JP2003139137A - Dynamic pressure bearing unit and its manufacturing method - Google Patents

Dynamic pressure bearing unit and its manufacturing method

Info

Publication number
JP2003139137A
JP2003139137A JP2001341012A JP2001341012A JP2003139137A JP 2003139137 A JP2003139137 A JP 2003139137A JP 2001341012 A JP2001341012 A JP 2001341012A JP 2001341012 A JP2001341012 A JP 2001341012A JP 2003139137 A JP2003139137 A JP 2003139137A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
shaft member
shaft
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001341012A
Other languages
Japanese (ja)
Other versions
JP3859486B2 (en
Inventor
Atsushi Hiraide
淳 平出
Kuniharu Kokubu
邦玄 國分
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2001341012A priority Critical patent/JP3859486B2/en
Publication of JP2003139137A publication Critical patent/JP2003139137A/en
Application granted granted Critical
Publication of JP3859486B2 publication Critical patent/JP3859486B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing unit to properly manage a gap between radial bearings and a gap between thrust bearings and obtain further high rotation precision. SOLUTION: When an end face 2b2 (2b1) of a flange part 2b of a shaft member 2 being the constitution element of the dynamic pressure bearing unit 1 is ground, the rotation center part on one end side of the shaft member 2 is supported in a point-contact state, a surface is machined with a tool 13 (14) brought into press contact with the end face 2b2 (2b1) of the flange part 2b from the other end side. The rotation center part is supported in a point contact state by a protrusion-form curve part 12a in a spherical shape or a taper part in a conical shape and in the shape of a pyramid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、動圧型軸受ユニットお
よびその製造方法に関し、特に情報機器、例えばHD
D,FDD等の磁気ディスク装置、CD−ROM,DV
D−ROM等の光ディスク装置、MD,MO等の光磁気
ディスク装置などのスピンドルモータ、あるいはレーザ
ビームプリンタ(LBP)のポリゴンスキャナモータな
どのスピンドル支持に使用される動圧型軸受ユニットお
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure type bearing unit and a method for manufacturing the same, and more particularly to information equipment such as HD.
Magnetic disk devices such as D and FDD, CD-ROM, DV
The present invention relates to a dynamic pressure type bearing unit used for supporting a spindle such as an optical disk device such as a D-ROM, a spindle motor such as a magneto-optical disk device such as an MD or MO, or a polygon scanner motor of a laser beam printer (LBP), and a manufacturing method thereof. .

【0002】[0002]

【従来の技術】上記各種情報機器におけるディスク駆動
用スピンドルモータには、高回転精度の他、高速化、低
コスト化、低騒音化などの要請があり、この種のモータ
のスピンドルを支持する軸受は、これらの要求性能を決
定づける重要な構成要素の一つである。そこで、この種
の軸受として、上記要求性能に優れた特性を有する動圧
型軸受の使用が検討され、あるいは実用化が図られてい
るのが現状である。
2. Description of the Related Art A spindle motor for driving a disk in various types of information equipment is required to have high rotation accuracy, high speed, low cost, and low noise. A bearing for supporting the spindle of this type of motor is required. Is one of the important components that determine these required performances. Therefore, under the present circumstances, as this type of bearing, use of a dynamic pressure type bearing having characteristics excellent in the required performance has been studied or put into practical use.

【0003】また、近年における上記情報機器用のスピ
ンドルモータでは、情報記録密度の増大や高速回転化を
図るべく高回転精度がより一層強く求められており、こ
の要請に応じるために、上記スピンドルモータに組み込
まれる動圧型軸受についても更なる高回転精度が求めら
れている。
Further, in recent years, in the spindle motor for the above information equipment, there is a strong demand for high rotation accuracy in order to increase the information recording density and increase the rotation speed, and in order to meet this request, the above spindle motor is required. Higher rotational accuracy is also required for the dynamic pressure type bearing incorporated in the.

【0004】[0004]

【発明が解決しようとする課題】ところで、動圧型軸受
の回転精度を高めるには、動圧が生じるラジアル軸受隙
間やスラスト軸受隙間での隙間管理が重要となる。この
隙間管理を適正化するには、上記各軸受隙間に関与する
動圧型軸受の構成部品、例えば軸受部材との間に上記各
軸受隙間を形成する軸部材を精度よく加工する必要があ
る。したがって、この軸部材の加工方法ないし製造方法
は、動圧型軸受の回転精度を決める一因となる。
By the way, in order to improve the rotation accuracy of the dynamic pressure type bearing, it is important to manage the clearance in the radial bearing gap or the thrust bearing gap in which the dynamic pressure is generated. In order to optimize this clearance management, it is necessary to accurately process a component of the dynamic pressure type bearing related to each bearing clearance, for example, a shaft member that forms each bearing clearance with the bearing member. Therefore, the method of manufacturing or manufacturing the shaft member is one of the factors that determine the rotation accuracy of the dynamic pressure type bearing.

【0005】詳述すると、図4に示すように、軸部材
2'は、軸部2a'の基端にフランジ部2b'を一体形成した
ものであって、その外周には軸受部材(図示略)が配置
される。そして、軸部2a'の外周面2a1'と軸受部材との
間にラジアル軸受隙間が形成され、フランジ部2b'の先
端面2b1'及び基端面2b2'と軸受部材等との間にそれぞれ
スラスト軸受隙間が形成される。
More specifically, as shown in FIG. 4, a shaft member 2'is formed by integrally forming a flange portion 2b 'on the base end of a shaft portion 2a', and a bearing member (not shown) on the outer periphery thereof. ) Is placed. Then, a radial bearing gap is formed between the outer peripheral surface 2a1 'of the shaft portion 2a' and the bearing member, and the thrust bearing is provided between the front end surface 2b1 'and the base end surface 2b2' of the flange portion 2b 'and the bearing member, respectively. A gap is formed.

【0006】この軸部材2'を製造するに際しては、従
来より以下に示すような工程が実行されている。すなわ
ち、図5に示すように矢印a方向に回転する一対の回転
ロール10'と周面支持部材(シュー)11'とを軸部2a'の
外周面2a1'に押圧接触させることにより軸部材2'に回
転を付与した状態で、図6に示すように軸部2a'の先端
面2a2'に軸状をなす端面支持部材12'の先端面(平面)
を面接触させながら、フランジ部2b'の基端面2b2'に工
具13'を押し当てることにより研削(研磨を含む。以下
同様)することが行われている。
In manufacturing the shaft member 2 ', the following steps have been conventionally performed. That is, as shown in FIG. 5, a pair of rotating rolls 10 'that rotate in the direction of arrow a and a peripheral surface supporting member (shoe) 11' are pressed against the outer peripheral surface 2a1 'of the shaft portion 2a' to bring the shaft member 2 into contact. As shown in FIG. 6, the tip end surface (a flat surface) of the end face support member 12 'that is axially formed on the tip end surface 2a2' of the shaft portion 2a 'in a state where the rotation is imparted to
Grinding (including polishing; the same applies hereinafter) is performed by pressing the tool 13 'against the base end surface 2b2' of the flange portion 2b 'while making the surface contact with each other.

【0007】また、フランジ部2b'の先端面2b1'につい
ては、上記と同様にして軸部材2'に回転を付与した状
態で、図7に示すように上記と同一の端面支持部材12'
の先端面をフランジ部2b'の基端面2b2'に面接触させな
がら、フランジ部2b'の先端面2b1'に工具14'を押し当て
ることにより研削することが行われている。
As for the tip end surface 2b1 'of the flange portion 2b', the same end surface support member 12 'as shown in FIG.
Grinding is performed by pressing the tool 14 'onto the tip end surface 2b1' of the flange portion 2b 'while making the tip end surface of the flange portion 2b' into surface contact with the base end surface 2b2 '.

【0008】この場合、上述の研削面であるフランジ部
2b'の先端面2b1'または基端面2b2'の加工精度は、周面
支持部材11'の押圧接触面に対する端面支持部材12'の先
端面の直角度、並びに端面支持部材12'の先端面との接
触面である軸部2a'の先端面2a2'またはフランジ部2b'の
基端面2b2'に対する軸部2a'の外周面2a1'の直角度に大
きく左右される。
In this case, the flange portion which is the above-mentioned ground surface
The processing accuracy of the front end surface 2b1 'or the base end surface 2b2' of 2b 'is the perpendicularity of the front end surface of the end surface support member 12' with respect to the pressing contact surface of the peripheral surface support member 11 ', and the front end surface of the end surface support member 12'. Is greatly affected by the perpendicularity of the outer peripheral surface 2a1 'of the shaft portion 2a' to the tip end surface 2a2 'of the shaft portion 2a' or the base end surface 2b2 'of the flange portion 2b', which is the contact surface.

【0009】したがって、上述のように端面支持部材1
2'の先端面が、回転している軸部2a'の先端面2a2'また
はフランジ部2b'の基端面2b2'に面接触していたので
は、これらの端面2a2'、2b2'と軸部2a'の外周面2a1'と
の直角度に僅かな狂いが生じていても、軸部材2は加工
時に軸方向にガタツキ(振れ)を起こす虞れがある。
Therefore, as described above, the end face support member 1
Since the tip surface of 2'has been in surface contact with the tip surface 2a2 'of the rotating shaft portion 2a' or the base end surface 2b2 'of the flange portion 2b', these end surfaces 2a2 ', 2b2' and the shaft portion Even if there is a slight deviation in the perpendicularity of the outer peripheral surface 2a1 'of 2a', the shaft member 2 may cause rattling (runout) in the axial direction during processing.

【0010】このため、研削加工後におけるフランジ部
2b'の両端面2b1'、2b2'の加工仕上げ精度は、現状維持
を余儀なくされ、この軸部材2'を組み込んで得られる
動圧型軸受が更なる高回転精度を確保する上で妨げとな
ることが懸念される。
Therefore, the flange portion after grinding
The machining finish accuracy of both end surfaces 2b1 'and 2b2' of 2b 'is unavoidable to be maintained, and the dynamic pressure type bearing obtained by incorporating this shaft member 2'will be an obstacle to secure further high rotation accuracy. Is concerned.

【0011】本発明は、上記事情に鑑みてなされたもの
であり、ラジアル軸受隙間やスラスト軸受隙間の隙間管
理を適正化し、更なる高回転精度が得られる動圧型軸受
ユニットを提供することを技術的課題とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a dynamic pressure type bearing unit in which gap management of radial bearing gaps and thrust bearing gaps is optimized to obtain higher rotational accuracy. Subject.

【0012】[0012]

【課題を解決するための手段】上記技術的課題を達成す
るためになされた本発明は、軸部の基端側にフランジ部
を有する軸部材と、該軸部材の外周に配置された軸受部
材と、動圧溝を有する軸受面及び該軸受面に面した軸受
隙間をそれぞれに備え且つ上記軸部材と軸受部材との相
対回転時に上記軸受隙間に発生した動圧により上記軸部
材をラジアル方向及びスラスト方向に非接触支持するラ
ジアル軸受部及びスラスト軸受部とを備えた動圧型軸受
ユニットにおいて、上記軸部材における軸部の外周面に
対するフランジ部の両端面の直角度がそれぞれ0.00
2mm以下で、且つ該フランジ部の両端面の平面度がそ
れぞれ0.001mm以下であることを特徴とするもの
である。ここで、「軸受部材」には、ラジアル軸受面お
よびスラスト軸受面を有する軸受部材をハウジングに固
定した構成、ラジアル軸受面およびスラスト軸受面をハ
ウジングに直接形成した構成が含まれる。
DISCLOSURE OF THE INVENTION The present invention, which has been made in order to achieve the above-mentioned technical objects, provides a shaft member having a flange portion on the base end side of the shaft portion, and a bearing member arranged on the outer periphery of the shaft member. A bearing surface having a dynamic pressure groove and a bearing gap facing the bearing surface, and the dynamic pressure generated in the bearing gap during relative rotation between the shaft member and the bearing member causes the shaft member to move in the radial direction and In a dynamic pressure type bearing unit including a radial bearing portion and a thrust bearing portion that are supported in a non-contact manner in the thrust direction, the squareness of both end surfaces of the flange portion with respect to the outer peripheral surface of the shaft portion of the shaft member is 0.00
The flatness of both end surfaces of the flange portion is 2 mm or less and 0.001 mm or less, respectively. Here, the "bearing member" includes a structure in which a bearing member having a radial bearing surface and a thrust bearing surface is fixed to the housing, and a structure in which the radial bearing surface and the thrust bearing surface are directly formed on the housing.

【0013】このような構成によれば、軸部材における
主要部分の直角度及び平面度の狂いが所要の極めて小さ
な値以下とされることから、ラジアル軸受隙間やスラス
ト軸受隙間が適正に管理され、これにより軸部材と軸受
部材との相対回転時に軸受面同士が接触したり、或いは
軸受隙間内での動圧不足に起因して不安定回転が生じる
等の不具合が回避されるため、トルクロスやトルク変動
が抑制されて高い回転精度を得ることが可能となる。
According to this structure, since the deviation of the squareness and the flatness of the main part of the shaft member is set to be equal to or less than the required extremely small value, the radial bearing gap and the thrust bearing gap are properly managed, This avoids problems such as contact between the bearing surfaces during relative rotation of the shaft member and bearing member, or unstable rotation due to insufficient dynamic pressure in the bearing gap. Fluctuations are suppressed and high rotation accuracy can be obtained.

【0014】また、上記技術的課題を達成するためにな
された本発明は、軸部の基端側にフランジ部を有する軸
部材と、該軸部材の外周に配置された軸受部材と、動圧
溝を有する軸受面及び該軸受面に面した軸受隙間をそれ
ぞれに備え且つ上記軸部材と軸受部材との相対回転時に
上記軸受隙間に発生した動圧により上記軸部材をラジア
ル方向及びスラスト方向に非接触支持するラジアル軸受
部及びスラスト軸受部とを備えた動圧型軸受ユニットの
製造方法において、上記軸部材を軸心廻りに回転させつ
つ一端側で軸方向に支持し、他端側から上記フランジ部
の端面に工具を押圧接触させて面加工を行う工程を含
み、該工程で上記軸部材の一端側の回転中心部を点接触
で支持することを特徴とするものである。ここで、「面
加工」とは、例えば切削加工を意味する。
Further, according to the present invention made to achieve the above technical problem, a shaft member having a flange portion on the base end side of the shaft portion, a bearing member arranged on the outer periphery of the shaft member, and a dynamic pressure A bearing surface having a groove and a bearing gap facing the bearing surface are provided respectively, and the shaft member is not moved in the radial direction and the thrust direction due to the dynamic pressure generated in the bearing gap when the shaft member and the bearing member are relatively rotated. In a method of manufacturing a dynamic pressure bearing unit including a radial bearing portion and a thrust bearing portion that support in contact with each other, the shaft member is axially supported at one end side while rotating about the axis, and the flange portion is provided from the other end side. It includes a step of pressing a tool against the end surface of the shaft to perform surface processing, and in this step, the center of rotation on the one end side of the shaft member is supported by point contact. Here, the “face processing” means, for example, cutting processing.

【0015】このような構成によれば、軸部材における
フランジ部の端面を加工するに際して、軸部材の一端側
の回転中心部が点接触により軸方向に支持された状態
で、他端側からフランジ部の端面に工具が押圧接触する
ことになるため、軸部材の点接触支持側の端面に対する
軸部外周面の直角度に狂いが生じていても、その端面は
面接触支持されずに回転中心が点接触支持されているこ
とから、上記直角度の狂いが軸部材の回転に悪影響を及
ぼすことはなく、軸部材が軸方向にガタツキ(振れ)を
起こす虞れは生じない。したがって、加工後における軸
部外周面に対するフランジ部の端面の直角度、並びにそ
のフランジ部の端面の平面度が高精度に仕上げられる。
According to this structure, when the end face of the flange portion of the shaft member is machined, the rotation center portion on one end side of the shaft member is axially supported by point contact, and the flange portion is pressed from the other end side. Since the tool comes into pressure contact with the end surface of the shaft part, even if the squareness of the outer peripheral surface of the shaft part with respect to the end surface of the shaft member on the point contact support side is incorrect, the end surface is not supported in surface contact and the center of rotation is not supported. Since the point contact is supported by point contact, the deviation of the squareness does not adversely affect the rotation of the shaft member, and there is no possibility that the shaft member rattles (runs) in the axial direction. Therefore, the squareness of the end surface of the flange portion with respect to the outer peripheral surface of the shaft portion after processing and the flatness of the end surface of the flange portion can be finished with high accuracy.

【0016】このような製造方法によれば、軸部外周面
に対するフランジ部の端面の直角度は、0.002mm
以下となり、またフランジ部の端面の平面度は、0.0
01mm以下となることが、本発明者等が行った実験に
より判明している(詳細は後述する)。したがって、こ
の発明により製造された動圧型軸受ユニットは、上述の
発明に係る動圧型軸受ユニットと同様の利点を享受でき
る。
According to such a manufacturing method, the perpendicularity of the end surface of the flange portion with respect to the outer peripheral surface of the shaft portion is 0.002 mm.
The flatness of the end face of the flange is 0.0
It has been proved by an experiment conducted by the present inventors that the distance is 01 mm or less (details will be described later). Therefore, the dynamic pressure type bearing unit manufactured according to the present invention can enjoy the same advantages as the dynamic pressure type bearing unit according to the above invention.

【0017】この製造方法の一態様としては、上記軸部
の先端面の回転中心部を点接触で支持し、上記フランジ
部の基端面に工具を押圧接触させることが挙げられる。
As one mode of this manufacturing method, the center of rotation of the tip end surface of the shaft portion is supported by point contact, and the tool is pressed into contact with the base end surface of the flange portion.

【0018】また、この製造方法の他の態様としては、
上記フランジ部の基端面の回転中心部を点接触で支持
し、該フランジ部の先端面に工具を押圧接触させること
が挙げられる。
As another aspect of this manufacturing method,
It is possible to support the center of rotation of the base end surface of the flange portion by point contact, and press the tool into contact with the tip end surface of the flange portion.

【0019】ここで、上述の「基端」とは、軸部材につ
いての軸部側とフランジ部側とを想定した場合における
フランジ部側の端を意味し、「先端」とは、軸部側の端
を意味する。
Here, the above-mentioned "proximal end" means the end on the flange portion side when the shaft portion side and the flange portion side of the shaft member are assumed, and the "tip end" is the shaft portion side. Means the end of.

【0020】上記点接触支持の一態様としては、上記回
転中心部を凸状曲面部により点接触で支持することが挙
げられる。この場合には、上記凸状曲面部の先端点が上
記回転中心部に接触することになる。そして、この凸状
曲面部の形状は、球面形状とすることができる。
As one mode of the point contact support, it is possible to support the rotation center by point contact with a convex curved surface. In this case, the tip end point of the convex curved surface portion comes into contact with the rotation center portion. Then, the shape of the convex curved surface portion can be a spherical shape.

【0021】また、上記点接触支持の他の態様として
は、上記回転中心部を先細り部により点接触で支持する
ことが挙げられる。この場合には、上記先細り部の先端
点が上記回転中心部に接触することになる。そして、こ
の先細り部の形状は、円錐形状または角錐形状とするこ
とができる。
Another aspect of the point contact support is to support the center of rotation in a point contact by a tapered portion. In this case, the tip point of the tapered portion comes into contact with the rotation center portion. Then, the shape of the tapered portion can be a conical shape or a pyramidal shape.

【0022】以上の構成を備えた製造方法において、上
記軸部の外周面に回転ロールと周面支持部材とを接触さ
せて上記軸部材を軸心廻りに回転させることが好まし
い。このようにすれば、軸部材が回転ロールと周面支持
部材との相互動作によって簡易な構成で好適に回転する
ことになり、フランジ部の端面加工を能率良く行うこと
が可能となる。
In the manufacturing method having the above structure, it is preferable that the outer peripheral surface of the shaft portion is brought into contact with the rotating roll and the peripheral surface supporting member to rotate the shaft member around the axis. With this configuration, the shaft member can be preferably rotated with a simple structure by the mutual operation of the rotating roll and the peripheral surface supporting member, and the end surface processing of the flange portion can be efficiently performed.

【0023】そして、以上の方法を使用して製造された
動圧型軸受ユニットは、既述のようにラジアル軸受隙間
及びスラスト軸受隙間での隙間管理が適正化され、更な
る高回転精度を得る上で極めて有利となる。
In the dynamic pressure type bearing unit manufactured by using the above method, the clearance management in the radial bearing clearance and the thrust bearing clearance is optimized as described above, and the higher rotational accuracy is obtained. It will be extremely advantageous.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。なお、図1に基づく以下の説明にお
いて、「先端」とは上端を意味し、「基端」とは下端を
意味する。
DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the following description based on FIG. 1, the “tip” means the upper end, and the “base end” means the lower end.

【0025】図1に示すように、動圧型軸受ユニット
(以下、単に軸受ユニットという)1は、軸部材2と、
有底円筒状のいわゆる袋型ハウジング3と、軸受部材4
と、該軸受部材4の先端側(ハウジング3開口側)を密
封するシールワッシャ等のシール部材5とを主たる構成
要素とする。
As shown in FIG. 1, a dynamic pressure type bearing unit (hereinafter, simply referred to as a bearing unit) 1 includes a shaft member 2 and
A so-called bag-shaped housing 3 having a cylindrical shape with a bottom, and a bearing member 4
And a seal member 5 such as a seal washer that seals the tip side of the bearing member 4 (the opening side of the housing 3).

【0026】上記軸部材2は、軸部2aと、該軸部2aの基
端側に一体形成されたフランジ部2bとを有し、上記軸部
2aを軸受部材4の内周に、上記フランジ部2bを軸受部材
4の基端面41とハウジング3の底部3aとの間に配置して
ユニット内に収容される。ハウジング3の底部3aは、ハ
ウジング3の基端側開口部を閉塞するもので、ハウジン
グ3と一体形成する他、別体の底蓋部材で形成してもよ
い。
The shaft member 2 has a shaft portion 2a and a flange portion 2b integrally formed on the base end side of the shaft portion 2a.
2a is arranged on the inner circumference of the bearing member 4, and the flange portion 2b is arranged between the base end surface 41 of the bearing member 4 and the bottom portion 3a of the housing 3 to be housed in the unit. The bottom 3a of the housing 3 closes the base end side opening of the housing 3 and may be formed integrally with the housing 3 or may be formed as a separate bottom lid member.

【0027】上記軸受部材4は、軟質金属や油を含浸さ
せた焼結金属等で形成される。この軸受部材4の内周に
は、複数の動圧溝4aを有するラジアル軸受面4a1がプレ
ス加工による転写、転造等によって形成され、これによ
り軸部材2と軸受部材4との相対回転時(本実施形態で
は軸部材2の回転時)に、ラジアル軸受面4a1と軸部2a
の外周面2a1との間のラジアル軸受隙間Rs1に満たされた
流体(例えば潤滑油)の動圧が生じ、この動圧作用によ
って軸部2aをラジアル方向で非接触支持するラジアル軸
受部Raが構成される。なお、軸部2aの外周面2a1の一部
領域には、他の領域に対して僅かに小径となるぬすみ部
2axが設けられ、このぬすみ部2axの先端側と基端側とに
対応する2つの領域にそれぞれ上記動圧溝4aが形成され
ている。
The bearing member 4 is formed of a soft metal, a sintered metal impregnated with oil, or the like. A radial bearing surface 4a1 having a plurality of dynamic pressure grooves 4a is formed on the inner circumference of the bearing member 4 by transfer, rolling or the like by press working, whereby when the shaft member 2 and the bearing member 4 rotate relative to each other ( In the present embodiment, when the shaft member 2 rotates), the radial bearing surface 4a1 and the shaft portion 2a
The dynamic pressure of the fluid (for example, lubricating oil) filled in the radial bearing gap Rs1 between the outer peripheral surface 2a1 and the outer peripheral surface 2a1 is generated, and this dynamic pressure action forms the radial bearing Ra that supports the shaft 2a in the radial direction in a non-contact manner. To be done. In addition, in a partial area of the outer peripheral surface 2a1 of the shaft portion 2a, a recessed portion having a slightly smaller diameter than other areas.
2ax is provided, and the dynamic pressure groove 4a is formed in each of two regions corresponding to the front end side and the base end side of the recessed portion 2ax.

【0028】上記軸部材2におけるフランジ部2bの軸方
向両側には、軸方向の隙間であるスラスト軸受隙間Ss
1、Ss2が設けられる。一方のスラスト軸受隙間Ss1は、
フランジ部2bの先端面2b1とこれに対向する軸受部材4
の基端面41との間に形成され、他方のスラスト軸受隙間
Ss2は、フランジ部2bの基端面2b2とハウジング3の底部
3aの内底面3a2との間に形成される。
A thrust bearing gap Ss, which is a gap in the axial direction, is provided on both axial sides of the flange portion 2b of the shaft member 2.
1, Ss2 are provided. One thrust bearing gap Ss1 is
Tip surface 2b1 of flange 2b and bearing member 4 facing it
Is formed between the base end surface 41 of the
Ss2 is the base end surface 2b2 of the flange portion 2b and the bottom portion of the housing 3.
It is formed between the inner bottom surface 3a2 of 3a.

【0029】上記スラスト軸受隙間Ss1、Ss2に面する端
面、例えば軸受部材4の基端面41及びハウジング3の内
底面3a2には、それぞれ動圧発生用の動圧溝(図示略)
を有するスラスト軸受面4b1、3b2が形成され、これによ
り上記回転時には、各スラスト軸受隙間Ss1、Ss2に上記
流体動圧が発生し、フランジ部2bをスラスト方向両側か
ら非接触支持するスラスト軸受部Saが構成される。な
お、フランジ部2bの基端面2b2の中央領域には、他の領
域に対して僅かに窪んだぬすみ部2bxが形成される。
On the end faces facing the thrust bearing gaps Ss1 and Ss2, for example, the base end face 41 of the bearing member 4 and the inner bottom face 3a2 of the housing 3, dynamic pressure generating grooves (not shown) are formed.
The thrust bearing surfaces 4b1 and 3b2 having the above are formed, whereby the fluid dynamic pressure is generated in the thrust bearing gaps Ss1 and Ss2 during the above rotation, and the thrust bearing portion Sa that supports the flange portion 2b from both sides in the thrust direction in a non-contact manner. Is configured. In addition, in the central region of the base end surface 2b2 of the flange portion 2b, a recessed portion 2bx slightly recessed with respect to other regions is formed.

【0030】上記ラジアル軸受面4a1およびスラスト軸
受面4b1、3b2の動圧溝形状は任意に選択することがで
き、公知のヘリングボーン型、スパイラル型、ステップ
型、多円弧型等の何れかを選択し、或いはこれらを適宜
組み合わせて使用することができる。なお、軸受部材4
のラジアル軸受面4a1には、一例としてヘリングボーン
型の動圧溝4aが形成されている。
The dynamic pressure groove shapes of the radial bearing surface 4a1 and the thrust bearing surfaces 4b1 and 3b2 can be arbitrarily selected, and any known herringbone type, spiral type, step type, multi-arc type or the like can be selected. Alternatively, these can be used in appropriate combination. The bearing member 4
A herringbone type dynamic pressure groove 4a is formed on the radial bearing surface 4a1 as an example.

【0031】上記軸部材2の主要部の精度に関しては、
軸部2aの外周面2a1に対するフランジ部2bの両端面2b1、
2b2の直角度が0.002mm以下とされ、且つフラン
ジ部2bの両端面2b1、2b2の平面度がそれぞれ0.001
mm以下とされている。したがって、この軸受ユニット
1が例えば情報機器の一種であるHDDに使用される場
合には、上記ラジアル軸受隙間Rs1およびスラスト軸受
隙間Ss1、Ss2が適正に管理され、その回転精度が高めら
れる。
Regarding the accuracy of the main part of the shaft member 2,
Both end surfaces 2b1 of the flange portion 2b with respect to the outer peripheral surface 2a1 of the shaft portion 2a,
The squareness of 2b2 is 0.002 mm or less, and the flatness of both end surfaces 2b1 and 2b2 of the flange portion 2b is 0.001.
It is set to mm or less. Therefore, when the bearing unit 1 is used in, for example, an HDD which is a kind of information equipment, the radial bearing gap Rs1 and the thrust bearing gaps Ss1 and Ss2 are properly managed, and the rotation accuracy thereof is enhanced.

【0032】ここで、「直角度」とは、直角であるべき
所定平面と基準面との組み合わせにおいて、基準面に対
して幾何学的に直角な幾何学平面からの上記所定表面の
ずれの大きさをいう。これは、例えば軸部材2を軸心廻
りに回転させながらフランジ部2bの先端面2b1および基
端面2b2にそれぞれ接触子を接触させ、それぞれの端面2
b1、2b2における振れ幅の最大値を測定することによっ
て表される。また、「平面度」とは、測定表面における
最大凸部と最小凹部との間の高低差を意味する。何れの
場合も対象となる平面に動圧溝が存在する場合には、動
圧溝間の背(山)の部分を結んだ仮想平面を基準とす
る。
Here, the term "squareness" means the amount of deviation of the predetermined surface from a geometric plane that is geometrically perpendicular to the reference plane in the combination of the reference plane and the predetermined plane that should be orthogonal. Say it. This is because, for example, while rotating the shaft member 2 around the axis, the contactor is brought into contact with each of the front end face 2b1 and the base end face 2b2 of the flange portion 2b, and each end face 2
It is represented by measuring the maximum value of the swing width at b1 and 2b2. Further, the "flatness" means the difference in height between the maximum convex portion and the minimum concave portion on the measurement surface. In any case, when the dynamic pressure groove exists on the target plane, the virtual plane connecting the spine (mountain) portions between the dynamic pressure grooves is used as a reference.

【0033】次に、上記軸受ユニット1の製造方法、特
にその製造方法の各工程の中で、上記軸部材2(動圧溝
やぬすみ部2bxが形成される以前)のフランジ部2bの両
端面2b1、2b2を研削する工程について説明する。
Next, in the manufacturing method of the bearing unit 1, particularly in each step of the manufacturing method, both end surfaces of the flange portion 2b of the shaft member 2 (before the dynamic pressure groove and the recessed portion 2bx are formed) are formed. A process of grinding 2b1 and 2b2 will be described.

【0034】この工程において、軸部材2を軸心廻りに
回転させる手段は、既に図5に示した構成と同様に、軸
部2aの外周面2a1を挟み込むようにして軸部材2に回転
を付与する一対の回転ロール10と、この一対の回転ロー
ル10に軸部2aの外周面2a1を所定圧で接触させるべく該
外周面2a1に押圧接触する周面支持部材(シュー)11と
を備える。
In this step, the means for rotating the shaft member 2 around the shaft center imparts the rotation to the shaft member 2 by sandwiching the outer peripheral surface 2a1 of the shaft portion 2a, as in the structure already shown in FIG. And a peripheral surface supporting member (shoe) 11 that presses and contacts the outer peripheral surface 2a1 of the shaft portion 2a at a predetermined pressure.

【0035】そして、上記軸部材2におけるフランジ部
2bの基端面2b2が研削加工される場合には、図2に示す
ように、軸部2aの先端面2a2を点接触で軸方向に支持す
る端面支持部材12と、フランジ部2bの基端面2b2に所定
の加工圧で接触する先端が略平坦面をなす砥石13とを更
に備える。上記端面支持部材12の先端には、球面形状の
凸状曲面部12aが突設され、この凸状曲面部12aの先端が
上記軸部2aの先端面2a2の回転中心部に点接触するよう
に構成されている。
The flange portion of the shaft member 2
When the base end surface 2b2 of 2b is ground, as shown in FIG. 2, the end surface support member 12 that axially supports the tip end surface 2a2 of the shaft portion 2a by point contact, and the base end surface 2b2 of the flange portion 2b. And a whetstone 13 having a substantially flat surface at its tip that comes into contact with a predetermined processing pressure. At the tip of the end face support member 12, a spherical convex curved surface portion 12a is provided so as to project, and the tip of the convex curved surface portion 12a is in point contact with the center of rotation of the tip surface 2a2 of the shaft portion 2a. It is configured.

【0036】このような構成によれば、一対の回転ロー
ル10が矢印a方向に回転することにより、周面支持部材
11が軸部2aの外周面2a1に接触した状態で、軸部材2が
矢印b方向に回転する。そして、この回転時に、軸部2a
の先端面2a2が端面支持部材12の凸状曲面部12aにより点
接触支持された状態で、フランジ部2bの基端面2b2に砥
石13の先端が押圧接触して、該基端面2b2の研削加工が
行われる。
According to this structure, the pair of rotating rolls 10 rotate in the direction of arrow a, so that the peripheral surface supporting member is rotated.
The shaft member 2 rotates in the direction of arrow b in the state where 11 is in contact with the outer peripheral surface 2a1 of the shaft portion 2a. Then, during this rotation, the shaft portion 2a
In a state in which the tip end surface 2a2 of the end face support member 12 is point-contact supported by the convex curved surface portion 12a, the tip end of the grindstone 13 is pressed into contact with the base end face 2b2 of the flange portion 2b, and the base end face 2b2 is ground. Done.

【0037】この研削加工に供される軸部材2に関し
て、軸部2aの外周面2a1に対する先端面2a2の直角度が悪
い場合であっても、軸部2aの先端面2a2は、その回転中
心部が凸状曲面部12aにより点接触で支持されることか
ら、回転ロール10と周面支持部材11とによる軸部材2の
姿勢維持に狂いが生じなくなる。これにより、従来のよ
うに軸部2aの先端面2a2が平面により面接触支持されて
いた場合と比較して、軸部材2に生じるガタツキ或いは
振れが可及的に抑制され、研削加工後におけるフランジ
部2bの基端面2b2の平面度、並びに軸部2aの外周面2a1に
対するフランジ部2bの基端面2b2の直角度が高精度に仕
上げられる。
Regarding the shaft member 2 to be subjected to this grinding process, even if the squareness of the tip surface 2a2 with respect to the outer peripheral surface 2a1 of the shaft portion 2a is bad, the tip surface 2a2 of the shaft portion 2a has its center of rotation. Is supported by the convex curved surface portion 12a in a point contact manner, so that the posture of the shaft member 2 maintained by the rotating roll 10 and the peripheral surface supporting member 11 is maintained. As a result, as compared with the conventional case where the tip end surface 2a2 of the shaft portion 2a is supported by surface contact with a flat surface, rattling or shake generated in the shaft member 2 is suppressed as much as possible, and the flange after grinding is processed. The flatness of the base end surface 2b2 of the portion 2b and the squareness of the base end surface 2b2 of the flange portion 2b with respect to the outer peripheral surface 2a1 of the shaft portion 2a are finished with high accuracy.

【0038】一方、上記軸部材2におけるフランジ部2b
の先端面2b1が研削加工される場合には、上記回転ロー
ル10および周面支持部材11に加えて、図3に示すよう
に、フランジ部2bの基端面2b2を点接触で軸方向に支持
する上記と同一の端面支持部材12と、フランジ部2bの先
端面2b1に所定の加工圧で接触する先端が略平坦面をな
す砥石14とが設けられる。
On the other hand, the flange portion 2b of the shaft member 2
When the tip end surface 2b1 of the above is ground, the base end surface 2b2 of the flange portion 2b is axially supported by point contact, in addition to the rotating roll 10 and the peripheral surface support member 11, as shown in FIG. The same end face support member 12 as described above and a whetstone 14 having a substantially flat surface at the tip contacting the tip surface 2b1 of the flange portion 2b with a predetermined processing pressure are provided.

【0039】このような構成によれば、上記と同様にし
て軸部材2が軸心廻りに回転している際に、フランジ部
2bの基端面2b2が端面支持部材12の凸状曲面部12aにより
点接触支持された状態で、フランジ部2bの先端面2b1に
砥石14の先端が押圧接触して、該先端面2b1の研削加工
が行われる。
According to this structure, the flange portion is rotated when the shaft member 2 is rotating around the axis in the same manner as described above.
In a state where the base end surface 2b2 of 2b is point-contact supported by the convex curved surface portion 12a of the end surface support member 12, the tip end of the grindstone 14 is pressed into contact with the tip end surface 2b1 of the flange portion 2b, and the tip end surface 2b1 is ground. Is done.

【0040】したがって、この場合にも、軸部2aの外周
面2a1に対するフランジ部2bの基端面2b2の直角度に狂い
が生じている場合であっても、その基端面2b2の回転中
心部が凸状曲面部12aにより点接触で支持されるため、
軸部材2に生じるガタツキ或いは振れが可及的に抑制さ
れ、研削加工後におけるフランジ部2bの先端面2b1の平
面度、並びに軸部2aの外周面2a1に対するフランジ部2b
の先端面2b1の直角度が高精度に仕上げられる。このよ
うな効果は、フランジ部2bの基端面2b2の研削加工をす
る前段階で、その先端面2b1の研削加工をする場合に顕
著に得られる。したがって、上述の手法によりフランジ
部2bの基端面2b2の研削加工を先に行った場合には、軸
部2aの外周面2a1に対する該基端面2b2の直角度が高精度
に仕上げられているため、その後にフランジ部2bの先端
面2b1の研削加工を行うに際して、従来の手法(図7に
示す手法)を採用することも可能である。
Therefore, also in this case, even if the squareness of the base end surface 2b2 of the flange portion 2b with respect to the outer peripheral surface 2a1 of the shaft portion 2a is deviated, the rotation center portion of the base end surface 2b2 is convex. Since it is supported by point contact by the curved surface portion 12a,
The rattling or shake generated in the shaft member 2 is suppressed as much as possible, and the flatness of the tip end surface 2b1 of the flange portion 2b after grinding and the flange portion 2b of the shaft portion 2a with respect to the outer peripheral surface 2a1.
The squareness of the tip surface 2b1 of the is accurately finished. Such an effect is remarkably obtained when the front end face 2b1 of the flange portion 2b is ground before the front end face 2b2 thereof is ground. Therefore, when the base end surface 2b2 of the flange portion 2b is ground first by the above-described method, the squareness of the base end surface 2b2 with respect to the outer peripheral surface 2a1 of the shaft portion 2a is finished with high accuracy, It is also possible to adopt a conventional method (method shown in FIG. 7) when grinding the tip surface 2b1 of the flange portion 2b thereafter.

【0041】[0041]

【実施例】本発明の効果を確認すべく、次に示すような
実験を行った。先ず、ステンレス鋼(SUS420J
2)からなる軸部材(2)を、軸部(2a)とフランジ部(2b)
とを一体形成して製作した。この軸部材(2)は、全長を
15mm、軸部(2a)の外径を4.5mm、フランジ部(2
b)の外径を7mm、フランジ部(2b)の幅(厚み)を1.
2mmとした。そして、本発明の実施例として、上記軸
部材(2)におけるフランジ部(2b)の基端面(2b2)および先
端面(2b1)に対して、図2および図3示す方法により研
削加工を施し、比較例として、上記軸部材(2)における
フランジ部(2b)の基端面(2b2)および先端面(2b1)に対し
て、図6および図7示す方法により研削加工を施した。
この研削加工後におけるフランジ部(2b)の基端面(2b2)
および先端面(2b1)のそれぞれの平面度、軸部(2a)の外
周面(2a1)に対する基端面(2b2)の直角度、軸部(2a)の外
周面(2a1)に対する先端面(2b1)の直角度を、実施例と比
較例とについてそれぞれ測定した。この測定結果を、下
記の表1に示す。
EXAMPLE In order to confirm the effect of the present invention, the following experiment was conducted. First, stainless steel (SUS420J
Shaft member (2) consisting of 2), shaft part (2a) and flange part (2b)
It was manufactured by integrally forming and. This shaft member (2) has a total length of 15 mm, an outer diameter of the shaft portion (2a) of 4.5 mm, and a flange portion (2
The outer diameter of b) is 7 mm, and the width (thickness) of the flange portion (2b) is 1.
It was set to 2 mm. Then, as an embodiment of the present invention, the base end surface (2b2) and the tip end surface (2b1) of the flange portion (2b) of the shaft member (2) are ground by the method shown in FIGS. 2 and 3, As a comparative example, the base end surface (2b2) and the tip end surface (2b1) of the flange portion (2b) of the shaft member (2) were ground by the method shown in FIGS. 6 and 7.
Base face (2b2) of flange (2b) after this grinding process
And the respective flatness of the tip surface (2b1), the squareness of the base end surface (2b2) with respect to the outer peripheral surface (2a1) of the shaft portion (2a), the tip surface (2b1) with respect to the outer peripheral surface (2a1) of the shaft portion (2a). Squareness was measured for each of the example and the comparative example. The measurement results are shown in Table 1 below.

【0042】[0042]

【表1】 [Table 1]

【0043】上記表1によれば、本発明の実施例では、
フランジ部(2b)の両端面(2b1)、(2b2)の平面度が何れも
0.001mm以下(詳しくは0.0005mm以下)
であり、軸部(2a)の外周面(2a1)に対するフランジ部(2
b)の両端面(2b1)、(2b2)の直角度が何れも0.001m
mを超え且つ0.002mm以下(詳しくは0.001
5mm以下)である。これに対して、比較例では、フラ
ンジ部(2b)の両端面(2b1)、(2b2)の平面度が何れも0.
001mmを超え、軸部(2a)の外周面(2a1)に対するフ
ランジ部(2b)の両端面(2b1)、(2b2)の直角度が何れも
0.002mmを超えている。
According to Table 1 above, in the embodiment of the present invention,
The flatness of both end surfaces (2b1) and (2b2) of the flange portion (2b) is 0.001 mm or less (more specifically 0.0005 mm or less)
And the flange part (2a1) to the outer peripheral surface (2a1) of the shaft part (2a).
The squareness of both end faces (2b1) and (2b2) of b) is 0.001m.
m and 0.002 mm or less (more specifically 0.001
5 mm or less). On the other hand, in the comparative example, the flatness of both end surfaces (2b1) and (2b2) of the flange portion (2b) is 0.
More than 001 mm, the squareness of both end surfaces (2b1) and (2b2) of the flange portion (2b) with respect to the outer peripheral surface (2a1) of the shaft portion (2a) exceeds 0.002 mm.

【0044】次に、実施例に係る軸部材(2)と、比較例
に係る軸部材(2)とを、それぞれ図1に示す状態に組み
込むことにより、2種類の動圧型軸受ユニット(1)を製
作した。これらの動圧型軸受ユニット(1)は、軸受部材
(4)の内径を4.5mm、その外径を7mm、その幅
(軸方向寸法)を8mmとし、ラジアル軸受隙間(Rs1)
を0.002〜0.003mm、スラスト軸受隙間(Ss
1)、(Ss2)を0.01〜0.02mmとした。そして、
この2種類の動圧型軸受ユニット(1)を試験モータに組
み込み、ラジアル方向の回転同期振動(RRO)と回転
非同期振動(NRRO)とを評価した。この評価試験
は、試験モータの起動後5分経過後における5000r
pmの条件下で、非接触変位計を使用して行った。この
試験結果を、下記の表2に示す。
Next, by incorporating the shaft member (2) according to the example and the shaft member (2) according to the comparative example into the state shown in FIG. 1, two types of dynamic pressure type bearing units (1) Was produced. These dynamic pressure type bearing units (1) are
The inner diameter of (4) is 4.5 mm, its outer diameter is 7 mm, its width (axial dimension) is 8 mm, and the radial bearing clearance (Rs1)
Is 0.002-0.003 mm, thrust bearing clearance (Ss
1) and (Ss2) were set to 0.01 to 0.02 mm. And
These two types of dynamic pressure type bearing units (1) were incorporated into a test motor, and the rotational synchronous vibration (RRO) and the rotational asynchronous vibration (NRRO) in the radial direction were evaluated. This evaluation test is performed at 5000r 5 minutes after the test motor is started.
It was performed using a non-contact displacement gauge under the condition of pm. The test results are shown in Table 2 below.

【0045】[0045]

【表2】 [Table 2]

【0046】上記表2によれば、本発明の実施例に係る
軸部材(2)を組み込んでなる動圧型軸受ユニット(1)は、
比較例に係るものよりもNRROが大幅に低く、軸受性
能に優れていると言える。
According to Table 2 above, the dynamic pressure type bearing unit (1) incorporating the shaft member (2) according to the embodiment of the present invention is
It can be said that the NRRO is significantly lower than that of the comparative example and the bearing performance is excellent.

【0047】更に、上記2種類の試験モータについて、
軸部材(2)が垂直姿勢、軸受負荷が75g、油動粘度が
20mm2/Sの条件下で、回転数3000rpmの運
転状態から停止させた時に、浮上していた軸部材2がハ
ウジング3の内底面(3a2)に接触し始める回転数(接触
開始回転数)を計測した。この計測結果を、下記の表3
に示す。
Further, regarding the above two types of test motors,
Under the condition that the shaft member (2) is in a vertical posture, the bearing load is 75 g, and the oil kinematic viscosity is 20 mm 2 / S, the shaft member 2 that is floating when the rotation speed is stopped from the operating state of 3000 rpm The number of rotations at which the inner bottom surface (3a2) began to contact (contact start rotation number) was measured. This measurement result is shown in Table 3 below.
Shown in.

【0048】[0048]

【表3】 [Table 3]

【0049】上記表3によれば、本発明の実施例に係る
軸部材(2)を使用した試験モータは、比較例を使用した
試験モータよりも、接触開始回転数が大幅に低くなって
いる。この場合、接触開始回転数が高くなれば、それに
連れてスラスト軸受面(4b1)、(3b2)の摩耗が進行して耐
久性が悪化するため、これを勘案すれば、上記実施例を
使用した試験モータは耐久性に優れていると言える。
According to Table 3 above, the test motor using the shaft member (2) according to the embodiment of the present invention has a contact start rotational speed significantly lower than the test motor using the comparative example. . In this case, if the contact start rotation speed becomes higher, the wear of the thrust bearing surfaces (4b1) and (3b2) will progress accordingly and the durability will deteriorate, so in consideration of this, the above embodiment was used. It can be said that the test motor has excellent durability.

【0050】[0050]

【発明の効果】以上のように本発明に係る動圧型軸受ユ
ニットによれば、該ユニットの主要構成要素である軸部
材における軸部の外周面に対するフランジ部の両端面の
直角度がそれぞれ0.002mm以下で、且つ該フラン
ジ部の両端面の平面度がそれぞれ0.001mm以下で
あることから、ラジアル軸受隙間やスラスト軸受隙間が
適正に管理され、優れた軸受性能が得られるため、トル
クロスやトルク変動が抑制されて高い回転精度を確保す
ることが可能となる。
As described above, according to the dynamic pressure type bearing unit of the present invention, the squareness of both end surfaces of the flange portion with respect to the outer peripheral surface of the shaft portion of the shaft member which is a main component of the unit is 0. Since the flatness of both end faces of the flange portion is 002 mm or less and 0.001 mm or less, the radial bearing gap and the thrust bearing gap are properly managed, and excellent bearing performance can be obtained. Fluctuations are suppressed and high rotation accuracy can be secured.

【0051】また、本発明に係る動圧型軸受ユニットの
製造方法によれば、上記軸部材の一端側の回転中心部を
点接触で支持し、他端側から上記フランジ部の端面に工
具を押圧接触させて面加工を行うものであるから、軸部
材が軸方向にガタツキ(振れ)を生じることなく適正に
面加工が施され、加工後における軸部外周面に対するフ
ランジ部の端面の直角度、並びにそのフランジ部の端面
の平面度が、上述の発明に係る動圧型軸受ユニットと同
程度に高精度に仕上げられる。したがって、この場合に
も、優れた軸受性能および高い回転精度を有する動圧型
軸受ユニットが得られる。
Further, according to the method of manufacturing the dynamic pressure type bearing unit of the present invention, the center of rotation on one end side of the shaft member is supported by point contact, and the tool is pressed from the other end side to the end surface of the flange portion. Since the surface processing is performed by contacting, the shaft member is appropriately surface-processed without rattling (runout) in the axial direction, and the squareness of the end surface of the flange portion with respect to the outer peripheral surface of the shaft portion after processing, In addition, the flatness of the end surface of the flange portion is finished with high accuracy as high as that of the dynamic pressure type bearing unit according to the above-mentioned invention. Therefore, also in this case, a dynamic pressure type bearing unit having excellent bearing performance and high rotation accuracy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る動圧型軸受ユニットの
縦断正面図である。
FIG. 1 is a vertical sectional front view of a dynamic pressure type bearing unit according to an embodiment of the present invention.

【図2】本発明の実施形態に係る動圧型軸受ユニットの
製造方法の一実施状態を示す概略平面図である。
FIG. 2 is a schematic plan view showing an implementation state of the method for manufacturing the dynamic pressure bearing unit according to the embodiment of the present invention.

【図3】本発明の実施形態に係る動圧型軸受ユニットの
製造方法の他の実施状態を示す概略平面図である。
FIG. 3 is a schematic plan view showing another embodiment of the method for manufacturing the dynamic pressure bearing unit according to the embodiment of the present invention.

【図4】本発明の実施形態および従来例に係る動圧型軸
受ユニットの主要構成要素である軸部材を示す概略正面
図である。
FIG. 4 is a schematic front view showing a shaft member that is a main constituent element of a dynamic pressure type bearing unit according to an embodiment of the present invention and a conventional example.

【図5】本発明の実施形態および従来例に係る動圧型軸
受ユニットの製造方法の実施状態を示す概略側面図であ
る。
FIG. 5 is a schematic side view showing an implementation state of a method for manufacturing a dynamic pressure bearing unit according to an embodiment of the present invention and a conventional example.

【図6】従来例に係る動圧型軸受ユニットの製造方法の
一実施状態を示す概略平面図である。
FIG. 6 is a schematic plan view showing an implementation state of a method of manufacturing a dynamic pressure type bearing unit according to a conventional example.

【図7】従来例に係る動圧型軸受ユニットの製造方法の
他の実施状態を示す概略平面図である。
FIG. 7 is a schematic plan view showing another embodiment of the method for manufacturing the dynamic pressure type bearing unit according to the conventional example.

【符号の説明】[Explanation of symbols]

1 動圧型軸受ユニット 2 軸部材 2a 軸部 2a1 軸部の外周面 2b フランジ部 2b1 フランジ部の先端面 2b2 フランジ部の基端面 3 ハウジング(軸受部材) 4 軸受部材 4a 動圧溝 4a1 ラジアル軸受面 Rs1 ラジアル軸受隙間 Ra ラジアル軸受部 Ss1 スラスト軸受隙間 Ss2 スラスト軸受隙間 Sa スラスト軸受部 10 回転ロール 11 周面支持部材 12 端面支持部材 12a 凸状曲面部 13 工具(砥石) 14 工具(砥石) 1 Dynamic pressure bearing unit 2 shaft members 2a Shaft 2a1 Shaft outer peripheral surface 2b Flange part 2b1 Flange end surface 2b2 Flange base surface 3 Housing (bearing member) 4 Bearing member 4a Dynamic pressure groove 4a1 radial bearing surface Rs1 radial bearing clearance Ra radial bearing section Ss1 Thrust bearing clearance Ss2 Thrust bearing clearance Sa thrust bearing 10 revolving roll 11 Peripheral support member 12 End support member 12a Convex curved surface 13 Tool (grinding stone) 14 Tool (grinding stone)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 軸部の基端側にフランジ部を有する軸部
材と、該軸部材の外周に配置された軸受部材と、動圧溝
を有する軸受面及び該軸受面に面した軸受隙間をそれぞ
れに備え且つ上記軸部材と軸受部材との相対回転時に上
記軸受隙間に発生した動圧により上記軸部材をラジアル
方向及びスラスト方向に非接触支持するラジアル軸受部
及びスラスト軸受部とを備えた動圧型軸受ユニットにお
いて、 上記軸部材における軸部の外周面に対するフランジ部の
両端面の直角度がそれぞれ0.002mm以下で、且つ
該フランジ部の両端面の平面度がそれぞれ0.001m
m以下であることを特徴とする動圧型軸受ユニット。
1. A shaft member having a flange portion on the base end side of the shaft portion, a bearing member arranged on the outer periphery of the shaft member, a bearing surface having a dynamic pressure groove, and a bearing gap facing the bearing surface. A dynamic bearing including a radial bearing portion and a thrust bearing portion that are provided in each of them and that support the shaft member in the radial direction and the thrust direction in a non-contact manner by the dynamic pressure generated in the bearing gap when the shaft member and the bearing member rotate relative to each other. In the pressure type bearing unit, the squareness of both end surfaces of the flange portion with respect to the outer peripheral surface of the shaft portion of the shaft member is 0.002 mm or less, and the flatness of both end surfaces of the flange portion is 0.001 m.
A dynamic pressure type bearing unit characterized by being m or less.
【請求項2】 軸部の基端側にフランジ部を有する軸部
材と、該軸部材の外周に配置された軸受部材と、動圧溝
を有する軸受面及び該軸受面に面した軸受隙間をそれぞ
れに備え且つ上記軸部材と軸受部材との相対回転時に上
記軸受隙間に発生した動圧により上記軸部材をラジアル
方向及びスラスト方向に非接触支持するラジアル軸受部
及びスラスト軸受部とを備えた動圧型軸受ユニットの製
造方法において、 上記軸部材を軸心廻りに回転させつつ一端側で軸方向に
支持し、他端側から上記フランジ部の端面に工具を押圧
接触させて面加工を行う工程を含み、該工程で上記軸部
材の一端側の回転中心部を点接触で支持することを特徴
とする動圧型軸受ユニットの製造方法。
2. A shaft member having a flange portion on the base end side of the shaft portion, a bearing member arranged on the outer periphery of the shaft member, a bearing surface having a dynamic pressure groove, and a bearing gap facing the bearing surface. A dynamic bearing including a radial bearing portion and a thrust bearing portion that are provided in each of them and that support the shaft member in the radial direction and the thrust direction in a non-contact manner by the dynamic pressure generated in the bearing gap when the shaft member and the bearing member rotate relative to each other. In the method for manufacturing a pressure bearing unit, a step of supporting the shaft member in the axial direction at one end side while rotating the shaft member around the shaft center and pressing the tool from the other end side to the end surface of the flange portion to perform surface processing A method for manufacturing a dynamic pressure type bearing unit, comprising supporting the center of rotation on one end side of the shaft member by point contact in the step.
【請求項3】 上記軸部の先端面の回転中心部を点接触
で支持し、上記フランジ部の基端面に工具を押圧接触さ
せる請求項1に記載の動圧型軸受ユニットの製造方法。
3. The method for manufacturing a dynamic pressure type bearing unit according to claim 1, wherein the center of rotation of the tip end surface of the shaft portion is supported by point contact, and the tool is pressed into contact with the base end surface of the flange portion.
【請求項4】 上記フランジ部の基端面の回転中心部を
点接触で支持し、該フランジ部の先端面に工具を押圧接
触させる請求項1に記載の動圧型軸受ユニットの製造方
法。
4. The method of manufacturing a dynamic pressure type bearing unit according to claim 1, wherein the center of rotation of the base end surface of the flange portion is supported by point contact, and the tool is pressed into contact with the tip end surface of the flange portion.
【請求項5】 上記回転中心部を凸状曲面部により点接
触で支持する請求項2〜4の何れかに記載の動圧型軸受
ユニットの製造方法。
5. The method of manufacturing a dynamic pressure type bearing unit according to claim 2, wherein the center of rotation is supported by a convex curved surface portion in point contact.
【請求項6】 上記凸状曲面部が球面形状をなす請求項
5に記載の動圧型軸受ユニットの製造方法。
6. The method for manufacturing a dynamic pressure type bearing unit according to claim 5, wherein the convex curved surface portion has a spherical shape.
【請求項7】 上記回転中心部を先細り部により点接触
で支持する請求項2〜4の何れかに記載の動圧型軸受ユ
ニットの製造方法。
7. The method for manufacturing a dynamic pressure type bearing unit according to claim 2, wherein the center of rotation is supported by a tapered portion in point contact.
【請求項8】 上記先細り部が円錐形状または角錐形状
をなす請求項7に記載の動圧型軸受ユニットの製造方
法。
8. The method of manufacturing a dynamic pressure type bearing unit according to claim 7, wherein the tapered portion has a conical shape or a pyramidal shape.
【請求項9】 上記軸部の外周面に回転ロールと周面支
持部材とを接触させて上記軸部材を軸心廻りに回転させ
る請求項2〜7の何れかに記載の動圧型軸受ユニットの
製造方法。
9. The dynamic pressure type bearing unit according to claim 2, wherein the rotating roll and the peripheral surface supporting member are brought into contact with the outer peripheral surface of the shaft portion to rotate the shaft member around the shaft center. Production method.
【請求項10】 請求項2〜9の何れかに記載の方法を
使用して製造されたことを特徴とする動圧型軸受ユニッ
ト。
10. A dynamic pressure type bearing unit manufactured by using the method according to claim 2.
JP2001341012A 2001-11-06 2001-11-06 Hydrodynamic bearing unit and manufacturing method thereof Expired - Lifetime JP3859486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341012A JP3859486B2 (en) 2001-11-06 2001-11-06 Hydrodynamic bearing unit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341012A JP3859486B2 (en) 2001-11-06 2001-11-06 Hydrodynamic bearing unit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003139137A true JP2003139137A (en) 2003-05-14
JP3859486B2 JP3859486B2 (en) 2006-12-20

Family

ID=19155123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341012A Expired - Lifetime JP3859486B2 (en) 2001-11-06 2001-11-06 Hydrodynamic bearing unit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3859486B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029677A1 (en) * 2013-08-29 2015-03-05 Ntn株式会社 Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP2015077662A (en) * 2013-10-17 2015-04-23 株式会社ジェイテクト Grinding method and grinder for roller raw material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029677A1 (en) * 2013-08-29 2015-03-05 Ntn株式会社 Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP2015045396A (en) * 2013-08-29 2015-03-12 Ntn株式会社 Shaft member for fluid dynamic pressure bearing device, and its manufacturing method
CN105431258A (en) * 2013-08-29 2016-03-23 Ntn株式会社 Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
EP3040158A4 (en) * 2013-08-29 2017-06-21 NTN Corporation Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
US9931725B2 (en) 2013-08-29 2018-04-03 Ntn Corporation Shaft member for fluid dynamic bearing device and manufacturing method for shaft member
JP2015077662A (en) * 2013-10-17 2015-04-23 株式会社ジェイテクト Grinding method and grinder for roller raw material

Also Published As

Publication number Publication date
JP3859486B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3893021B2 (en) Hydrodynamic bearing unit
JP3987745B2 (en) Thrust plate manufacturing method, dynamic pressure bearing shaft manufacturing method, dynamic pressure bearing, spindle motor, and recording disk drive device
KR100709101B1 (en) Hydrodynamic bearing unit
JP3990181B2 (en) Manufacturing method of hydrodynamic bearing device
KR101164462B1 (en) Shaft member for dynamic pressure bearing device and method of producing the same
JP2000314421A (en) Radial/axial combined bearing structure and spindle motor having the same
JP3774080B2 (en) Hydrodynamic bearing unit
JP4602497B2 (en) Bearing device and spindle motor assembly using the same
JP4245897B2 (en) Method for manufacturing hydrodynamic bearing device
EP1517057A2 (en) Dynamic pressure thrust bearing part and method of manufacturing dynamic pressure thrust bearing part
JP2003139137A (en) Dynamic pressure bearing unit and its manufacturing method
JP3983435B2 (en) Hydrodynamic bearing unit
JP4566565B2 (en) Hydrodynamic bearing device
JP4504391B2 (en) Manufacturing method of hydrodynamic bearing device
JP4610973B2 (en) Method for manufacturing shaft member for hydrodynamic bearing device
JP2005095998A (en) Method of manufacturing parts for dynamic bearing
JP2000087953A (en) Dynamic pressure type sintered oil-retaining bearing unit
JP2005127525A (en) Hydrodynamic bearing device
JP6757219B2 (en) Shaft members for fluid bearing equipment, their manufacturing methods, and fluid bearing equipment
JP3936527B2 (en) Manufacturing method of hydrodynamic bearing device
JP2002048132A (en) Fluid bearing
JP3625637B2 (en) Manufacturing method of hydrodynamic bearing
JPH03157513A (en) Bearing structure
JPH03181612A (en) Bearing device
JP2001124057A (en) Dynamic pressure bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060919

R150 Certificate of patent or registration of utility model

Ref document number: 3859486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term