JP2006074961A - リニアモータ及びステージ装置並びに露光装置 - Google Patents

リニアモータ及びステージ装置並びに露光装置 Download PDF

Info

Publication number
JP2006074961A
JP2006074961A JP2004258180A JP2004258180A JP2006074961A JP 2006074961 A JP2006074961 A JP 2006074961A JP 2004258180 A JP2004258180 A JP 2004258180A JP 2004258180 A JP2004258180 A JP 2004258180A JP 2006074961 A JP2006074961 A JP 2006074961A
Authority
JP
Japan
Prior art keywords
linear motor
motor according
coil
stage
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258180A
Other languages
English (en)
Inventor
Yuichi Shibazaki
祐一 柴崎
Shigeki Kageyama
滋樹 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004258180A priority Critical patent/JP2006074961A/ja
Publication of JP2006074961A publication Critical patent/JP2006074961A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 温度勾配が生じず均一な温度分布を実現する。
【解決手段】 固定子80と可動子とを有する。リニアモータの温度分布とリニアモータが発生する推力との少なくとも一方に基づいてリニアモータを加熱する加熱装置3を備える。
【選択図】 図2

Description

本発明は、リニアモータ及びステージ装置並びに露光装置に関し、例えば、精密位置決めを行う駆動機構として用いて好適なリニアモータ及びステージ装置並びに露光装置に関するものである。
半導体素子や液晶表示基板等を製造するためのリソグラフィ工程において、マスクとしてのレチクルのパターンを、フォトレジストが塗布されたウェハまたはガラス基板等の各ショット領域に転写露光する露光装置が使用されている。
この種の露光装置においては、レチクルステージ、ウエハステージ等の駆動機構として、リニアモータが採用されている。リニアモータは、構造が簡単で部品数が少なく、また、動作精度が高く移動動作を迅速に行えるという利点を有しており、各ステージに要求されるスループットや位置決め精度の向上が図れるためである。
ところで、リニアモータに用いられるコイルには、通電されるとコイル自身の内部抵抗により発熱し、発生した熱が周辺機器に伝わって熱変形を起こす可能性がある。また、周囲の空間に空気の揺らぎを発生させ、光波干渉計の計測精度を低下させる可能性もある。そこで、上記のようなリニアモータについては、コイルの発熱を防止するために冷却のための様々な工夫がなされており、例えばコイルを有する固定子と可動子とのいずれか一方において、コイルを収容するキャン内部に温度調整された冷媒を流すことによりコイルから生じた熱を回収し、リニアモータを冷却する技術も開示されている(例えば特許文献1参照)。
特開2003−299339号公報
しかしながら、上述したようなリニアモータでは、冷媒が流れる過程でコイルから熱を奪うので、冷媒の温度は冷媒出口側ほど高くなってしまう。これにより、リニアモータには、冷媒との熱交換によって冷媒出口側に向かうほど温度が上昇する温度勾配(温度分布)が生じるので、コイルが均一に冷却されず、上述した熱変形が生じるといった問題があった。
本発明は、以上のような点を考慮してなされたもので、温度勾配が生じず均一な温度分布を実現できるリニアモータ及びステージ装置並びに露光装置を提供することを目的とする。
上記の目的を達成するために本発明は、実施の形態を示す図1ないし図12に対応付けした以下の構成を採用している。
本発明のリニアモータは、固定子(80及び81)と可動子(90及び54)とを有するリニアモータ(XLM1及びXLM2)であって、リニアモータの温度分布とリニアモータが発生する推力との少なくとも一方に基づいてリニアモータを加熱する加熱装置(3)を備えたを特徴とするものである。
従って、本発明のリニアモータでは、リニアモータ(XLM1、XLM2)の温度分布、または、リニアモータが発生する推力によりリニアモータに温度勾配(KR)が生じた場合でも、この温度勾配と逆勾配の(リニアモータの温度分布を打ち消す)温度分布(KH)でリニアモータを加熱することで、温度勾配を生じさせずに均一な温度分布のリニアモータとすることが可能になる。そのため、本発明では、周辺機器に変形が生じたり、周囲の空間に空気揺らぎを生じさせることを防止することができる。
また、本発明のステージ装置は、上記のリニアモータ(XLM1、XLM2)が駆動装置として用いられることを特徴とするものである。
そして、本発明の露光装置は、ステージ装置を用いて基板(W)にパターンを露光する露光装置(100)において、ステージ装置として、上記のステージ装置(50)を用いたことを特徴とするものである。
従って、本発明のステージ装置及び露光装置では、ステージを駆動する際にもリニアモータに温度勾配が生じず、リニアモータ周辺の機器に変形等の不具合が発生することを防止できる。
なお、本発明をわかりやすく説明するために、一実施例を示す図面の符号に対応付けて説明したが、本発明が実施例に限定されるものではないことは言うまでもない。
本発明では、温度勾配を生じさせずに均一な温度分布でのリニアモータ駆動が可能になり、周辺機器に熱変形が生じて駆動性能が低下することを防止できる。また、本発明では、温度分布に起因して空気揺らぎ等が生じることを防止でき、パターンの転写精度が低下することを回避できる。
以下、本発明のリニアモータ及びステージ装置並びに露光装置の実施の形態を、図1ないし図13を参照して説明する。ここでは、本発明に係るリニアモータ及びステージ装置をウエハステージに適用した場合の例を用いて説明する。
(第1実施形態)
まず、本実施形態のリニアモータを駆動装置として備えたステージ装置について説明する。
図1は、ステージ装置50の外観斜視図である。
ステージ装置50は、フレームキャスタFCと、該フレームキャスタFC上に設けられたベース盤12と、該ベース盤12の上方に配置されベース盤12の上面(移動面)12aに沿って移動するウエハステージWST及び計測ステージMSTと、これらのステージWST、MSTの位置を検出する干渉計16、18を含む位置検出装置としての干渉計システム118(図4参照)と、ステージWST、MSTを駆動するステージ駆動部124(図4参照)とを備えている。ウエハステージWST上には、基板としてのウエハWが載置されている。
前記フレームキャスタFCは、そのX軸方向一側と他側の端部近傍にY軸方向を長手方向とし上方に突出した突部FCa、FCbが一体的に形成された概略平板状からなっている。前記ベース盤(定盤)12は、フレームキャスタFCの前記突部FCa、FCbに挟まれた領域上に配置されている。ベース盤12の上面12aは平坦度が非常に高く仕上げられ、ウエハステージWST及び計測ステージMSTのXY平面に沿った移動の際のガイド面とされている。
前記ウエハステージWSTは、図1に示されるように、ベース盤12上に配置されたウエハステージ本体28と、該ウエハステージ本体28上に不図示のZ・チルト駆動機構を介して搭載されたウエハテーブルWTBとを備えている。Z・チルト駆動機構は、実際にはウエハステージ本体28上でウエハテーブルWTBを3点で支持する3つのアクチュエータ(例えば、ボイスコイルモータやEIコア)等を含んで構成され、各アクチュエータの駆動を調整することで、ウエハテーブルWTBをZ軸方向、θx方向(X軸周りの回転方向)、θy方向(Y軸周りの回転方向)の3自由度方向に微小駆動する。
ウエハステージ本体28は、断面矩形枠状でX軸方向に延びる中空部材によって構成されている。このウエハステージ本体28の下面には、本出願人が先に出願した特願2004−215439号に記載されているような自重キャンセラ機構が設けられている。この自重キャンセラ機構はベローズに内圧をかけてウエハステージWSTを支える支持部と、ガイド面12aと対向し、ウエハステージWSTをガイド面12aに対して浮上させるエアベアリング部とを有している。
フレームキャスタFCの突部FCa、FCbの上方には、図1に示されるように、Y軸方向に延びるY軸用の固定子86、87が配設されている。これらのY軸用の固定子86、87は、それぞれの下面に設けられた不図示の気体静圧軸受、例えばエアベアリングによって突部FCa、FCbの上面に対して所定のクリアランスを解して浮上支持されている。これはウエハステージWSTや計測ステージMSTのY方向の移動により発生した反力により、固定子86、87がカウンタマスとして逆方向に移動して、この反力を運動量保存の法則により相殺するためである。Y軸用の固定子86、87は、本実施形態では複数の永久磁石群からなる磁極ユニットとして構成されている。
前記ウエハステージ本体28の内部には、X軸方向の可動子としての永久磁石群を有する磁極ユニット90が設けられている。磁石ユニット90の内部空間には、X軸方向に延びるXガイドバーXG1が挿入されている。そして、XガイドバーXG1には、X軸用の固定子(コイルを有する一方)80が設けられている。このX軸用の固定子80は、X軸方向に沿って所定間隔で配置された複数の電機子コイル(コイル)を内蔵する電機子ユニットによって構成されている。この場合、磁極ユニット90と電機子ユニットからなるX軸用の固定子80とによって、ウエハステージWSTをX軸方向に駆動するムービングマグネット型のX軸リニアモータ(リニアモータ)XLM1が構成されている。なお、X軸リニアモータ80として、ムービングマグネット型のリニアモータに代えて、ムービングコイル型のリニアモータを用いてもよい。
図2(a)は固定子80の平面図であり、図2(b)は正面図である。
固定子80は、X軸方向に複数並んで配置されたコイル(不図示)を合成樹脂等により一体的に成形(モールド)した電機子ユニット(コイル)CUを内部空間1に収容するコイルジャケットCJを有している。コイルジャケットCJの形成材料としては、例えば、ポリカーボネート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリプロピレン樹脂、ポリアセタール樹脂、ガラス繊維充填エポキシ樹脂、ガラス繊維強化熱硬化性プラスチック(GFRP)、炭素繊維強化熱硬化性プラスチック(CFRP)等の合成樹脂、またはセラミックス材料等の非導電性且つ非磁性材料、あるいはステンレス鋼やアルミニウム等の金属等が挙げられる。
そして、固定子80の内部空間1に対しては、固定子80の+X側端部に設けられた冷媒供給口80aを介して冷却装置2から温度調整された冷媒が供給される。電機子ユニットCUから生じた熱を熱交換により回収した冷媒は、固定子80の−X側端部に設けられた冷媒排出口80bから排出され冷却装置2に戻される。冷却装置2の駆動は、主制御装置20により制御される(図4参照)。
なお、使用される冷媒としては純水等の液体又は気体であって特に不活性なものが好ましく、ハイドロフルオロエーテル(例えば「ノベックHFE」:住友スリーエム株式会社製)や、フッ素系不活性液体(例えば「フロリナート」:住友スリーエム株式会社製)などが挙げられる。
また、このX軸リニアモータXLM1には、固定子80を加熱する加熱装置3が付設されている。加熱装置3は、コイルジャケットCJのZ軸方向の両側の面(上面及び下面)にそれぞれ貼設されたヒータ(発熱体)4と、主制御装置20の制御の下(図4参照)、各ヒータ4への通電を制御するヒータ制御部5とを有している。
ヒータ4は、銅板等の1枚の導電性薄板(導電材)をパターニングして形成されたものである。
より詳細には、ヒータ4は、固定子80に生じる温度分布に基づき、この温度分布を打ち消すようにパターニングされる。つまり、コイルジャケットCJの内部空間1に冷媒供給口80aから導入された冷媒は、電機子ユニットCUの熱を回収しつつ内部空間1を流動し、流動が進むのに従って温度が上昇するため、固定子80は、図3に示すように、+X側の冷媒供給口80a側が温度が低く、−X側の冷媒排出口80b側ほど温度が高くなる温度勾配KRを生じる。そして、本実施形態におけるヒータ4は、略同一幅の帯状体をX軸方向に沿って九十九折り状に屈曲した形状を有しており、Y軸方向に延在しX軸方向に間隔をあけて配列される帯状体は、固定子80(コイルジャケットCJ)の温度勾配KRを打ち消して均一な所定温度(例えばチャンバ内温度)とする温度勾配KHの温度分布を発現するように、冷媒入口側である+X側のピッチが小さく、冷媒出口側である−X側のピッチが大きく設定されている。
なお、このヒータ4のパターニング方法としては、例えば一枚の極薄金属板をエッチングする方法を採用できる。
図1に戻り、X軸用の固定子80の長手方向両側端部には、例えばY軸方向に沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットからなる可動子82、83がそれぞれ固定されている。これらの可動子82、83のそれぞれは、上述したY軸用の固定子86、87にそれぞれ内側から挿入されている。すなわち、本実施形態では、電気ユニットからなる可動子82、83と磁極ユニットからなるY軸用の固定子86、87とによって、ウエハステージWSTをY軸方向に駆動するムービングコイル型のY軸リニアモータYLM1が構成されている。なお、Y軸リニアモータYLM1として、ムービングコイル型のリニアモータに代えて、ムービングマグネット型のリニアモータを用いてもよい。本実施形態では、Y軸リニアモータYLM1、X軸リニアモータXLM1、ウエハテーブルWTBを駆動する不図示の微動機構は、図4に示されるステージ駆動部124の一部を構成している。このステージ駆動部124を構成する各種駆動機構が図4に示される主制御装置20によって制御される。
前記ウエハテーブルWTB上には、ウエハWを保持するウエハホルダ70が設けられている。ウエハホルダ70は、板状の本体部と、該本体部の上面に固定されその中央にウエハWの直径よりも大きな円形開口が形成された撥液性(撥水性)を有する補助プレートとを備えている。この補助プレートの円形開口内部の本体部の領域には、多数(複数)のピンが配置されており、その多数のピンによってウエハWが支持された状態で真空吸着されている。この場合、ウエハWが真空吸着された状態では、そのウエハW表面と補助プレートの表面との高さがほぼ同一の高さとなるように形成されている。なお、補助プレートを設けずに、ウエハテーブルWTBの表面に撥液性を付与してもよい。
また、図1に示されるように、ウエハテーブルWTBのX軸方向の一端(+X側端)には、X軸方向に直交する反射面17XがY軸方向に延設され、Y軸方向の一端(+Y側端)には、Y軸方向に直交する反射面17YがX軸方向に延設されている。これら反射面17X、17Yには、後述する干渉計システム118(図4参照)を構成するX軸干渉計46、Y軸干渉計18からの干渉計ビーム(測長ビーム)がそれぞれ投射され、各干渉計46、18ではそれぞれの反射光を受光することで、各反射面の基準位置(一般的には後述する投影ユニットPU側面や、オフアクシス・アライメント系ALG(図4参照)の側面に固定ミラーを配置し、そこを基準面とする)からの計測方向の変位を検出する。
なお、ステージ装置50に設けられた計測ステージMSTの詳細については、後に記載する別の実施形態にて説明する。
上記の構成のステージ装置50においては、ウエハステージWSTは、X軸リニアモータXLM1の駆動により、X軸方向に駆動されるとともに、一対のY軸リニアモータYLM1の駆動によってX軸リニアモータXLM1及びXガイドバーXG1と一体でY軸方向に駆動される。また、ウエハステージWSTは、Y軸リニアモータYLM1が発生するY軸方向の駆動力を僅かに異ならせることにより、θz方向にも回転駆動される。従って、ウエハテーブルWTBを支持する3つのアクチュエータ、X軸リニアモータXLM1及びY軸リニアモータYLM1の駆動により、ウエハテーブルWTBは6自由度方向(X、Y、Z、θx、θy、θz)に非接触で微小駆動可能とされている。
ここで、ウエハステージWSTが移動面12aに沿って固定子80に対してX軸方向に駆動する際には、ヒータ制御部5の制御下で駆動パターンに応じて固定子80の電機子ユニットCUが通電されて発熱する。電機子ユニットCUで生じた熱は、冷却装置2により循環する冷媒との熱交換により回収され、電機子ユニットCU及び固定子80の温度上昇が回避される。固定子80の内部空間1を流動する冷媒は、冷媒排出口80bに向かうに従って電気ユニットCUから回収した熱量に応じて温度上昇するため、コイルジャケットCJにおいても、冷媒から伝わる熱により、冷媒入口側の温度が低く、冷媒出口側の温度が高い温度勾配KRが生じるが(図3参照)、ヒータ4は冷媒入口側が高く、冷媒出口側が低いという、コイルジャケットCJと逆勾配の温度勾配KHでコイルジャケットCJを加熱するため、冷媒の流動方向に応じて生じた温度分布が打ち消される。そのため、固定子80は、長さ方向に亘る全体が均一な温度Tk(図3参照)に維持される。
このように、本実施の形態では、X軸リニアモータXLM1の駆動に伴って生じた熱を回収(冷却)した際に、冷媒の流動方向に応じてコイルジャケットCJに温度勾配KRが生じる場合でも、この温度勾配KRを打ち消す発熱分布(温度勾配KH)を有するヒータ4により加熱するので、固定子80の温度分布を均一にすることが可能になる。そのため、本実施の形態では、固定子80の温度勾配に起因して周辺機器に熱変形が生じることを防止できる。
また、本実施の形態では、ヒータ4が九十九折り状に屈曲して形成されていることから、X方向で隣り合う帯状体では電流が互いに逆方向に流れることになるため、固定子80と可動子90との間に推力方向とは逆方向の力(粘性抵抗)を発生させずにすみ、リニアモータXLM1の駆動制御性に悪影響が及ぶことを防止できる。
(第2実施形態)
図5は、ヒータの第2実施形態を示す平面図である。
この図に示すヒータ4Aは、図2(a)に示したヒータ4と同様に、帯状体をX軸方向に沿って九十九折り状に屈曲した形状を有しているが、X軸方向に間隔をあけて配列された帯状体の幅は、冷媒入口側である+X側が小さく形成され、冷媒出口側である−X側が大きく形成されている。
上記の構成のヒータ4Aでは、冷媒入口側の抵抗が大きくなり、冷媒出口側の抵抗が小さくなるという、コイルジャケットCJ(固定子80)の温度分布に応じた抵抗を有することになり、図3で示した温度勾配KHと同様の温度分布で発熱するため、冷媒の流動方向に応じて生じたコイルジャケットCJの温度勾配KRを打ち消すことになる。
従って、本実施の形態でも、上記第1実施形態と同様の作用・効果を得ることができる。なお、コイルジャケットCJ(固定子80)の温度分布に応じた抵抗を有するヒータの構成としては、図5に示したものの他に、図6に示すように、X軸方向に沿って断面積が徐々に大きくなって抵抗が小さくなる抵抗線Cを有するヒータ4Bを用いることも可能である。この場合、図6に示すように、抵抗線Cを複数配置する構成や、一本のみ配置する構成であってもよい。
(第3実施形態)
図7は、ヒータの第3実施形態を示す平面図である。
この図に示すヒータ4Cは、線状の導電材(抵抗線)から構成されており、可動子90の駆動方向であるX軸方向に並行して延びる一対の並行部6と、Y軸方向に延在し並行部6の間に懸架される複数の懸架部7とを有する梯子形状に形成されている。懸架部7は、コイルジャケットCJの温度勾配KRを打ち消すように、冷媒入口側である+X側のピッチが小さく、冷媒出口側である−X側のピッチが大きく設定されている。そして、ヒータ4Cに対しては、一方の並行部6(図7中、上側)の+X側端部と他方の並行部6(図7中、下側)の+X側端部とがヒータ制御部5に接続され、図中、時計回り方向に(懸架部7については−Y側から+Y側に向けて)電流が流れるように給電される。
上記の構成のヒータ4Cでは、上記第1実施形態と同様の作用・効果が得られることに加えて、複数の懸架部7の中、いずれかが断線した場合でも、他の懸架部7への給電が維持されるため、固定子80への加熱、すなわち、固定子80の温度分布均一化を中断させることなく継続して実施することが可能である。
なお、本実施形態では、懸架部7を流れる電流が同一方向に流れるため、固定子80に対して可動子90が移動する際に、上述した粘性抵抗が生じる。そのため、可動子90の駆動時には、この粘性抵抗分を考慮(補正)した推力で駆動制御することが好ましい。
(第4実施形態)
続いて、本発明の第4実施形態について図8を参照して説明する。
上記第1〜第3実施形態では、ヒータ4、4A〜4Cが固定子80のコイルジャケットCJに貼設された構成であったが、本実施形態では、ヒータがコイルジャケットCJに埋設された構成となっている。また、本実施の形態では、コイルジャケットCJの壁部が繊維強化プラスチックで構成されている。
図8(A)は、図8(B)に示すコイルジャケットCJの壁部H(例えば天壁)における部分断面図のA−A線視断面図である。
図8(B)に示すように、壁部Hは、例えば複数の炭素繊維を温度勾配が生じるX軸方向に沿って直線状に配向し、これら複数の炭素繊維間にエポキシ樹脂等の合成樹脂を含浸させて形成したシート材を複数層(図では5層、表層側からS1〜S5の符号を付す)に亘って積層して成形したものである。
図8(B)に示すように、第2層目のシート材S2は、X軸方向に沿って九十九折り状に屈曲した形状の一定幅の溝8を形成するように配置された二枚のシート材S21、S22から構成されている。そして、溝8内には、九十九折り状に屈曲した形状の抵抗線(導電材)9が配設されている。この抵抗線9及び溝8は、冷媒の流動方向に応じて生じる固定子80(コイルジャケットCJ)の温度勾配KR(図3参照)を打ち消す温度勾配KHの温度分布を発現するように、冷媒入口側である+X側のピッチが小さく、冷媒出口側である−X側のピッチが大きく設定されている。
炭素繊維は導電性を有しているが、これは繊維方向において電気抵抗が低いためであり、炭素繊維と直交する方向においては電気抵抗が高く、渦電流の経路方向には電気的にほぼ絶縁体と見なすことができる。また、炭素繊維間には絶縁体であるエポキシ樹脂が介在しており、炭素繊維同士が接触しても僅かな面積であるため、磁束線の軸線回りには電気が流れにくい状態となっている。そして、渦電流は、磁束線の軸線回りに生じるため、炭素繊維をこの磁束線の軸線回り以外の方向、本実施形態では直線状に配向することで、磁束線の軸線回りの電気抵抗が高くなり、固定子80と可動子90との相対移動により発生する渦電流を小さくすることができる。
そのため、第4実施形態では、上述した第1実施形態と同様の作用・効果が得られることに加えて、X軸リニアモータXLM1の駆動制御性を低下させる粘性抵抗を小さくすることができる。また、本実施形態では、炭素繊維を温度勾配が生じるX軸方向に沿って配向しているので、抵抗線9で生じた熱をX軸方向に伝達させやすくなる。そのため、抵抗線9間の隙間のように、抵抗線9が配置されていない領域も効率的に加熱することが可能になり、抵抗線9による加熱分布をより温度勾配KHに近づけることができ、コイルジャケットCJの温度分布の均一化に寄与できる。
(第5実施形態)
次に、本発明の第5実施形態について図9を参照して説明する。
本実施形態では、上記第4実施形態で示したコイルジャケットCJの壁部Hに、熱伝導性部及び断熱部が設けられている。
図9に示すように、本実施形態における壁部Hも複数のシート材S1〜S5を積層して成形されたものであるが、抵抗線9より外側の第1層目(最表層)のシート材S1は、熱伝導率が高い熱伝導性部とされ、抵抗線9より内側の第3層目のシート剤S3は、熱伝導率が低く、抵抗線9で生じた熱を断熱する断熱部とされている。
熱伝導性部S1としては、グラファイトシートや金属シート等を用いることができる。また、断熱部S3としては、ガラス、エポキシ樹脂、グラスウール、PPS(ポリフェニレンサルファイド)等を用いることができる。
上記の構成では、第5実施形態と同様の作用・効果が得られることに加えて、抵抗線9で生じた熱は、熱伝導性部S1によって効率的に伝わるため、壁部Hの温度をより均一に均すことができる。また、上記の構成では、抵抗線9で生じた熱を断熱して冷媒に伝わることを防止できるので、抵抗線9の熱による冷媒の温度上昇を防止することができる。
(第6実施形態)
続いて、本発明の第6実施形態について図10を参照して説明する。
上記第1〜第5実施形態では、一体的に構成されたヒータや抵抗線をコイルジャケットCJに配していたが、本実施の形態では、発熱分布が異なる複数のヒータを用意しておき、発現させたい温度分布や、加熱対象となる固定子の大きさに応じて適宜選択する。
例えば、図10に示すように、互いに異なるピッチ(密度)で、且つ独立して通電可能な抵抗線(導電材)9A〜9Cを用意しておき、コイルジャケットCJの大きさや冷媒の流動方向に応じて生じる温度勾配等に応じて抵抗線9A〜9Cを選択し、コイルジャケットCJに貼設する。このとき、加熱量を大きくしたい箇所には、ピッチが小さく電気抵抗の大きいもの(例えば抵抗線9A)を貼設し、加熱量を小さくしたい箇所にはピッチが大きく電気抵抗の小さいもの(例えば抵抗線9C)を貼設し、それぞれ個別に通電する。
この構成では、打ち消したい種々の温度勾配や大きさの異なる種々のリニアモータに容易に対応でき、汎用性を高めることができる。
なお、同じ発熱特性を有する抵抗線を複数貼設し、打ち消すべき温度勾配(温度分布)に応じた異なる通電量で各抵抗線に通電する構成も採用可能である。
(第7実施形態)
上記第1〜第6実施形態では、ヒータ4、4A〜4C、抵抗線9、9A〜9Cは、ヒータ制御部5によって、図3に示した温度勾配KHの発熱分布でコイルジャケットCJを加熱するようにオープン制御される構成としたが、本実施の形態ではコイルジャケットCJ(固定子80)の温度を検出し、この検出結果に基づいてコイルジャケットCJを加熱するクローズド制御する場合について図11を参照して説明する。
図11は、図2に示した第1実施形態の固定子80に対して温度センサを設けた図である。図11に示すように、本実施の形態では、コイルジャケットCJ表面の長さ方向中央部に温度センサ(温度検出装置)22が設けられている。温度センサ22による検出結果は、主制御装置(制御装置)20に出力される。主制御装置20は、出力されたコイルジャケットCJの表面温度に基づいてヒータ制御部5を制御する。
すなわち、コイルジャケットCJの表面温度が所定温度よりも低い場合、主制御装置20はヒータ制御部5を介してヒータ4への通電量を増加させ、逆にコイルジャケットCJの表面温度が所定温度よりも高い場合、主制御装置20はヒータ4への通電量を減少させる。このように、本実施の形態では、固定子80の温度分布を均一にすることが可能になることに加えて、固定子80の温度自体も高精度に制御することが可能である。
なお、上記実施の形態において、ヒータや抵抗線等の導電材を固定子80に貼設する場合は、これらの導電材を樹脂でフィルム状に成形した、いわゆるラミネートした状態で貼設することが好ましい。これにより、例えば九十九折り状に屈曲して脆弱なヒータや抵抗線を用いる場合でも、取り扱い性が向上する。
(露光装置)
続いて、上記のステージ装置50をウエハステージとして有する露光装置について説明する。
図12には、本実施形態の露光装置100の概略構成が示されている。
この露光装置100は、ステップ・アンド・スキャン方式の投影露光装置、即ちいわゆるスキャニング・ステッパである。この露光装置100は、照明系10、マスクとしてのレチクル(マスク)Rを保持するレチクルステージRST、投影ユニットPU、ウエハステージWST及び計測ステージMSTを有する上述のステージ装置50、及びこれらの制御系を備えている。ウエハステージWST上には、基板としてのウエハWが載置されている。
前記照明系10は、不図示のレチクルブラインドで規定されたレチクルR上のスリット状の照明領域をエネルギビームとしての照明光(露光光)ILによりほぼ均一な照度で照明する。ここで、照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。
前記レチクルステージRST上には、回路パターン等がそのパターン面(図12における下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージRSTは、例えばリニアモータを含むレチクルステージ駆動部11(図12では図示せず、図4参照)によって、照明系10の光軸(後述する投影光学系PLの光軸AXに一致)に垂直なXY平面内で微小駆動可能であるとともに、所定の走査方向(ここでは図12における紙面内、左右方向であるY軸方向とする)に指定された走査速度で駆動可能となっている。
レチクルステージRSTのステージ移動面内の位置(Z軸周りの回転を含む)は、レチクルレーザ干渉計(以下、レチクル干渉計と称する)116によって、移動鏡15(実際にはY軸方向に直交する反射面を有するY移動鏡とX軸方向に直交する反射面を有するX移動鏡とが設けられている)を介して、例えば0.5〜1nm程度の分解能で常時検出される。このレチクル干渉計116の計測値は、主制御装置20(図12では不図示、図4参照)に送られ、主制御装置20では、このレチクル干渉計116の計測値に基づいてレチクルステージRSTのX軸方向、Y軸方向及びθZ方向(Z軸周りの回転方向)の位置を算出するとともに、この算出結果に基づいてレチクルステージ駆動部11を制御することで、レチクルステージRSTの位置(及び速度)を制御する。
レチクルRの上方には、投影光学系PLを介してレチクルR上の一対のレチクルアライメントマークとこれらに対応する計測ステージMST上の一対の基準マーク(以下、第1基準マークと称する)とを同時に観察するための露光波長の光を用いたTTR(Through The Reticle)アライメント系からなる一対のレチクルアライメント検出系RAa、RAbがX軸方向に所定距離隔てて設けられている。これらのレチクルアライメント検出系RAa、RAbとしては、例えば特開平7−176468号公報(対応する米国特許第5,646,413号)などに開示されるものと同様の構成のものが用いられている。
前記投影ユニットPUは、鏡筒40と、該鏡筒40内に所定の位置関係で保持された複数の光学素子からなる投影光学系PLとを含んで構成されている。投影光学系PLとしては、例えばZ軸方向の共通の光軸AXを有する複数のレンズ(レンズエレメント)からなる屈折光学系が用いられている。
また、図示は省略されているが、投影光学系PLを構成する複数のレンズのうち、特定の複数のレンズは、主制御装置20からの指令に基づいて、結像特性補正コントローラ381(図4参照)によって制御され、投影光学系PLの光学特性(結像特性を含む)、例えば倍率、ディストーション、コマ収差、及び像面湾曲(像面傾斜を含む)などを調整できる構成となっている。
また、本実施形態の露光装置100では、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子としてのレンズ(以下、先玉ともいう)91の近傍には、液浸装置132を構成する液体供給ノズル51Aと、液体回収ノズル51Bとが設けられている。
前記液体供給ノズル51Aには、その一端が液体供給装置288(図12では不図示、図4参照)に接続された不図示の供給管の他端が接続されており、前記液体回収ノズル51Bには、ぞの一端が液体回収装置292(図12では不図示、図4参照)に接続された不図示の回収管の他端が接続されている。
上記の液体としては、ここではArFエキシマレーザ光(波長193nmの光)が透過する超純水(以下、特に必要な場合を除いて、単に「水」と記述する)を用いるものとする。超純水は、半導体製造工場等で容易に大量に入手できるとともに、ウエハ上のフォトレジストや光学レンズ等に対する悪影響がない利点がある。
水の屈折率nは、ほぼ1.44である。この水の中では、照明光ILの波長は、193nm×1/n=約134nmに短波長化される。
液体供給装置288は、主制御装置20からの指示に応じ、供給管に接続されたバルブを所定開度で開き、液体供給ノズル51Aを介して先玉91とウエハWとの間に水を供給する。また、このとき、液体回収装置292は、主制御装置20からの指示に応じ、回収管に接続されたバルブを所定開度で開き、液体回収ノズル51Bを介して先玉91とウエハWとの間から液体回収装置292(液体のタンク)の内部に水を回収する。このとき、主制御装置20は、先玉91とウエハWとの間に液体供給ノズル51Aから供給される水の量と、液体回収ノズル51Bを介して回収される水の量とが常に等しくなるように、液体供給装置288及び液体回収装置292に対して指令を与える。従って、先玉91とウエハWとの間に、一定量の水Lq(図12参照)が保持される。この場合、先玉91とウエハWとの間に保持された水Lqは、常に入れ替わることになる。
上記の説明から明らかなように、本実施形態の液浸装置132は、上記液体供給装置288、液体回収装置292、供給管、回収管、液体供給ノズル51A、及び液体回収ノズル51B等を含んで構成された局所液浸装置である。
なお、投影ユニットPU下方に計測ステージMSTが位置する場合にも、上記と同様に計測テーブルMTBと先玉91との間に水を満たすことが可能である。
ステージ装置50に設けられた前記計測ステージMSTは、ウエハステージWSTと同様に、図1に示されるように、ベース盤12上に配置された計測ステージ本体52と、該計測本体52上に不図示のZ・チルト駆動機構を介して搭載された計測テーブルMTBとを備えている。Z・チルト駆動機構は、計測ステージ本体52上で計測テーブルMTBを3点で支持する3つのアクチュエータ(例えば、ボイスコイルモータやEIコア)等を含んで構成され、各アクチュエータの駆動を調整することで、計測テーブルMTBをZ軸方向、θx方向、θy方向の3自由度方向に微小駆動する。
計測ステージ本体52は、断面矩形枠状でX軸方向に延びる中空部材によって構成されている。この計測ステージ本体52の下面には、ウエハステージ本体28に備えられている自重キャンセラ機構とほぼ同様の計測ステージ用の自重キャンセラ機構が備えられている。前記計測ステージ本体52の内部には、X軸方向の可動子としての永久磁石群を有する磁極ユニット54が設けられている。磁石ユニット54の内部空間には、X軸方向に延びるX軸用のXガイドバーXG2が挿入されている。そして、XガイドバーXG2には、X軸用の固定子81が設けられている。このX軸用の固定子81は、X軸方向に沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットによって構成されている。この場合、磁極ユニット54と電機子ユニットからなるX軸用の固定子81とによって、計測ステージMSTをX軸方向に駆動するムービングマグネット型のX軸リニアモータXLM2が構成されている。
固定子81の表面には、固定子80に貼設したヒータ4と同様に、当該固定子81の温度勾配を打ち消すための発熱分布を有するヒータ(発熱体)104が貼設されている。なお、固定子81に対するヒータ104の作用は、固定子80に対するヒータ4の作用と同等であるため、ここでは省略するが、X軸リニアモータXLM2の駆動に伴って生じた熱を回収(冷却)した際に、冷媒の流動方向に応じて固定子81に温度勾配が生じる場合でも、この温度勾配を打ち消す発熱分布を有するヒータ104により加熱することで、固定子81の温度分布を均一にすることが可能になる。そのため、本実施の形態では、固定子81の温度勾配に起因して周辺機器に熱変形が生じることを防止できる。
X軸用の固定子81の長手方向両側端部には、例えばY軸方向に沿って所定間隔で配置された複数の電機子コイルを内蔵する電機子ユニットからなる可動子84、85がそれぞれ固定されている。これらの可動子84、85のそれぞれは、上述したY軸用の固定子86、87にそれぞれ内側から挿入されている。すなわち、本実施形態では、電気ユニットからなる可動子84、85と磁極ユニットからなるY軸用の固定子86、87とによって、ムービングコイル型のY軸リニアモータYLM2が構成されている。
そして、計測ステージMSTは、X軸リニアモータXLM2により、X軸方向に駆動されるとともに、一対のY軸リニアモータYLM2によってX軸リニアモータXLM2と一体でY軸方向に駆動される。また、計測ステージMSTは、Y軸リニアモータYLM2が発生するY軸方向の駆動力を僅かに異ならせることにより、θz方向にも回転駆動される。従って、計測テーブルMTBを支持する3つのアクチュエータ、X軸リニアモータXLM2及びY軸リニアモータYLM2の駆動により、計測テーブルMTBは6自由度方向(X、Y、Z、θx、θy、θz)に非接触で微小駆動可能とされている。
計測テーブルMTBは、露光に関する各種計測を行うための計測器類をさらに備えている。これをさらに詳述すると、計測テーブルMTBの上面には、石英ガラス等のガラス材料からなるプレート101が設けられている。このプレート100の表面には、その全面に亘ってクロムが塗布され、所定位置に計測器用の領域や、特開平5−21314号公報(対応する米国特許5,243,195号)などに開示される複数の基準マークが形成された基準マーク領域FMが設けられている。
上記の計測器用の領域にはパターニングが施され、各種計測用開口パターンが形成されている。この計測用開口パターンとしては、例えば空間像計測用開口パターン(例えばスリット状開口パターン)、照度むら計測用ピンホール開口パターン、照度計測用開口パターン、及び波面収差計測用開口パターンなどが形成されている。
本実施の形態では、投影光学系PLと水とを介して露光光(照明光)ILによりウエハWを露光する液浸露光が行われるのに対応して、照明光ILを用いる計測に使用される上記の照度モニタ、照度むら計測器、空間像計測器、波面収差計測器などでは、投影光学系PL及び水を介して照明光ILを受光することになる。そのため、プレート101の表面には撥水コートが施されている。
計測テーブルMTB(プレート101)のY軸方向の一端(−Y側端)には、Y軸方向に直交する(X軸方向に延在する)反射面117Yが鏡面加工により形成されている。また、計測テーブルMTBのX軸方向の一端(+X側端)には、X軸方向に直交する(Y軸方向に延在する)反射面117Xが鏡面加工により形成されている。
反射面117Yには、図1に示されるように、干渉計システム118を構成するY軸干渉計16からの干渉計ビーム(測長ビーム)が投射され、干渉計16ではその反射光を受光することにより、反射面117Yの基準位置からの変位を検出する。
また、反射面117Xには、干渉系システム118を構成するX軸干渉計46からの干渉計ビームが投射され、干渉計46ではその反射光を受光することにより、反射面117Xの基準位置からの変位を検出する。
また、本実施の形態の露光装置100では、投影ユニットPUを保持する保持部材には、オフアクシス・アライメント系(以下、アライメント系と称する)ALGが設けられている。このアライメント系ALGとしては、例えばウエハ上のレジストを感光させないブロードバンドな検出光束を対象マークに照射し、その対象マークからの反射光により受光面に結像された対象マークの像と不図示の指標(アライメント系ALG内に設けられた指標板上の指標パターン)の像とを撮像素子(CCD等)を用いて撮像し、それらの撮像信号を出力する画像処理方式のFIA(Field Image Alignment)系のセンサが用いられている。アライメント系ALGからの撮像信号は、図4に示す主制御装置20に供給される。
本実施の形態の露光装置100では、図2では図示が省略されているが、照射系90a、受光系90b(図4参照)からなる、例えば特開平6−283403号公報(対応米国特許第5,448,332号)等に開示されるものと同様の斜入射方式の多点焦点位置検出系が設けられている。
図4には、露光装置100の制御系の主要な構成が示されている。
この制御系は、装置全体を統括的に制御するマイクロコンピュータ(またはワークステーション)からなる主制御装置20を中心として構成されている。また、主制御装置20には、メモリMEM、CRTディスプレイ(または液晶ディスプレイ)等のディスプレイDISが接続されている。
次に、ウエハステージWSTと計測ステージMSTとを用いた並行処理動作について、簡単に説明する。
この並行処理動作中、主制御装置20によって、液浸装置132の液体供給装置288及び液体回収装置292の各バルブの開閉制御が前述したようにして行われ、投影光学系PLの先玉91の直下には常時水が満たされている。
ウエハステージWST上のウエハWに対するステップ・アンド・スキャン方式の露光が行われている際には、計測ステージMSTはウエハステージWSTと衝突(接触)しない所定の待機位置にて待機している。
上記の露光動作は、主制御装置20により、事前に行われた例えばエンハンスト・グローバル・アライメント(EGA)などのウエハアライメントの結果及び最新のアライメント系ALGのベースライン計測結果等に基づいて、ウエハW上の各ショット領域の露光のための走査開始位置(加速開始位置)へウエハステージWSTが移動されるショット間移動動作と、各ショット領域に対するレチクルRに形成されたパターンを走査露光方式で転写する走査露光動作とを繰り返すことにより行われる。なお、上記の露光動作は、先玉91とウエハWとの間に水を保持した状態で行われる。
そして、ウエハステージWST側で、ウエハWに対する露光が終了した段階で、主制御装置20は、Y軸リニアモータYLM2及びX軸リニアモータXLM2を制御して、計測ステージMST(計測テーブルMTB)を、計測テーブルMTBの+Y側面とウエハテーブルWTBの−Y側面とが接触する位置に移動させる。なお、計測テーブルMTBとウエハテーブルWTBとがY軸方向に、例えば300μm程度(水が表面張力により漏出しない隙間)離間させて非接触状態を維持してもよい。
次いで、主制御装置20は、ウエハテーブルWTBと計測テーブルMTBとのY軸方向の位置関係を保持しつつ、両ステージWST、MSTを+Y方向に駆動し、投影ユニットPUの先玉91とウエハWとの間に保持されていた水を、ウエハステージWST、計測ステージMSTの+Y側への移動に伴って、ウエハW→ウエハホルダ70→計測テーブルMTB上を順次移動させる。これにより、計測ステージMSTと先玉91との間に水が保持された状態となる。
この後、主制御装置20は、リニアモータXLM1、YLM1の駆動を制御して、所定のウエハ交換位置にウエハステージWSTを移動させるとともに、ウエハ交換を行い、これと並行して、計測ステージMSTを用いた所定の計測(例えばレチクルステージRST上のレチクル交換後に行われるアライメント系ALGのベースライン計測)を必要に応じて実行する。
その後、主制御装置20では、先ほどとは逆にウエハステージWSTと計測ステージMSTとのY軸方向の位置関係を保ちつつ、両ステージWST、MSTを−Y方向に同時に駆動して、ウエハステージWST(ウエハ)を投影光学系PLの下方に移動させた後に、計測ステージMSTを所定の位置に退避させる。
そして、主制御装置20では、上記と同様に新たなウエハに対してステップ・アンド・スキャン方式の露光動作を実行し、ウエハ上の複数のショット領域にレチクルパターンを順次転写させる。
このように、本実施の形態では、X軸リニアモータXLM1及びXLM2の駆動に伴って生じた熱を回収(冷却)した際に、固定子80、81に温度勾配が生じる場合でも、この温度勾配を打ち消す発熱分布で固定子80、81加熱するので、固定子80、81の温度分布を均一にすることが可能になる。そのため、本実施の形態では、固定子80、81の温度勾配に起因して周辺機器に熱変形が生じることを防止できる。
なお、上記実施の形態における計測ステージMSTでは、ウエハステージWSTと同様の構成を有するヒータ104を貼設する構成としたが、この他に、第2〜第7実施形態で示した加熱装置が適用される構成であってもよい。
また、上記実施形態では、ステージ装置50がウエハステージWST及び計測ステージMSTの両方を備える構成であったが、ウエハステージWSTのみが設けられる構成としてもよい。
さらに、上記実施の形態では、X軸リニアモータXLM1、XLM2がムービングマグネット型の構成として説明したが、ムービングコイル型であっても適用可能である。この場合、電機子ユニットを有する可動子にヒータや抵抗線を設けて加熱すればよい。
また、上記実施形態では、X軸リニアモータXLM1、XLM2に本発明のリニアモータを適用するものとして説明したが、これに限定されるものではなく、Y軸リニアモータYLM1、YLM2に適用することも可能である。
また、本発明は、ウエハステージが複数設けられるツインステージ型の露光装置にも適用できる。ツインステージ型の露光装置の構造及び露光動作は、例えば特開平10−163099号公報及び特開平10−214783号公報(対応米国特許6,341,007号、6,400,441号、6,549,269号及び6,590,634号)、特表2000−505958号(対応米国特許5,969,441号)あるいは米国特許6,208,407号に開示されている。さらに、本発明を本願出願人が先に出願した特願2004−168481号のウエハステージに適用してもよい。
さらに、上記実施形態では、ウエハW側のステージ装置50に本発明を適用する構成としたが、レチクルR側のレチクルステージRSTにも適用可能である。
なお、上記各実施形態で移動ステージに保持される基板としては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスクまたはレチクルの原版(合成石英、シリコンウエハ)等が適用される。
露光装置100としては、液浸法を用いない走査型露光装置やレチクルRとウエハWとを静止した状態でレチクルRのパターンを一括露光し、ウエハWを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。また、本発明はウエハW上で少なくとも2つのパターンを部分的に重ねて転写するステップ・アンド・スティッチ方式の露光装置にも適用できる。
露光装置100の種類としては、ウエハWに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。更に、レチクルRを用いることなくスポット光を投影光学系PLにより投影してウエハWにパターンを露光する露光装置にも適用できる。
以上のように、本願実施形態の露光装置100は、本願特許請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図13に示すように、マイクロデバイスの機能・性能設計を行うステップ201、この設計ステップに基づいたマスク(レチクル)を製作するステップ202、デバイスの基材である基板を製造するステップ203、前述した実施形態の露光装置100によりマスクのパターンを基板に露光する露光処理ステップ204、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)205、検査ステップ206等を経て製造される。
本発明の実施の形態を示す図であって、露光装置を構成するステージ装置の斜視図である。 (a)は固定子の平面図、(b)は部分断面図である。 冷媒による温度勾配及びヒータによる温度勾配の関係を示す図である。 露光装置の制御系の主要な構成を示すブロック図である。 ヒータの第2実施形態を示す平面図である。 ヒータの第2実施形態の変形例を示す平面図である。 ヒータの第3実施形態を示す平面図である。 本発明の第4実施形態を示す図であって、ヒータがコイルジャケットに埋設される(A)は部分平面断面図、(B)は部分正面断面図である。 本発明の第5実施形態を示す図である。 本発明の第6実施形態を示す図である。 本発明の第7実施形態を示す図である。 本発明の実施の形態を示す図であって、露光装置を示す概略図である。 半導体デバイスの製造工程の一例を示すフローチャート図である。
符号の説明
H…壁部、 R…レチクル(マスク)、 S1…シート材(熱伝導性部)、 S3…シート材(断熱部)、 XLM1、XLM2…X軸リニアモータ(リニアモータ)、 W…基板、 2…冷却装置、 3…加熱装置、 4、4A〜4C、104…ヒータ(発熱体)、 6…並行部、 7…懸架部、 9、9A〜9C…抵抗線(導電材)、 20…主制御装置(制御装置)、 22…温度センサ(温度検出装置)、 50…ステージ装置、 80、81…固定子、 90、54…磁石ユニット(可動子)、 100…露光装置

Claims (19)

  1. 固定子と可動子とを有するリニアモータであって、
    前記リニアモータの温度分布と前記リニアモータが発生する推力との少なくとも一方に基づいて前記リニアモータを加熱する加熱装置を備えたことを特徴とするリニアモータ。
  2. 請求項1記載のリニアモータにおいて、
    前記固定子と前記可動子とのいずれか一方はコイルを有しており、
    前記加熱装置は、前記コイルを有した一方を加熱することを特徴とするリニアモータ。
  3. 請求項2記載のリニアモータにおいて、
    前記コイルを有した一方を冷却する冷却装置を備えたことを特徴とするリニアモータ。
  4. 請求項3記載のリニアモータにおいて、
    前記加熱装置は、前記冷却装置の冷却により前記コイルを有した一方の温度分布を打ち消すように、前記コイルを有した一方を加熱することを特徴とするリニアモータ。
  5. 請求項1から4のいずれか一項に記載のリニアモータにおいて、
    前記コイルを有した一方には温度検出装置が設けられ、
    前記温度検出装置の検出結果に基づいて、前記加熱装置を制御する制御装置が設けられることを特徴とするリニアモータ。
  6. 請求項1から5のいずれかに記載のリニアモータにおいて、
    前記加熱装置は、フィルム状に成形されて前記コイルを有した一方に貼設された発熱体を有することを特徴とするリニアモータ。
  7. 請求項1から5のいずれかに記載のリニアモータにおいて、
    前記加熱装置は、前記コイルを有した一方の壁部に埋設された発熱体を有することを特徴とするリニアモータ。
  8. 請求項7記載のリニアモータにおいて、
    前記壁部は、繊維強化プラスチックで形成されていることを特徴とするリニアモータ。
  9. 請求項8記載のリニアモータにおいて、
    前記繊維は、前記温度分布に基づいて配向されることを特徴とするリニアモータ。
  10. 請求項7から9のいずれかに記載のリニアモータにおいて、
    前記壁部の前記発熱体より外側に、該壁部の温度分布を均す熱伝導性部が設けられていることを特徴とするリニアモータ。
  11. 請求項7から10のいずれかに記載のリニアモータにおいて、
    前記壁部の前記発熱体より内側に、前記発熱体で生じた熱を断熱する断熱部が設けられていることを特徴とするリニアモータ。
  12. 請求項6から11のいずれかに記載のリニアモータにおいて、
    前記発熱体は、前記コイルを有した一方の温度分布に応じたピッチで配列された導電材を有することを特徴とするリニアモータ。
  13. 請求項6から11のいずれかに記載のリニアモータにおいて、
    前記発熱体は、前記コイルを有した一方の温度分布に応じた抵抗を有する導電材を備えることを特徴とするリニアモータ。
  14. 請求項12または13記載のリニアモータにおいて、
    前記発熱体は、前記可動子の駆動方向に沿って九十九折り状に屈曲した形状であることを特徴とするリニアモータ。
  15. 請求項12または13記載のリニアモータにおいて、
    前記発熱体は、前記可動子の駆動方向に並行して延びる一対の並行部と、該一対の並行部間に懸架された懸架部とを有する梯子形状に形成されることを特徴とするリニアモータ。
  16. 請求項6から11のいずれかに記載のリニアモータにおいて、
    前記発熱体は、互いに異なる密度で、且つ独立して通電可能な複数の導電材が前記コイルを有した一方の温度分布に応じて配置されることを特徴とするリニアモータ。
  17. 請求項6から11のいずれかに記載のリニアモータにおいて、
    前記発熱体は、独立して通電可能で、且つ前記コイルを有した一方の温度分布に応じた通電量で通電される複数の導電材を有することを特徴とするリニアモータ。
  18. 請求項1から17のいずれか一項に記載のリニアモータが駆動装置として用いられることを特徴とするステージ装置。
  19. ステージ装置を用いて基板にパターンを露光する露光装置において、
    前記ステージ装置として、請求項18に記載のステージ装置を用いたことを特徴とする露光装置。
JP2004258180A 2004-09-06 2004-09-06 リニアモータ及びステージ装置並びに露光装置 Pending JP2006074961A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258180A JP2006074961A (ja) 2004-09-06 2004-09-06 リニアモータ及びステージ装置並びに露光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258180A JP2006074961A (ja) 2004-09-06 2004-09-06 リニアモータ及びステージ装置並びに露光装置

Publications (1)

Publication Number Publication Date
JP2006074961A true JP2006074961A (ja) 2006-03-16

Family

ID=36154949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258180A Pending JP2006074961A (ja) 2004-09-06 2004-09-06 リニアモータ及びステージ装置並びに露光装置

Country Status (1)

Country Link
JP (1) JP2006074961A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010028116A (ja) * 2008-07-22 2010-02-04 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
JP2015173536A (ja) * 2014-03-11 2015-10-01 住友重機械工業株式会社 リニアモータ用電機子
WO2016093185A1 (ja) * 2014-12-10 2016-06-16 株式会社 日立ハイテクノロジーズ ステージ装置およびそれを用いた荷電粒子線装置
WO2019141450A1 (en) * 2018-01-19 2019-07-25 Asml Netherlands B.V. Lithographic apparatus, operating method and device manufacturing method
CN113161274A (zh) * 2021-04-07 2021-07-23 Fa自动化系统有限公司 无尘室高速线性传输装置及其控制方法
US11158484B2 (en) 2017-08-31 2021-10-26 Asml Netherlands B.V. Electron beam inspection tool and method of controlling heat load

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110364A (ja) * 1982-12-16 1984-06-26 Amada Co Ltd リニア誘導モ−タの熱歪除去方法及びその装置
JP2002305895A (ja) * 2001-03-30 2002-10-18 Shinko Electric Co Ltd 移動体システム
JP2003133211A (ja) * 2001-10-26 2003-05-09 Canon Inc デバイス製造装置およびその温調制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110364A (ja) * 1982-12-16 1984-06-26 Amada Co Ltd リニア誘導モ−タの熱歪除去方法及びその装置
JP2002305895A (ja) * 2001-03-30 2002-10-18 Shinko Electric Co Ltd 移動体システム
JP2003133211A (ja) * 2001-10-26 2003-05-09 Canon Inc デバイス製造装置およびその温調制御方法

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
JP2010177706A (ja) * 2004-12-20 2010-08-12 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
JP2010187012A (ja) * 2004-12-20 2010-08-26 Asml Netherlands Bv リソグラフィ装置及びデバイス製造方法
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2015039038A (ja) * 2004-12-20 2015-02-26 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US8854598B2 (en) 2008-07-22 2014-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2010028116A (ja) * 2008-07-22 2010-02-04 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法
TWI402632B (zh) * 2008-07-22 2013-07-21 Asml Netherlands Bv 微影裝置及元件製造方法
JP2015173536A (ja) * 2014-03-11 2015-10-01 住友重機械工業株式会社 リニアモータ用電機子
WO2016093185A1 (ja) * 2014-12-10 2016-06-16 株式会社 日立ハイテクノロジーズ ステージ装置およびそれを用いた荷電粒子線装置
US11158484B2 (en) 2017-08-31 2021-10-26 Asml Netherlands B.V. Electron beam inspection tool and method of controlling heat load
US11243477B2 (en) 2018-01-19 2022-02-08 Asml Netherlands B.V. Lithographic apparatus, an operating method and device manufacturing method
WO2019141450A1 (en) * 2018-01-19 2019-07-25 Asml Netherlands B.V. Lithographic apparatus, operating method and device manufacturing method
CN113161274A (zh) * 2021-04-07 2021-07-23 Fa自动化系统有限公司 无尘室高速线性传输装置及其控制方法

Similar Documents

Publication Publication Date Title
US20200393768A1 (en) Lithographic apparatus and device manufacturing method
KR101945638B1 (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법
KR101619280B1 (ko) 투영 시스템 및 리소그래피 장치
US20130148094A1 (en) Stage unit, exposure apparatus, and exposure method
EP2365390A2 (en) Lithographic apparatus and method
JP5348630B2 (ja) 露光装置及びデバイス製造方法
JP4613910B2 (ja) 露光装置及びデバイス製造方法
US8693006B2 (en) Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
JP4858744B2 (ja) 露光装置
JP4765937B2 (ja) リニアモータ、ステージ装置、及び露光装置
JP2006287014A (ja) 位置決め装置およびリニアモータ
KR20010082053A (ko) 온도 제어된 열 차폐부를 구비한 전사투영장치
KR20100028562A (ko) 노광 방법 및 장치, 그리고 디바이스의 제조 방법
US20070188732A1 (en) Stage apparatus and exposure apparatus
KR20120091160A (ko) 노광 장치, 노광 방법, 및 디바이스 제조 방법
JPWO2007007746A1 (ja) 露光装置及びデバイス製造方法
JP2006074961A (ja) リニアモータ及びステージ装置並びに露光装置
KR20120031075A (ko) 노광 장치 및 디바이스 제조 방법
JP2012531031A (ja) 露光装置及びデバイス製造方法
JP2006230127A (ja) リニアモータ及びステージ装置並びに露光装置
JP4432139B2 (ja) ステージ装置及び露光装置
JP2007019225A (ja) 位置計測装置の反射部材構造及びステージ装置並びに露光装置
JP2009027006A (ja) 断熱構造、断熱装置、ヒートシンク、駆動装置、ステージ装置、露光装置及びデバイスの製造方法。
JP2006149100A (ja) リニアモータ及びステージ装置並びに露光装置
JP2010161116A (ja) 位置決め装置、それを用いた露光装置及びデバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005