JP2006079471A - 電流制御回路,半導体装置及び撮像装置 - Google Patents

電流制御回路,半導体装置及び撮像装置 Download PDF

Info

Publication number
JP2006079471A
JP2006079471A JP2004264634A JP2004264634A JP2006079471A JP 2006079471 A JP2006079471 A JP 2006079471A JP 2004264634 A JP2004264634 A JP 2004264634A JP 2004264634 A JP2004264634 A JP 2004264634A JP 2006079471 A JP2006079471 A JP 2006079471A
Authority
JP
Japan
Prior art keywords
current control
current
voltage
pmos
control circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004264634A
Other languages
English (en)
Inventor
Makoto Miyamura
真 宮村
Kiminori Takemasa
公則 竹正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2004264634A priority Critical patent/JP2006079471A/ja
Publication of JP2006079471A publication Critical patent/JP2006079471A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)
  • Control Of Electric Motors In General (AREA)
  • Lens Barrels (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

【課題】
ホール素子等の負荷に正確かつ微小なステップ幅で電流量を調整し、電流制御素子のバイアス電圧の圧縮を生じずさせず、かつPMOSといった電流制御素子を動作させるための制御電圧を分圧する必要のない電流制御回路の提供
【解決手段】
負荷への電流を制御する第一の電流制御素子と、
前記第一の電流制御素子の制御端子に制御端子が接続された第二の電流制御素子と、
前記第二の電流制御素子のグランド側の端子とグランドとの間に接続されたインピーダンス素子と、
前記第二の電流制御素子のグランド側の端子と前記インピーダンス素子との間に第一の入力端子が接続され、第二の入力端子には前記負荷への電流量を調整するための制御信号が入力され、出力が前記第一の電流制御素子及び前記第二の電流制御素子の共通接続点に接続されたオペアンプとからなることを特徴とする電流制御回路。
【選択図】図3

Description

本発明は電流制御回路,半導体装置及びそれを用いた撮像装置に係るものであり、ズーム、フォーカス、アイリスといった撮像装置のレンズ制御のためのアクチュエータとして用いられるモータの制御を的確に行なうことを目的とする。
撮像装置のレンズ制御を行うためのモータに使用されるコイルの位相情報を取得するためにはホール素子が用いられ、ホール素子が受けた磁界の変化によりホール素子が検出して出力する電圧の大きさを決定するホール素子の感度は、ホール素子に流す電流量を調整することによって行われる。しかしホール素子の特性は製品ごとの絶対ばらつきが大きく、また、気温などの外部環境によっても特性が変化するため、ホール素子特性を一定に保つため、電源立ち上げ時毎にホール素子に流す電流量を調整する必要がある。
従来のホール素子に流す電流量の調整方法について説明する。従来は、図1に示すように、撮像装置のCPUから所望の電流をホール素子6に流すための制御信号であるデジタル信号がDAC(デジタル/アナログ変換器)7へと入力され、DAC7によりアナログ量に変換されたDAC7の出力である制御信号はインピーダンス素子の一つである抵抗R1と抵抗R2によって分圧されてオペアンプ4へと入力され、オペアンプ4の出力が電流制御素子としてのNMOS(N型MOSトランジスタ)5のゲート電圧であることから、撮像装置のCPUからのデジタル信号によってNMOS5のゲート電圧を調整してホール素子6に流す電流量の調整を行っていた。
NMOS5が飽和領域で動作する場合は、NMOS5のゲート電圧をVg、NMOS5のゲート・ソース間の電圧をVgs,NMOS5のドレイン・ソース間に流れる電流をIds、抵抗R3の抵抗値をR3Ωとすると、
Vg=Vgs+R3Ω×Ids・・・(式1)
となる。飽和領域ではトランジスタの基本動作方程式が
Ids=K(Vgs−Vt)・・・(式2)(K:定数)
であることから、式1,2より
Vg=Vgs+R3Ω×K(Vgs−Vt)・・・(式3)
となり、Vg、R3Ω、Vtが定数であることからVgsが算出される。ここで(式1)においてR3Ω×Idsが点Aの電位VAであるので、NMOS5のゲート電圧によって定まる点Aの電位VAと抵抗R3とによってホール素子6の電流量が決定される。
次に、抵抗R3がNMOS5のソース側に接続される必要性について述べる。上述したとおり、負荷であるホール素子6の電流量は点Aの電位VAと抵抗R3の抵抗値R3Ωとによって決定されるが、点Aでの電流値をIとするとI=(VA/R3Ω)であり、前記のとおりホール素子は急峻な特性を持つので微小な電流のステップ幅で制御することから抵抗R3はホール素子に流す電流量を調整するために必要であり、またある程度大きな抵抗値を持たせる必要がある。
次に、撮像装置のCPUからのデジタル信号を分圧(同図においては抵抗R1と抵抗R2による分圧)する必要性について述べる。DAC7の直線性を精度良く動作させるためには、DAC7の電源電圧8(AVDD)が大きいほうがミスコードが生じないので好ましいが、ホール素子6は感度が良く急峻な特性をもつことから微小な電流のステップ幅で制御するので、抵抗R3の抵抗値をR3Ωとし、点Aの電流値をIとするとI=(VA/R3Ω)なので微小な電流のステップ幅で制御するためにはDAC7の出力電圧のステップ幅を分圧し、ホール素子6の制御に適した電圧にレベルシフトする必要があるのでDAC7の出力電圧を分圧している。
次に、抵抗R3により生ずる問題と、抵抗R1と抵抗R2による分圧を行うことによって生ずる問題を述べる。ホール素子6に電流を多く流そうとすると、抵抗R3に流れる電流によって発生する電圧により点Aの電位VAが上昇してNMOS5のドレイン・ソース間の電圧(Vds)が圧縮される。NMOS5のドレイン側の電圧から抵抗R3を介してグランドまでの電位は、ホール素子6が接続されているので、NMOS5のドレイン側の電位は電源電圧8より低くならざるを得ないので、(ここでは説明の簡単のためNMOS5のドレイン側から抵抗R3を介してグランドまでの電位を電源電圧8の2分の1である1/2AVDDに固定する必要があると想定する)、図2に示すように、抵抗R3によって生じる電圧VRが大きくなることによってNMOS5を飽和領域で動作させるため必要なVdsが圧縮されることとなり、飽和状態で動作させなければならないNMOS5が非飽和状態での動作になってしまうことから、DAC7の出力電圧の出力範囲の一部しかホール素子6に流す電流量を調整するための点Aの電位VAの可変幅として利用できなくなる。つまり、抵抗R3は、ホール素子6に流す電流量を調整するためにNMOS5のソース側についていることは必要であるが(段落4乃至6参照)、電流発生時にNMOS5のVdsを圧縮してしまうこととなりホール素子の電流量を決定する電圧VAの可変幅を大きく取ることができないこととなる(以上を問題a)。
また抵抗R1と抵抗R2によって分圧を行うと、図2(同図において、(1)は図1の従来の電流制御回路の縮小図、(2)はDAC7の出力電圧のうち使用できる電圧の出力範囲を示すためのグラフ、(3)はオペアンプ4への入力電圧とオペアンプ4のオフセットの関係を示すグラフ、
(4)は電源電圧8(AVDD)からグランド(GND)までの間で発生する電圧を示すためのグラフである)に示すように、DAC7の出力電圧がオペアンプ4への入力の際には抵抗R1と抵抗R2によって分圧されるが、オペアンプ4のオフセット電圧(図2のグラフ(3)に示すアンプオフセット)は圧縮されないのでオペアンプ4のオフセット電圧は無視することができないこととなる。しかもDAC7の出力電圧のステップ幅はほぼ
((AVDD−DAC7のオフセット電圧)/撮像装置のCPUからのデジタル信号数)
であり、減電時においては撮像装置のCPUからの強度操作レベル数を小さな電源電圧でDA変換(デジタル/アナログ変換)を行う必要があるため、DAC7の出力電圧のステップ幅も小さくなるので、DAC7の出力がミスコードによる直線性を失ったものとなってしまい、さらにそれを抵抗分割すると抵抗によるばらつきが生じることから、撮像装置のCPUからのデジタル信号を正確にNMOS5のゲート電圧に加えることができないこととなる(以上を問題b)。
本発明は従来の前記実情に鑑み、従来の技術に内在する前記の問題a,bを解消する為になされたものであり、第1の目的はホール素子等の負荷に正確かつ微小なステップ幅で電流量を調整し、ホール素子に接続された電流制御素子のバイアス電圧の圧縮を生じずさせず、かつNMOSといった電流制御素子を動作させるための制御電圧を分圧する必要のない電流制御回路の提供であり、第2の目的は前述の電流制御回路を用いた半導体装置を提供することであり、第3の目的は前述の半導体装置を搭載した撮像装置の提供である。
本発明の第一の目的は請求項1記載の発明である、
負荷への電流を制御する第一の電流制御素子と、
前記第一の電流制御素子の制御端子に制御端子が接続された第二の電流制御素子と、
前記第二の電流制御素子のグランド側の端子とグランドとの間に接続されたインピーダンス素子と、
前記第二の電流制御素子のグランド側の端子と前記インピーダンス素子との間に第一の入力端子が接続され、第二の入力端子には前記負荷への電流量を調整するための制御信号が入力され、出力が前記第一の電流制御素子及び前記第二の電流制御素子の共通接続点に接続されたオペアンプとからなることを特徴とする電流制御回路によって達成される。
本発明の第一の目的は請求項2記載の発明である、
前記電流制御素子がPMOSであることを特徴とする、請求項1記載の電流制御回路によって達成される。
本発明の第一の目的は請求項3記載の発明である、
ドレインに接続された負荷への電流を制御する第一のPMOSと、
前記第一のPMOSのゲートに、ゲートが接続された第二のPMOSと、
前記第二のPMOSのドレインとグランドとの間に接続された抵抗と、
前記第二のPMOSのドレインと前記抵抗との間に第一の入力端子が接続され、第二の入力端子には前記負荷への電流量を調整するための制御信号が入力され、出力が前記第一のPMOS及び第二のPMOSのゲートの共通接続点に接続されたオペアンプとからなることを特徴とする電流制御回路によって達成される。
本発明の第一の目的は請求項4記載の発明である、
前記負荷がホール素子であることを特徴とする、請求項1乃至請求項3のいずれかに記載の電流制御回路によって達成される。
本発明の第1の目的は請求項5記載の発明である、
DACからの出力により電流制御素子の制御端子の電位を調整することによりホール素子に流す電流量を調整する電流調整回路において、ホール素子に流す電流量を調整するのに用いるインピーダンス素子を、ホール素子と電流制御素子とを含む直列接続体とは異なる直列接続体に設けたことを特徴とする電流制御回路によって達成される。
本発明の第1の目的は請求項6記載の発明である、
前記オペアンプにはDACからの出力が入力されることを特徴とする、請求項1乃至請求項4のいずれかに記載の電流制御回路によって達成される。
本発明の第2の目的は請求項7記載の発明である、
請求項1乃至請求項6のいずれかに記載の電流制御回路を備えることを特徴とする半導体装置によって達成される。
本発明の第3の目的は請求項8記載の発明である、
請求項7記載の半導体装置と、前記半導体装置に接続されたホール素子とを備えることを特徴とする撮像装置によって達成される。
DACを経た撮像装置のCPUからの出力信号を分圧する必要がなく、ホール素子に流す電流量を減電時においても正確に制御でき、ホール素子に接続する電源電圧を従来に比して大きくとる必要のない低電圧動作を実現する。
本発明は、図3に示すようにDAC15の出力がオペアンプ14の反転入力端子へと入力され、電源電圧17から抵抗R11に流れる電流により発生する電圧によって決まる点Bの電位がオペアンプ14の非反転入力端子へ入力され、オペアンプ14の両端子への入力信号によりオペアンプ14の出力電圧が制御される。オペアンプ14の出力電圧はPMOS(P型MOSトランジスタ)12のゲートへ接続されており、オペアンプ14の出力電圧、すなわちPMOS12のゲート電圧によって抵抗R11に流れる電流量が決定され、電源電圧(AVDD)17と、抵抗R11に流れる電流によって発生する電圧(VR2)と、PMOS12のドレイン・ソース間の電位によってオペアンプ14の非反転入力端子の電位が決定され、PMOS13とPMOS12はゲートが共通であることから、DAC15の出力電圧、すなわち撮像装置のCPUからのデジタル信号によってホール素子16に流れる電流量が決定される。
例えばホール素子16に流す電流量を少なくするためのデジタル信号が撮像装置のCPUからDAC15を経て、オペアンプ14の反転入力端子に入力されると、オペアンプ14の出力電圧は後述するホール素子16の電流量を多くするためのデジタル信号が撮像装置のCPUから発せられる場合と比較して大きな出力が出力され、PMOS12とPMOS13のゲート電圧が上昇するから、ホール素子16には、後述するホール素子16の電流量を多くするためのデジタル信号が撮像装置のCPUから発せられる場合に比較して、小さな電流が流れる。なおこのとき抵抗R11に流れる電流が小さくなり、抵抗R11によって発生する電圧(VR2)が撮像装置のCPUからの信号の入力の変化前に比較して小さくなる。オペアンプ14の非反転入力端子には(AVDD17−VR2−Vds)の電圧が入力され、オペアンプ14は帰還をかけて安定するように動作している。またホール素子16に流れる電流量を多くするためのデジタル信号が撮像装置のCPUからDAC15を経て、オペアンプ14の反転入力端子に入力されると、オペアンプ14の出力電圧は減少して、あるいは前述したホール素子16の電流量を少なくするためのデジタル信号が入力される場合に比較してオペアンプ14からは小さな出力が出力され、PMOS12とPMOS13のゲート電圧が減少することから、ホール素子16には、前述したホール素子16の電流量を少なくするためのデジタル信号が撮像装置のCPUから発せられる場合に比較して、大きな電流が流れる。なお、このとき抵抗R11に流れる電流も多くなり、抵抗R11によって発生する電圧(VR2)が大きくなる。オペアンプ14の非反転入力端子には(AVDD17−VR2−Vds)の電圧が入力され、オペアンプ14は帰還をかけて安定するように動作している。
次に本発明に係わる電流制御回路を従来例と比較しつつ、前記問題a,bをどのように解決したかを述べる。
図1に示す従来の電流制御回路のホール素子6の電流量を調整するための抵抗R3を、図3に示す本発明に係わる電流制御回路ではPMOS12のドレイン側に抵抗R11として設けることで(解決手段1:問題aに対応)、大きな電流が抵抗R11に流れ、大きな電圧が抵抗R11に発生した際でも、負荷であるホール素子16が設けられた直列接続体においては、図4(同図の(1)は図3に示す本発明に係る電流制御回路の縮小図、(2)はDAC15の出力電圧のうち使用できる電圧の出力範囲を示すためのグラフ、(3)は電源電圧AVDDからグランドGNDまでの直列接続体で発生する電圧を示すグラフ、(4)は電源電圧AVDDから負荷を介してグランドGNDの間で発生する電圧を示すグラフである)のグラフ(3)に示すように、図1に示す従来例の電流制御回路の電圧特性である図2のグラフ(3)と比較して、ホール素子に接続されるPMOSのドレイン・ソース間の電圧Vdsを圧縮する電圧(図2のグラフ(4)で示すVRに相当する電圧)が発生せず、図4のグラフ(4)に示すようにマージンをとることが出来る(効果1)。なお、図2のホール素子6の電流量を調整するための抵抗R3により発生する電圧VRは、本発明に係る図4のグラフ(3)のホール素子16の電流量を調整するための抵抗R11で発生する電圧VR2に相当する。
また、図1に示す従来の電流制御回路ではホール素子6に流す電流量を調整するための抵抗R3に電圧を発生させるNMOS5のドレイン側の電位は、ホール素子16が接続されていることから、PMOS13のドレイン側の電位は電源電圧17より低くならざるを得ないが、図3に示す本発明に係わる電流制御回路では負荷であるホール素子16に接続されるPMOS13とゲート電圧を等しくするカレントミラー構成にしたPMOS12のソース側に、電源電圧よりも低く固定する必要のない新たな電源電圧(AVDD)17を別個に設けることで(解決手段2:問題aに対応)、電流調整のために用いられるPMOS12のゲート・ソース間電圧Vds(図4のグラフ(3)参照)が従来の図2のグラフ(4)に示す従来例の電流制御回路のNMOS5のVdsに比べて大きくとることができるので図1に示す従来の電流調整のためのNMOS5に比較して、図3に示す本発明に係わる電流調整のためのPMOS12は非飽和領域で動作するまでの電圧の可変幅VA2が大きい。すなわちホール素子に接続する電源電圧を低電圧で設計することが出来る(効果2)。
本発明に係わる電流制御回路では、前記二つの効果1,2により、図2と比較して、図4に示すようにホール素子の電流を調整するための制御電圧としての点A2の電位VA2の可変幅を広く利用することができる。また、図3に示す本発明に係わる電流制御回路では、負荷であるホール素子16を含む直列接続体ではVdsの圧縮が生じないことから、図4のグラフ(3)のマージン部分で示すように、電源電圧(AVDD)17が低い電圧で設定されていても動作が可能であるため、低電圧動作を実現するのである。
また、図3に示す本発明に係わる電流制御回路は、DAC15からの出力電圧を分圧しないので(解決手段2:問題bに対応)、図4のグラフ(2)に示すように、DAC15の出力範囲をほぼフルレンジで使用してオペアンプ14に入力することができる。これにより撮像装置のCPUからのデジタル信号を正確に電圧に変換してオペアンプ14へと入力することができ(従来ではミスコードが生じる恐れがあった)、結果としてPMOS13のゲート電圧を正確に制御出来る保証範囲を広く取ることが出来る(効果3)。すなわち図3に示す点A2の電位VA2の可変幅を大きくとることができ、正確にホール素子16に流す電流量を調整する保証範囲を広くとることが出来る。これは特に減電時に顕著に効果が現れる。
なお、本発明に係わる電流制御回路のPMOS13とPMOS12のゲートの面積比は5:1で形成されているがそれに限る必要は無く、ホール素子16に流す電流量などに応じて適宜設計変更することができる。
本発明に係る電流制御回路は単独で、あるいはその他の機能を備える回路とともに封止されて半導体装置となる。
図5に本発明に係る電流制御回路を封止した半導体装置を用いた撮像装置を示す。同図において撮像装置100は、ズームレンズ101、フォーカスレンズ102、アイリス103、CCD104、ADC105、画像処理部106、表示部108、記録部110、ホール素子H1,H2,H3、その他図示しない部品から構成されている。外部記憶媒体112は記録部110の記憶領域を拡張するために用いられる。
同図において、被写体はズームレンズ101、フォーカスレンズ102、アイリス103を経てCCD104とADC105によりデジタルデータへと変換され、画像処理部106により加工された後表示部108によって表示される。記録部110、あるいは外部記憶媒体112は画像処理部106により加工された画像を記録する。本発明に係る電流制御回路を備えた半導体装置はレンズドライバ部に設けられ、ホール素子H1,H2,H3からそれぞれズームレンズ101、フォーカスレンズ102、アイリス103の状態を示す信号が発せられ、該信号をレンズドライバが受けてズームレンズ10l、フォーカスレンズ102、アイリス103を制御する。
本撮像装置においては、ホール素子に用いる電源電圧を小さくすることができるので低消費電力化に繋がることとなる。
本発明は、上述した実施形態に限られることなく、特許請求の範囲に記載した事項の範囲内でのあらゆる設計変更はすべて本発明の範囲に含まれる。例えばMOS型トランジスタはバイポーラトランジスタに置き換えられても良く、オペアンプへの入力信号はDACの出力である制御電圧に限定される必要はなく、負荷はホール素子に限定されることはない。オペアンプの端子は反転入力端子と非反転入力端子が逆転して、その出力にインバータが接続されるような構成であっても良い。本発明に係る半導体装置が用いられるのは像装置に限らず、ビデオ撮像装置、車、等電気的な制御によって動作する物であればこれらに用いることも当然可能である。
従来の電流制御回路 (1)は図1の従来の電流制御回路の縮小図、(2)はDAC7の出力電圧のうち使用できる電圧の出力範囲を示すためのグラフ、(3)はオペアンプ4への入力電圧とオペアンプ4のオフセットの関係を示すグラフ、(4)は電源電圧8(AVDD)からグランド(GND)までの間で発生する電圧を示すためのグラフ 本発明に係わる電流制御回路 (1)は図3に示す本発明に係る電流制御回路の縮小図、(2)はDAC15の出力電圧のうち使用できる電圧の出力範囲を示すためのグラフ、(3)は電源電圧AVDDからグランドGNDまでの直列接続体で発生する電圧を示すグラフ、(4)は電源電圧AVDDから負荷を介してグランドGNDの間で発生する電圧を示すグラフ 本発明に係る撮像装置
符号の説明
R11 抵抗
12,13 PMOS
14 オペアンプ
7,15 DAC(デジタル/アナログ変換器)
16,H1,H2,H3 ホール素子
17 電源電圧(AVDD)
100 撮像装置

Claims (8)

  1. 負荷への電流を制御する第一の電流制御素子と、
    前記第一の電流制御素子の制御端子に制御端子が接続された第二の電流制御素子と、
    前記第二の電流制御素子のグランド側の端子とグランドとの間に接続されたインピーダンス素子と、
    前記第二の電流制御素子のグランド側の端子と前記インピーダンス素子との間に第一の入力端子が接続され、第二の入力端子には前記負荷への電流量を調整するための制御信号が入力され、出力が前記第一の電流制御素子及び前記第二の電流制御素子の共通接続点に接続されたオペアンプとからなることを特徴とする電流制御回路。
  2. 前記電流制御素子がPMOSであることを特徴とする、請求項1記載の電流制御回路。
  3. ドレインに接続された負荷への電流を制御する第一のPMOSと、
    前記第一のPMOSのゲートに、ゲートが接続された第二のPMOSと、
    前記第二のPMOSのドレインとグランドとの間に接続された抵抗と、
    前記第二のPMOSのドレインと前記抵抗との間に第一の入力端子が接続され、第二の入力端子には前記負荷への電流量を調整するための制御信号が入力され、出力が前記第一のPMOS及び第二のPMOSのゲートの共通接続点に接続されたオペアンプとからなることを特徴とする電流制御回路。
  4. 前記負荷がホール素子であることを特徴とする、請求項1乃至請求項3のいずれかに記載の電流制御回路。
  5. DACからの出力により電流制御素子の制御端子の電位を調整することによりホール素子に流す電流量を調整する電流調整回路において、ホール素子に流す電流量を調整するのに用いるインピーダンス素子を、ホール素子と電流制御素子とを含む直列接続体とは異なる直列接続体に設けたことを特徴とする電流制御回路。
  6. 前記オペアンプにはDACからの出力が入力されることを特徴とする、請求項1乃至請求項4のいずれかに記載の電流制御回路。
  7. 請求項1乃至請求項6のいずれかに記載の電流制御回路を備えることを特徴とする半導体装置。
  8. 請求項7記載の半導体装置と、前記半導体装置に接続されたホール素子とを備えることを特徴とする撮像装置。
JP2004264634A 2004-09-10 2004-09-10 電流制御回路,半導体装置及び撮像装置 Pending JP2006079471A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264634A JP2006079471A (ja) 2004-09-10 2004-09-10 電流制御回路,半導体装置及び撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264634A JP2006079471A (ja) 2004-09-10 2004-09-10 電流制御回路,半導体装置及び撮像装置

Publications (1)

Publication Number Publication Date
JP2006079471A true JP2006079471A (ja) 2006-03-23

Family

ID=36158849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264634A Pending JP2006079471A (ja) 2004-09-10 2004-09-10 電流制御回路,半導体装置及び撮像装置

Country Status (1)

Country Link
JP (1) JP2006079471A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252818A (ja) * 2010-06-03 2011-12-15 On Semiconductor Trading Ltd ホール素子制御回路
CN109976430A (zh) * 2019-04-29 2019-07-05 苏州易美新思新能源科技有限公司 一种直流电源电路
CN112558674A (zh) * 2020-12-02 2021-03-26 浙江中控技术股份有限公司 一种模拟量电流输出系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252818A (ja) * 2010-06-03 2011-12-15 On Semiconductor Trading Ltd ホール素子制御回路
KR101296487B1 (ko) 2010-06-03 2013-08-13 세미컨덕터 콤포넨츠 인더스트리즈 엘엘씨 홀 소자 제어 회로
US8773122B2 (en) 2010-06-03 2014-07-08 Semiconductor Components Industries, Llc Hall element control circuit
CN109976430A (zh) * 2019-04-29 2019-07-05 苏州易美新思新能源科技有限公司 一种直流电源电路
CN112558674A (zh) * 2020-12-02 2021-03-26 浙江中控技术股份有限公司 一种模拟量电流输出系统

Similar Documents

Publication Publication Date Title
US7292499B2 (en) Semiconductor device including duty cycle correction circuit
US9280927B2 (en) Display device, imaging device and gray level voltage generation circuit
US20230387865A1 (en) Methods and apparatus for driver calibration
JP2007043654A (ja) 可変トランスコンダクタンス回路
JP4058334B2 (ja) ヒステリシスコンパレータ回路
JP2011091572A (ja) 可変利得増幅回路
US7068090B2 (en) Amplifier circuit
JP5482961B2 (ja) 半導体集積回路および半導体物理量センサ装置
JP4855470B2 (ja) トランスコンダクタンスアンプ
US7847635B2 (en) Transconductance amplifier
WO2009096192A1 (ja) バッファ回路及びそれを備えたイメージセンサチップ並びに撮像装置
JP2006079471A (ja) 電流制御回路,半導体装置及び撮像装置
JP2009094878A (ja) 差動増幅回路
JP2005100345A (ja) 電流制御回路,半導体装置及び撮像装置
CN115459727A (zh) 伪电阻电路、rc滤波电路、电流镜电路及芯片
US8143877B2 (en) Semiconductor circuits capable of mitigating unwanted effects caused by input signal variations
JP3907640B2 (ja) 過電流防止回路
US7274224B2 (en) Semiconductor device and camera using same
JP2012104948A (ja) 増幅回路
US6781472B2 (en) Pseudo-cubic function generator circuit
TW200816626A (en) Automatic-gain control circuit
KR20150106734A (ko) 모바일 장치용 카메라 모듈의 액추에이터 구동 장치
JP2005080090A (ja) 差動増幅回路の出力電圧制御回路及び電圧検出器
KR100327440B1 (ko) 제로-크로싱 감지회로
KR20170115702A (ko) 선형 전류 드라이버

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108