JP2006076341A - 路面摩擦係数推定装置 - Google Patents

路面摩擦係数推定装置 Download PDF

Info

Publication number
JP2006076341A
JP2006076341A JP2004259596A JP2004259596A JP2006076341A JP 2006076341 A JP2006076341 A JP 2006076341A JP 2004259596 A JP2004259596 A JP 2004259596A JP 2004259596 A JP2004259596 A JP 2004259596A JP 2006076341 A JP2006076341 A JP 2006076341A
Authority
JP
Japan
Prior art keywords
road surface
friction coefficient
surface friction
acceleration
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004259596A
Other languages
English (en)
Inventor
Junji Tsutsumi
淳二 堤
Hisaaki Asai
央章 浅井
Akira Higashimata
章 東又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004259596A priority Critical patent/JP2006076341A/ja
Publication of JP2006076341A publication Critical patent/JP2006076341A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

【課題】 走行条件にかかわらず、路面摩擦係数を精度良く推定できる路面摩擦係数推定装置を提供する。
【解決手段】 車輪速センサ1の出力に基づいて車両の加速度Afとタイヤのスリップ率Sを算出するフィルタ演算部202と、加速度Afとスリップ率Sの回帰係数Kとに基づいて路面μ推定値μaccを算出する加減速走行ロジック演算部203と、スリップ率Sと路面μ毎にあらかじめ設定された車速とスリップ率Sとの関係に基づいて路面μ推定値μconstを算出する一定速走行ロジック演算部204と、路面μ推定値μaccと路面μ推定値μconstのそれぞれに対し、推定精度に応じた重み付けを行い、重み付けされた路面μ推定値μaccと路面μ推定値μconstとに基づいて路面μ推定値μoutを算出する路面μ推定値確定演算部205と、を備える。
【選択図】 図1

Description

本発明は、タイヤと路面との間の摩擦係数を推定する路面摩擦係数推定装置の技術分野に属する。
従来の路面摩擦係数推定装置は、各車輪速から車両の加速度とタイヤのスリップ率を演算し、加速度とスリップ率の回帰係数、すなわち傾きを求め、この傾きとあらかじめ設定されたしきい値とを比較することにより、路面摩擦係数を推定している。
(例えば、特許文献1参照)。
特開2001−334920号公報
しかしながら、上記従来技術にあっては、一定速走行のように加速度とスリップ率のデータが加速度=0の軸上に集まるような走行条件のとき、回帰係数が正しく演算できないため、路面摩擦係数の推定精度が悪化するという問題があった。
本発明は、上記問題に着目してなされたもので、その目的とするところは、走行条件にかかわらず、路面摩擦係数を精度良く推定できる路面摩擦係数推定装置を提供することにある。
上述の目的を達成するため、本発明では、
車両の速度を検出する車速検出手段と、
各車輪の車輪速を検出する車輪速検出手段と、
検出された各車輪速に基づいて、車両の加速度を検出する加速度算出手段と、
検出された各車輪速に基づいて、タイヤのスリップ率を算出するスリップ率算出手段と、
算出された加速度とスリップ率との関係を1次式で近似した回帰直線の傾きを係数として算出した回帰係数に基づいて、加減速走行路面摩擦係数推定値を算出する加減速走行路面摩擦係数算出手段と、
加減速走行路面摩擦係数推定値の推定精度を算出する加減速時推定精度算出手段と、
検出された車速および算出されたスリップ率と、路面摩擦係数毎にあらかじめ設定された車速とスリップ率との関係に基づいて、一定速走行路面摩擦係数推定値を算出する一定速走行路面摩擦係数算出手段と、
一定速走行時路面摩擦係数の推定精度を算出する一定速走行時推定精度算出手段と、
算出された加減速走行路面摩擦係数推定値と一定速走行路面摩擦係数推定値のそれぞれに対し、算出されたそれぞれの推定精度に応じた重み付けを行う重み付け手段と、
前記重み付けされた加減速走行路面摩擦係数推定値と一定速走行路面摩擦係数推定値とに基づいて最終的な路面摩擦係数を算出する路面摩擦係数推定値確定手段と、
を備えることを特徴とする。
本発明の路面摩擦係数推定装置にあっては、推定精度に応じて、加減速走行路面摩擦係数算出手段と一定速走行路面摩擦係数算出手段のうち、精度が高い状態で演算できる手段に重みを置いて路面摩擦係数を算出することで、走行条件にかかわらず、路面摩擦係数を精度良く推定できる。
以下、本発明を実施するための最良の形態を、実施例1に基づいて説明する。
まず、構成を説明する。
図1は、実施例1の路面摩擦係数推定装置を適用した車両のブロック図である。
車輪速検出手段としての車輪速センサ1(左前輪車輪速センサ1a,右前輪車輪速センサ1b,左後輪車輪速センサ1c,右後輪車輪速センサ1d)は、各車輪(左前輪3a,右前輪3b,左後輪3c,右後輪3d)の車輪速度(車輪速)を検出し、路面摩擦係数推定装置2へ出力する。
路面摩擦係数推定装置2は、各輪3a〜3dの車輪速センサ1a〜1dの信号を入力とし、走行速度、車両加速度およびスリップ率を演算し、加減速走行時にはスリップ率に対する加速度の1次の回帰係数を求めることで、タイヤと路面との間の摩擦係数を推定し、一定速走行時には、スリップ率に基づいてタイヤと路面との間の摩擦係数(路面μ)を推定する。
図2は、路面摩擦係数推定装置2の制御ブロック図であり、路面摩擦係数推定装置2は、速度演算部201と、フィルタ演算部202と、加減速走行ロジック演算部203と、一定速走行ロジック演算部204と、路面μ推定値確定演算部205と、を備えている。
速度演算部(車速検出手段)201は、車輪速センサ1からの信号に基づいて各輪の車輪速を演算し、駆動輪(後輪)、非駆動輪(前輪)の平均値Vd、Vfを演算し、フィルタ演算部202へ出力する。
フィルタ演算部(加速度算出手段、スリップ率算出手段)202は、駆動輪平均速度Vd、非駆動輪平均速度Vfに基づいて、車両加速度Afおよびスリップ率Sを演算し、ノイズ除去のフィルタ処理演算を行い、フィルタ処理後の車両加速度Afを、加減速走行ロジック演算部203へ出力するとともに、フィルタ処理後のスリップ率Sを、加減速走行ロジック演算部203と一定速走行ロジック演算部204へ出力する。
加減速走行ロジック演算部(加減速走行路面摩擦係数算出手段)203は、車両加速度Afのスリップ率Sに対する1次の回帰係数Kを求め、このKに基づいて路面μ推定値μacc(加減速走行路面摩擦係数推定値)を演算し、路面μ推定値確定演算部205へ出力する。
一定速走行ロジック演算部(一定速走行路面摩擦係数算出手段)204は、スリップ率Sに基づき路面μ推定値μconst(一定速走行路面摩擦係数推定値)を演算し、路面μ推定値確定演算部205へ出力する。
路面μ推定値確定演算部(一定速走行時推定精度算出手段、加減速走行時推定精度算出手段、重み付け手段、路面摩擦係数推定値確定手段)205は、加減速走行ロジックで用いる相関係数Rと、一定速走行ロジックで用いる速度分散σv 2に基づいて、それぞれのロジックで算出した路面μ推定値μacc,μconstに重み付けを行い、最終的な路面μ推定値μoutを決定する。
次に、作用を説明する。
[路面摩擦係数推定制御処理]
図3は、路面摩擦係数推定装置2で実施される路面摩擦係数推定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、この処理は、所定の演算周期(例えば、10msec)で実行される。
ステップS1では、車輪速センサ1からの信号に基づいて各輪の車輪速(右前輪車輪速VFR,左前輪車輪速VFL,右後輪車輪速VRR,左後輪車輪速VRLを演算し、ステップS2へ移行する(車輪速検出手段に相当)。車輪速センサ1は回転速度に応じて周波数が変化する信号を出力するため、その信号の周期を計測することにより車輪速を算出することができる。
ステップS2では、駆動輪平均速度Vdと非駆動輪平均速度Vfを演算し(車速検出手段に相当)、ステップS3へ移行する。車両が後輪駆動車の場合、Vd,Vfは下記の式(1),(2)となる。
Vf=(VFR+VFL)/2 …(1)
Vd=(VRR+VRL)/2 …(2)
ステップS3では、ステップS2で算出した駆動輪平均速度Vd、非駆動輪平均速度Vfの大小関係に応じて、下記の式(3)にてスリップ率Sを演算し(スリップ率算出手段に相当)、ステップS4へ移行する。
Vd≧Vfの場合 S=(Vd−Vf)/Vd
Vd<Vfの場合 S=(Vd−Vf)/Vf …(3)
なお、Vfの代わりに、車体速度を用いてもよい。
ステップS4では、ステップS3で算出したスリップ率Sのフィルタ演算処理を行い、ステップS5へ移行する。車輪速センサ1の出力には、路面の凹凸などによるノイズ成分が含まれている。このセンサ出力に基づいて演算されたスリップ率Sにもノイズが含まれるため、このスリップ率Sを用いて求めた路面μ推定値は精度の観点から見ると不十分である。
そこで、スリップ率Sのノイズを除去する目的でフィルタ演算処理を行う。フィルタ演算方法は、例えば、0次/2次の伝達関数F(s)で表したローパスフィルタ(LPF)を用いる。
F(s)=ωn 2s/(s2+2ζωns+ωn 2) …(4)
ここで、ωn、ζは前述のF(s)のフィルタパラメータと同じ値であり、フィルタ特性はF(s)と同様となる。
ステップS6では、車両加速度Afとスリップ率Sとの互いの1次の回帰係数、すなわちスリップ率Sの車両加速度Afに対する回帰係数K0と、車両加速度Afのスリップ率Sに対する回帰係数Kをそれぞれ下記の式(5),(6)より求め、ステップS7へ移行する。
Figure 2006076341
ここで、Af*、S*はそれぞれ、車両加速度Afとスリップ率SのP個の平均値である。また、Pは回帰係数演算に用いるデータの数である。
回帰係数K0、Kはμ−S曲線の勾配を求めたもので、μ−S曲線は本来曲線であるが、通常の走行時に発生するスリップ率の範囲ではほぼ直線となっている。すなわち、μ−S曲線は、Y=aX+bという方程式で表すことができる。このときの係数aが回帰係数K0、Kで、直線の勾配を意味している。ここでYをスリップ率とするか、車両加速度とするかにより、a=K0またはa=Kとなる。実施例1では、Yを車両加速度としてKの値で路面μを推定している。もちろん、回帰係数K0からも路面μを推定することができる。
ステップS7では、下記の式(7)から相関係数Rを演算し、ステップS8へ移行する。
R=K0+K …(7)
ステップS8では、ステップS6で求めた傾きKまたはK0に基づいて、下記の式(8)から加減速走行ロジックの路面μ推定値μaccを算出し(加減速走行路面摩擦係数算出手段に相当)、ステップS9へ移行する。
μacc=(K or K0)×α …(8)
上記式(8)において、αは、走行実験データ等から得ることができる。ここではKまたはK0の値に応じて連続的にμaccが変化するが、KまたはK0の値に応じて数段階のμaccとして算出することも可能である。
ステップS9では、非駆動輪平均速度Vfの分散σv 2を、例えば、下記の式(9)で演算し、ステップS10へ移行する。
Figure 2006076341
ここで、Vf*は非駆動輪平均速度のn個の平均値、nはデータ数(例えば100個)である。非駆動輪平均速度Vfの分散σv 2が小さいほど、走行速度の変動が少なく一定速で走行していると判断できる。非駆動輪平均速度Vfの分散σv 2を車両速度の分散σv 2とみなし、以降の演算を行う。
ステップS10では、スリップ率Sに基づいて一定速走行ロジックの路面μ推定値μconstを算出し(一定速走行路面摩擦係数算出手段に相当)、ステップS11へ移行する。一定速走行のように加速度とスリップ率のデータが加速度=0の軸上に集まるような場合は、加減速走行ロジックで用いる回帰係数が正しく演算できないため、路面μ推定精度が悪化する。そこで、車速変動が小さい場合、言い換えると車両加速度が小さい場合は、スリップ率のみから路面μを推定する。これは、路面μに応じて一定速走行を行うのに必要なスリップ率が異なる現象に着目し、あらかじめ一定速走行時に求めた各路面における走行速度とスリップ率Sとの関係(図4参照)と現在のスリップ率Sとを比較し、線形補間することで、路面μ推定値μconstを算出している。
ステップS11では、加減速走行ロジックで算出した路面μ推定値μaccと、一定速走行ロジックで算出した路面μ推定値μconstにそれぞれ重み付けを行い(重み付け手段に相当)、最終的な路面μ推定値μoutを確定し(路面摩擦係数推定値確定手段に相当)、今回の演算周期での演算処理を終了する。
[路面μ推定値確定制御処理]
図5は、図3のステップS11で実行される路面μ推定値確定制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。
ステップS111では、加減速走行ロジックで算出した路面μ推定値μaccに設定する重み係数Aを算出し(加減速時推定精度算出手段に相当)、ステップS112へ移行する。重み係数Aは、図3のステップS7で算出した相関係数Rに基づいて、例えば図6に示す特性に応じた値とする。相関係数Rが1.0に近いということは、回帰係数の精度が高く加減速走行ロジックでの推定精度が高いと判断できるため、重み係数Aを大きい(1.0に近づける)値に設定する。実施例1では、重み係数Aの範囲は0〜1としている。
ステップS112では、一定速走行ロジックで算出した路面μ推定値μconstに設定する重み係数Bを算出し(一定速走行時推定精度算出手段に相当)、ステップS113へ移行する。重み係数Bは、図3のステップS9で算出した車両速度の分散σv 2に基づいて、例えば図7に示す特性に応じた値とする。速度分散σv 2が小さい場合は、速度変動が少なくスリップ率に基づいて一定速走行ロジックでの推定精度が高いと判断できるため、重み係数Bを大きい(1.0に近づける)値に設定する。実施例1では、重み係数Bの範囲は0〜1としている。
ステップS113では、重み係数Aと重み係数Bを加算した結果を1と比較する。加算結果が1以上の場合にはステップS114へ移行し、加算結果が1未満の場合にはステップS115へ移行する。加算結果が1以上の場合は、路面μ推定精度が十分高いと判断でき、また、加算結果が1未満の場合は、路面μ推定精度が低い可能性があると判断できる。
ステップS114では、それぞれのロジックの路面μ推定値に、所定の重み付けを行い演算した値を、最終的な路面μ推定値μoutとし、リターンへ移行する。
最終路面μ推定値μout=(μacc×A+μconst×B)/(A+B) …(10)
これにより、両ロジックの推定精度に応じた、最終的な路面μ推定値μoutが算出される。
ステップS115では、前回の路面μ推定値μoutを今回の路面μ推定値μoutとし、リターンへ移行する。重み係数Aと重み係数Bそれぞれが小さい、すなわち両ロジックともに精度が低い可能性がある場合には、新たに路面μ推定値の更新を行わない。
[従来の路面μ推定]
タイヤと路面との摩擦係数を推定する装置としては、例えば、特開2001−334920号公報に記載された路面摩擦係数判定装置が知られている。この装置は、4つのタイヤの回転速度(車輪速)より車両の加速度とタイヤのスリップ率を演算し、加速度とスリップ率の回帰係数すなわち傾きを求め、この値とあらかじめ設定されたしきい値とを比較することにより、タイヤと路面との間の摩擦係数(路面μ)を推定している。なお、車両加速度Afのスリップ率Sに対する1次の回帰係数Kは、上述した式(6)で求めることができる。
車両加速度とスリップ率との関係は、タイヤと路面のμ−S曲線と同等であり、路面μが大きいほどμ−S曲線の立ち上がり勾配は図8に示すように急になる。回帰係数Kはμ−S曲線の勾配を求めたものである。上述したように、μ−S曲線は、本来曲線であるが、通常の走行時に発生するスリップ率の範囲ではほぼ直線となっている。すなわち、μ−S曲線はY=aX+bという方程式で表すことができる。このときの係数aが回帰係数Kで、直線の勾配を意味している。ここでYは車両加速度であり、Xはスリップ率である。このKの値に基づき路面μの推定を行っている。
[従来技術の課題]
回帰係数Kの演算には、車両加速度Afとスリップ率SのそれぞれP個のデータが必要であり、両者が高い相関をもって適度にばらつくことによって、演算された回帰係数Kの信頼性が向上する。すなわち、加減速を繰り返すような走行を行う場合は、スリップ率Sに対する加速度Afの傾き(回帰係数K)が求めやすくなるため、路面μを精度良く推定することができる。
しかし、一定速走行のように加速度とスリップ率のデータが加速度=0に軸上に集まるような場合は、回帰係数Kが正しく演算できないため、路面μ推定精度が悪化する。そこで、一定速走行時には、路面μに応じて一定速走行を行うのに必要なスリップ率Sが異なる現象に着目し、スリップ率のみから路面μを推定する方法が考えられる。
加減速走行時にはスリップ率Sに対する加速度Afの回帰係数に基づいて路面μを推定するロジック(加減速走行ロジック)を用い、一定速走行時にはスリップ率に基づいて路面μを推定するロジック(一定速走行ロジック)を用いることで、より多い走行条件において、路面μを精度良く推定することができる。これらの走行条件に応じた路面μ推定を実現するには、走行条件に応じて推定ロジックを切り替える必要があるが、推定ロジックの切り替えをある瞬間で行うと、切り替え前もしくは切り替え後の状態が必ずしも精度良く路面μが推定できているとは限らないため、切り替え時に精度が悪化するおそれがある。また、両ロジックの路面μ推定値に差がある場合には、切り替えにより路面μ推定値に段差が生じてしまう。
これに対し、実施例1の路面摩擦係数推定装置では、加減速走行ロジックと一定速走行ロジックそれぞれの路面μ推定値の演算を常時行い、各路面μ推定値に、所定の重み付けを行い演算した値を最終的な路面μ推定値μoutとすることにより、走行条件に応じたロジック切り替え時の精度悪化防止、推定値の段差の抑制および路面μ推定領域の拡大等が可能となり、より実用的な路面μ推定演算を実行することができる。
[推定精度に応じた重み付けによる路面摩擦係数推定作用]
次に、図9〜図12に示すタイムチャートに基づいて、加減速走行ロジックと一定速走行ロジックの切り替え動作を説明する。
通常は、図9に示すように、加減速走行中は加減速走行ロジックで算出した路面μ推定値μaccの精度が高く、一定速走行ロジックで算出した路面μ推定値μconstは精度が低くなる。一方、一定速走行中は、加減速走行ロジックで算出した路面μ推定値μaccの精度が低く、一定速走行ロジックで算出した路面μ推定値μconstの精度が高くなる。
図9は、それぞれのロジックで算出される路面μ推定値に重み付けを行わずに、単純にロジックを切り替えた場合の様子を示している。例えば、一定速走行ロジックから加減速走行ロジックへの切り替えは、相関係数R>0.9かつ速度分散σv 2>2×10-6など、ある時間で瞬間的に切り替わるものとする。このように、一定速走行から加減速走行へ切り替わるt1および加減速走行から一定速走行へ切り替わるt2で瞬間的にロジックを切り替えると、最終的な路面μ推定値μoutに変動や段差が生じる場合がある。
図10は、図9と同じ走行を行った場合において、実施例1によるロジック切り替えを行った場合の様子を示している。相関係数Rおよび速度分散σv 2に応じてそれぞれの重みが変化する、すなわち瞬間的にロジックが切り替わらずに、図10のt3,t4の領域で重み付けに応じて緩やかにロジックが切り替わるため、最終的な路面μ推定値μoutの変動や段差が抑えられている。
図11は、ロジックが切り替わる際に両ロジックの路面μ推定値の精度が低い状況を想定したタイムチャートである。ここでは、加減速走行ロジックから一定速走行ロジックに切り替わる際に、新たに路面μ推定値μoutを更新しない領域t5が存在する様子を示している。
例えば、加減速走行ロジックでの推定精度悪化と判断するしきい値が、相関係数R<0.9とすると、相関係数Rが0.9より小さくなると(a1)、加減速走行ロジックでの路面μ推定値μaccによる最終的な路面μ推定値μout更新を行わずに、前回の演算周期で算出された値を路面μ推定値μoutとする。また、一定速走行ロジックでの推定精度が確保されると判断するしきい値が、速度分散σv 2<2×10-6を超えている間は、一定速走行ロジックでの路面μ推定値μconstを最終的な路面μ推定値μoutとしない。このような状態が図11のt5の領域で、速度分散σv 2<2×10-6を満たした時点(a2)で、路面μ推定値μconstが最終的な路面μ推定値μoutとなる。
図12は、図11と同じ走行を行った場合において、実施例1によるロジック切り替えを行った場合の様子を示している。
実施例1では、図5のステップS113〜ステップS115で解説したように、相関係数Rおよび速度分散σv 2に基づき、図6,7の特性に応じて算出された重み係数Aと重み係数Bの和が1以上の場合は、最終的な路面μ推定値μoutを各重み係数A,Bに基づいて算出する。
一方、重み係数Aと重み係数Bの和が1未満のt6の領域では、各ロジックで算出される路面μ推定値μacc,μconstの精度が低いと判断し、新たに路面μ推定値μoutを更新しない。ここで、新たに路面μ推定値μoutを更新しない領域t6は、図11のt5より短くなっており、単純に相関係数Rおよび速度分散σv 2に基づいてロジックを切り替える場合に対して、路面μ推定値μoutを更新しない領域が狭くできたことがわかる。両ロジックとも精度が得られない状態の場合、すなわち重み係数Aと重み係数Bの和が1未満の場合にのみ、新たに路面μ推定値μoutの更新を行わないようにすることで、路面μ推定領域を不要に狭くすることが防げる。
次に、効果を説明する。
実施例1の路面摩擦係数推定装置にあっては、下記に列挙する効果が得られる。
(1) 各車輪3a〜3dの車輪速を検出する車輪速センサ1と、検出された各車輪速に基づいて車両の加速度Afとタイヤのスリップ率Sを算出するフィルタ演算部202と、算出された加速度Afとスリップ率Sの回帰係数Kとに基づいて路面μ推定値μaccを算出する加減速走行ロジック演算部203と、算出されたスリップ率Sと路面μ毎にあらかじめ設定された車速とスリップ率Sとの関係(図4参照)に基づいて路面μ推定値μconstを算出する一定速走行ロジック演算部204と、算出された路面μ推定値μaccと路面μ推定値μconstのそれぞれに対し、推定精度に応じた重み係数A,Bを設定し、式(10)を用いて路面μ推定値μoutを算出する路面μ推定値確定演算部205と、を備えるため、走行条件にかかわらず、路面摩擦係数を精度良く推定できる。
(2) 路面μ推定値確定演算部205は、算出された加速度Afとスリップ率Sとの相関係数Rに基づいて、路面μ推定値μaccの重み係数Aを算出するため、加減速走行ロジックでの路面μ推定精度に応じて、適正な重み係数Aを設定できる。
(3) 路面μ推定値確定演算部205は、相関係数Rが大きいほど、路面μ推定値μaccの重み係数Aを大きくする(図6参照)ため、回帰係数Kの精度が高く加減速走行ロジックでの推定精度が高い場合には、路面μ推定値μoutに対する路面μ推定値accの比率を大きくすることで、加減速走行時の路面μ推定精度が高められる。
(4) 路面μ推定値確定演算部205は、速度分散σv 2に基づいて、路面μ推定値μconstの重み係数Bを算出するため、一定速走行ロジックでの路面μ推定精度に応じて、適正な重み係数Bを設定できる。
(5) 路面μ推定値確定演算部205は、速度分散σv 2が小さいほど、路面μ推定値μconstの重み係数Bを小さくする(図7参照)ため、速度変動が少なくスリップ率Sに基づいた一定速走行ロジックでの推定精度が高い場合には、路面μ推定値μoutに対する路面μ推定値μconstの比率を大きくすることで、一定速走行時の路面μ推定精度が高められる。
(6) 路面μ推定値確定演算部205は、路面μ推定値μaccの重み係数Aと、路面μ推定値μconstの重み係数Bとの和が1未満であるとき、前回の演算周期で算出した路面μ推定値μoutを今回の演算周期の最終的な路面μ推定値μoutとするため、路面μ推定領域を不要に狭くすることが防げる。
(他の実施例)
以上、本発明を実施するための最良の形態を、実施例1に基づいて説明したが、具体的な構成については、この実施例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
路面摩擦係数推定装置は必ずしも他のシステムから独立して設置する必要はなく、車輪速センサの信号を入力とするコントローラ(例えば、ABSコントローラ)に上記路面摩擦係数推定演算プログラムを組み込むことも可能である。
実施例1では、一定速走行ロジックで算出した路面μ推定値μconstに設定する重み係数Bを、速度分散σv 2を用いて求めたが、加速度分散を用いても同様の効果が得られる。
実施例1の路面摩擦係数推定装置を適用した車両のブロック図である。 路面摩擦係数推定装置2の制御ブロック図である。 路面摩擦係数推定装置2で実行される路面摩擦係数推定制御処理の流れを示すフローチャートである。 一定速走行時の路面μ毎の走行速度とスリップ率Sとの関係を示す図である。 路面摩擦係数推定装置2で実行される路面μ推定値確定制御処理の流れを示すフローチャートである。 相関係数Rと重み係数Aとの関係の1例を示す図である。 非駆動輪の速度分散σv 2と重み係数Bとの関係の1例を示す図である。 路面μとスリップ率Sとの関係を示す図である。 一定速走行ロジックと加減速走行ロジックとの切り替えを単純に相関係数Rおよび速度分散σv 2に基づいて行った場合の様子を示すタイムチャートである。 実施例1のロジック切り替えの様子を示すタイムチャートである。 一定速走行ロジックと加減速走行ロジックとの切り替えを単純に相関係数Rおよび速度分散σv 2に基づいて行った場合の様子を示すタイムチャートである(推定精度が低く路面μ推定値を更新しない領域が存在する場合)。 実施例1のロジック切り替えの様子を示すタイムチャートである(推定精度が低く路面μ推定値を更新しない領域が存在する場合)。
符号の説明
1 車輪速センサ
2 路面摩擦係数推定装置
201 速度演算部
202 フィルタ演算部
203 加減速走行ロジック演算部
204 一定速走行ロジック演算部
205 路面μ推定値確定演算部
3a 左前輪
3b 右前輪
3c 左後輪
3d 右後輪

Claims (6)

  1. 車両の速度を検出する車速検出手段と、
    各車輪の車輪速を検出する車輪速検出手段と、
    検出された各車輪速に基づいて、車両の加速度を検出する加速度算出手段と、
    検出された各車輪速に基づいて、タイヤのスリップ率を算出するスリップ率算出手段と、
    算出された加速度とスリップ率との関係を1次式で近似した回帰直線の傾きを係数として算出した回帰係数に基づいて、加減速走行路面摩擦係数推定値を算出する加減速走行路面摩擦係数算出手段と、
    加減速走行路面摩擦係数推定値の推定精度を算出する加減速時推定精度算出手段と、
    検出された車速および算出されたスリップ率と、路面摩擦係数毎にあらかじめ設定された車速とスリップ率との関係に基づいて、一定速走行路面摩擦係数推定値を算出する一定速走行路面摩擦係数算出手段と、
    一定速走行時路面摩擦係数の推定精度を算出する一定速走行時推定精度算出手段と、
    算出された加減速走行路面摩擦係数推定値と一定速走行路面摩擦係数推定値のそれぞれに対し、算出されたそれぞれの推定精度に応じた重み付けを行う重み付け手段と、
    前記重み付けされた加減速走行路面摩擦係数推定値と一定速走行路面摩擦係数推定値とに基づいて最終的な路面摩擦係数を算出する路面摩擦係数推定値確定手段と、
    を備えることを特徴とする路面摩擦係数推定装置。
  2. 請求項1に記載の路面摩擦係数推定装置において、
    前記加減速時推定精度算出手段は、算出された加速度とスリップ率との相関係数に基づいて、前記加減速走行摩擦係数推定値の推定精度を算出することを特徴とする路面摩擦係数推定装置。
  3. 請求項2に記載の路面摩擦係数推定装置において、
    前記加減速時推定精度算出手段は、前記相関係数が大きいほど、前記路面摩擦係数推定値の推定精度を高くし、
    前記重み付け手段は、前記推定精度が高いほど、前記加減速走行路面摩擦係数推定値の重み付けを大きくすることを特徴とする路面摩擦係数推定装置。
  4. 請求項1または請求項3に記載の路面摩擦係数推定装置において、
    前記一定速走行時推定精度算出手段は、前記車輪速の変動の大きさに基づいて、前記一定速走行路面摩擦係数推定値の推定精度を算出することを特徴とする路面摩擦係数推定装置。
  5. 請求項4に記載の路面摩擦係数推定装置において、
    前記一定速走行時推定精度算出手段は、前記車輪速の変動が小さいほど、前記路面摩擦係数推定値の推定精度を高くし、
    前記重み付け手段は、前記推定精度が高いほど、前記一定速走行路面摩擦係数推定値の重み付けを小さくすることを特徴とする路面摩擦係数推定装置。
  6. 請求項1ないし請求項5のいずれか1項に記載の路面摩擦係数推定装置において、
    前記路面摩擦係数推定値確定手段は、前記加減速走行路面摩擦係数推定値の重みと、一定速走行路面摩擦係数推定値の重みとの和が、あらかじめ設定されたしきい値よりも小さいとき、前回の演算周期で算出した路面摩擦係数を今回の演算周期の最終的な路面摩擦係数とすることを特徴とする路面摩擦係数推定装置。
JP2004259596A 2004-09-07 2004-09-07 路面摩擦係数推定装置 Pending JP2006076341A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259596A JP2006076341A (ja) 2004-09-07 2004-09-07 路面摩擦係数推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259596A JP2006076341A (ja) 2004-09-07 2004-09-07 路面摩擦係数推定装置

Publications (1)

Publication Number Publication Date
JP2006076341A true JP2006076341A (ja) 2006-03-23

Family

ID=36156172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259596A Pending JP2006076341A (ja) 2004-09-07 2004-09-07 路面摩擦係数推定装置

Country Status (1)

Country Link
JP (1) JP2006076341A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176869A (ja) * 2017-04-06 2018-11-15 株式会社Subaru 車両の制御装置
CN111619548A (zh) * 2020-05-28 2020-09-04 清华大学 车辆驱动防滑控制方法、装置、计算机设备和存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176869A (ja) * 2017-04-06 2018-11-15 株式会社Subaru 車両の制御装置
CN111619548A (zh) * 2020-05-28 2020-09-04 清华大学 车辆驱动防滑控制方法、装置、计算机设备和存储介质
CN111619548B (zh) * 2020-05-28 2021-01-12 清华大学 车辆驱动防滑控制方法、装置、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
JP2003118555A (ja) 路面状態判定方法および装置、ならびに路面状態の判定のしきい値設定プログラム
JP5263068B2 (ja) 車両のスリップ判定装置
JP2006076341A (ja) 路面摩擦係数推定装置
CN107719373B (zh) 用于估计路面摩擦的方法和系统
KR102029296B1 (ko) 차량의 휠 속도 센서를 이용한 주행 도로 상태 판정 시스템 및 방법
US7171297B2 (en) Road surface condition determination apparatus
JP2002274357A (ja) 路面状態判別装置および方法、ならびに路面状態の判別プログラム
JP2009119958A (ja) 車両状態推定装置
JP4668571B2 (ja) 路面状態判定方法および装置ならびに路面状態判定プログラム
JP2005153734A (ja) 路面摩擦係数推定装置
JP4216150B2 (ja) 車両のタイヤ種別判定装置
JP3196686B2 (ja) 路面摩擦係数推定装置
KR20070001306A (ko) 차량 안정성 제어시스템의 특이 노면 검출장치
JP2005138747A (ja) 路面摩擦係数推定装置
JP4425478B2 (ja) 路面状態推定方法および装置
JP2006035928A (ja) 路面状態判定方法および装置ならびに路面状態判定プログラム
JP4569235B2 (ja) 路面摩擦係数推定装置
JP4261309B2 (ja) 車両のタイヤ種別判定方法
JP3196685B2 (ja) 路面摩擦係数推定装置
JP2829215B2 (ja) アンチスキッド制御装置
CN116443014B (zh) 一种车辆驱动防滑控制方法及装置
JP3651271B2 (ja) 車両速度制御装置
JP3781905B2 (ja) 車両挙動検出装置
JP2018054527A (ja) 車両の制御装置及び車両の制御方法
JP2005132186A (ja) 路面摩擦係数検出装置