム、その制御方法及び制御プログラム
JP2012042202A (ja) * 2011-10-06 2012-03-01 Toho Gas Co Ltd コージェネレーションシステムの運転制御装置
JP2013087992A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 負荷予測装置、空調システム、負荷予測プログラムおよび負荷予測方法
JP2013142490A (ja) * 2012-01-10 2013-07-22 Rinnai Corp 暖房装置
CN103322645A (zh) * 2013-06-13 2013-09-25 浙江工业大学 一种中央空调的冷冻水回水温度的预测控制方法
JP2014037929A (ja) * 2012-08-20 2014-02-27 Tokyo Gas Co Ltd 熱供給装置の制御方法および熱供給システム
JP2015021631A (ja) * 2013-07-16 2015-02-02 トヨタホーム株式会社 浴槽給湯システム
JP2016032352A (ja) * 2014-07-29 2016-03-07 株式会社デンソーウェーブ 使用電力量変化パターン予測装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614809B2 (ja) * 2005-03-31 2011-01-19 大阪瓦斯株式会社 エネルギ供給システム
JP2006288037A (ja) * 2005-03-31 2006-10-19 Osaka Gas Co Ltd エネルギ供給システム
JP2006329611A (ja) * 2005-04-25 2006-12-07 Osaka Gas Co Ltd コージェネレーションシステム
JP2008039261A (ja) * 2006-08-03 2008-02-21 Toho Gas Co Ltd コージェネレーションシステムの運転制御装置
JP2008057854A (ja) * 2006-08-31 2008-03-13 Aisin Seiki Co Ltd コジェネレーションシステム
JP2008175504A (ja) * 2007-01-22 2008-07-31 Gastar Corp ガス使用量の表示機能を備えている給湯器のリモコン
JP2008241208A (ja) * 2007-03-28 2008-10-09 Osaka Gas Co Ltd コージェネレーションシステム
JP2008249198A (ja) * 2007-03-29 2008-10-16 Nippon Oil Corp コジェネレーションシステム
JP2008310997A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 燃料電池コージェネレーションシステム、その制御方法及び制御プログラム
JP2012042202A (ja) * 2011-10-06 2012-03-01 Toho Gas Co Ltd コージェネレーションシステムの運転制御装置
JP2013087992A (ja) * 2011-10-14 2013-05-13 Fuji Electric Co Ltd 負荷予測装置、空調システム、負荷予測プログラムおよび負荷予測方法
JP2013142490A (ja) * 2012-01-10 2013-07-22 Rinnai Corp 暖房装置
JP2014037929A (ja) * 2012-08-20 2014-02-27 Tokyo Gas Co Ltd 熱供給装置の制御方法および熱供給システム
CN103322645A (zh) * 2013-06-13 2013-09-25 浙江工业大学 一种中央空调的冷冻水回水温度的预测控制方法
JP2015021631A (ja) * 2013-07-16 2015-02-02 トヨタホーム株式会社 浴槽給湯システム
JP2016032352A (ja) * 2014-07-29 2016-03-07 株式会社デンソーウェーブ 使用電力量変化パターン予測装置

Similar Documents

Publication Publication Date Title
JP2006090240A (ja) 家庭用コジェネシステムの運転制御装置
JP6381362B2 (ja) 太陽光発電装置連携ヒートポンプ貯湯式給湯システム
JP6086014B2 (ja) ヒートポンプ給湯器
JP5191636B2 (ja) コージェネレーションシステム
JP2016044849A (ja) 太陽光発電装置連携ヒートポンプ貯湯式給湯システム
JP4875387B2 (ja) コージェネレーションシステム
JP2005012906A (ja) コージェネレーション・システムの出力制御装置及び出力制御方法
JP4966066B2 (ja) コージェネレーションシステム
JP4426860B2 (ja) コージェネレーションシステムの運転制御システム
JP2006250471A (ja) エネルギ供給システム
JP4516875B2 (ja) エネルギ供給システム
JP4525744B2 (ja) 貯湯式給湯機の運転制御装置
JP2005223964A (ja) コージェネレーションシステムの運転制御システム
JP5314813B1 (ja) 熱電併給システム
JP4378121B2 (ja) 家庭用コージェネレーションシステムの運転制御システム
JP4914141B2 (ja) コージェネレーションシステムの運転制御装置
JP5236407B2 (ja) コージェネレーションシステム、運転制御装置、コージェネレーションシステムの運転方法及びプログラム
JP4916197B2 (ja) コージェネレーションシステム
JP4367695B2 (ja) コージェネレーションシステム
JP2007107873A (ja) コージェネレーションシステム
JP4841994B2 (ja) コージェネレーションシステム
JP5295694B2 (ja) 燃料電池システムとその運転方法
JP7035969B2 (ja) 貯湯式給湯装置
JP4783691B2 (ja) 家庭用燃料電池コジェネシステムの運転制御装置
JP5478580B2 (ja) コージェネレーションシステムの運転制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707