JP2006077861A - Shaft member for dynamic pressure type bearing device and manufacturing method thereof - Google Patents

Shaft member for dynamic pressure type bearing device and manufacturing method thereof Download PDF

Info

Publication number
JP2006077861A
JP2006077861A JP2004261446A JP2004261446A JP2006077861A JP 2006077861 A JP2006077861 A JP 2006077861A JP 2004261446 A JP2004261446 A JP 2004261446A JP 2004261446 A JP2004261446 A JP 2004261446A JP 2006077861 A JP2006077861 A JP 2006077861A
Authority
JP
Japan
Prior art keywords
shaft
shaft member
bearing
bearing device
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004261446A
Other languages
Japanese (ja)
Other versions
JP4610973B2 (en
Inventor
Nobuyoshi Yamashita
信好 山下
Hideaki Kubota
秀明 窪田
Natsuhiko Mori
夏比古 森
Keiji Nagasaki
桂二 長崎
Masahiro Makino
雅弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Fukui Byora Co Ltd
Original Assignee
NTN Corp
Fukui Byora Co Ltd
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, Fukui Byora Co Ltd, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004261446A priority Critical patent/JP4610973B2/en
Priority to CN2005800255692A priority patent/CN101014777B/en
Priority to KR1020077000956A priority patent/KR101164462B1/en
Priority to US11/629,910 priority patent/US20070278881A1/en
Priority to PCT/JP2005/015952 priority patent/WO2006027986A1/en
Publication of JP2006077861A publication Critical patent/JP2006077861A/en
Application granted granted Critical
Publication of JP4610973B2 publication Critical patent/JP4610973B2/en
Priority to US13/149,313 priority patent/US9003664B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machining method or a manufacturing method for a shaft member, heightening the dimensional accuracy of a shaft member in this type of dynamic pressure type bearing device and heightening the dimensional accuracy at a low cost. <P>SOLUTION: A shaft blank material 10 integrally having a shaft part 11 and a flange part 12 is formed by forging, and the cylindricity of a part or the whole of the outer peripheral surface 11a of the shaft part 11 is corrected. The shaft part end face 11b of the shaft blank material 10 and the counter-shaft part end face 12b of the flange part 12 are ground taking the surface 13 subjected to correction as a reference, and the outer peripheral surface 10b of the shaft blank material 10 is ground taking both end faces 11b, 12b as a reference. The cylindricity of the radial bearing surface formed on the outer periphery of the shaft part in the thus manufactured shaft member is set to 3 μm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、動圧軸受装置用の軸部材およびその製造方法に関するものである。ここでいう動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。   The present invention relates to a shaft member for a hydrodynamic bearing device and a manufacturing method thereof. The hydrodynamic bearing device referred to here is an information device, for example, a magnetic disk device such as an HDD, an optical disk device such as a CD-ROM, CD-R / RW, or DVD-ROM / RAM, or a magneto-optical disk device such as an MD or MO. This is suitable for a spindle motor, a polygon scanner motor of a laser beam printer (LBP), and other small motors.

上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。   In addition to high rotational accuracy, the various motors are required to have high speed, low cost, low noise, and the like. One of the components that determine the required performance is a bearing that supports the spindle of the motor. In recent years, the use of a hydrodynamic bearing having characteristics excellent in the required performance has been studied or actually used. Yes.

動圧軸受は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持するものであり、例えば、HDD等のディスク状記録媒体駆動装置のスピンドルモータに組込まれて使用される。この種の動圧軸受装置には、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部を構成する軸受スリーブの内周面または軸部材の外周面に、動圧発生用の溝(動圧溝)が形成される。また、スラスト軸受部を構成する軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面、あるいはハウジングの底部の内底面等)に、動圧溝が形成される(例えば、特許文献1参照)。
特開2002−61641号公報
A dynamic pressure bearing is a member that rotatably supports a shaft member in a non-contact manner by the dynamic pressure action of lubricating oil generated in a bearing gap, and is used by being incorporated in a spindle motor of a disk-shaped recording medium driving device such as an HDD. The This type of hydrodynamic bearing device is provided with a radial bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the radial direction, and a thrust bearing portion that supports the shaft member in a non-contact manner so as to be rotatable in the thrust direction. A dynamic pressure generating groove (dynamic pressure groove) is formed on the inner peripheral surface of the bearing sleeve or the outer peripheral surface of the shaft member constituting the bearing portion. Further, both end surfaces of the flange portion of the shaft member constituting the thrust bearing portion, or surfaces facing the flange surface (the end surface of the bearing sleeve, the end surface of the thrust member fixed to the housing, the inner bottom surface of the bottom of the housing, etc.) In addition, a dynamic pressure groove is formed (see, for example, Patent Document 1).
JP 2002-61641 A

最近では、情報機器における情報記録密度の増大や高速回転化に対応するため、上記情報機器用のスピンドルモータには一層の高回転精度化が求められており、この要請に応じるために、上記スピンドルモータに組込まれる動圧軸受装置についても更なる高回転精度が要求されている。   Recently, in order to cope with an increase in information recording density and high-speed rotation in information equipment, the spindle motor for the information equipment has been required to have higher rotational accuracy. Higher rotational accuracy is also required for the hydrodynamic bearing device incorporated in the motor.

ところで、動圧軸受装置の回転精度を高めるためには、動圧が生じるラジアル軸受隙間やスラスト軸受隙間を高精度に管理することが重要となる。この隙間を適正に管理するため、上記各軸受隙間の形成に関与する動圧軸受装置の軸部材には、高い寸法精度が要求される。その一方で、既存の加工方法では、加工コストが著しく高騰するためにこれ以上の高精度化は困難であり、従って、軸部材について、加工精度と加工コストとを両立した新たな加工方法の提供が望まれる。   By the way, in order to increase the rotational accuracy of the hydrodynamic bearing device, it is important to manage the radial bearing gap and the thrust bearing gap in which the dynamic pressure is generated with high accuracy. In order to properly manage this gap, high dimensional accuracy is required for the shaft member of the hydrodynamic bearing device involved in the formation of the bearing gaps. On the other hand, it is difficult to increase the precision of existing machining methods because the machining costs are soaring. Therefore, a new machining method that provides both machining accuracy and machining costs for shaft members is provided. Is desired.

本発明の課題は、この種の動圧軸受装置における軸部材の寸法精度を高めることである。   The subject of this invention is improving the dimensional accuracy of the shaft member in this kind of hydrodynamic bearing apparatus.

本発明の他の課題は、この種の動圧軸受装置における軸部材の寸法精度を低コストに高めることのできる軸部材の加工方法を提供することである。   Another object of the present invention is to provide a method of machining a shaft member that can increase the dimensional accuracy of the shaft member in this type of hydrodynamic bearing device at low cost.

前記課題を解決するため、本発明に係る動圧軸受装置用軸部材は、それぞれ鍛造で成形した軸部およびフランジ部を備え、軸部の外周にラジアル軸受隙間に面するラジアル軸受面を形成したものであって、ラジアル軸受面の円筒度が3μm以下であることを特徴とする。ここで、円筒度は、円筒形体(円筒度の対象となる面。ここでは軸部のラジアル軸受面を指す)を2つの同軸の幾何学的に正しい円筒で挟んだとき、同軸2円筒(内接円筒と外接円筒)の間隔が最小となる場合の、同軸2円筒の半径の差で表される。ラジアル軸受面は、動圧作用を生じるラジアル軸受隙間に面したものであればよく、動圧作用を生じるための動圧溝の有無は問わない。   In order to solve the above-described problems, the shaft member for a hydrodynamic bearing device according to the present invention includes a shaft portion and a flange portion formed by forging, and a radial bearing surface that faces the radial bearing gap is formed on the outer periphery of the shaft portion. The cylindricity of the radial bearing surface is 3 μm or less. Here, the cylindricity is equal to two cylindrical cylinders (inner surface when the cylindrical body (the surface to be subjected to cylindricity. Here, the radial bearing surface of the shaft portion) is sandwiched between two coaxial geometrically correct cylinders. It is represented by the difference in radius between the two coaxial cylinders when the interval between the tangent cylinder and the circumscribed cylinder) is minimized. The radial bearing surface may be any surface as long as it faces the radial bearing gap that generates the dynamic pressure effect, and it does not matter whether there is a dynamic pressure groove for generating the dynamic pressure effect.

軸部外周に形成されたラジアル軸受面の円筒度は、特に軸部の外周と、軸部外周に対向する軸受部材(軸受スリーブやハウジングなど)との間に形成されるラジアル軸受隙間をの精度を大きく左右する。すなわち、円筒度が大きくなると、上記ラジアル軸受隙間が、円周方向あるいは軸方向に一定せず、隙間の大きい箇所と隙間の小さい箇所が顕著に現れる。そのため、上記軸受隙間の小さい箇所では、他所に比べて軸部材の回転トルクが大きくなるなど軸受損失が増加し、上記軸受隙間の大きい箇所では、他所に比べて軸受剛性が低下し、軸の振れが大きくなる。また、軸方向に隙間が一定していないと、軸方向への好ましくない潤滑流体の流れが生じ、適正な潤滑流体の循環に悪影響を及ぼす可能性がある。これらの観点から、本発明では、ラジアル軸受面の円筒度を3μm以下に規定した。これによれば、ラジアル軸受隙間の円周方向あるいは軸方向での寸法のばらつきが抑えられるので、上記軸受損失を抑えることができ、また上記軸受剛性を確保することができる。従って、この軸部材と、軸部材に対向する軸受部材との間のラジアル軸受隙間を高精度に管理でき、これら軸部材と軸受部材を備えた軸受装置の高回転精度が実現可能となる。   The degree of cylindricity of the radial bearing surface formed on the outer periphery of the shaft part is particularly accurate for the radial bearing gap formed between the outer periphery of the shaft part and the bearing member (bearing sleeve, housing, etc.) facing the outer periphery of the shaft part. Greatly affects. That is, when the cylindricity is increased, the radial bearing gap is not constant in the circumferential direction or the axial direction, and a portion having a large gap and a portion having a small gap appear remarkably. For this reason, the bearing loss increases at a location where the bearing clearance is small, for example, because the rotational torque of the shaft member increases compared to other locations, and the bearing rigidity decreases at locations where the bearing clearance is large compared to other locations, resulting in shaft runout. Becomes larger. Further, if the gap is not constant in the axial direction, an undesired flow of lubricating fluid in the axial direction occurs, which may adversely affect the proper circulation of the lubricating fluid. From these viewpoints, in the present invention, the cylindricity of the radial bearing surface is regulated to 3 μm or less. According to this, since the variation in the dimension of the radial bearing gap in the circumferential direction or the axial direction is suppressed, the bearing loss can be suppressed and the bearing rigidity can be ensured. Therefore, the radial bearing gap between the shaft member and the bearing member facing the shaft member can be managed with high accuracy, and high rotational accuracy of the bearing device including the shaft member and the bearing member can be realized.

この軸部材においては、軸部の外周に形成されたラジアル軸受面を基準とした、フランジ部の両端面の直角度および軸部の端面の直角度は、それぞれ5μm以下であることが好ましい。ここで、直角度とは、直角であるべき所定平面と基準面との組合わせにおいて、基準面(ここではラジアル軸受面)に対して幾何学的に直角な幾何学平面からの上記所定平面(ここではフランジ部の端面あるいは軸部の端面)のずれの大きさをいう。フランジ部の端面の直角度が5μmより大きいと、該端面と対向する面との間に形成されるスラスト軸受隙間にばらつきが生じることで、軸受損失が増加するなど軸受性能に悪影響を与える可能性があるためである。また、軸部の端面の直角度が5μmより大きいと、スラスト軸受隙間を精度良く設定することが難しくなる、あるいは軸部端面が軸部外周面やフランジ部の端面を研削加工する際の基準面となる場合には、これら研削面の加工精度が低下する可能性があるためである。   In this shaft member, it is preferable that the perpendicularity of both end faces of the flange portion and the perpendicularity of the end face of the shaft portion are each 5 μm or less with reference to the radial bearing surface formed on the outer periphery of the shaft portion. Here, the squareness means that the predetermined plane from the geometric plane that is geometrically perpendicular to the reference plane (here, the radial bearing surface) in the combination of the predetermined plane and the reference plane that should be perpendicular. Here, it refers to the magnitude of deviation of the flange end face or shaft end face. If the perpendicularity of the end face of the flange portion is larger than 5 μm, the thrust bearing gap formed between the end face and the opposite face may vary, which may adversely affect the bearing performance such as increased bearing loss. Because there is. If the squareness of the end face of the shaft portion is larger than 5 μm, it becomes difficult to set the thrust bearing gap with high precision, or the reference surface when the shaft end surface grinds the outer peripheral surface of the shaft portion or the end surface of the flange portion. This is because the processing accuracy of these ground surfaces may be reduced.

上記軸部材は、軸部とフランジ部とをそれぞれ鍛造で形成したものであり、また、軸部材の両端面(軸部材の両端部に位置する軸部の端面とフランジ部の一方の端面)を研削面とすれば、これらの面を基準面として軸部材外周面の精密研削を行うことが可能となる。これにより、円筒度や直角度の値を小さく抑えたラジアル軸受面を有する軸部材を低コストに得ることができる。上記軸部材は、軸部とフランジ部とを共に鍛造で一体成形することもでき、これによれば、さらなる低コスト化が図られる。   The shaft member is formed by forging a shaft portion and a flange portion, and both end surfaces of the shaft member (the end surface of the shaft portion located at both end portions of the shaft member and one end surface of the flange portion) are formed. If the ground surfaces are used, it is possible to perform precision grinding of the outer peripheral surface of the shaft member using these surfaces as reference surfaces. Thereby, the shaft member which has the radial bearing surface which suppressed the value of cylindricity and perpendicularity small can be obtained at low cost. The shaft member can be integrally formed by forging the shaft portion and the flange portion. According to this, the cost can be further reduced.

軸部とフランジ部との角部に傾斜状のヌスミ部を形成すれば、軸部の外周面およびフランジ部の端面の双方の研削時における砥石の逃げを確保することができる。このヌスミ部の形成方法としては、種々の方法が考えられるが、加工後のバリや不純物等の発生を抑制する観点から、塑性加工で形成するのが好ましい。   If a sloping ridge portion is formed at the corner portion of the shaft portion and the flange portion, it is possible to ensure the escape of the grindstone during grinding of both the outer peripheral surface of the shaft portion and the end surface of the flange portion. Various methods are conceivable as a method for forming the pussies, but from the viewpoint of suppressing the generation of burrs, impurities and the like after processing, it is preferably formed by plastic processing.

本発明に係る動圧軸受装置用軸部材の製造方法は、軸部とフランジ部とを一体に有する軸素材を鍛造加工により成形する工程と、軸部の外周面の一部又は全部の円筒度を矯正する工程とを含むことを特徴とする。さらに好ましくは、前記矯正加工を施した面を基準として軸素材の両端面に第一の研削加工を施し、次いで該両端面を基準として少なくとも軸素材の外周面に第二の研削加工を施すことを特徴とする。   The method of manufacturing a shaft member for a hydrodynamic bearing device according to the present invention includes a step of forming a shaft material integrally having a shaft portion and a flange portion by forging, and a part or all of the cylindricity of the outer peripheral surface of the shaft portion. And a step of correcting. More preferably, a first grinding process is performed on both end faces of the shaft material on the basis of the straightened surface, and then a second grinding process is performed on at least the outer peripheral surface of the shaft material on the basis of the both end faces. It is characterized by.

このように本発明では、鍛造成形で軸部・フランジ部一体の軸部材(軸素材)を粗成形した後、軸部外周面の円筒度を矯正するので、後述の第一の研削工程において、矯正した面を基準とすることにより、高精度の研削加工(幅研削)を行うことができる。   Thus, in the present invention, after roughly forming the shaft member and the shaft portion integrated with the shaft portion and the flange portion by forging, the cylindrical degree of the outer peripheral surface of the shaft portion is corrected, so in the first grinding step described later, By using the corrected surface as a reference, highly accurate grinding (width grinding) can be performed.

なお、上記円筒度の矯正加工には、例えば丸ダイスや平ダイス等による転造加工を挙げることができるが、この他にも絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の塑性加工を用いることができる。   In addition, examples of the correction processing of the above-mentioned cylindricity may include rolling processing using, for example, a round die or a flat die, but other than this, drawing, ironing, sizing processing using a split-type press (clamping), etc. Various plastic workings can be used.

第一の研削工程では、軸素材の軸方向両端部に位置する両端面、具体的には軸部の端面とフランジ部の一方の端面とに研削加工が施される。この際、上述のように矯正加工を施した軸部外周面を基準として各端面が研削されるので、これら軸素材の両端面の直角度や平面度を高精度に仕上げることが可能となる。   In the first grinding step, grinding is performed on both end surfaces located at both axial ends of the shaft material, specifically, the end surface of the shaft portion and one end surface of the flange portion. At this time, since each end face is ground with reference to the outer peripheral surface of the shaft portion subjected to the correction processing as described above, the squareness and flatness of both end faces of the shaft material can be finished with high accuracy.

次いで、これら研削加工を施した軸素材の両端面を基準として軸素材の外周面に第二の研削加工が施される。基準面である軸素材の両端面は、第一の研削工程で高精度に仕上げられているので、加工対象である軸素材の外周面も高精度に仕上げることができる。第二の研削加工は、軸素材の外周面のうち、少なくともラジアル軸受面となる部分に施されるが、この他にフランジ部の外周面に施すこともできる。さらには、未研削であるフランジ部の他方の(軸部側の)端面に施すこともできる。この第二の研削工程では、これら軸素材の研削すべき面に対応した形状の輪郭を有する砥石(総形砥石)を用いることにより、これら研削すべき面を一度に仕上げることができる。   Next, a second grinding process is performed on the outer peripheral surface of the shaft material with reference to both end surfaces of the shaft material subjected to the grinding process. Since both end faces of the shaft material that is the reference surface are finished with high accuracy in the first grinding process, the outer peripheral surface of the shaft material that is the processing target can also be finished with high accuracy. The second grinding process is performed on at least a portion serving as a radial bearing surface in the outer peripheral surface of the shaft material, but can also be performed on the outer peripheral surface of the flange portion. Furthermore, it can also be applied to the other end surface (on the shaft portion side) of the unground flange portion. In the second grinding step, the surfaces to be ground can be finished at a time by using a grindstone having a contour corresponding to the surface to be ground of these shaft materials (total shape grindstone).

以上の手順を経ることにより、ラジアル軸受面の円筒度が3μm以下、さらにはフランジ部の両端面の直角度および軸部の端面の直角度がそれぞれ5μm以下の軸部材を低コストに製造することが可能となる。   Through the above procedure, a shaft member having a radial bearing surface with a cylindricity of 3 μm or less, a squareness of both end faces of the flange portion, and a perpendicularity of the end face of the shaft portion of 5 μm or less is manufactured at low cost. Is possible.

上記動圧軸受装置用軸部材は、軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置として提供することが可能である。   The shaft member for a hydrodynamic bearing device is configured to apply pressure by a hydrodynamic action of a fluid generated in a bearing sleeve in which the shaft member is inserted into the inner periphery and a radial bearing gap between the outer periphery of the shaft portion and the inner periphery of the bearing sleeve. A radial bearing that non-contact-supports the shaft portion in the radial direction, and a non-contact support that supports the flange portion in the thrust direction by generating pressure by the dynamic pressure action of the fluid generated in the thrust bearing gap at one end of the flange portion. A hydrodynamic bearing including a first thrust bearing portion and a second thrust bearing portion that generates pressure by a dynamic pressure action of fluid generated in a thrust bearing gap on the other end side of the flange portion and supports the flange portion in a non-contact manner in the thrust direction. It can be provided as a device.

この場合には、例えばラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝を軸方向に非対称に形成することができる。   In this case, for example, a dynamic pressure groove for generating a dynamic pressure action of fluid is formed on one of the outer peripheral surface of the shaft portion facing the radial bearing gap and the inner peripheral surface of the bearing sleeve facing the outer peripheral surface. It can be asymmetric in the axial direction.

また、上記動圧軸受装置は、動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータとして提供することも可能である。   Moreover, the said dynamic pressure bearing apparatus can also be provided as a motor provided with the dynamic pressure bearing apparatus, the rotor magnet, and the stator coil.

本発明によれば、ラジアル軸受隙間やスラスト軸受隙間の形成に関与する軸部材の軸部外周面やフランジ部の端面を高精度にかつ低コストに加工することができるので、これら軸部材を組込んだ動圧軸受装置の各軸受隙間を高精度に管理することができる。その結果、上記動圧軸受装置に高回転精度を付与することが可能となる。   According to the present invention, the shaft portion outer peripheral surface of the shaft member and the end surface of the flange portion involved in the formation of the radial bearing gap and the thrust bearing gap can be processed with high accuracy and low cost. It is possible to manage each bearing gap of the embedded dynamic pressure bearing device with high accuracy. As a result, high rotational accuracy can be imparted to the dynamic pressure bearing device.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図2は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられる。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持している。この情報機器用スピンドルモータは、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力によりロータマグネット5が回転し、それに伴って、ディスクハブ3および軸部材2が一体となって回転する。   FIG. 2 conceptually shows a configuration example of a spindle motor for information equipment incorporating the fluid dynamic bearing device 1 according to one embodiment of the present invention. This spindle motor for information equipment is used in a disk drive device such as an HDD, and includes a hydrodynamic bearing device 1 that rotatably supports a shaft member 2 in a non-contact manner, a disk hub 3 attached to the shaft member 2, For example, a stator coil 4 and a rotor magnet 5 which are opposed to each other via a gap in the radial direction, and a bracket 6 are provided. The stator coil 4 is attached to the outer periphery of the bracket 6, and the rotor magnet 5 is attached to the inner periphery of the disk hub 3. The bracket 6 has the hydrodynamic bearing device 1 mounted on the inner periphery thereof. The disk hub 3 holds one or more disks D such as magnetic disks on the outer periphery thereof. In this spindle motor for information equipment, when the stator coil 4 is energized, the rotor magnet 5 is rotated by the magnetic force between the stator coil 4 and the rotor magnet 5, and accordingly, the disk hub 3 and the shaft member 2 are integrated. Rotate.

図3は、動圧軸受装置1を示している。この動圧軸受装置1は、一端に底部7bを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2とを主な構成部品として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明を行う。   FIG. 3 shows the hydrodynamic bearing device 1. The hydrodynamic bearing device 1 includes a housing 7 having a bottom portion 7b at one end, a bearing sleeve 8 fixed to the housing 7, and a shaft member 2 inserted into the inner periphery of the bearing sleeve 8 as main components. Is done. For convenience of explanation, the following description will be made with the bottom 7b side of the housing 7 as the lower side and the side opposite the bottom 7b as the upper side.

ハウジング7は、図3に示すように、例えばLCPやPPS、PEEK等の樹脂材料で円筒状に形成された側部7aと、側部7aの一端側に位置し、例えば金属材料で形成された底部7bとで構成されている。底部7bは、この実施形態では側部7aとは別体として成形され、側部7aの下部内周に後付けされている。底部7bの上側端面7b1の一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル状の動圧溝が形成されている。なお、底部7bは、この実施形態では側部7aとは別体に形成され、側部7aの下部内周に固定されるが、側部7aと例えば樹脂材料で一体に型成形することもできる。その際、上側端面7b1に設けられる動圧溝は、側部7aおよび底部7bからなるハウジング7の射出成形と同時に型成形することができ、これにより別途底部7bに動圧溝を成形する手間を省くことができる。   As shown in FIG. 3, the housing 7 is located on one end side of the side portion 7a and the side portion 7a formed in a cylindrical shape with a resin material such as LCP, PPS, or PEEK, and is formed of, for example, a metal material. It is comprised by the bottom part 7b. In this embodiment, the bottom portion 7b is formed as a separate body from the side portion 7a, and is retrofitted to the lower inner periphery of the side portion 7a. In the partial annular region of the upper end surface 7b1 of the bottom portion 7b, for example, a spiral dynamic pressure groove is formed as a dynamic pressure generating portion, although illustration is omitted. In this embodiment, the bottom portion 7b is formed separately from the side portion 7a and is fixed to the lower inner periphery of the side portion 7a. However, the bottom portion 7b can be integrally molded with the side portion 7a, for example, with a resin material. . At that time, the dynamic pressure groove provided in the upper end surface 7b1 can be molded simultaneously with the injection molding of the housing 7 composed of the side portion 7a and the bottom portion 7b, thereby eliminating the trouble of separately forming the dynamic pressure groove in the bottom portion 7b. It can be omitted.

軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。   The bearing sleeve 8 is formed in a cylindrical shape with a porous body made of sintered metal, in particular, a sintered metal porous body mainly composed of copper, and is fixed at a predetermined position on the inner peripheral surface 7 c of the housing 7. The

軸受スリーブ8の内周面8aの全面又は一部円筒面領域には、動圧発生部としての動圧溝が形成される。この実施形態では、例えば図4に示すように、へリングボーン形状の動圧溝8a1、8a2がそれぞれ軸方向に離隔して2箇所形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。   A dynamic pressure groove as a dynamic pressure generating portion is formed on the entire inner surface 8a of the bearing sleeve 8 or a partial cylindrical surface region. In this embodiment, for example, as shown in FIG. 4, herringbone-shaped dynamic pressure grooves 8 a 1 and 8 a 2 are formed at two locations in the axial direction. The upper dynamic pressure groove 8a1 is formed axially asymmetric with respect to the axial center m (the axial center of the upper and lower inclined groove regions), and the axial dimension X1 of the upper region is lower than the axial center m. It is larger than the axial dimension X2 of the side region.

軸受スリーブ8の下側端面8bの全面あるいは一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル形状の動圧溝が形成される。   For example, a spiral-shaped dynamic pressure groove is formed on the entire lower surface 8b of the bearing sleeve 8 or a partial annular region as a dynamic pressure generating portion, although illustration is omitted.

シール手段としてのシール部材9は、図3に示すように、例えば真ちゅう等の軟質金属材料やその他の金属材料、あるいは樹脂材料で環状に形成され、ハウジング7の側部7aの上部内周に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8cと当接している。   As shown in FIG. 3, the sealing member 9 as a sealing means is formed in a ring shape with a soft metal material such as brass, other metal materials, or a resin material, and is press-fitted into the upper inner periphery of the side portion 7a of the housing 7. It is fixed by means such as adhesion. In this embodiment, the inner peripheral surface 9 a of the seal member 9 is formed in a cylindrical shape, and the lower end surface 9 b of the seal member 9 is in contact with the upper end surface 8 c of the bearing sleeve 8.

軸部材2は、図1に示すように、ステンレス鋼等の金属材料で形成され、軸部21と軸部21の下端に設けられたフランジ部22とを一体に備える断面T字形をなす。軸部21の外周には、図3に示すように、軸受スリーブ8の内周面8aに形成された二つの動圧溝8a1、8a2の形成領域に対向するラジアル軸受面23a、23bが軸方向に離隔して2箇所形成されている。一方のラジアル軸受面23aの上方には、軸先端に向けて漸次縮径するテーパ面24が隣接して形成され、さらにその上方にディスクハブ3の取り付け部となる円筒面25が形成されている。二つのラジアル軸受面23a、23bの間、他方のラジアル軸受面23bとフランジ部22との間、およびテーパ面24と円筒面25との間には、それぞれ環状のヌスミ部26、27、28が形成されている。   As shown in FIG. 1, the shaft member 2 is formed of a metal material such as stainless steel and has a T-shaped cross section integrally including a shaft portion 21 and a flange portion 22 provided at the lower end of the shaft portion 21. On the outer periphery of the shaft portion 21, as shown in FIG. 3, radial bearing surfaces 23a and 23b facing the formation regions of the two dynamic pressure grooves 8a1 and 8a2 formed on the inner peripheral surface 8a of the bearing sleeve 8 are axially arranged. Two places are formed apart from each other. Above one of the radial bearing surfaces 23a, a tapered surface 24 that gradually decreases in diameter toward the tip of the shaft is formed adjacently, and a cylindrical surface 25 that serves as a mounting portion of the disk hub 3 is further formed thereabove. . Between the two radial bearing surfaces 23a, 23b, between the other radial bearing surface 23b and the flange portion 22 and between the tapered surface 24 and the cylindrical surface 25, annular nuisance portions 26, 27, 28 are respectively provided. Is formed.

フランジ部22の両端面には、軸受スリーブの下側端面8bおよび底部7bの上側端面7b1にそれぞれ形成された動圧溝領域と対向するスラスト軸受面22a、22bが形成される。   Thrust bearing surfaces 22a and 22b are formed on both end surfaces of the flange portion 22 so as to face the dynamic pressure groove regions respectively formed on the lower end surface 8b of the bearing sleeve and the upper end surface 7b1 of the bottom portion 7b.

軸部21のテーパ面24と、テーパ面24に対向するシール部材9の内周面9aとの間には、ハウジング7の底部7b側から上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。組み立て完了後の動圧軸受装置1(図3参照)においては、シール空間Sの範囲内に油面がある。   Between the taper surface 24 of the shaft portion 21 and the inner peripheral surface 9a of the seal member 9 facing the taper surface 24, an annular seal whose radial dimension gradually increases from the bottom 7b side of the housing 7 upward. A space S is formed. In the hydrodynamic bearing device 1 (see FIG. 3) after completion of assembly, the oil level is within the range of the seal space S.

上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、軸受スリーブ8内周の動圧溝8a1、8a2の形成領域(上下2箇所)と、これらの領域にそれぞれ対向する軸部21のラジアル軸受面23a、23bとの間のラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部21がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。また、軸受スリーブ8の下側端面8bに形成される動圧溝領域と、この動圧溝領域に対向するフランジ部22の上側(軸部側)のスラスト軸受面22aとの間の第1スラスト軸受隙間、および底部7bの上側端面7b1に形成される動圧溝領域と、この面と対向するフランジ部22の下側(反軸部側)のスラスト軸受面22bとの間の第2スラスト軸受隙間に潤滑油の動圧がそれぞれ発生し、軸部材2のフランジ部22が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。   In the dynamic pressure bearing device 1 configured as described above, when the shaft member 2 is rotated, the formation regions (two upper and lower portions) of the dynamic pressure grooves 8a1 and 8a2 on the inner periphery of the bearing sleeve 8 are opposed to these regions, respectively. The dynamic pressure of the lubricating oil is generated in the radial bearing gap between the radial bearing surfaces 23a and 23b of the shaft portion 21, and the shaft portion 21 of the shaft member 2 is supported in a non-contact manner so as to be rotatable in the radial direction. As a result, the first radial bearing portion R1 and the second radial bearing portion R2 that support the shaft member 2 in a non-contact manner so as to be rotatable in the radial direction are formed. The first thrust between the dynamic pressure groove region formed on the lower end surface 8b of the bearing sleeve 8 and the thrust bearing surface 22a on the upper side (shaft side) of the flange portion 22 facing the dynamic pressure groove region. The second thrust bearing between the bearing clearance and the dynamic pressure groove region formed in the upper end surface 7b1 of the bottom portion 7b and the thrust bearing surface 22b on the lower side (on the opposite shaft side) of the flange portion 22 facing this surface. The dynamic pressure of the lubricating oil is generated in the gap, and the flange portion 22 of the shaft member 2 is supported in a non-contact manner so as to be rotatable in both thrust directions. Thereby, the 1st thrust bearing part T1 and the 2nd thrust bearing part T2 which support the shaft member 2 in a non-contact manner so as to be rotatable in the thrust direction are formed.

以下、上記動圧軸受装置1を構成する軸部材2の製造方法について説明する。   Hereinafter, the manufacturing method of the shaft member 2 which comprises the said dynamic-pressure bearing apparatus 1 is demonstrated.

軸部材2は、主に(A)成形工程と(B)研削工程の2工程を経て製造される。この実施形態では、このうちの(A)の成形工程に鍛造加工(A−1)と矯正加工(A−2)とが含まれ、(B)の研削工程に幅研削加工(B−1)と、全面研削加工(B−2)と、仕上げ研削加工(B−3)とが含まれる。   The shaft member 2 is manufactured mainly through two steps of (A) a forming step and (B) a grinding step. In this embodiment, the forging process (A-1) and the straightening process (A-2) are included in the molding process (A), and the width grinding process (B-1) is included in the grinding process (B). And a whole surface grinding process (B-2) and a finish grinding process (B-3).

(A)成形工程
(A−1)鍛造加工
まず、成形すべき軸部材2の素材となるステンレス鋼等の棒状の金属材を冷間鍛造して、図5に示すように、軸部11およびフランジ部12を一体に有する断面T字形の軸素材10を成形する。冷間鍛造方法としては、押し込み、据込み、ヘッディング等の何れか、もしくはこれらの組合わせを使用することができる。図示例では、鍛造加工後の軸部11の外周面11aを、テーパ面14を介在させた異径形状としているが、テーパ面14を省略し全長に亘って均一径に成形することもできる。
(A) Forming step (A-1) Forging process First, a rod-shaped metal material such as stainless steel, which is a material of the shaft member 2 to be molded, is cold-forged, and as shown in FIG. A shaft material 10 having a T-shaped cross section integrally having the flange portion 12 is formed. As the cold forging method, any one of indentation, upsetting, heading, or a combination thereof can be used. In the illustrated example, the outer peripheral surface 11a of the shaft portion 11 after the forging process has a different diameter shape with the tapered surface 14 interposed, but the tapered surface 14 may be omitted and formed into a uniform diameter over the entire length.

このように、軸素材10を鍛造で形成すれば、例えば切削加工等により同様の軸素材10を形成する場合と比べて、削り代を生じることなく、素材の無駄を省くことができる。また、プレス作業であるため、軸素材10一個当りのサイクルタイムを高めることができ、生産性の向上が図られる。   In this way, if the shaft material 10 is formed by forging, the waste of the material can be eliminated without generating a cutting allowance as compared with the case where the similar shaft material 10 is formed by cutting or the like. Moreover, since it is a press work, the cycle time per shaft material 10 can be increased, and the productivity can be improved.

(A−2)矯正加工
次いで、鍛造加工後の軸素材10の軸部外周面11aに、円筒度矯正のための塑性加工が施される。これにより、軸素材10の軸部外周面11aのうち、矯正加工を施した面13の円筒度が所要の範囲内(例えば10μm以下)に改善される。この際、円筒度の矯正加工としては、例えば図6(a)、(b)に示すように、丸ダイス34や平ダイス35等による転造加工を採用することができるが、この他にも、絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の加工方法を採用することができる。矯正加工は軸部11の外周面全長に亘って行う他、その一部のみに行うこともできる。一部のみを矯正する場合、その加工領域には、少なくとも軸部材2のラジアル軸受面23a、23bとなる領域を含める。
(A-2) Straightening Next, plastic working for straightening the cylindricity is performed on the shaft outer peripheral surface 11a of the shaft material 10 after forging. Thereby, the cylindricity of the surface 13 subjected to the correction processing in the shaft outer peripheral surface 11a of the shaft material 10 is improved within a required range (for example, 10 μm or less). At this time, for example, as shown in FIGS. 6A and 6B, a rolling process using a round die 34, a flat die 35, or the like can be adopted as the cylindrical degree correction process. Various processing methods such as squeezing and ironing, or sizing processing using a split-type press (pinching) can be employed. In addition to performing the straightening process over the entire length of the outer peripheral surface of the shaft portion 11, it can also be performed on only a part thereof. In the case where only a part is corrected, the processing region includes at least regions that become the radial bearing surfaces 23 a and 23 b of the shaft member 2.

(B)研削工程
(B−1)幅研削加工
矯正加工を経た軸素材10の両端面となる、軸部端面11bおよびフランジ部12の反軸部側端面12b(図5参照)を、軸部外周面11aのうち前記矯正加工を施した面13を基準として研削加工する(第一の研削工程)。この研削工程に用いられる研削装置40は、例えば図7(a)、(b)に示すように、ワークとしての軸素材10を複数保持するキャリア41と、キャリア41によって保持された軸素材10の軸部端面11b、およびフランジ部12の反軸部側端面12bを研削する一対の砥石42、42とを備えている。
(B) Grinding Step (B-1) Width Grinding Process The shaft end face 11b and the opposite end face 12b (see FIG. 5) of the flange 12 which are both end faces of the shaft material 10 that has undergone the straightening process are used as the shaft section. Grinding is performed with reference to the surface 13 of the outer peripheral surface 11a that has been subjected to the correction processing (first grinding step). For example, as shown in FIGS. 7A and 7B, the grinding device 40 used in this grinding process includes a carrier 41 that holds a plurality of shaft materials 10 as workpieces, and a shaft material 10 that is held by the carriers 41. A shaft end face 11b and a pair of grindstones 42, 42 for grinding the opposite end face 12b of the flange portion 12 are provided.

図示のように、キャリア41の外周縁の円周方向一部領域には、複数の切欠き43が円周方向等ピッチに設けられる。軸素材10は、その矯正加工面13を切欠き43の内面43aにアンギュラコンタクトさせた状態で切欠き43に収容される。軸素材10の矯正加工面13はキャリア41の外周面よりも僅かに突出しており、キャリアの外径側には、軸素材10の突出部分を外径側から拘束する形でベルト44が張設されている。切欠き43に収容した軸素材10のキャリア41の軸方向両端側には、一対の砥石42、42がその端面(研削面)同士を対向させて所定の間隔で同軸配置されている。   As shown in the drawing, a plurality of notches 43 are provided at equal pitches in the circumferential direction in a partial region in the circumferential direction of the outer peripheral edge of the carrier 41. The shaft material 10 is accommodated in the notch 43 in a state in which the straightened surface 13 is in angular contact with the inner surface 43 a of the notch 43. The straightened surface 13 of the shaft material 10 protrudes slightly from the outer peripheral surface of the carrier 41, and a belt 44 is stretched on the outer diameter side of the carrier so as to constrain the protruding portion of the shaft material 10 from the outer diameter side. Has been. A pair of grindstones 42 and 42 are coaxially arranged at predetermined intervals on both ends in the axial direction of the carrier 41 of the shaft material 10 accommodated in the notch 43 so that the end surfaces (grinding surfaces) thereof face each other.

キャリア41の回転に伴い、軸素材10が定位置から切欠き43に順次投入される。投入された軸素材10は、切欠き43からの脱落をベルト44で拘束された状態で、回転する砥石42、42の端面上をその外径端から内径端にかけて横断する。これに伴い、軸素材10の両端面、換言すれば軸部端面11bとフランジ部12の反軸部側端面12bとが砥石42、42の端面で研削される。この際、軸素材10の矯正加工された面13がキャリア41に支持され、かつこの矯正加工された面13が高い円筒度を有するので、予め砥石42の回転軸心と砥石42の研削面との直角度、および砥石42の回転軸心とキャリア41の回転軸心との平行度等を高精度に管理しておけば、この矯正加工面13を基準として、軸素材10の前記両端面11b、12bを高精度に仕上げることができ、矯正加工面13に対する直角度の値を小さく抑えることができる。また、軸素材10の軸方向幅(フランジ部12を含めた全長)が所定寸法に仕上げられる。   As the carrier 41 rotates, the shaft material 10 is sequentially put into the notch 43 from a fixed position. The thrown shaft material 10 traverses from the outer diameter end to the inner diameter end on the end faces of the rotating grindstones 42 and 42 in a state where the dropping from the notch 43 is restrained by the belt 44. Along with this, both end surfaces of the shaft material 10, in other words, the shaft portion end surface 11 b and the opposite end surface 12 b of the flange portion 12 are ground by the end surfaces of the grindstones 42 and 42. At this time, since the straightened surface 13 of the shaft material 10 is supported by the carrier 41 and the straightened surface 13 has a high degree of cylindricity, the rotational axis of the grindstone 42 and the ground surface of the grindstone 42 are in advance. If the straight angle of the shaft and the parallelism between the rotational axis of the grindstone 42 and the rotational axis of the carrier 41 are managed with high accuracy, the both end surfaces 11b of the shaft material 10 are based on the straightened surface 13 as a reference. 12b can be finished with high accuracy, and the value of the squareness with respect to the straightened surface 13 can be kept small. Moreover, the axial direction width | variety (full length including the flange part 12) of the shaft raw material 10 is finished to a predetermined dimension.

(B−2)全面研削加工
次いで、研削した軸素材の両端面11b、12bを基準として軸素材10の外周面10bおよびフランジ部12の軸部側端面12aの研削加工を行う(第二の研削工程)。この研削工程で用いられる研削装置50は、例えば図9に示すように、バッキングプレート54およびプレッシャプレート55を軸素材10の両端面に押し当てながら砥石53でプランジ研削するものである。軸素材10の矯正加工された面13はシュー52によって回転自在に支持される。
(B-2) Whole surface grinding Next, grinding of the outer peripheral surface 10b of the shaft material 10 and the shaft portion side end surface 12a of the flange portion 12 is performed on the basis of both end faces 11b and 12b of the ground shaft material (second grinding) Process). A grinding apparatus 50 used in this grinding process performs plunge grinding with a grindstone 53 while pressing a backing plate 54 and a pressure plate 55 against both end surfaces of the shaft material 10 as shown in FIG. The straightened surface 13 of the shaft material 10 is rotatably supported by the shoe 52.

砥石53は、完成品としての軸部材2の外周面形状に対応した研削面56を備える総形砥石である。研削面56は、軸部11の軸方向全長に亘る外周面11aおよびフランジ部12の外周面12cを研削する円筒研削部56aと、フランジ部12の軸部側端面12aを研削する平面研削部56bとを備えている。図示例の砥石53では、円筒研削部56aとして、軸部材2のラジアル軸受面23a、23bに対応する領域を研削する部分56a1・56a2、テーパ面24に対応する領域を研削する部分56a3、円筒面25に対応する領域を研削する部分56a4、各ヌスミ部26〜28を研削加工する部分56a5〜56a7、フランジ部12の外周面12cを研削する部分56a8を備えている。   The grindstone 53 is a general-purpose grindstone provided with a grinding surface 56 corresponding to the outer peripheral surface shape of the shaft member 2 as a finished product. The grinding surface 56 includes a cylindrical grinding portion 56a that grinds the outer peripheral surface 11a over the entire axial length of the shaft portion 11 and the outer peripheral surface 12c of the flange portion 12, and a surface grinding portion 56b that grinds the shaft portion side end surface 12a of the flange portion 12. And. In the illustrated grindstone 53, as the cylindrical grinding portion 56a, the portions 56a1 and 56a2 for grinding the regions corresponding to the radial bearing surfaces 23a and 23b of the shaft member 2, the portion 56a3 for grinding the region corresponding to the tapered surface 24, and the cylindrical surface 25, a portion 56 a 4 for grinding the region corresponding to 25, portions 56 a 5 to 56 a 7 for grinding each of the portions 26 to 28, and a portion 56 a 8 for grinding the outer peripheral surface 12 c of the flange portion 12.

上記構成の研削装置50における研削加工は以下の手順で行われる。まず、軸素材10および砥石53を回転させた状態で砥石53を斜め方向(図中の矢印1方向)に送り、軸素材10のフランジ部軸部側端面12aに砥石53の平面研削部56bを押し当て、主として軸部側端面12aを研削する。これにより、軸部材2のフランジ部22における軸部側端面12aが研削される。次いで、砥石53を軸素材10の回転軸心と直交する方向(図中の矢印2方向)に送り、軸素材10の軸部11の外周面11aおよびフランジ部12の外周面12cに砥石53の円筒研削部56aを押し当てて、各面11a、12cを研削する。これにより、軸部材2の軸部21外周面のうち、軸素材10のラジアル軸受面23a・23bに対応する領域13a・13b、テーパ面24、円筒面25に対応する領域15、およびフランジ部22の外周面22cが研削され、さらに各ヌスミ部26〜28が形成される。なお、上記研削の際には、例えば図9に示すように、計測ゲージ57で残りの研削代を計測しつつ研削を行うのが好ましい。   The grinding process in the grinding apparatus 50 having the above-described configuration is performed in the following procedure. First, in a state where the shaft material 10 and the grindstone 53 are rotated, the grindstone 53 is sent in an oblique direction (in the direction of arrow 1 in the figure), and the surface grinding portion 56b of the grindstone 53 is placed on the flange portion shaft side end surface 12a of the shaft material 10. Pressing and grinding mainly the shaft side end face 12a. Thereby, the shaft part side end surface 12a in the flange part 22 of the shaft member 2 is ground. Next, the grindstone 53 is fed in a direction orthogonal to the rotational axis of the shaft blank 10 (in the direction of arrow 2 in the figure), and the grindstone 53 is placed on the outer circumferential surface 11 a of the shaft portion 11 and the outer circumferential surface 12 c of the flange portion 12. The cylindrical grinding portion 56a is pressed to grind the surfaces 11a and 12c. Thus, of the outer peripheral surface of the shaft portion 21 of the shaft member 2, the regions 13 a and 13 b corresponding to the radial bearing surfaces 23 a and 23 b of the shaft material 10, the tapered surface 24, the region 15 corresponding to the cylindrical surface 25, and the flange portion 22. The outer peripheral surface 22c is ground, and further each of the pussies 26 to 28 are formed. In the grinding, for example, as shown in FIG. 9, it is preferable to perform grinding while measuring the remaining grinding allowance with a measurement gauge 57.

この第二の研削工程においては、事前に幅研削加工で軸素材10の両端面11b、12bの直角度の精度出しが行われているから、各被研削面を高精度に研削することができる。   In this second grinding step, since the perpendicularity of the both end faces 11b and 12b of the shaft blank 10 is determined in advance by width grinding, each surface to be ground can be ground with high precision. .

(B−3)仕上げ研削加工
(B−2)全面研削加工で研削を施した面のうち、軸部材2のラジアル軸受面23a
・23b、および円筒面25に対応する領域13a・13b、15に最終的な仕上げ研削を施す。この研削加工に用いる研削装置は、図10に示す円筒研削盤で、バッキングプレート64とプレッシャプレート65とで挾持した軸素材10を回転させながら、砥石63でプランジ研削するものである。軸素材10は、シュー62で回転自在に支持される。砥石63の研削面63aは、ラジアル軸受面23a・23bに対応する領域13a・13bを研削する第一の円筒研削部63a1と、円筒面25に対応する領域15を研削する第二の円筒研削部63a2とからなる。
(B-3) Finish grinding (B-2) Radial bearing surface 23a of shaft member 2 among the surfaces ground by the whole surface grinding.
The final finish grinding is performed on the regions 13a, 13b, and 15 corresponding to the cylinder surface 25b. The grinding apparatus used for this grinding process is a cylindrical grinder shown in FIG. 10 that performs plunge grinding with the grindstone 63 while rotating the shaft material 10 held between the backing plate 64 and the pressure plate 65. The shaft material 10 is rotatably supported by the shoe 62. The grinding surface 63a of the grindstone 63 includes a first cylindrical grinding portion 63a1 for grinding the regions 13a and 13b corresponding to the radial bearing surfaces 23a and 23b, and a second cylindrical grinding portion for grinding the region 15 corresponding to the cylindrical surface 25. 63a2.

上記構成の研削装置60において、回転する砥石63に半径方向の送りを与えることにより、ラジアル軸受面23a・23bおよび円筒面25に対応する領域13a・13b、15がそれぞれ研削され、これらの領域が最終的な表面精度に仕上げられる。この実施形態では、ラジアル軸受面23a・23bに対応する領域と円筒面25に対応する領域の双方を仕上げ研削しているが、円筒面25に対応する領域の研削は省略することもできる。   In the grinding device 60 having the above-described configuration, by feeding the rotating grindstone 63 in the radial direction, the regions 13a, 13b, and 15 corresponding to the radial bearing surfaces 23a and 23b and the cylindrical surface 25 are ground, respectively. Finished with final surface accuracy. In this embodiment, both the region corresponding to the radial bearing surfaces 23a and 23b and the region corresponding to the cylindrical surface 25 are finish-ground, but the grinding of the region corresponding to the cylindrical surface 25 can be omitted.

上記(A)成形工程および(B)研削工程を経た後、必要に応じて熱処理や洗浄処理を施すことで、図1に示す軸部材2が完成する。   After passing through the forming step (A) and the grinding step (B), the shaft member 2 shown in FIG. 1 is completed by performing heat treatment and cleaning treatment as necessary.

上述の製造方法によって製造した軸部材2であれば、軸部21外周に形成されたラジアル軸受面23a、23bの円筒度を、例えば3μm以下(望ましくは1.5μm以下)に仕上げることができる。これにより、例えば動圧軸受装置1における軸受スリーブ8内周との間に形成されるラジアル軸受隙間の、円周方向あるいは軸方向へのばらつきが所定の範囲内に抑えられ、上記ラジアル軸受隙間のばらつきによる軸受性能への悪影響を回避することができる。従って、係るラジアル軸受隙間を高精度に管理でき、この種の動圧軸受装置の回転精度を高レベルに維持することができる。なお、本実施形態では、ラジアル軸受面23a、23bのみならず、円筒面25に対応する領域にも仕上げ研削加工(図10参照)を行っているので、円筒面25も上記円筒度に仕上げられる。従って、ディスクハブ3等の部材を軸部材2に取り付ける際の取り付け精度が高まり、モータ性能の向上にも寄与することができる。   In the case of the shaft member 2 manufactured by the above-described manufacturing method, the cylindrical degree of the radial bearing surfaces 23a and 23b formed on the outer periphery of the shaft portion 21 can be finished to, for example, 3 μm or less (preferably 1.5 μm or less). As a result, for example, the radial bearing gap formed between the inner periphery of the bearing sleeve 8 in the hydrodynamic bearing device 1 can be suppressed within a predetermined range in the circumferential direction or the axial direction, and the radial bearing gap can be reduced. An adverse effect on bearing performance due to variations can be avoided. Therefore, the radial bearing gap can be managed with high accuracy, and the rotational accuracy of this type of hydrodynamic bearing device can be maintained at a high level. In the present embodiment, since the finish grinding process (see FIG. 10) is performed not only on the radial bearing surfaces 23a and 23b but also on the region corresponding to the cylindrical surface 25, the cylindrical surface 25 is also finished to the above-described cylindricity. . Therefore, the attachment accuracy when attaching a member such as the disk hub 3 to the shaft member 2 is increased, which can contribute to improvement of motor performance.

また、上記製造方法によれば、軸部21外周に形成されたラジアル軸受面23a、23bを基準とした、フランジ部22の両端面(スラスト軸受面)22a、22bの直角度および軸部端面21bの直角度が、共に5μm以下となる軸部材2を成形することもできる。このうち、フランジ部22の両端面に形成したスラスト軸受面22a、22bは、対向する面(軸受スリーブ8の下側端面8bやハウジング7の底部7bの上側端面7b1など)との間のスラスト軸受隙間を形成することから、斯かる直角度の数値を小さく抑えることにより、上記スラスト軸受隙間のばらつきを抑えることができる。また、軸部の端面21bは、軸部21外周面やフランジ部22の上側端面(スラスト軸受面22a側)を研削加工する際の基準面となるだけでなく、上記スラスト軸受隙間を設定する際の基準面にもなる。そのため、軸部端面21bの直角度の数値を小さく抑えることにより、係る研削加工面のみならずスラスト軸受隙間を精度良く管理することもできる。   Further, according to the above manufacturing method, the perpendicularity of both end faces (thrust bearing surfaces) 22a and 22b of the flange portion 22 and the shaft end surface 21b with respect to the radial bearing surfaces 23a and 23b formed on the outer periphery of the shaft portion 21. It is also possible to mold the shaft member 2 having a squareness of 5 μm or less. Among these, the thrust bearing surfaces 22a and 22b formed on both end surfaces of the flange portion 22 are thrust bearings between opposing surfaces (the lower end surface 8b of the bearing sleeve 8 and the upper end surface 7b1 of the bottom portion 7b of the housing 7). Since the gap is formed, the variation in the thrust bearing gap can be suppressed by reducing the squareness value. Further, the end surface 21b of the shaft portion not only serves as a reference surface for grinding the outer peripheral surface of the shaft portion 21 and the upper end surface (the thrust bearing surface 22a side) of the flange portion 22, but also when setting the thrust bearing clearance. It also becomes the reference plane. Therefore, by suppressing the squareness value of the shaft end face 21b to be small, not only the ground surface but also the thrust bearing gap can be managed with high accuracy.

なお、以上の説明では、図9に示す全面研削加工において、軸素材10の外周面10bの円筒研削とフランジ部12の軸部側端面12aの平面研削とを共通の砥石53で行うこととしているが、両者を別砥石を用いて別工程で行うこともできる。   In the above description, in the overall grinding process shown in FIG. 9, the cylindrical grinding of the outer peripheral surface 10 b of the shaft material 10 and the surface grinding of the shaft portion side end surface 12 a of the flange portion 12 are performed by the common grindstone 53. However, it is also possible to perform both in separate steps using separate whetstones.

また、以上の説明では、軸部材2のヌスミ部26〜28を、図9に示す全面研削加工(B−2)で形成する場合を例示したが、これらのヌスミ部26〜28は、図6(a)、(b)に示す矯正加工時と同時に塑性加工(例えば転造成形)することもできる。この場合、特に軸部21とフランジ部22との間の角部のヌスミ部27を図11に示すように傾斜状に形成することにより、全面研削加工(図9参照)において、フランジ部12の軸部側端面12aと軸部外周面11aとを同時研削する際の砥石53の逃げとして機能させることができる。   Moreover, although the above description illustrated the case where the rugged portions 26 to 28 of the shaft member 2 are formed by the entire surface grinding (B-2) shown in FIG. 9, these murky portions 26 to 28 are illustrated in FIG. 6. Plastic processing (for example, roll forming) can be performed simultaneously with the correction processing shown in (a) and (b). In this case, in particular, by forming the corner portion 27 between the shaft portion 21 and the flange portion 22 in an inclined manner as shown in FIG. 11, in the entire surface grinding process (see FIG. 9), the flange portion 12 It can be made to function as relief of the grindstone 53 at the time of grinding the shaft part side end surface 12a and the shaft part outer peripheral surface 11a simultaneously.

また、以上の実施形態では、軸部材2のラジアル軸受面23a、23bおよびスラスト軸受面22a、22bを、全て動圧溝のない平滑面とした場合を例示したが、これらの軸受面に動圧溝を形成することもできる。この場合、ラジアル動圧溝は、図9に示す全面研削加工の前の段階で、転造あるいは鍛造により形成することができ、スラスト動圧溝は、プレスあるいは鍛造により形成することができる。   Moreover, although the radial bearing surfaces 23a and 23b and the thrust bearing surfaces 22a and 22b of the shaft member 2 are all smooth surfaces without dynamic pressure grooves in the above embodiment, the dynamic pressure is applied to these bearing surfaces. Grooves can also be formed. In this case, the radial dynamic pressure groove can be formed by rolling or forging before the entire surface grinding shown in FIG. 9, and the thrust dynamic pressure groove can be formed by pressing or forging.

また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもでき、スラスト軸受部T1、T2として、ステップ・ポケット軸受、テーパ・ポケット軸受、テーパ・フラット軸受等を使用することもできる。   Moreover, in the above embodiment, as the dynamic pressure bearings constituting the radial bearing portions R1 and R2 and the thrust bearing portions T1 and T2, for example, a dynamic pressure generating portion including a herringbone shape or a spiral shape dynamic pressure groove is used. Although the bearing is illustrated, the configuration of the dynamic pressure generating unit is not limited to this. As the radial bearing portions R1 and R2, for example, multi-arc bearings, step bearings, taper bearings, taper flat bearings, etc. can be used. As the thrust bearing portions T1 and T2, step pocket bearings, taper pocket bearings, taper・ Flat bearings can also be used.

また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、特にこの流体に限定されるものではない。動圧溝を有する各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤を使用することもできる。   Moreover, in the above embodiment, the inside of the hydrodynamic bearing device 1 is filled, and the radial bearing gap between the bearing sleeve 8 and the shaft member 2 and the thrust between the bearing sleeve 8 and the housing 7 and the shaft member 2 are filled. Although the lubricating oil is exemplified as the fluid that causes the dynamic pressure action in the bearing gap, it is not particularly limited to this fluid. A fluid capable of generating a dynamic pressure action in each bearing gap having the dynamic pressure grooves, for example, a gas such as air, or a fluid lubricant such as a magnetic fluid may be used.

本発明の一実施形態に係る動圧軸受装置用の軸部材の側面図である。It is a side view of the shaft member for fluid dynamic bearing devices concerning one embodiment of the present invention. 軸部材を備えた動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。It is sectional drawing of the spindle motor for information devices incorporating the dynamic pressure bearing apparatus provided with the shaft member. 動圧軸受装置の縦断面図である。It is a longitudinal cross-sectional view of a fluid dynamic bearing device. 軸受スリーブの縦断面図である。It is a longitudinal cross-sectional view of a bearing sleeve. 鍛造加工により成形された軸素材の側面図である。It is a side view of the shaft raw material shape | molded by the forging process. 矯正加工の一例を示す図であり、(a)は丸ダイスによる転造加工の概略図、(b)は平ダイスによる転造加工の概略図である。It is a figure which shows an example of a correction process, (a) is the schematic of the rolling process by a round die, (b) is the schematic of the rolling process by a flat die. (a)は軸素材の幅研削工程に係る研削装置の一例を示す概略図、(b)は軸素材を保持するキャリアの切欠き周辺の拡大図である。(A) is the schematic which shows an example of the grinding apparatus which concerns on the width grinding process of a shaft raw material, (b) is an enlarged view of the notch periphery of the carrier holding a shaft raw material. 上記幅研削工程に係る研削装置の一例を示す一部断面図である。It is a partial cross section figure showing an example of a grinding device concerning the above-mentioned width grinding process. 軸素材の全面研削工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding device which concerns on the shaft material whole surface grinding process. 軸素材の研削仕上げ工程に係る研削装置の一例を示す概略図である。It is the schematic which shows an example of the grinding apparatus which concerns on the grinding finishing process of a shaft raw material. 軸部材の軸部とフランジ部との角部周辺の拡大断面図である。It is an expanded sectional view of the corner | angular part periphery of the axial part and flange part of a shaft member.

符号の説明Explanation of symbols

1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
10 軸素材
10b 外周面
11 軸部対応領域(軸部)
11a 外周面
12 フランジ部対応領域(フランジ部)
12a 軸部側端面
12b 反軸部側端面
13 矯正加工面
21 軸部
22 フランジ部
22a スラスト軸受面
22b スラスト軸受面
23a ラジアル軸受面
23b ラジアル軸受面
24 テーパ面
25 円筒面
26、27、28 ヌスミ部
34 丸ダイス
35 平ダイス
40 研削装置
41 キャリア
42 砥石
43 切欠き
43a 内面
50、60 研削装置
51、61 回転支持部材
52、62 支持部材
53 砥石
54、64 バッキングプレート
55、65 プレッシャプレート
56 研削面
63 砥石
63a 研削面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部
DESCRIPTION OF SYMBOLS 1 Dynamic pressure bearing apparatus 2 Shaft member 3 Disc hub 4 Stator coil 5 Rotor magnet 7 Housing 8 Bearing sleeve 10 Shaft material 10b Outer peripheral surface 11 Shaft corresponding area (shaft portion)
11a Outer peripheral surface 12 Flange part corresponding area (flange part)
12a Shaft side end surface 12b Countershaft side end surface 13 Straightening surface 21 Shaft portion 22 Flange portion 22a Thrust bearing surface 22b Thrust bearing surface 23a Radial bearing surface 23b Radial bearing surface 24 Tapered surface 25 Cylindrical surfaces 26, 27, 28 Nusumi portion 34 Round die 35 Flat die 40 Grinding device 41 Carrier 42 Grinding stone 43 Notch 43a Inner surface 50, 60 Grinding device 51, 61 Rotating support member 52, 62 Support member 53 Grinding stone 54, 64 Backing plate 55, 65 Pressure plate 56 Grinding surface 63 Grinding wheel 63a Grinding surface R1, R2 Radial bearing part T1, T2 Thrust bearing part

Claims (14)

それぞれ鍛造で成形した軸部およびフランジ部を備え、軸部の外周にラジアル軸受隙間に面するラジアル軸受面を形成したものであって、
前記ラジアル軸受面の円筒度が3μm以下である動圧軸受装置用軸部材。
Each is provided with a shaft portion and a flange portion formed by forging, and a radial bearing surface facing the radial bearing gap is formed on the outer periphery of the shaft portion,
A shaft member for a hydrodynamic bearing device, wherein a cylindrical degree of the radial bearing surface is 3 μm or less.
前記ラジアル軸受面を基準とした、フランジ部の両端面の直角度および軸部の端面の直角度がそれぞれ5μm以下である請求項1記載の動圧軸受装置用軸部材。   2. The shaft member for a hydrodynamic bearing device according to claim 1, wherein the squareness of both end faces of the flange portion and the squareness of the end face of the shaft portion are each 5 μm or less with respect to the radial bearing surface. 前記軸部とフランジ部が鍛造により一体成形されたものである請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein the shaft portion and the flange portion are integrally formed by forging. 前記軸部材の両端面が研削面である請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein both end surfaces of the shaft member are ground surfaces. 前記軸部とフランジ部との角部に、傾斜状のヌスミ部が形成されている請求項1記載の動圧軸受装置用軸部材。   The shaft member for a hydrodynamic bearing device according to claim 1, wherein an inclined ridge portion is formed at a corner portion between the shaft portion and the flange portion. 請求項1〜5の何れか記載の動圧軸受装置用軸部材と、該軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置。   The shaft member for a hydrodynamic bearing device according to any one of claims 1 to 5, a bearing sleeve into which the shaft member is inserted into an inner periphery, and a radial bearing gap between an outer periphery of the shaft portion and an inner periphery of the bearing sleeve A radial bearing that generates non-contact support in the radial direction by generating pressure by the dynamic pressure of the fluid generated in the fluid, and a flange that generates pressure by the dynamic pressure of the fluid generated in the thrust bearing gap at one end of the flange A first thrust bearing portion that supports the contact portion in the thrust direction in a non-contact manner and a second thrust bearing portion that contacts the flange portion in the thrust direction by generating pressure by the dynamic pressure action of the fluid generated in the thrust bearing gap at the other end of the flange portion. A hydrodynamic bearing device comprising a thrust bearing portion. ラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝が軸方向に非対称に形成されている請求項6記載の動圧軸受装置。   A dynamic pressure groove for generating a dynamic pressure action of fluid is formed asymmetrically in the axial direction on either the outer peripheral surface of the shaft part facing the radial bearing gap or the inner peripheral surface of the bearing sleeve facing this outer peripheral surface. The hydrodynamic bearing device according to claim 6. 請求項6又は7記載の動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータ。   A motor comprising the hydrodynamic bearing device according to claim 6, a rotor magnet, and a stator coil. 軸部とフランジ部とを一体に有する軸素材を鍛造加工により成形する工程と、軸部の外周面の一部又は全部の円筒度を矯正する工程とを含む動圧軸受装置用軸部材の製造方法。   Manufacture of a shaft member for a hydrodynamic bearing device including a step of forming a shaft material integrally having a shaft portion and a flange portion by forging, and a step of correcting part or all of the cylindricity of the outer peripheral surface of the shaft portion Method. 前記矯正工程を転造で行う請求項9記載の動圧軸受装置用軸部材の製造方法。   The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 9, wherein the straightening step is performed by rolling. 前記矯正加工を施した面を基準として軸素材の両端面に第一の研削加工を施し、該両端面を基準として少なくとも軸素材の外周面に第二の研削加工を施す請求項9又は10記載の動圧軸受装置用軸部材の製造方法。   The first grinding process is performed on both end faces of the shaft material on the basis of the straightened surface, and the second grinding process is performed on at least the outer peripheral surface of the shaft material on the basis of the both end faces. Of manufacturing a shaft member for a hydrodynamic bearing device. 第一の研削加工を、フランジ部の一方の端面と軸部の端面に施す請求項11記載の動圧軸受装置用軸部材の製造方法。   The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 11, wherein the first grinding is performed on one end surface of the flange portion and the end surface of the shaft portion. 前記第二の研削加工を、軸素材のうち、少なくとも軸部外周のラジアル軸受隙間に面するラジアル軸受面となる部分に施す請求項11又は12記載の動圧軸受装置用軸部材の製造方法。   The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 11 or 12, wherein the second grinding is performed on at least a portion of the shaft material that becomes a radial bearing surface facing a radial bearing gap on an outer periphery of the shaft portion. 第二の研削加工で、さらにフランジ部の他方の端面を研削する請求項13記載の動圧軸受装置用軸部材の製造方法。   The method for manufacturing a shaft member for a hydrodynamic bearing device according to claim 13, wherein the other end face of the flange portion is further ground in the second grinding process.
JP2004261446A 2004-09-08 2004-09-08 Method for manufacturing shaft member for hydrodynamic bearing device Active JP4610973B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004261446A JP4610973B2 (en) 2004-09-08 2004-09-08 Method for manufacturing shaft member for hydrodynamic bearing device
CN2005800255692A CN101014777B (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure type bearing device and manufacturing method thereof
KR1020077000956A KR101164462B1 (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure bearing device and method of producing the same
US11/629,910 US20070278881A1 (en) 2004-09-08 2005-08-31 Shaft Member For Hydrodynamic Bearing Apparatuses And A Method For Producing The Same
PCT/JP2005/015952 WO2006027986A1 (en) 2004-09-08 2005-08-31 Shaft member for dynamic pressure bearing device and method of producing the same
US13/149,313 US9003664B2 (en) 2004-09-08 2011-05-31 Method for producing shaft member for hydrodynamic bearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004261446A JP4610973B2 (en) 2004-09-08 2004-09-08 Method for manufacturing shaft member for hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2006077861A true JP2006077861A (en) 2006-03-23
JP4610973B2 JP4610973B2 (en) 2011-01-12

Family

ID=36157492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004261446A Active JP4610973B2 (en) 2004-09-08 2004-09-08 Method for manufacturing shaft member for hydrodynamic bearing device

Country Status (2)

Country Link
JP (1) JP4610973B2 (en)
CN (1) CN101014777B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285414A (en) * 2006-04-17 2007-11-01 Ntn Corp Dynamic pressure bearing device
JP2008298234A (en) * 2007-06-01 2008-12-11 Ntn Corp Method for manufacturing shaft member for fluid bearing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143799A (en) * 2011-01-13 2012-08-02 Jatco Ltd Method of manufacturing shaft-like member
CN103415716B (en) * 2011-03-09 2016-06-08 Ntn株式会社 Fluid dynamic-pressure bearing device
CN110153881A (en) * 2017-12-25 2019-08-23 霍山县忠福机电科技有限公司 A kind of precision casting clamp for machining with high accuracy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit
JP2002266865A (en) * 2001-03-08 2002-09-18 Ngk Spark Plug Co Ltd Ceramic dynamic pressure bearing, motor with bearing, hard disc device, and polygon scanner
JP2002286028A (en) * 2001-03-22 2002-10-03 Ntn Corp Hydrodynamic bearing unit
JP2003307221A (en) * 2002-04-15 2003-10-31 Ntn Corp Method of manufacturing dynamic pressure bearing device
JP2004183867A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Dynamic pressure fluid bearing device, and motor provided with the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266861A (en) * 2001-03-05 2002-09-18 Sankyo Seiki Mfg Co Ltd Fluid dynamic pressure bearing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168240A (en) * 2000-11-28 2002-06-14 Ntn Corp Dynamic-pressure type bearing unit
JP2002266865A (en) * 2001-03-08 2002-09-18 Ngk Spark Plug Co Ltd Ceramic dynamic pressure bearing, motor with bearing, hard disc device, and polygon scanner
JP2002286028A (en) * 2001-03-22 2002-10-03 Ntn Corp Hydrodynamic bearing unit
JP2003307221A (en) * 2002-04-15 2003-10-31 Ntn Corp Method of manufacturing dynamic pressure bearing device
JP2004183867A (en) * 2002-12-06 2004-07-02 Matsushita Electric Ind Co Ltd Dynamic pressure fluid bearing device, and motor provided with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007285414A (en) * 2006-04-17 2007-11-01 Ntn Corp Dynamic pressure bearing device
JP2008298234A (en) * 2007-06-01 2008-12-11 Ntn Corp Method for manufacturing shaft member for fluid bearing device

Also Published As

Publication number Publication date
JP4610973B2 (en) 2011-01-12
CN101014777A (en) 2007-08-08
CN101014777B (en) 2012-03-21

Similar Documents

Publication Publication Date Title
KR101233307B1 (en) Method of producing shaft member for fluid bearing device
JP4675726B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US9003664B2 (en) Method for producing shaft member for hydrodynamic bearing apparatus
JP3893021B2 (en) Hydrodynamic bearing unit
CN1203261C (en) Mfg. method of thrust plate and mfg. method of shaft for fluid power bearing
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
KR101152223B1 (en) Dynamic pressure bearing device
JP4786157B2 (en) Shaft member for hydrodynamic bearing device and manufacturing method thereof
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
US20180178343A1 (en) Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP5000382B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP4642416B2 (en) Manufacturing method of shaft member for hydrodynamic bearing device
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP2005127525A (en) Hydrodynamic bearing device
JP2010133437A (en) Fluid dynamic-pressure bearing device, and method and device of manufacturing the same
JP4832736B2 (en) Hydrodynamic bearing unit
JP2003139137A (en) Dynamic pressure bearing unit and its manufacturing method
JP2012225385A (en) Hub-integrated shaft, fluid dynamic pressure bearing device including same, and spindle motor
JP2009030781A (en) Manufacturing method of bearing part and motor and sleeve machining tool
JPH11218123A (en) Dynamic pressure type bearing and spindle motor for information equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250