JP2006077864A - Shaft member for dynamic pressure type bearing device and manufacturing method thereof - Google Patents

Shaft member for dynamic pressure type bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP2006077864A
JP2006077864A JP2004261457A JP2004261457A JP2006077864A JP 2006077864 A JP2006077864 A JP 2006077864A JP 2004261457 A JP2004261457 A JP 2004261457A JP 2004261457 A JP2004261457 A JP 2004261457A JP 2006077864 A JP2006077864 A JP 2006077864A
Authority
JP
Japan
Prior art keywords
shaft
flange portion
shaft member
bearing
dynamic pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004261457A
Other languages
Japanese (ja)
Other versions
JP4642416B2 (en
Inventor
Nobuyoshi Yamashita
信好 山下
Natsuhiko Mori
夏比古 森
Kiyoshi Shimizu
清 清水
Kunihiro Hayashi
訓弘 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Fukui Byora Co Ltd
Original Assignee
NTN Corp
Fukui Byora Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004261457A priority Critical patent/JP4642416B2/en
Application filed by NTN Corp, Fukui Byora Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to KR1020127009407A priority patent/KR101233303B1/en
Priority to US11/630,410 priority patent/US20080292228A1/en
Priority to PCT/JP2005/016399 priority patent/WO2006028119A1/en
Priority to KR1020077001179A priority patent/KR101233307B1/en
Priority to CN2005800252730A priority patent/CN1989352B/en
Publication of JP2006077864A publication Critical patent/JP2006077864A/en
Priority to US12/827,014 priority patent/US8678653B2/en
Application granted granted Critical
Publication of JP4642416B2 publication Critical patent/JP4642416B2/en
Priority to US13/090,452 priority patent/US8387246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To recover the pressure balance in a thrust bearing gap formed on both sides in the axial direction of a flange part at its early stage, and to realize the above function at a low cast. <P>SOLUTION: In a common forging process, a shaft blank material 10 integrally having a shaft part 11 and a flange part 12 is formed, and simultaneously a through hole 19 opened to both end faces 12a, 12b is formed in the flange part 12 of the shaft blank material 10. As a result, the through hole 9 is formed to open on the inner diameter side from the bearing gaps W1, W2 away from the thrust bearing gaps W1, W2 formed on both end faces of the flange part 22 of the shaft member 2 as a finished product. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置用の軸部材およびその製造方法に関するものである。この軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a shaft member for a hydrodynamic bearing device and a manufacturing method thereof. This bearing device is a spindle motor such as an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, DVD-ROM / RAM, or a magneto-optical disk device such as MD or MO, It is suitable for polygon scanner motors of laser beam printers (LBP) and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

動圧軸受は、軸受隙間に生じる流体の動圧作用により発生する圧力で軸部材を回転自在に非接触支持するものであり、例えば、HDD等のディスク駆動装置のスピンドルモータに組込まれて使用される。この種の動圧軸受装置では、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部として、軸受スリーブの内周面または軸部材の外周面に動圧発生用の溝(動圧溝)が形成される。また、スラスト軸受部を構成する軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面や、ハウジングに固定される底部材の端面、あるいはハウジングの底部の内底面等)に、動圧溝が形成される(例えば、特許文献1参照)。
特開2002−61641号公報
A dynamic pressure bearing is a member that rotatably supports a shaft member with pressure generated by a dynamic pressure action of fluid generated in a bearing gap, and is used by being incorporated in a spindle motor of a disk drive device such as an HDD. The In this type of hydrodynamic bearing device, a radial bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the radial direction and a thrust bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the thrust direction are provided. As a portion, a dynamic pressure generating groove (dynamic pressure groove) is formed on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member. Also, both end surfaces of the flange portion of the shaft member that constitutes the thrust bearing portion, or surfaces facing this (the end surface of the bearing sleeve, the end surface of the bottom member fixed to the housing, the inner bottom surface of the bottom of the housing, etc.) In addition, a dynamic pressure groove is formed (see, for example, Patent Document 1).
JP 2002-61641 A

最近では、情報機器における情報記録密度の増大や高速回転化に対応するため、上記情報機器用のスピンドルモータには一層の高回転精度化が求められており、この要請に応じるために、上記スピンドルモータに組込まれる動圧軸受装置についても更なる高回転精度が要求されている。 Recently, in order to cope with an increase in information recording density and high-speed rotation in information equipment, the spindle motor for the information equipment has been required to have higher rotational accuracy. Higher rotational accuracy is also required for the hydrodynamic bearing device incorporated in the motor.

ところで、動圧軸受装置の回転性能を長期に亘って安定的に発揮するためには、軸部材を支持するための流体の圧力が生じるラジアル軸受隙間やスラスト軸受隙間を、高精度に管理することが重要となる。例えば、スラスト軸受隙間が、上述のようにフランジ部の軸方向両側に形成される場合には、軸部材のスラスト支持状態を安定して保つため、フランジ部の一端面側におけるスラスト支持のための圧力と、他端面側におけるスラスト支持のための圧力との間でバランスを取り、フランジ部の端面とこれに対向する面との摺動接触をできる限り避ける必要がある。スラスト軸受隙間の高精度化は、これに面するフランジ部の端面や動圧溝等を高精度に加工することで達成することができるが、単に加工精度を高めるだけでは、高コスト化を招くため妥当ではない。   By the way, in order to stably exhibit the rotational performance of the hydrodynamic bearing device over a long period, the radial bearing gap and the thrust bearing gap in which the fluid pressure for supporting the shaft member is generated must be managed with high accuracy. Is important. For example, when the thrust bearing gap is formed on both sides in the axial direction of the flange portion as described above, in order to stably maintain the thrust support state of the shaft member, It is necessary to balance between the pressure and the pressure for supporting the thrust on the other end surface side, and to avoid sliding contact between the end surface of the flange portion and the surface facing this as much as possible. The high precision of the thrust bearing gap can be achieved by machining the end face of the flange part facing this and the dynamic pressure groove, etc. with high precision, but simply increasing the machining precision leads to high costs. Therefore, it is not appropriate.

本発明の課題は、フランジ部の軸方向両側に形成されたスラスト軸受隙間での圧力バランスを早期に回復し、かつ斯かる機能を低コストに実現可能とすることである。   An object of the present invention is to recover pressure balance in a thrust bearing gap formed on both axial sides of a flange portion at an early stage and to realize such a function at a low cost.

前記課題を解決するため、本発明は、フランジ部を備え、フランジ部の軸方向両側のスラスト軸受隙間に生じる流体の動圧作用により発生した圧力でスラスト方向に非接触支持されるものであって、フランジ部に、その両端面に開口する貫通孔が形成され、貫通孔の内周が塑性加工された面であることを特徴とする動圧軸受装置用軸部材を提供する。   In order to solve the above-mentioned problems, the present invention comprises a flange portion, and is non-contact supported in the thrust direction by the pressure generated by the dynamic pressure action of the fluid generated in the thrust bearing gap on both sides in the axial direction of the flange portion. A shaft member for a hydrodynamic bearing device is provided in which through holes are formed in both end surfaces of the flange portion, and the inner periphery of the through hole is a plastic processed surface.

このように、本発明では、フランジ部に、その両端面に開口する貫通孔を形成したので、何らかの理由で、軸方向一端側のスラスト軸受隙間の流体圧が極端に高まった場合、フランジ部に形成された貫通孔を介して、軸方向他端側のスラスト軸受隙間へ流体(例えば潤滑油)が流れ込む。これにより、両スラスト軸受隙間における圧力バランスが早期に回復され、各スラスト軸受隙間を適正な幅に維持して、フランジ部の端面とこれに対向する面との摺動摩擦を未然に防止することができる。   As described above, in the present invention, since the through holes that are open on both end faces are formed in the flange portion, if for some reason the fluid pressure in the thrust bearing gap on the one end side in the axial direction increases extremely, the flange portion A fluid (for example, lubricating oil) flows into the thrust bearing gap on the other axial end side through the formed through hole. As a result, the pressure balance in both thrust bearing gaps can be recovered quickly, and each thrust bearing gap can be maintained at an appropriate width to prevent sliding friction between the end face of the flange portion and the face facing it. it can.

貫通孔をフランジ部に形成する方法として、例えば切削加工が考えられるが、切削加工だとサイクルタイムが長く、加工能率が低下して高コスト化を招く。また、切削加工では、切粉の発生が避けられず、これが流体中にコンタミとして混入するおそれがある。これを防止するためには、切削後に別途軸部材の洗浄処理を行わねばならず、コストの増加を招く。特に、上記情報機器に用いられる動圧軸受装置では、フランジ部の直径が数mmとなり、貫通孔もこれに対応して数十〜数百μmの超小径となる。この場合、切削加工後の切粉の完全除去は容易でなく、そのために念入りな洗浄工程等が必要となり高コスト化が避けられない。   As a method for forming the through hole in the flange portion, for example, cutting is conceivable. However, if the cutting is performed, the cycle time is long, the processing efficiency is lowered, and the cost is increased. Further, in the cutting process, generation of chips is unavoidable, and this may be mixed in the fluid as contamination. In order to prevent this, the shaft member must be cleaned separately after cutting, resulting in an increase in cost. In particular, in the hydrodynamic bearing device used for the information equipment, the diameter of the flange portion is several mm, and the through hole has an ultra-small diameter of several tens to several hundreds μm correspondingly. In this case, it is not easy to completely remove the chips after the cutting process, and therefore, a careful cleaning process or the like is required, and cost increase is inevitable.

これに対し、鍛造に代表される塑性加工は、切削に比べて一般にサイクルタイムが短く、高能率に加工することができる。また、切削加工のように、切粉が発生することがないから洗浄工程が不要となる。従って、貫通孔を塑性加工で成形すれば、その成形コストを大幅に削減することができる。この場合、貫通孔の内周は塑性加工された面となるが、塑性加工された面はその面粗度が良好であるため、特段の後加工を施さなくても貫通孔内での流体のスムーズな流通を確保することができる。   On the other hand, plastic working represented by forging generally has a shorter cycle time than cutting and can be processed with high efficiency. Further, unlike the cutting process, no chips are generated, so that a cleaning process is not necessary. Therefore, if the through hole is formed by plastic working, the forming cost can be greatly reduced. In this case, the inner circumference of the through-hole is a plastic-worked surface, but the surface of the plastic-worked surface has good surface roughness, so that the fluid in the through-hole can be obtained without special post-processing. Smooth distribution can be ensured.

貫通孔は、軸部の近傍に形成するのが望ましい。軸部の近傍に貫通孔を形成することで、フランジ部の内径側にも二つのスラスト軸受隙間の間での流体の流通路が確保されるので、もともとあったフランジ部外径側の流体の流通路(フランジ部外周面とハウジング内周面との間の環状すき間)と合わせ、二つのスラスト軸受隙間の間での圧力バランスの調整機能を高めることができる。この観点から、貫通孔はスラスト軸受隙間の半径方向中心よりも内径側に開口させるのが望ましい。この場合、貫通孔は、いわゆる動圧の逃げを防止するため、動圧溝の形成領域とこれに対向する面との間のスラスト軸受隙間を避けた位置(スラスト軸受隙間よりも内径側)に開口させるのが望ましい。スペース面の制約等の関係から、当該位置に開口させることが難しい場合は、スラスト軸受隙間にかかる位置に開口させても構わない。ただし、この場合でも動圧の逃げを極力回避することが望ましい。   The through hole is desirably formed in the vicinity of the shaft portion. By forming a through hole in the vicinity of the shaft part, a fluid flow path between the two thrust bearing gaps is also secured on the inner diameter side of the flange part. In combination with the flow passage (annular clearance between the outer peripheral surface of the flange portion and the inner peripheral surface of the housing), the function of adjusting the pressure balance between the two thrust bearing gaps can be enhanced. From this point of view, it is desirable to open the through hole on the inner diameter side of the radial center of the thrust bearing gap. In this case, in order to prevent the so-called escape of the dynamic pressure, the through hole is located at a position (inner diameter side of the thrust bearing gap) avoiding the thrust bearing gap between the formation region of the dynamic pressure groove and the surface facing it. It is desirable to make it open. If it is difficult to open at this position due to space constraints or the like, it may be opened at a position over the thrust bearing gap. However, even in this case, it is desirable to avoid the escape of dynamic pressure as much as possible.

上記動圧軸受装置用の軸部材は、例えば軸部材と、この軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置として提供可能である。   The shaft member for the hydrodynamic bearing device includes, for example, a shaft member, a bearing sleeve in which the shaft member is inserted into the inner periphery, and a fluid generated in a radial bearing gap between the outer periphery of the shaft portion and the inner periphery of the bearing sleeve. A radial bearing that generates non-contact support in the radial direction by generating pressure by the dynamic pressure action of the shaft, and a thrust generated by the dynamic pressure action of fluid generated in the thrust bearing gap at one end of the flange. A first thrust bearing portion that is supported in a non-contact manner in a direction, and a second thrust bearing portion that generates a pressure by a dynamic pressure action of a fluid generated in a thrust bearing gap at the other end of the flange portion to support the flange portion in a non-contact manner in the thrust direction. Can be provided as a hydrodynamic bearing device.

ラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝を軸方向で非対称に形成すれば、ラジアル軸受隙間で軸方向への流体の流れが生じる。この流れがフランジ部に向かうようにすれば、軸受装置内部で負圧が生じるのを避けることができ、また、貫通孔による圧力バランスの調整機能によって、フランジ部への押込みにより生じた高圧が平衡化される。   A dynamic pressure groove for generating a dynamic pressure action of fluid is formed asymmetrically in the axial direction on one of the outer peripheral surface of the shaft portion facing the radial bearing gap and the inner peripheral surface of the bearing sleeve facing this outer peripheral surface. Then, a fluid flow in the axial direction occurs in the radial bearing gap. If this flow is directed to the flange, it is possible to avoid the generation of negative pressure inside the bearing device, and the high pressure generated by pushing into the flange is balanced by the pressure balance adjustment function using the through holes. It becomes.

上記動圧軸受装置は、動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータとして提供することも可能である。   The hydrodynamic bearing device can also be provided as a motor including a hydrodynamic bearing device, a rotor magnet, and a stator coil.

また、本発明は、軸部とフランジ部とを備え、フランジ部の軸方向両側のスラスト軸受隙間で生じた流体の動圧作用によりスラスト方向に非接触支持される動圧軸受装置用軸部材の製造方法を提供するものであって、軸部およびフランジ部を一体に鍛造成形すると共に、フランジ部に、その両端面に開口する貫通孔を鍛造成形し、かつこれらの鍛造を同時に行うことを特徴とする。   The present invention also provides a shaft member for a hydrodynamic bearing device that includes a shaft portion and a flange portion, and is supported in a non-contact manner in the thrust direction by a dynamic pressure action of a fluid generated in a thrust bearing gap on both axial sides of the flange portion. A manufacturing method is provided, in which a shaft portion and a flange portion are integrally forged, and through holes that are open on both end surfaces of the flange portion are forged, and these forgings are performed simultaneously. And

本発明によれば、軸部材の回転時、フランジ部の軸方向両側に形成されたスラスト軸受隙間での圧力バランスを早期に回復し、各スラスト軸受隙間を常に所定の間隔に維持することができるので、軸受の回転性能を長期に亘って安定的に発揮することが可能となる。また、斯かる機能を低コストに得ることができ、量産性の飛躍的な向上が可能となる。   According to the present invention, when the shaft member rotates, the pressure balance in the thrust bearing gaps formed on both axial sides of the flange portion can be recovered quickly, and the thrust bearing gaps can always be maintained at a predetermined interval. As a result, the rotational performance of the bearing can be stably exhibited over a long period of time. Further, such a function can be obtained at a low cost, and the mass productivity can be dramatically improved.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取付けられ、ロータマグネット5は、ディスクハブ3の内周に取付けられる。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3は、その外周に磁気ディスク等のディスク状情報記録媒体(以下、単にディスクという。)Dを一枚または複数枚保持している。このように構成された情報機器用スピンドルモータにおいて、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力によりロータマグネット5が回転し、これに伴って、ディスクハブ3およびディスクハブ3に保持されたディスクDが軸部材2と一体に回転する。   FIG. 2 conceptually shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 1 according to one embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 attached to the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. The disk hub 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) D such as a magnetic disk on the outer periphery thereof. In the spindle motor for information equipment configured as described above, when the stator coil 4 is energized, the magnetic force between the stator coil 4 and the rotor magnet 5 causes the rotor magnet 5 to rotate. The disk D held by the hub 3 rotates integrally with the shaft member 2.

図3は、動圧軸受装置1の一例を示している。この動圧軸受装置1は、一端に底部7bを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2と、シール部材9とを主な構成部品として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明を行う。   FIG. 3 shows an example of the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 mainly includes a housing 7 having a bottom 7b at one end, a bearing sleeve 8 fixed to the housing 7, a shaft member 2 inserted into the inner periphery of the bearing sleeve 8, and a seal member 9. Configured as a simple component. For convenience of explanation, the following description will be made with the bottom 7b side of the housing 7 as the lower side and the side opposite the bottom 7b as the upper side.

ハウジング7は、図3に示すように、例えばLCPやPPS、あるいはPEEK等の樹脂材料で円筒状に形成された側部7aと、側部7aの一端側に位置し、例えば金属材料で形成された底部7bとで構成されている。底部7bは、この実施形態では側部7aとは別体として成形され、側部7aの下部内周に後付けされている。底部7bの上側端面7b1の一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル形状を成す動圧溝が形成される。なお、底部7bは、この実施形態では側部7aとは別体に形成され、側部7aの下部内周に固定されるが、側部7aと例えば樹脂材料で一体に型成形することもできる。その際、上側端面7b1に設けられる動圧溝は、側部7aおよび底部7bからなるハウジング7の射出成形と同時に型成形することができ、これにより別途底部7bに動圧溝を成形する手間を省くことができる。   As shown in FIG. 3, the housing 7 is positioned on one side of the side portion 7a and the side portion 7a formed in a cylindrical shape with a resin material such as LCP, PPS, or PEEK, and is formed of, for example, a metal material. And a bottom portion 7b. In this embodiment, the bottom portion 7b is formed as a separate body from the side portion 7a, and is retrofitted to the lower inner periphery of the side portion 7a. In the partial annular region of the upper end surface 7b1 of the bottom 7b, a dynamic pressure groove having a spiral shape, for example, is formed as a dynamic pressure generating portion, although illustration is omitted. In this embodiment, the bottom portion 7b is formed separately from the side portion 7a and is fixed to the lower inner periphery of the side portion 7a. However, the bottom portion 7b can be integrally molded with the side portion 7a, for example, with a resin material. . At that time, the dynamic pressure groove provided in the upper end surface 7b1 can be molded simultaneously with the injection molding of the housing 7 composed of the side portion 7a and the bottom portion 7b, thereby eliminating the trouble of separately forming the dynamic pressure groove in the bottom portion 7b. It can be omitted.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is fixed at a predetermined position on the inner peripheral surface 7 c of the housing 7. The

軸受スリーブ8の内周面8aの全面又は一部円筒面領域には動圧発生部としての動圧溝が形成される。この実施形態では、例えば図4(a)に示すように、へリングボーン形状の動圧溝8a1、8a2がそれぞれ軸方向に離隔して2箇所形成される。上側の動圧溝8a1の形成領域では、動圧溝8a1が、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。従って、軸部材2の回転時には、非対称の動圧溝8a1によってラジアル軸受隙間の潤滑油が下方に押込まれる。   A dynamic pressure groove as a dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical surface region. In this embodiment, for example, as shown in FIG. 4 (a), herringbone-shaped dynamic pressure grooves 8a1 and 8a2 are formed at two positions apart from each other in the axial direction. In the formation region of the upper dynamic pressure groove 8a1, the dynamic pressure groove 8a1 is formed to be axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions). The axial dimension X1 of the upper region is larger than the axial dimension X2 of the lower region. Accordingly, when the shaft member 2 rotates, the lubricating oil in the radial bearing gap is pushed downward by the asymmetric dynamic pressure groove 8a1.

軸受スリーブ8の外周面8bには、1本又は複数本の軸方向溝8b1が軸方向全長に亘って形成されている。この実施形態では、3本の軸方向溝8b1を円周方向等間隔に形成している。   One or a plurality of axial grooves 8b1 are formed on the outer peripheral surface 8b of the bearing sleeve 8 over the entire axial length. In this embodiment, three axial grooves 8b1 are formed at equal intervals in the circumferential direction.

軸受スリーブ8の下側端面8cの全面又は一部環状領域には、動圧発生部として、例えば図4(b)に示すスパイラル形状の動圧溝8c1が形成される。   For example, a spiral-shaped dynamic pressure groove 8c1 shown in FIG. 4B is formed as a dynamic pressure generating portion on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region.

シール手段としてのシール部材9は、図3に示すように、例えば真ちゅう等の軟質金属材料やその他の金属材料、あるいは樹脂材料でハウジング7とは別体かつ環状に形成され、ハウジング7の側部7aの上部内周に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8dと当接している。   As shown in FIG. 3, the seal member 9 as a sealing means is formed of a soft metal material such as brass, other metal materials, or a resin material separately from the housing 7 and formed in an annular shape. It is fixed to the inner periphery of the upper part of 7a by means such as press fitting or adhesion. In this embodiment, the inner peripheral surface 9 a of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 d of the bearing sleeve 8.

軸部材2は、例えば図1に示すように、ステンレス鋼等の金属材料で形成され、軸部21と、軸部21の下端に設けられたフランジ部22とを一体に備える断面T字形を成す。軸部21の外周には、図3に示すように、軸受スリーブ8の内周面8aに形成された二つの動圧溝8a1、8a2の形成領域に対向するラジアル軸受面23a、23bが軸方向に離隔して2箇所形成されている。一方のラジアル軸受面23aの上方には、軸先端に向けて漸次縮径するテーパ面24が隣接して形成され、さらにその上方にディスクハブ3の取付け部となる円筒面25が形成されている。二つのラジアル軸受面23a、23bの間、他方のラジアル軸受面23bとフランジ部22との間、およびテーパ面24と円筒面25との間には、それぞれ環状のヌスミ部26、27、28が形成されている。   For example, as shown in FIG. 1, the shaft member 2 is formed of a metal material such as stainless steel and has a T-shaped cross section integrally including a shaft portion 21 and a flange portion 22 provided at the lower end of the shaft portion 21. . On the outer periphery of the shaft portion 21, as shown in FIG. 3, radial bearing surfaces 23a and 23b facing the formation regions of the two dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8 are axially arranged. Two places are formed apart from each other. Above one of the radial bearing surfaces 23a, a tapered surface 24 that gradually decreases in diameter toward the tip of the shaft is formed adjacently, and a cylindrical surface 25 that serves as a mounting portion of the disk hub 3 is further formed thereabove. . Between the two radial bearing surfaces 23a, 23b, between the other radial bearing surface 23b and the flange portion 22 and between the tapered surface 24 and the cylindrical surface 25, annular nuisance portions 26, 27, 28 are respectively provided. Is formed.

フランジ部22の上端面には、例えば図3に示すように、第1スラスト軸受部T1のスラスト軸受隙間に面するスラスト軸受面22aが形成され、フランジ部22の下端面には、同図に示すように、第2スラスト軸受部T2のスラスト軸受隙間に面するスラスト軸受面22bが形成される。そして、フランジ部22の内径側(軸部21の近傍)に、この実施形態では、フランジ部22両端面のスラスト軸受面22a、22bよりも内径側の箇所に、フランジ部22の両端面に開口する貫通孔29が形成される。   For example, as shown in FIG. 3, a thrust bearing surface 22a facing the thrust bearing gap of the first thrust bearing portion T1 is formed on the upper end surface of the flange portion 22, and the lower end surface of the flange portion 22 is shown in FIG. As shown, a thrust bearing surface 22b that faces the thrust bearing gap of the second thrust bearing portion T2 is formed. Further, in this embodiment, on the inner diameter side of the flange portion 22 (in the vicinity of the shaft portion 21), openings are formed on both end surfaces of the flange portion 22 at locations on the inner diameter side of the thrust bearing surfaces 22a and 22b on both end surfaces of the flange portion 22. A through-hole 29 is formed.

軸部21のテーパ面24と、テーパ面24に対向するシール部材9の内周面9aとの間には、ハウジング7の底部7b側から上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。組立て完了後の動圧軸受装置1(図3参照)においては、ラジアル軸受隙間やスラスト軸受隙間を含むハウジング7の内部空間が全て潤滑油で満たされ、その油面はシール空間Sの範囲内に保たれる。   Between the taper surface 24 of the shaft portion 21 and the inner peripheral surface 9a of the seal member 9 facing the taper surface 24, an annular seal whose radial dimension gradually increases from the bottom 7b side of the housing 7 upward. A space S is formed. In the hydrodynamic bearing device 1 (see FIG. 3) after the assembly is completed, the inner space of the housing 7 including the radial bearing gap and the thrust bearing gap is all filled with lubricating oil, and the oil level is within the range of the seal space S. Kept.

上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、軸受スリーブ内周面8aの動圧溝8a1、8a2の形成領域(上下2箇所)と、これら動圧溝8a1、8a2の形成領域にそれぞれ対向する軸部21のラジアル軸受面23a、23bとの間のラジアル軸受隙間に、潤滑油の動圧作用による圧力が発生し、軸部材2の軸部21がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。また、軸受スリーブ8の下側端面8cに形成される動圧溝8c1領域と、この動圧溝8c1領域に対向するフランジ部22上側(軸部側)のスラスト軸受面22aとの間の第1スラスト軸受隙間W1(図3参照)、および底部7bの上側端面7b1に形成される動圧溝領域と、この動圧溝領域と対向するフランジ部22下側(反軸部側)のスラスト軸受面22bとの間の第2スラスト軸受隙間W2(図3参照)に、潤滑油の動圧作用による圧力がそれぞれ発生し、軸部材2のフランジ部22が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, the formation regions (upper and lower two places) of the dynamic pressure grooves 8a1 and 8a2 of the bearing sleeve inner peripheral surface 8a, and the dynamic pressure grooves 8a1, In the radial bearing gap between the radial bearing surfaces 23a and 23b of the shaft portion 21 respectively facing the formation region 8a2, pressure due to the dynamic pressure action of the lubricating oil is generated, and the shaft portion 21 of the shaft member 2 moves in the radial direction. It is rotatably supported in a non-contact manner. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed. Further, a first portion between the dynamic pressure groove 8c1 region formed on the lower end surface 8c of the bearing sleeve 8 and the thrust bearing surface 22a on the upper side (shaft side) of the flange portion 22 facing the dynamic pressure groove 8c1 region. Thrust bearing clearance W1 (see FIG. 3), and a dynamic pressure groove region formed on the upper end surface 7b1 of the bottom portion 7b, and a thrust bearing surface on the lower side (on the opposite shaft side) of the flange portion 22 facing this dynamic pressure groove region In the second thrust bearing gap W2 (see FIG. 3) between the shaft member 2 and the second thrust bearing gap W2 (see FIG. 3), the pressure due to the dynamic pressure action of the lubricating oil is generated, and the flange portion 22 of the shaft member 2 is supported in a non-contact manner so The Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

軸部材2の回転時、上記ラジアル軸受隙間やスラスト軸受隙間W1、W2、あるいは多孔質体の軸受スリーブ8内部との間で潤滑油が循環し、各軸受隙間に軸部材を支持するための潤滑油が適宜供給されるが、何らかの理由で、油の循環が乱れることがある。その場合でも、フランジ部22に設けた貫通孔29が、各スラスト軸受隙間W1、W2の間での圧力バランスを調整するので、一方のスラスト軸受隙間(第1スラスト軸受隙間W1)と、他方のスラスト軸受隙間(第2スラスト軸受隙間W2)とをそれぞれ適正間隔に維持することができる。これにより、軸部材2を安定的にスラスト支持することができ、斯かる軸受性能を長期に亘って安定的に発揮することができる。   When the shaft member 2 rotates, the lubricating oil circulates between the radial bearing gap, the thrust bearing gaps W1 and W2, or the inside of the porous bearing sleeve 8, and lubrication for supporting the shaft member in each bearing gap. Oil is supplied as appropriate, but for some reason, the oil circulation may be disturbed. Even in that case, the through-hole 29 provided in the flange portion 22 adjusts the pressure balance between the thrust bearing gaps W1 and W2, so that one thrust bearing gap (first thrust bearing gap W1) and the other The thrust bearing gap (second thrust bearing gap W2) can be maintained at appropriate intervals. Thereby, the shaft member 2 can be stably thrust-supported, and such bearing performance can be stably exhibited over a long period of time.

以下、上記動圧軸受装置1を構成する軸部材2の製造方法について説明する。   Hereinafter, the manufacturing method of the shaft member 2 which comprises the said dynamic-pressure bearing apparatus 1 is demonstrated.

軸部材2は、主に(A)成形工程、(B)研削工程の2工程を経て製造される。このうちの(A)の成形工程には、軸素材成形加工(A−1)と、貫通孔成形加工(A−2)と、軸部矯正加工(A−3)とが含まれる。また、(B)の研削工程には、幅研削加工(B−1)と、全面研削加工(B−2)と、仕上げ研削加工(B−3)とが含まれる。   The shaft member 2 is manufactured mainly through two steps of (A) forming step and (B) grinding step. Of these, the forming step (A) includes shaft material forming processing (A-1), through-hole forming processing (A-2), and shaft portion correction processing (A-3). The grinding process (B) includes a width grinding process (B-1), a whole surface grinding process (B-2), and a finish grinding process (B-3).

(A)成形工程
(A−1)軸素材成形加工、および(A−2)貫通孔成形加工
まず、成形すべき軸部材2の素材となるステンレス鋼等の金属材を、金型を用いて例えば冷間で圧縮成形することにより(鍛造加工)、例えば図5に示すように、軸部対応領域(以下、単に軸部という。)11およびフランジ部対応領域(以下、単にフランジ部という。)12を一体に有する軸素材10が形成される(軸素材成形加工(A−1))。また、この軸素材10の鍛造成形に使用する金型は、この実施形態では、フランジ部12に貫通孔19を成形するための金型を兼ねている。そのため、この金型で金属材を圧縮成形することで、軸素材10が鍛造成形されるのと同時に、フランジ部12の内径側に(軸部11の近傍に)、図5に示すように、フランジ部12の軸部側端面12aと、反軸部側端面12bとの間を貫通する貫通孔19が形成される(貫通孔成形加工(A−2))。
(A) Molding step (A-1) Shaft material molding process and (A-2) Through hole molding process First, a metal material such as stainless steel, which is a material of the shaft member 2 to be molded, is used with a mold. For example, by compression molding in cold (forging), for example, as shown in FIG. 5, a shaft portion corresponding region (hereinafter simply referred to as a shaft portion) 11 and a flange portion corresponding region (hereinafter simply referred to as a flange portion). The shaft material 10 having 12 integrally is formed (shaft material forming process (A-1)). Moreover, the metal mold | die used for the forge molding of this shaft raw material 10 serves as the metal mold | die for shape | molding the through-hole 19 in the flange part 12 in this embodiment. Therefore, by compressing the metal material with this mold, the shaft blank 10 is forged and formed at the same time as the inner diameter side of the flange portion 12 (in the vicinity of the shaft portion 11), as shown in FIG. A through-hole 19 is formed to penetrate between the shaft-side end surface 12a of the flange 12 and the non-shaft-side end surface 12b (through-hole forming process (A-2)).

このように、フランジ部12への貫通孔19の成形を、鍛造加工で行うことにより、加工に伴う切粉等の発生を避けて、加工後の洗浄工程を省略、あるいはより簡便なものにすることができる。また、貫通孔19の成形と、軸部11とフランジ部12とを一体に備えた軸素材10の成形とを共に鍛造で、かつ同時に行うことで、斯かる加工工程を簡略化して、加工時間の大幅な短縮化を図ることができる。   In this way, by forming the through-hole 19 in the flange portion 12 by forging, the generation of chips and the like accompanying the processing is avoided, and the cleaning step after processing is omitted or simplified. be able to. Further, the forming of the through hole 19 and the forming of the shaft material 10 integrally provided with the shaft portion 11 and the flange portion 12 are both forged and performed simultaneously, thereby simplifying the processing step and reducing the processing time. Can be greatly shortened.

上記成形工程における冷間鍛造の方式としては、押出し加工、据込み加工、ヘッディング加工等の何れか、もしくはこれらの組合わせを採用することもできる。図示例では、鍛造加工後の軸部11の外周面11aを、テーパ面14およびテーパ面14と上方に向けて連続し他所より小径の円筒面15とを介在させた異径形状としているが、テーパ面14を省略し全長に亘って均一径に成形することもできる。なお、この実施形態では、軸素材10の成形と、貫通孔19の成形を共に鍛造加工で同時に行った場合を説明したが、両工程を必ずしも同時に行う必要はなく、軸素材10を鍛造成形した後に、貫通孔19を鍛造で成形しても構わない。   As a method of cold forging in the forming step, any of extrusion processing, upsetting processing, heading processing, or the like, or a combination thereof can be adopted. In the illustrated example, the outer peripheral surface 11a of the shaft portion 11 after forging has a different-diameter shape with a tapered surface 14 and a tapered surface 14 continuous upward and a cylindrical surface 15 having a smaller diameter than other portions. The tapered surface 14 may be omitted and the uniform diameter may be formed over the entire length. In addition, although this embodiment demonstrated the case where shaping | molding of the shaft raw material 10 and shaping | molding of the through-hole 19 were simultaneously performed by the forging process, it is not necessary to perform both processes simultaneously, and the shaft raw material 10 was forged. Later, the through hole 19 may be formed by forging.

(A−3)軸部矯正加工
先の工程において鍛造成形された軸素材10の軸部11を、例えば図示は省略するが、一対の転造ダイス(例えば平ダイスや丸ダイス等)で加圧挟持し、前記一対の転造ダイスを互いに逆方向に往復動させることで、軸部11の外周面11aに、円筒度矯正のための転造加工を施す(軸部矯正加工(A−3))。これにより、軸素材10の軸部外周面11aのうち、矯正加工を施した面13の円筒度が所要の範囲内(例えば10μm以下)に改善される。円筒度の矯正加工としては、例えば転造加工の他、絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の加工方法を採用することができる。また、矯正加工は軸部11の外周面11a全長に亘って行う他、完成品としての軸部材2のラジアル軸受面23a、23bに対応する箇所を含む限り、外周面11aの一部のみに行うこともできる。
(A-3) Shaft part straightening processing The shaft part 11 of the shaft material 10 formed by forging in the previous step is pressed with, for example, a pair of rolling dies (for example, a flat die or a round die). By sandwiching and reciprocating the pair of rolling dies in opposite directions, the outer peripheral surface 11a of the shaft portion 11 is subjected to rolling processing for cylindricity correction (shaft portion correction processing (A-3)). ). Thereby, the cylindricity of the surface 13 subjected to the correction processing in the shaft outer peripheral surface 11a of the shaft material 10 is improved within a required range (for example, 10 μm or less). As the cylindricity correction processing, various processing methods such as rolling processing, sizing processing by drawing, ironing, or split-type press (pinching) can be employed. Further, the correction processing is performed over the entire length of the outer peripheral surface 11a of the shaft portion 11, and is performed only on a part of the outer peripheral surface 11a as long as the portion corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2 as a finished product is included. You can also

(B)研削工程
(B−1)幅研削加工
成形工程を経た軸素材10の両端面となる、軸部端面11bおよびフランジ部12の反軸部側端面12bを、前記矯正加工を施した面13を基準として研削加工する。この研削工程に用いられる研削装置40は、例えば図6(a)、(b)に示すように、ワークとしての軸素材10を複数保持するキャリア41と、キャリア41によって保持された軸素材10の軸部端面11bおよびフランジ部12の反軸部側端面12bを研削する一対の砥石42、42とを備えている。
(B) Grinding Step (B-1) Width Grinding Surface Surfaces that have been subjected to the above-mentioned correction processing on the shaft end face 11b and the opposite end face 12b of the flange 12 that are both end faces of the shaft material 10 that has undergone the forming process. Grinding with reference to 13. For example, as shown in FIGS. 6A and 6B, the grinding device 40 used in this grinding process includes a carrier 41 that holds a plurality of shaft materials 10 as workpieces, and a shaft material 10 that is held by the carriers 41. A pair of grindstones 42 and 42 for grinding the shaft end face 11b and the opposite end face 12b of the flange 12 are provided.

図示のように、キャリア41の外周縁の円周方向一部領域には、複数の切欠き43が円周方向等ピッチに設けられる。軸素材10は、その矯正加工面13を切欠き43の内面43aにアンギュラコンタクトさせた状態で切欠き43に収容される。軸素材10の矯正加工面13はキャリア41の外周面よりも僅かに突出しており、キャリアの外径側には、軸素材10の突出部分を外径側から拘束する形でベルト44が張設されている。切欠き43に軸素材10を収容したキャリア41の軸方向両端側には、例えば図7に示すように、一対の砥石42、42がその端面(研削面)同士を対向させて所定の間隔で同軸配置されている。   As shown in the drawing, a plurality of notches 43 are provided at equal pitches in the circumferential direction in a partial region in the circumferential direction of the outer peripheral edge of the carrier 41. The shaft material 10 is accommodated in the notch 43 in a state in which the straightened surface 13 is in angular contact with the inner surface 43 a of the notch 43. The straightened surface 13 of the shaft material 10 protrudes slightly from the outer peripheral surface of the carrier 41, and a belt 44 is stretched on the outer diameter side of the carrier so as to constrain the protruding portion of the shaft material 10 from the outer diameter side. Has been. For example, as shown in FIG. 7, a pair of grindstones 42 and 42 face each other (grinding surfaces) at predetermined intervals on both ends in the axial direction of the carrier 41 in which the shaft material 10 is accommodated in the notch 43. Coaxially arranged.

キャリア41の回転に伴い、軸素材10が定位置から切欠き43に順次投入される。投入された軸素材10は、切欠き43からの脱落をベルト44で拘束された状態で、回転する砥石42、42の端面上をその外径端から内径端にかけて横断する。これに伴い、軸素材10の両端面、換言すれば軸部端面11bとフランジ部12の反軸部側端面12bとが砥石42、42の端面で研削される(図7参照)。この際、軸素材10の矯正加工面13がキャリア41に支持され、かつこの矯正加工面13が高い円筒度を有するので、予め砥石42の回転軸心と砥石42の研削面との直角度、および砥石42の回転軸心とキャリア41の回転軸心との平行度等を高精度に管理しておけば、この矯正加工面13を基準として、軸素材10の両端面11b、12bを高精度に仕上げることができ、矯正加工面13に対する直角度の値を小さく抑えることができる。また、軸素材10の軸方向幅(フランジ部12を含めた全長)が所定寸法に仕上げられる。   As the carrier 41 rotates, the shaft material 10 is sequentially put into the notch 43 from a fixed position. The thrown shaft material 10 traverses from the outer diameter end to the inner diameter end on the end faces of the rotating grindstones 42 and 42 in a state where the dropping from the notch 43 is restrained by the belt 44. Along with this, both end faces of the shaft blank 10, in other words, the shaft end face 11b and the opposite end face 12b of the flange 12 are ground by the end faces of the grindstones 42, 42 (see FIG. 7). At this time, since the straightened surface 13 of the shaft material 10 is supported by the carrier 41 and the straightened surface 13 has a high degree of cylindricity, the perpendicularity between the rotation axis of the grindstone 42 and the ground surface of the grindstone 42 in advance, If the parallelism between the rotational axis of the grindstone 42 and the rotational axis of the carrier 41 is managed with high accuracy, the both end surfaces 11b and 12b of the shaft material 10 are highly accurate with reference to the straightened surface 13. The squareness value with respect to the straightened surface 13 can be kept small. Moreover, the axial direction width | variety (full length including the flange part 12) of the shaft raw material 10 is finished to a predetermined dimension.

(B−2)全面研削加工
次いで、研削した軸素材10の両端面(軸部端面11b、フランジ部12の反軸部側端面12b)を基準として軸素材10の外周面10aおよびフランジ部12の軸部側端面12aの研削加工を行う。この研削工程で用いられる研削装置50は、例えば図8に示すように、バッキングプレート54およびプレッシャプレート55を軸素材10の両端面に押し当てながら砥石53でプランジ研削するものである。軸素材10の矯正加工面13はシュー52によって回転自在に支持される。
(B-2) Whole surface grinding process Next, the outer peripheral surface 10a of the shaft blank 10 and the flange portion 12 of the shaft blank 10 are determined with reference to both end faces of the ground shaft blank 10 (shaft end face 11b, opposite end face 12b of the flange 12). The shaft side end surface 12a is ground. A grinding apparatus 50 used in this grinding process performs plunge grinding with a grindstone 53 while pressing a backing plate 54 and a pressure plate 55 against both end surfaces of the shaft material 10 as shown in FIG. The straightened surface 13 of the shaft material 10 is rotatably supported by a shoe 52.

砥石53は、完成品としての軸部材2の外周面形状に対応した研削面56を備える総形砥石である。研削面56は、軸部11の軸方向全長に亘る外周面11aおよびフランジ部12の外周面12cを研削する円筒研削部56aと、フランジ部12の軸部側端面12aを研削する平面研削部56bとを備えている。図示例の砥石53は、円筒研削部56aとして、軸部材2のラジアル軸受面23a、23bに対応する領域を研削する部分56a1、56a2、テーパ面24に対応する領域を研削する部分56a3、円筒面25に対応する領域を研削する部分56a4、各ヌスミ部26〜28を研削加工する部分56a5〜56a7、フランジ部22の外周面22cに対応する領域を研削する部分56a8を備えている。   The grindstone 53 is a general-purpose grindstone provided with a grinding surface 56 corresponding to the outer peripheral surface shape of the shaft member 2 as a finished product. The grinding surface 56 includes a cylindrical grinding portion 56a that grinds the outer peripheral surface 11a over the entire axial length of the shaft portion 11 and the outer peripheral surface 12c of the flange portion 12, and a surface grinding portion 56b that grinds the shaft portion side end surface 12a of the flange portion 12. And. The grindstone 53 in the illustrated example includes, as a cylindrical grinding portion 56a, portions 56a1 and 56a2 for grinding regions corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2, a portion 56a3 for grinding a region corresponding to the tapered surface 24, and a cylindrical surface. 25, a portion 56 a 4 for grinding the region corresponding to 25, portions 56 a 5 to 56 a 7 for grinding each of the portions 26 to 28, and a portion 56 a 8 for grinding the region corresponding to the outer peripheral surface 22 c of the flange portion 22.

上記構成の研削装置50における研削加工は以下の手順で行われる。まず、軸素材10および砥石53を回転させた状態で砥石53を斜め方向(図中の矢印1方向)に送り、フランジ部12の軸部側端面12aに砥石53の平面研削部56bを押し当て、フランジ部12の軸部側端面12aを研削する。これにより、軸部材2のフランジ部22軸部側端面の仕上げ加工が完了し、第1スラスト軸受部T1に面するスラスト軸受面22aが形成される。次いで、砥石53を軸素材10の回転軸心と直交する方向(図中の矢印2方向)に送り、軸素材10の軸部11の外周面11aおよびフランジ部12の外周面12cに砥石53の円筒研削部56aを押し当てて、各面11a、12cを研削する。これにより、軸部材2の軸部21外周面のうち、ラジアル軸受面23a、23bおよび円筒面25に対応する領域がそれぞれ研削されると共に、テーパ面24、フランジ部22の外周面22c、さらに各ヌスミ部26〜28が形成される。なお、上記研削の際には、例えば図8に示すように、計測ゲージ57で残りの研削代を計測しつつ研削を行うのが好ましい。   The grinding process in the grinding apparatus 50 having the above-described configuration is performed in the following procedure. First, with the shaft material 10 and the grindstone 53 being rotated, the grindstone 53 is fed in an oblique direction (in the direction of arrow 1 in the figure), and the flat grinding portion 56b of the grindstone 53 is pressed against the shaft portion side end surface 12a of the flange portion 12. The shaft part side end surface 12a of the flange part 12 is ground. As a result, the finishing process of the end surface on the flange portion 22 side of the shaft member 2 is completed, and the thrust bearing surface 22a facing the first thrust bearing portion T1 is formed. Next, the grindstone 53 is fed in a direction orthogonal to the rotational axis of the shaft blank 10 (in the direction of arrow 2 in the figure), and the grindstone 53 is placed on the outer circumferential surface 11 a of the shaft portion 11 and the outer circumferential surface 12 c of the flange portion 12. The cylindrical grinding portion 56a is pressed to grind the surfaces 11a and 12c. Thereby, among the outer peripheral surface of the shaft portion 21 of the shaft member 2, the regions corresponding to the radial bearing surfaces 23a and 23b and the cylindrical surface 25 are ground, respectively, and the tapered surface 24, the outer peripheral surface 22c of the flange portion 22, and each Nusumi portions 26 to 28 are formed. In the grinding, for example, as shown in FIG. 8, it is preferable to perform grinding while measuring the remaining grinding allowance with a measurement gauge 57.

この全面研削工程においては、事前に幅研削加工で軸素材10の両端面11b、12bの直角度の精度出しが行われているから、各被研削面を高精度に研削することができる。   In this entire surface grinding process, since the perpendicularity of the both end faces 11b and 12b of the shaft blank 10 is determined in advance by width grinding, each surface to be ground can be ground with high precision.

(B−3)仕上げ研削加工
(B−2)全面研削加工で研削を施した面のうち、軸部材2のラジアル軸受面23a、23b、および円筒面25に対応する領域に最終的な仕上げ研削を施す。この研削加工に用いる研削装置は、例えば図9に示す円筒研削盤で、バッキングプレート64とプレッシャプレート65とで挟持した軸素材10を回転させながら、砥石63でプランジ研削するものである。軸素材10は、シュー62で回転自在に支持される。砥石63の研削面63aは、軸部材2のラジアル軸受面23a、23bに対応する領域(同図中13a、13bに示す領域)を研削する第一の円筒研削部63a1と、円筒面25に対応する領域(同図中15に示す領域)を研削する第二の円筒研削部63a2とからなる。
(B-3) Finish grinding (B-2) Of the surfaces ground by the overall grinding, final finish grinding is performed on regions corresponding to the radial bearing surfaces 23a and 23b and the cylindrical surface 25 of the shaft member 2. Apply. The grinding apparatus used for this grinding is, for example, a plunge grinding with a grindstone 63 while rotating the shaft material 10 sandwiched between a backing plate 64 and a pressure plate 65 in a cylindrical grinder shown in FIG. The shaft material 10 is rotatably supported by the shoe 62. The grinding surface 63a of the grindstone 63 corresponds to the first cylindrical grinding part 63a1 that grinds the region corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2 (regions indicated by 13a and 13b in the figure) and the cylindrical surface 25. And a second cylindrical grinding portion 63a2 for grinding a region to be ground (a region indicated by 15 in the figure).

上記構成の研削装置60において、回転する砥石63に半径方向の送りを与えることにより、ラジアル軸受面23a、23bおよび円筒面25に対応する領域13a、13b、および15がそれぞれ研削され、これらの領域が最終的な表面精度に仕上げられる。   In the grinding device 60 having the above-described configuration, by supplying a radial feed to the rotating grindstone 63, the regions 13a, 13b, and 15 corresponding to the radial bearing surfaces 23a, 23b and the cylindrical surface 25 are ground, respectively. Is finished to the final surface accuracy.

上記(A)成形工程および(B)研削工程を経た後、必要に応じて熱処理や洗浄処理を施すことで、図1に示す軸部材2が完成する。これにより、軸部21の近傍に、フランジ部22の両端面に開口する貫通孔29が形成される。貫通孔29の内周面は鍛造加工により形成されたものであるから、その面粗度は良好なものとなる。   After passing through the forming step (A) and the grinding step (B), the shaft member 2 shown in FIG. 1 is completed by performing heat treatment and cleaning treatment as necessary. As a result, through holes 29 that open to both end faces of the flange portion 22 are formed in the vicinity of the shaft portion 21. Since the inner peripheral surface of the through hole 29 is formed by forging, the surface roughness is good.

上記製造方法によれば、軸部21外周に形成されたラジアル軸受面23a、23bの円筒度を高精度に仕上げることができる。これにより、例えば動圧軸受装置1における軸受スリーブ8内周の内周面8aとの間に形成されるラジアル軸受隙間の、円周方向あるいは軸方向へのばらつきが所定の範囲内に抑えられ、上記ラジアル軸受隙間のばらつきによる軸受性能への悪影響を回避することができる。また、軸部21外周に形成されたラジアル軸受面23a、23bを基準とした、フランジ部22の両端面(スラスト軸受面)22a、22bの直角度の値を小さく抑えた軸部材2を成形することもできる。フランジ部22の両端面に形成したスラスト軸受面22a、22bは、対向する面(軸受スリーブ8の下側端面8cやハウジング7の底部7bの上側端面7b1など)との間のスラスト軸受隙間を形成することから、斯かる直角度の数値を小さく抑えることにより、上記スラスト軸受隙間のばらつきを抑えることができる。また、軸部の端面21bは、上記スラスト軸受隙間を設定する際の基準面にもなる。そのため、軸部端面21bの直角度の数値を小さく抑えることにより、スラスト軸受隙間を精度良く管理することもできる。   According to the said manufacturing method, the cylindrical degree of the radial bearing surfaces 23a and 23b formed in the axial part 21 outer periphery can be finished with high precision. Thereby, for example, the variation in the circumferential direction or the axial direction of the radial bearing gap formed between the inner peripheral surface 8a of the inner periphery of the bearing sleeve 8 in the dynamic pressure bearing device 1 is suppressed within a predetermined range, The adverse effect on the bearing performance due to the variation in the radial bearing gap can be avoided. Further, the shaft member 2 is formed in which the squareness values of both end surfaces (thrust bearing surfaces) 22a and 22b of the flange portion 22 are kept small with reference to the radial bearing surfaces 23a and 23b formed on the outer periphery of the shaft portion 21. You can also. Thrust bearing surfaces 22a and 22b formed on both end surfaces of the flange portion 22 form a thrust bearing gap between opposing surfaces (such as the lower end surface 8c of the bearing sleeve 8 and the upper end surface 7b1 of the bottom portion 7b of the housing 7). Therefore, the variation in the thrust bearing gap can be suppressed by keeping the squareness value small. Further, the end surface 21b of the shaft portion also serves as a reference surface for setting the thrust bearing gap. For this reason, the thrust bearing clearance can be managed with high accuracy by keeping the squareness of the shaft end face 21b small.

また、この実施形態では、軸部21の円筒面25に対応する領域に仕上げ研削加工(図9参照)を行っているので、円筒面25の円筒度も高精度に仕上げられ、ディスクハブ3等の部材を軸部材2に取付ける際の組付け精度が高められる。これにより、ディスクDをディスクハブ3に保持するためのクランパ等を軸部材2に固定する際の精度を高めることができ、クランパとディスクハブ3との間でクランプ固定されるディスクDの軸部材2に対する組付け精度がより一層高められ、さらなるモータ性能の向上が図られる。   Further, in this embodiment, the finish grinding process (see FIG. 9) is performed on the region corresponding to the cylindrical surface 25 of the shaft portion 21, so that the cylindricity of the cylindrical surface 25 is also finished with high accuracy, and the disk hub 3 and the like. Assembling accuracy when attaching the member to the shaft member 2 is improved. As a result, it is possible to improve the accuracy when fixing a clamper or the like for holding the disk D to the disk hub 3 to the shaft member 2, and the shaft member of the disk D clamped and fixed between the clamper and the disk hub 3. Assembling accuracy with respect to 2 is further increased, and further improvement in motor performance is achieved.

以上の実施形態では、軸部材2のラジアル軸受面23a、23bおよびスラスト軸受面22a、22bを、全て動圧溝のない平滑面とした場合を例示したが、これらの軸受面の側に動圧溝を形成することもできる。この場合、ラジアル動圧溝は、図6〜図9に示す研削加工の前の段階で、転造あるいは鍛造により形成することができ、スラスト動圧溝は、プレスあるいは鍛造で形成することができる。   In the above embodiment, the case where the radial bearing surfaces 23a and 23b and the thrust bearing surfaces 22a and 22b of the shaft member 2 are all smooth surfaces without dynamic pressure grooves is exemplified. Grooves can also be formed. In this case, the radial dynamic pressure groove can be formed by rolling or forging before the grinding process shown in FIGS. 6 to 9, and the thrust dynamic pressure groove can be formed by pressing or forging. .

また、以上の実施形態では、貫通孔29を、スラスト軸受隙間W1、W2における圧力の逃げを防ぐため、フランジ部22のスラスト軸受面22a、22b(スラスト軸受隙間W1、W2)を避けて、これら軸受面22a、22bよりも内径側に開口するように形成した場合を説明したが、多少の圧力の逃げを考慮して動圧溝やスラスト軸受隙間を設定できる場合には、貫通孔29をスラスト軸受面22a、22bにかかる位置に形成することも可能である。   Moreover, in the above embodiment, in order to prevent the escape of the pressure in the thrust bearing gaps W1 and W2, the through holes 29 are avoided by avoiding the thrust bearing surfaces 22a and 22b (thrust bearing gaps W1 and W2) of the flange portion 22. The case where it is formed so as to open to the inner diameter side than the bearing surfaces 22a and 22b has been described. However, when a dynamic pressure groove and a thrust bearing gap can be set in consideration of some pressure relief, the through hole 29 is formed in the thrust hole. It is also possible to form the bearing surfaces 22a and 22b at positions.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもでき、スラスト軸受部T1、T2として、ステップ・ポケット軸受、テーパ・ポケット軸受、テーパ・フラット軸受等を使用することもできる。   Moreover, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is used. Although the bearing is illustrated, the configuration of the dynamic pressure generating unit is not limited to this. As the radial bearing portions R1 and R2, for example, multi-arc bearings, step bearings, taper bearings, taper flat bearings, etc. can be used. As the thrust bearing portions T1 and T2, step pocket bearings, taper pocket bearings, taper・ Flat bearings can also be used.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間W1、W2に動圧作用を生じる流体として、潤滑油を例示したが、特にこの流体に限定されるものではない。動圧溝を有する各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust between the bearing sleeve 8 and the housing 7 and the shaft member 2 are filled. Although the lubricating oil is exemplified as the fluid that causes the dynamic pressure action in the bearing gaps W1 and W2, it is not particularly limited to this fluid. A fluid capable of generating a dynamic pressure action in each bearing gap having the dynamic pressure grooves, for example, a gas such as air, or a fluid lubricant such as a magnetic fluid may be used.

本発明の一実施形態に係る動圧軸受装置用の軸部材の側面図である。It is a side view of the shaft member for fluid dynamic bearing devices concerning one embodiment of the present invention. 軸部材を備えた動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus provided with the shaft member. 動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a fluid dynamic bearing device. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. 鍛造加工により成形された軸素材の側面図である。It is a side view of the shaft raw material shape | molded by the forging process. (a)は軸素材の幅研削工程に係る研削装置の一例を示す概略図、(b)は軸素材を保持するキャリアの切欠き周辺の拡大図である。(A) is the schematic which shows an example of the grinding apparatus which concerns on the width grinding process of a shaft raw material, (b) is an enlarged view of the notch periphery of the carrier holding a shaft raw material. 上記幅研削工程に係る研削装置の一例を示す一部断面図である。It is a partial cross section figure showing an example of a grinding device concerning the above-mentioned width grinding process. 軸素材の全面研削工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding device which concerns on the shaft material whole surface grinding process. 軸素材の研削仕上げ工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding apparatus which concerns on the grinding finishing process of a shaft raw material.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
8a 内周面
8a1、8a2 動圧溝
8c 下側端面
8c1 動圧溝
9 シール部材
10 軸素材
11 軸部
11b 端面
12 フランジ部
12a 軸部側端面
12b 反軸部側端面
13 矯正加工面
14 テーパ面
15 円筒面
19 貫通孔(軸素材)
21 軸部
21b 端面
22 フランジ部
22a、22b スラスト軸受面
23a、23b ラジアル軸受面
24 テーパ面
25 円筒面
26、27、28 ヌスミ部
29 貫通孔
40 研削装置
41 キャリア
42 砥石
43 切欠き
43a 内面
50、60 研削装置
52、62 シュー
53、63 砥石
54、64 バッキングプレート
55、65 プレッシャプレート
56 研削面
56a 円筒研削部
56b 平面研削部
57、67 計測ゲージ
63 砥石
63a 研削面
D ディスク
S シール空間
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
W1、W2 スラスト軸受隙間
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disk hub 4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing sleeve 8a Inner peripheral surface 8a1, 8a2 Dynamic pressure groove 8c Lower end surface 8c1 Dynamic pressure groove 9 Seal member 10 Shaft material 11 Shaft part 11b End surface 12 Flange portion 12a Shaft portion side end surface 12b Non-shaft portion side end surface 13 Straightening surface 14 Tapered surface 15 Cylindrical surface 19 Through hole (shaft material)
21 Shaft portion 21b End surface 22 Flange portion 22a, 22b Thrust bearing surface 23a, 23b Radial bearing surface 24 Tapered surface 25 Cylindrical surface 26, 27, 28 Nusumi portion 29 Through hole 40 Grinding device 41 Carrier 42 Grinding stone 43 Notch 43a Inner surface 50, 60 grinding device 52, 62 shoe 53, 63 grinding wheel 54, 64 backing plate 55, 65 pressure plate 56 grinding surface 56a cylindrical grinding unit 56b surface grinding unit 57, 67 measuring gauge 63 grinding wheel 63a grinding surface D disk S seal space R1, R2 Radial bearing part T1, T2 Thrust bearing part W1, W2 Thrust bearing clearance

Claims (7)

フランジ部を備え、フランジ部の軸方向両側のスラスト軸受隙間に生じる流体の動圧作用により発生した圧力でスラスト方向に非接触支持される動圧軸受装置用の軸部材において、
フランジ部に、その両端面に開口する貫通孔が形成され、
貫通孔の内周が塑性加工された面であることを特徴とする動圧軸受装置用の軸部材。
In a shaft member for a hydrodynamic bearing device that includes a flange portion and is supported in a non-contact manner in a thrust direction by a pressure generated by a dynamic pressure action of a fluid generated in a thrust bearing gap on both axial sides of the flange portion.
In the flange portion, through-holes that are open on both end faces are formed,
A shaft member for a hydrodynamic bearing device, wherein the inner periphery of the through hole is a plastically processed surface.
さらに、フランジ部と一体に鍛造成形された軸部を備える請求項1記載の動圧軸受装置用の軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, further comprising a shaft portion forged and formed integrally with the flange portion. 貫通孔を、軸部の近傍に形成した請求項1又は2記載の動圧軸受装置用の軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein the through hole is formed in the vicinity of the shaft portion. 請求項1〜3何れか記載の軸部材と、軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置。   The hydrodynamic action of the fluid which arises in the radial bearing clearance between the shaft member in any one of Claims 1-3, the bearing sleeve in which a shaft member is inserted in an inner periphery, and the outer periphery of a shaft part, and the inner periphery of a bearing sleeve A radial bearing that supports the shaft in a non-contact manner in the radial direction by generating pressure with a hydrodynamic pressure generated by the fluid generated in the thrust bearing gap at one end of the flange, and the flange is non-contact in the thrust A first thrust bearing portion for supporting, and a second thrust bearing portion for generating pressure by a dynamic pressure action of a fluid generated in a thrust bearing gap on the other end side of the flange portion and supporting the flange portion in a non-contact manner in the thrust direction. Hydrodynamic bearing device. ラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝が軸方向で非対称に形成されている請求項4記載の動圧軸受装置。   A dynamic pressure groove for generating a dynamic pressure action of fluid is formed asymmetrically in the axial direction on one of the outer peripheral surface of the shaft portion facing the radial bearing gap and the inner peripheral surface of the bearing sleeve facing this outer peripheral surface. The hydrodynamic bearing device according to claim 4. 請求項4又は5記載の動圧軸受装置と、ロータマグネットと、ステ−タコイルとを備えるモータ。   A motor comprising the hydrodynamic bearing device according to claim 4, a rotor magnet, and a stator coil. 軸部とフランジ部とを備え、フランジ部の軸方向両側のスラスト軸受隙間に生じる流体の動圧作用により発生した圧力でスラスト方向に非接触支持される動圧軸受装置用の軸部材の製造方法において、
軸部およびフランジ部を一体に鍛造成形すると共に、フランジ部に、その両端面に開口する貫通孔を鍛造成形し、かつこれらの鍛造を同時に行うことを特徴とする動圧軸受装置用の軸部材の製造方法。
A method of manufacturing a shaft member for a hydrodynamic bearing device comprising a shaft portion and a flange portion and supported in a non-contact manner in a thrust direction by a pressure generated by a dynamic pressure action of a fluid generated in a thrust bearing gap on both axial sides of the flange portion In
A shaft member for a hydrodynamic bearing device, wherein the shaft portion and the flange portion are integrally forged, and through holes that are open on both end surfaces of the flange portion are forged and these forgings are performed simultaneously. Manufacturing method.
JP2004261457A 2004-09-08 2004-09-08 Manufacturing method of shaft member for hydrodynamic bearing device Expired - Fee Related JP4642416B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004261457A JP4642416B2 (en) 2004-09-08 2004-09-08 Manufacturing method of shaft member for hydrodynamic bearing device
US11/630,410 US20080292228A1 (en) 2004-09-08 2005-09-07 Shaft Member for Fluid Lubrication Bearing Apparatuses and a Method for Producing the Same
PCT/JP2005/016399 WO2006028119A1 (en) 2004-09-08 2005-09-07 Shaft member for fluid bearing device and method of producing the same
KR1020077001179A KR101233307B1 (en) 2004-09-08 2005-09-07 Method of producing shaft member for fluid bearing device
KR1020127009407A KR101233303B1 (en) 2004-09-08 2005-09-07 Shaft member for fluid bearing device and method of producing the same
CN2005800252730A CN1989352B (en) 2004-09-08 2005-09-07 Shaft member for fluid bearing device and its manufacturing method
US12/827,014 US8678653B2 (en) 2004-09-08 2010-06-30 Shaft member for fluid lubrication bearing apparatuses and a method for producing the same
US13/090,452 US8387246B2 (en) 2004-09-08 2011-04-20 Shaft member for fluid lubrication bearing apparatuses and a method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261457A JP4642416B2 (en) 2004-09-08 2004-09-08 Manufacturing method of shaft member for hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006077864A true JP2006077864A (en) 2006-03-23
JP4642416B2 JP4642416B2 (en) 2011-03-02

Family

ID=36157495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261457A Expired - Fee Related JP4642416B2 (en) 2004-09-08 2004-09-08 Manufacturing method of shaft member for hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4642416B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032555A1 (en) * 2006-09-12 2008-03-20 Ntn Corporation Hydrodynamic bearing device
JP2008298234A (en) * 2007-06-01 2008-12-11 Ntn Corp Method for manufacturing shaft member for fluid bearing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020945A (en) * 1999-07-05 2001-01-23 Koyo Seiko Co Ltd Dynamic pressure bearing
JP2001280338A (en) * 2000-03-31 2001-10-10 Sankyo Seiki Mfg Co Ltd Bearing member, device and method for manufacturing bearing member, and working tool for the same
JP2002155943A (en) * 2000-11-17 2002-05-31 Koyo Seiko Co Ltd Dynamic pressure bearing device
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020945A (en) * 1999-07-05 2001-01-23 Koyo Seiko Co Ltd Dynamic pressure bearing
JP2001280338A (en) * 2000-03-31 2001-10-10 Sankyo Seiki Mfg Co Ltd Bearing member, device and method for manufacturing bearing member, and working tool for the same
JP2002155943A (en) * 2000-11-17 2002-05-31 Koyo Seiko Co Ltd Dynamic pressure bearing device
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032555A1 (en) * 2006-09-12 2008-03-20 Ntn Corporation Hydrodynamic bearing device
JP2008298234A (en) * 2007-06-01 2008-12-11 Ntn Corp Method for manufacturing shaft member for fluid bearing device

Also Published As

Publication number Publication date
JP4642416B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
KR101233307B1 (en) Method of producing shaft member for fluid bearing device
JP4675726B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US9003664B2 (en) Method for producing shaft member for hydrodynamic bearing apparatus
JP3893021B2 (en) Hydrodynamic bearing unit
JP3987745B2 (en) Thrust plate manufacturing method, dynamic pressure bearing shaft manufacturing method, dynamic pressure bearing, spindle motor, and recording disk drive device
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
JP4786157B2 (en) Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP6621575B2 (en) Shaft member for fluid dynamic pressure bearing device and manufacturing method thereof
JP5000382B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP2006207787A (en) Housing for dynamic pressure bearing device and manufacturing method therefor
JP5901979B2 (en) Method for manufacturing fluid dynamic bearing device
JP2007210095A (en) Method for manufacturing dynamic pressure-type bearing device
JP4832736B2 (en) Hydrodynamic bearing unit
JP2010133437A (en) Fluid dynamic-pressure bearing device, and method and device of manufacturing the same
JP2006220216A (en) Fluid bearing device housing and its manufacturing method
JP2003227512A (en) Oil impregnated sintered bearing and manufacturing method therefor
JP2013053692A (en) Fluid dynamic pressure bearing device and method of manufacturing the same
JP2005127525A (en) Hydrodynamic bearing device
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP2009030781A (en) Manufacturing method of bearing part and motor and sleeve machining tool
JPH11218123A (en) Dynamic pressure type bearing and spindle motor for information equipment
JP2007040482A (en) Method of manufacturing fluid bearing device
JP2013036475A (en) Fluid dynamic bearing device and motor having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees