JP2006070116A - Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide - Google Patents

Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide Download PDF

Info

Publication number
JP2006070116A
JP2006070116A JP2004253606A JP2004253606A JP2006070116A JP 2006070116 A JP2006070116 A JP 2006070116A JP 2004253606 A JP2004253606 A JP 2004253606A JP 2004253606 A JP2004253606 A JP 2004253606A JP 2006070116 A JP2006070116 A JP 2006070116A
Authority
JP
Japan
Prior art keywords
polyimide
group
sulfonic acid
sulfonated
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004253606A
Other languages
Japanese (ja)
Inventor
Kenichi Okamoto
健一 岡本
Hidetoshi Kita
英敏 喜多
Kazuhiro Tanaka
一宏 田中
Tsubame In
燕 尹
Zhaoxia Hu
朝霞 胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2004253606A priority Critical patent/JP2006070116A/en
Publication of JP2006070116A publication Critical patent/JP2006070116A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide which is a new bonded-sulfo-containing polyimide suitable for, e.g., solid electrolyte substances, especially cation exchangers, electrolysis diaphragms, and fuel cell electrolyte membranes which undergo less deterioration in mechanical strength and ion exchange capacity than those made from known polyimides. <P>SOLUTION: The polyimide has no sulfo groups in the main chain and has sulfo groups in side chains and is prepared by using as a constituent diamine compound monomer for the polyimide a compound which is a diamino aromatic carbonyl compound and has a directly or indirectly sulfo-substituted aromatic ring bonded through the carbonyl group. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、スルホン化芳香族ポリイミドにかかわる。また該ポリイミドよりなる電解質膜である。   The present invention relates to sulfonated aromatic polyimides. The electrolyte membrane is made of the polyimide.

ポリイミドは、一般の成形用樹脂としてフィルム、シート、合成繊維、成形品、中空糸等の一般材料、或いは電子材料分野で用いられており、更に種々の官能基を持つものは気体分離膜分野や医療器具材料分野などで利用されている。   Polyimide is used as a general molding resin in general materials such as films, sheets, synthetic fibers, molded products, hollow fibers, and electronic materials, and those having various functional groups are also used in gas separation membrane fields. It is used in the field of medical device materials.

なかでもスルホン酸基やリン酸基のようなイオン交換基を有するポリイミドは親水性が大きく、良好なイオン交換膜となり燃料電池用その他の電解質膜などとして用いられている。   Among them, a polyimide having an ion exchange group such as a sulfonic acid group or a phosphoric acid group has a large hydrophilicity and becomes a good ion exchange membrane, and is used as another electrolyte membrane for a fuel cell.

このようなポリイミドは、一般にジアミンとピロメリット酸無水物のようなテトラカルボン酸の二無水物との重縮合により得られる。すなわちポリイミドは、ジアミンユニットとテトラカルボン酸二無水物ユニットとが交互に連なった鎖状高分子物質である。   Such a polyimide is generally obtained by polycondensation of a diamine and a tetracarboxylic dianhydride such as pyromellitic anhydride. That is, polyimide is a chain polymer material in which diamine units and tetracarboxylic dianhydride units are alternately connected.

その場合、ジアミンとしては芳香核にイオン交換基その他の官能基を導入し得るため、一般に芳香族ジアミンが用いられる。   In that case, an aromatic diamine is generally used as the diamine because an ion exchange group or other functional group can be introduced into the aromatic nucleus.

例えば、スルホアルコキシ基を有する芳香族ジアミンを用いる例(特許文献1)、次記化学式(18)〜(20)で示されるジアミンの例(特許文献2)   For example, an example using an aromatic diamine having a sulfoalkoxy group (Patent Document 1), an example of a diamine represented by the following chemical formulas (18) to (20) (Patent Document 2)

Figure 2006070116
Figure 2006070116

Figure 2006070116
(R1〜R8は少なくとも一つがスルホン酸基であり、他にアルキル基、D1は‐O‐、‐SO2‐、‐C(CF3)2‐、アルキレン基)
及び化学式(22)で示されるジアミン
Figure 2006070116
(At least one of R1 to R8 is a sulfonic acid group, and in addition, an alkyl group, D1 is —O—, —SO2—, —C (CF3) 2-, an alkylene group)
And a diamine represented by the chemical formula (22)

Figure 2006070116
(D2はO、S、CH2、C(CF3)2、Arは一つ以上のスルホン酸基を有する2価の芳香族炭化水素残基、R4〜R7は水素原子、アルキル基)
がそれぞれ記載されている。
Figure 2006070116
(D2 is O, S, CH2, C (CF3) 2, Ar is a divalent aromatic hydrocarbon residue having one or more sulfonic acid groups, R4 to R7 are hydrogen atoms, alkyl groups)
Are described respectively.

これらの芳香族ジアミンを一方の成分とするポリイミドは、前記のとおり、種々の特性を有するが、例えば電解用や燃料電池用電解質膜のように、酸性の溶液中で用いる場合、加水分解を受けやすい傾向にある。特に長期間電解用隔膜等に使用すると、イミド環の加水分解が生じ、分子量が低下するため、膜は機械的特性を失うことがある。また、イオン交換基の脱離を生じ、使用中、経時的にイオン交換容量の低下を来たし、性能が低下するという現象が見られる。これらの現象は、特に高温時に顕著である。   Polyimides containing one of these aromatic diamines as described above have various properties as described above. However, when used in an acidic solution such as an electrolyte membrane or an electrolyte membrane for a fuel cell, the polyimide is subject to hydrolysis. It tends to be easy. In particular, when used for a diaphragm for electrolysis for a long period of time, hydrolysis of the imide ring occurs and the molecular weight decreases, so that the membrane may lose mechanical properties. In addition, there is a phenomenon in which ion exchange groups are eliminated, the ion exchange capacity decreases with time during use, and the performance decreases. These phenomena are particularly noticeable at high temperatures.

かかる現象が何故生ずるか、種々検討した結果、その原因の一つに主鎖を構成する芳香族環に直接スルホン酸基が結合していることによるものであることを見出した。   As a result of various studies as to why such a phenomenon occurs, it has been found that one of the causes is that the sulfonic acid group is directly bonded to the aromatic ring constituting the main chain.

他方、側鎖にスルホン酸基を有するものとして、主鎖の芳香族環にエーテル結合を介してスルホン化芳香族基を結合したポリイミド(特許文献4)や下記一般式(23)   On the other hand, as a compound having a sulfonic acid group in the side chain, a polyimide having a sulfonated aromatic group bonded to an aromatic ring of the main chain via an ether bond (Patent Document 4) or the following general formula (23)

Figure 2006070116
(Rは、アルキレン、ハロゲン化アルキレン、アリーレン及びハロゲン化アリーレン、又はエーテル結合を含む有機基)
に示される側鎖にスルホン酸基を有するポリイミドが示されている(特許文献5)。
Figure 2006070116
(R is alkylene, halogenated alkylene, arylene and halogenated arylene, or an organic group containing an ether bond)
The polyimide which has a sulfonic acid group in the side chain shown by this is shown (patent document 5).

これらポリイミド樹脂よりなる陽イオン交換樹脂膜の中には、80〜100℃程度までの使用条件下では高分子電解質膜として有効に利用可能のものもあるが、更に高温、即ち80〜100℃を超える温度下ではやはり経時的劣化を生じることが分かった。   Some of these cation exchange resin membranes made of polyimide resin can be effectively used as polymer electrolyte membranes under operating conditions up to about 80-100 ° C, but at higher temperatures, ie 80-100 ° C. It has been found that degradation over time occurs at temperatures exceeding that.

そこで、80℃以上の温度下で用いても、長期耐久性と機械的強度を有し、特に低温から高温まで幅広い温度領域で使用可能で、しかも低湿度下でのプロトン伝導性低下率の少ない燃料電池用の電解質膜等として使用に耐え得る高分子電解質膜の開発が望まれている。   Therefore, even when used at a temperature of 80 ° C or higher, it has long-term durability and mechanical strength, can be used in a wide temperature range from low temperature to high temperature, and has a low rate of decrease in proton conductivity at low humidity Development of a polymer electrolyte membrane that can withstand use as an electrolyte membrane for a fuel cell or the like is desired.

本発明者等は敍上の課題を解決するため、鋭意研究を重ねた結果、特定のジアミン化合物を一方のモノマーとして用いたポリイミドは、極めて耐熱性の高いすなわち、80〜120℃の温度条件下でも高い機械的強度を保ち、しかも経時的劣化の少ない陽イオン交換樹脂、特に燃料電池用等に好適に使用し得る電解質膜に適するポリイミド樹脂を得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that polyimides using a specific diamine compound as one monomer have extremely high heat resistance, that is, under a temperature condition of 80 to 120 ° C. However, it has been found that a cation exchange resin that maintains high mechanical strength and has little deterioration over time, in particular, a polyimide resin suitable for an electrolyte membrane that can be suitably used for fuel cells, etc. can be obtained, and the present invention is completed. It came.

すなわち、本発明はスルホン酸基を側鎖に有するポリイミド関する。
特開2004−155998号公報 特開平8−33451号公報 特開2003−64181号公報 特開2004−35891号公報 特開2004−107484号公報
That is, this invention relates to the polyimide which has a sulfonic acid group in a side chain.
JP 2004-155998 A JP-A-8-33451 JP 2003-64181 A JP 2004-35891 A JP 2004-107484 A

本発明の目的は、上記技術背景に鑑み、高い機械的強度を有し、且つ、耐熱性、耐久性のあるポリイミド系イオン交換体、すなわち側鎖にスルホン酸基を有する陽イオン交換樹脂を得る特殊なジアミノ化合物を用いたポリイミドを提供するにある。   In view of the above technical background, an object of the present invention is to obtain a polyimide ion exchanger having high mechanical strength and heat resistance and durability, that is, a cation exchange resin having a sulfonic acid group in a side chain. It is in providing the polyimide using a special diamino compound.

本発明は、下記一般式(1)で示される構造単位の繰り返しを有するスルホン化芳香族ポリイミドである。 The present invention is a sulfonated aromatic polyimide having a repeating structural unit represented by the following general formula (1).

Figure 2006070116
(但し、Ar1は少なくとも1つ以上の芳香環を有する4価の基であり、Ar2は3価のベンゼン環又は3価のナフタレン環であり、Xは下記一般式で示される少なくとも一方の基であり、
Figure 2006070116
(However, Ar1 is a tetravalent group having at least one aromatic ring, Ar2 is a trivalent benzene ring or a trivalent naphthalene ring, and X is at least one group represented by the following general formula. Yes,

Figure 2006070116
Yは、水素原子、ハロゲン原子、スルホン酸基、又は下記式(3)〜(16)に示されるいずれか1つの基であり、pは0又は1(但し、Yが水素原子又はハロゲン原子のときは1)の整数である。)
Figure 2006070116
Y is a hydrogen atom, a halogen atom, a sulfonic acid group, or any one group represented by the following formulas (3) to (16), and p is 0 or 1 (provided that Y is a hydrogen atom or a halogen atom) Sometimes it is an integer of 1). )

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
(但し、(3)〜(16)におけるnは1〜2の整数)
Figure 2006070116
(However, n in (3) to (16) is an integer of 1 to 2)

本発明のスルホン化芳香族ポリイミドの特徴の一つは、ポリイミドを構成する分子中に、上記式(1)で示される繰り返し単位のうち(1‐a)で表されるジアミンユニット   One of the features of the sulfonated aromatic polyimide of the present invention is that the diamine unit represented by (1-a) among the repeating units represented by the above formula (1) in the molecule constituting the polyimide.

Figure 2006070116
が存在することにある。かかるジアミンユニットは、そこに存在するスルホン酸基の全ポリイミド重量に対する割合が大きいほど、得られるポリイミド樹脂の単位重量当りの陽イオン交換容量は増大する。しかし、スルホン酸基は、きわめて親水性であり、一般にスルホン酸基の存在量が多くなると樹脂の吸水率が高くなり、膨潤し、変形し、極端な場合には水溶性となる。
Figure 2006070116
Is that there exists. In such a diamine unit, the cation exchange capacity per unit weight of the resulting polyimide resin increases as the ratio of the sulfonic acid groups present therein to the total polyimide weight increases. However, sulfonic acid groups are extremely hydrophilic. In general, when the amount of sulfonic acid groups present increases, the water absorption of the resin increases, swells and deforms, and in extreme cases, becomes water-soluble.

このため、本発明においては、スルホン酸基を含むジアミンユニットの存在量を制御することができる。   For this reason, in this invention, the abundance of the diamine unit containing a sulfonic acid group is controllable.

すなわち、本発明にあっては、前記ジアミンユニット(1‐a)のうち90モル%までを他の芳香環を有し且つ、スルホン酸基を有しない基(以下、単に共縮合単位ともいい、該単位を構成するための単量体を共縮合モノマーともいう)、特にジアミンよりなる基(以下単に2価という)で置換することができる。該置換は好ましくは10〜90モル%、更には30〜70モル%とするべきである。また、スルホン酸基を有しないトリアミン(以下3価の共縮合単位という)を2価の共縮合単位と共に、または単独に共縮合モノマーとして用いることができる。3価の共縮合単位を有するポリイミドは、分岐ネットワーク状の架橋構造を形成するので、その置換量は25%までが好適である。   That is, in the present invention, up to 90 mol% of the diamine unit (1-a) has other aromatic rings and does not have a sulfonic acid group (hereinafter also referred to simply as a co-condensation unit, The monomer constituting the unit can also be substituted with a group consisting of a diamine (hereinafter simply referred to as divalent), particularly a co-condensation monomer. The substitution should preferably be 10-90 mol%, more preferably 30-70 mol%. Further, a triamine having no sulfonic acid group (hereinafter referred to as a trivalent cocondensation unit) can be used together with a divalent cocondensation unit or independently as a cocondensation monomer. Since the polyimide having a trivalent co-condensation unit forms a branched network-like crosslinked structure, the substitution amount is preferably up to 25%.

本発明はポリイミド分子中、側鎖だけにスルホン酸基を有するものであり、優れたイオン交換体である。また本発明のポリイミドのうち、特に直鎖状重縮合体及び架橋度の少ない重縮合体は、加工性に優れ、有機溶媒、例えばジメチルスルホキシド、N‐メチルピロリドン等に可溶であるため膜状その他の形状に成形することができる。   The present invention has a sulfonic acid group only in the side chain in the polyimide molecule, and is an excellent ion exchanger. Of the polyimides of the present invention, linear polycondensates and polycondensates with a low degree of crosslinking are excellent in processability and are soluble in organic solvents such as dimethyl sulfoxide, N-methylpyrrolidone, etc. It can be formed into other shapes.

また、架橋度を高くするにつれて、溶媒に対する溶解性は減少し、ゲル化する傾向となる。この場合にはキャスト重縮合等の手段により成形を行うのが好ましい。   Further, as the degree of crosslinking is increased, the solubility in a solvent decreases and the gel tends to gel. In this case, it is preferable to perform molding by means such as cast polycondensation.

いずれの場合にあっても、本発明のポリイミドは、成形性を有する陽イオン交換体として、高温例えば80〜120℃下での耐久性を有し、機械的強度に優れ、高いプロトン伝導性、特に低湿度下での高いプロトン伝導性を有し、更に水素、酸素、メタン等のガスと、メタノール、エタノール等の液体に対して高いバリヤー性を併せ持つので、固体電解質膜、特に燃料電池用電解質膜として優れた効果が期待し得る。   In any case, the polyimide of the present invention has durability at a high temperature, for example, 80 to 120 ° C. as a cation exchanger having moldability, excellent mechanical strength, high proton conductivity, It has high proton conductivity especially under low humidity, and also has high barrier properties against gases such as hydrogen, oxygen and methane, and liquids such as methanol and ethanol, so that it is a solid electrolyte membrane, especially an electrolyte for fuel cells. An excellent effect as a film can be expected.

本発明の最大の特徴は、ポリイミド中に前記一般式(1)で示される繰り返し単位を有することにある。該単位は、更に次のジアミンユニット式(1‐a)及びテトラカルボン酸ユニット式(1‐b)の各ユニット   The greatest feature of the present invention is that the polyimide has a repeating unit represented by the general formula (1). The unit further includes each unit of the following diamine unit formula (1-a) and tetracarboxylic acid unit formula (1-b).

Figure 2006070116
よりなり、それぞれ下記一般式(24)で示されるジアミン化合物及び例えば下記一般式(25)で示される少なくとも一つの芳香環を有し、4個のカルボン酸基よりなる二無水物(以下、カルボン酸無水物ともいう)を各モノマーとした重縮合体である。
Figure 2006070116
A diamine compound represented by the following general formula (24) and a dianhydride (hereinafter referred to as a carboxylic acid group) having at least one aromatic ring represented by the following general formula (25) and having four carboxylic acid groups. (Also referred to as acid anhydride).

Figure 2006070116
Figure 2006070116

本発明にあっては、特に式(1‐a)の構造を有すること、すなわち一般式(24)で表されるモノマーを用いることにより、前記優れた効果を有するポリイミドが得られるのである。   In the present invention, a polyimide having the above-mentioned excellent effect can be obtained by having the structure of formula (1-a), that is, by using the monomer represented by formula (24).

ここで、式(24)で示されるモノマーは、次の一般式(26)で表されるジアミノ芳香族カルボニル化合物であることが好ましい。   Here, the monomer represented by the formula (24) is preferably a diamino aromatic carbonyl compound represented by the following general formula (26).

Figure 2006070116
Figure 2006070116

但し、Xはスルホン酸基を有し、且つ、更に置換基を有することある芳香族炭化水素残基である。   However, X is an aromatic hydrocarbon residue which has a sulfonic acid group and may further have a substituent.

特に好適な芳香族炭化水素残基としては次の式(2)で示す構造のものが推奨される。   As a particularly preferred aromatic hydrocarbon residue, one having a structure represented by the following formula (2) is recommended.

Figure 2006070116
Figure 2006070116

ここで、pは0又は1(但し、Yが水素原子又はハロゲン原子のときは1)であり、Yは水素原子、ハロゲン、スルホン酸基などの基、及び次の式(3)〜(16)などに示す官能基などが好適である。   Here, p is 0 or 1 (where Y is 1 when hydrogen is a hydrogen atom or a halogen atom), Y is a group such as a hydrogen atom, halogen, sulfonic acid group, and the following formulas (3) to (16 Etc.) are preferred.

これらの芳香族環に1個以上のスルホン酸基が結合していてもよいし、また該芳香族環に更に酸素原子、硫黄原子、メチレン基、プロピレン基等のアルキレン基又はパーフルオロアルキレン基或いはスルホニル基等を介して、芳香族環が結合しており、それらにスルホン酸基が結合していてもよい。かかる基の好ましい例は、次の化学式(3)〜(16)または(17)等である。   One or more sulfonic acid groups may be bonded to these aromatic rings, and further, an alkylene group such as an oxygen atom, a sulfur atom, a methylene group, a propylene group, or a perfluoroalkylene group, or An aromatic ring is bonded via a sulfonyl group or the like, and a sulfonic acid group may be bonded to them. Preferred examples of such groups include the following chemical formulas (3) to (16) or (17).

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

このように、アミノ基を結合したベンゾイル基などの芳香族カルボニル基に結合した芳香族環に更に芳香族環が結合する形態の場合、アミノ基を結合した芳香族カルボニル基に結合した芳香族環には、スルホン酸基は置換していないか又は1個だけ置換していることが好ましい。   Thus, when the aromatic ring is further bonded to the aromatic ring bonded to the aromatic carbonyl group such as a benzoyl group bonded to the amino group, the aromatic ring bonded to the aromatic carbonyl group bonded to the amino group. It is preferable that the sulfonic acid group is not substituted or only one is substituted.

また、前記一般式(1)中のXとして、次の式(17)で示されるものも、有効である。   Further, as X in the general formula (1), those represented by the following formula (17) are also effective.

Figure 2006070116
Figure 2006070116

(但し、mは2〜30の整数、nは1〜2の整数、zは直接結合、‐O‐、‐S‐、‐SO2‐、‐CO‐、‐CH2‐、‐CF2‐、又は‐C(CF3)2‐、を表す。)
なお、式(17)で示されるzが酸素であるポリフェニレンオキサイド等、重合鎖が存在する場合、該重合鎖があまり長くなると、ポリイミド化する場合に支障を生じ、十分な重合度が得られないので、前記式(17)におけるmは30程度まで、好ましくは2〜8である。
(Where m is an integer from 2 to 30, n is an integer from 1 to 2, z is a direct bond, -O-, -S-, -SO2-, -CO-, -CH2-, -CF2-, or- C (CF3) 2-
In addition, when a polymer chain such as polyphenylene oxide in which z represented by the formula (17) is oxygen is present, if the polymer chain is too long, it causes trouble in the formation of polyimide, and a sufficient degree of polymerization cannot be obtained. Therefore, m in the formula (17) is up to about 30, preferably 2-8.

本発明における上記モノマーの製造方法は、特に限定されるものではないが、次のスキームの例などの方法で製造することができる。   Although the manufacturing method of the said monomer in this invention is not specifically limited, It can manufacture by methods, such as the example of the following scheme.

Figure 2006070116
Figure 2006070116

すなわち上記スキームの例におけるビフェニルエーテルにかえて、ベンゼンやナフタレン或いはその誘導体、ビフェニルチオエーテル、ポリフェニレンオキサイド、ビフェニルスルホン、ジフェニルメチレンなどを用いれば、それぞれ対応するジアミノ芳香族カルボニル化合物が得られるのである。   That is, instead of biphenyl ether in the above scheme examples, benzene, naphthalene or derivatives thereof, biphenyl thioether, polyphenylene oxide, biphenyl sulfone, diphenylmethylene, etc. can be used to obtain the corresponding diamino aromatic carbonyl compounds.

本発明においては、これらのジアミノ化合物をモノマーとして用いることにより、カ主鎖にスルホン酸基を有しないポリイミドとなる。更に本発明の重要なポイントの一つは、カルボニル基を介して主鎖と結合した側鎖のみ、スルホン酸基が存在するポリイミドであるため、主鎖を構成する芳香族環に直接スルホン酸基が結合したポリイミドや、エーテル結合又はアルキレン結合を介して、芳香族環にスルホン酸基が結合したポリイミド等に比べて、遥かに高温下での酸性溶液中など過酷な条件下で用いた場合でも加水分解による高分子鎖の切断やスルホン酸基の脱離等経時的劣化が少ないのである。本発明者らは、その理由として、主鎖に親水性のスルホン酸基が存在せず、側鎖のみにスルホン酸基があるため、ポリイミドのミクロ構造は、疎水性の主鎖と親水性の側鎖部分にミクロ相分離しており、疎水性ドメインの水収着量が少なく、主鎖の加水分解を受け難くしており、更にカルボニル基を介した側鎖の芳香族環にスルホン酸基が存在することによって、過酷な条件下におけるスルホン酸基の脱離を少なくしているものと判断している。   In the present invention, by using these diamino compounds as monomers, a polyimide having no sulfonic acid group in the main chain is obtained. Furthermore, one of the important points of the present invention is a polyimide in which a sulfonic acid group is present only in the side chain bonded to the main chain via a carbonyl group, so that the sulfonic acid group is directly attached to the aromatic ring constituting the main chain. Even when used under harsh conditions such as in an acidic solution at a much higher temperature, compared to polyimides with sulfonic acid groups bonded to aromatic rings via ether bonds or alkylene bonds, etc. There is little degradation over time such as cleavage of the polymer chain by hydrolysis or elimination of the sulfonic acid group. The reason for this is that, since the hydrophilic sulfonic acid group is not present in the main chain and the sulfonic acid group is present only in the side chain, the polyimide microstructure has a hydrophobic main chain and a hydrophilic main chain. Micro-phase separation in the side chain part, the water sorption amount of the hydrophobic domain is small, it is difficult to undergo hydrolysis of the main chain, and the sulfonic acid group is attached to the aromatic ring of the side chain via the carbonyl group Therefore, it is judged that the elimination of the sulfonic acid group under severe conditions is reduced.

本発明においては、化学式(1)を構成するジアミノユニットが、式(24)のモノマーのみにより式(1‐a)を構成するのも好ましい態様であるが、得られるポリイミド中の陽イオン交換容量を抑制する目的及び電解質膜などの隔膜とした場合の機械的強度の増強や吸水率を抑え、隔膜使用中の固定イオン濃度の低下を防ぐため等の目的で、前記式(24)において、式(26)のモノマーの90モル%以下、好ましくは70モル%以下、例えば2〜90モル%、好ましくは5〜70モル%を、スルホン酸基を有しない、少なくとも一個の芳香族環を有するジアミン化合物及び/又はトリアミン化合物で置換して用いることができる。特にトリアミン化合物又はジアミンとトリアミンとの混合物で置換した場合には、得られるポリイミドは、架橋構造を有し、電解質膜等として用いた場合、耐熱性が向上し、更に水などの収着による膜の膨潤、変形が生じ難いものとなり、好ましい場合がある。   In the present invention, the diamino unit constituting the chemical formula (1) is also a preferred embodiment in which the formula (1-a) is constituted only by the monomer of the formula (24). In the above formula (24), for the purpose of suppressing the increase in mechanical strength and water absorption when the membrane is used as a membrane such as an electrolyte membrane and preventing the decrease of the fixed ion concentration during use of the membrane, Diamine having at least one aromatic ring not having a sulfonic acid group, 90 mol% or less, preferably 70 mol% or less, for example 2 to 90 mol%, preferably 5 to 70 mol%, of the monomer (26) A compound and / or a triamine compound can be substituted for use. In particular, when substituted with a triamine compound or a mixture of diamine and triamine, the resulting polyimide has a cross-linked structure, and when used as an electrolyte membrane, the heat resistance is improved, and a membrane by sorption of water or the like. Swelling and deformation are less likely to occur, which may be preferable.

すなわち、これらの共重縮合ポリイミドにおいては、式(1‐a)中の=Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない2価及び/又は3価の基で、置換されているポリイミドにおいて、スルホン酸基を有する=Ar2‐C(O)‐Xを構成する基が、ポリイミド鎖中に統計的に分散して存在する形態は、イオン交換容量の調整に好ましい態様となる。   That is, in these copolycondensation polyimides, 90 mol% or less of the groups constituting = Ar2-C (O) -X in the formula (1-a) have an aromatic ring, and sulfonic acid In polyimides substituted with divalent and / or trivalent groups that are not bonded to groups, the group that constitutes = Ar2-C (O) -X with sulfonic acid groups is statistically included in the polyimide chain. The form dispersed and present is a preferred embodiment for adjusting the ion exchange capacity.

また、式1‐a中の=Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない2価の基で、置換されているポリイミドにおいて、前記=Ar2‐C(O)‐Xを構成する基が、ポリイミド鎖中にブロック状に偏在して存在する形態は、電解質膜などの陽イオン交換膜において、高いプロトン伝導度を保持し機械的強度等を増進するという利点がある。   In addition, among the groups constituting = Ar2-C (O) -X in formula 1-a, 90 mol% or less is a divalent group having an aromatic ring and not bound to a sulfonic acid group. In the substituted polyimide, the form in which the group constituting the = Ar2-C (O) -X is unevenly distributed in a polyimide chain is high in a cation exchange membrane such as an electrolyte membrane. There is an advantage that the proton conductivity is maintained and the mechanical strength and the like are enhanced.

更に、式1‐a中の=Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し且つスルホン酸基を結合していない2価及び3価の基で置換されているポリイミドにおいて、前記=Ar2‐C(O)‐Xを構成する基が、ポリイミド鎖中にブロック状に偏在して存在し、且つスルホン酸基を結合していない3価の基で置換されている架橋構造を有するポリイミドは、吸水率を抑え、使用時の膜の膨潤、変形を抑えることができ、高いプロトン伝導度を保持し機械的強度等を増進するという利点がある。   Further, among the groups constituting = Ar2-C (O) -X in formula 1-a, 90 mol% or less of the divalent and trivalent groups having an aromatic ring and not having a sulfonic acid group bonded thereto. In the polyimide substituted with a group, the group constituting the = Ar2-C (O) -X exists in a block-like manner in the polyimide chain and is not bound to a sulfonic acid group. The polyimide having a cross-linked structure substituted with a group has the advantage of suppressing water absorption, suppressing swelling and deformation of the membrane during use, maintaining high proton conductivity and improving mechanical strength and the like. .

これらのスルホン酸基を有しない少なくとも一個の芳香環を有するジアミノ又はトリアミノ化合物のうち、ジアミノ化合物の例としては、4,4‘‐ジアミノジフェニルエーテル、4,4’‐ジアミノジフェニルスルホン、4,4‘‐ジアミノジフェニルスルフィド、ベンチジン、メタフェニレンジアミン、パラフェニレンジアミン、1,5‐ナフタレンジアミン、2,6‐ナフタレンジアミン、ビス[4‐(4‐アミノフェノキシ)フェニル]スルホン、ビス‐(4‐アミノフェノキシフェニル)スルフィド、ビス‐(4‐アミノフェノキシフェニル)ビフェニル、1,4‐ビス‐(4‐アミノフェノキシ)ベンゼン、1,3‐ビス‐(4‐アミノフェノキシ)ベンゼン、3,4’‐ジアミノジフェニルエーテル、4,4‘‐ビス(4‐アミノフェノキシ)ビフェニル、ビス{4‐{3‐アミノフェノキシ)フェニル}スルホン、9,9‐ビス(4‐アミノフェニル)フルオレン、2,2‐ビス[4−(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2‐ビス[4‐(4‐アモノフェノキシ)フェニル)プロパン、2,2’‐ビス(トリフルオロメチル)‐ベンジジンなどが挙げられるが、これらに限定されるものではない。   Among these diamino or triamino compounds having at least one aromatic ring not having a sulfonic acid group, examples of the diamino compound include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4 ′ -Diaminodiphenyl sulfide, benzidine, metaphenylenediamine, paraphenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis [4- (4-aminophenoxy) phenyl] sulfone, bis- (4-aminophenoxy) Phenyl) sulfide, bis- (4-aminophenoxyphenyl) biphenyl, 1,4-bis- (4-aminophenoxy) benzene, 1,3-bis- (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether 4,4′-bis (4-amino Nophenoxy) biphenyl, bis {4- {3-aminophenoxy) phenyl} sulfone, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Examples include, but are not limited to, propane, 2,2-bis [4- (4-amonophenoxy) phenyl) propane, 2,2′-bis (trifluoromethyl) -benzidine and the like.

また、トリアミン化合物としては、架橋反応を容易に行わせるために、同じ芳香環に2個のアミノ基が隣接して結合してないもの、特に同じ芳香環に2個以上の第1アミノ基を結合していないものが好ましく、例えば1,3,5‐トリ(4‐アミノフェノキシ)ベンゼン、トリ(4−アミノフェニル)アミン、1,3,5‐トリアミノベンゼンなどが好適に使用される。   Further, as a triamine compound, in order to facilitate a crosslinking reaction, two amino groups are not bonded to the same aromatic ring adjacent to each other, particularly two or more first amino groups are bonded to the same aromatic ring. Those which are not bonded are preferable, and for example, 1,3,5-tri (4-aminophenoxy) benzene, tri (4-aminophenyl) amine, 1,3,5-triaminobenzene and the like are preferably used.

これらトリアミン化合物は、式(24)に示すジアミノ化合物並びにスルホン酸基を有しないジアミンと混合して共重縮合に供することもできるし、また、カルボン酸二無水物と式(24)の化合物及びスルホン酸基を有しないジアミンとの(共)縮重合において、カルボン酸無水物をジアミンに対して過剰に加えて、カルボン酸無水物末端のスルホン化ポリイミドオリゴーマーを合成し、その後にトリアミンを等当量加えて反応させることにより、スルホン化ポリイミドオリゴーマーがネットワーク状に連なった分岐架橋ポリイミド膜の作製に供することもできる。   These triamine compounds can be mixed with a diamino compound represented by the formula (24) and a diamine having no sulfonic acid group and subjected to copolycondensation, or a carboxylic dianhydride and a compound of the formula (24) and In (co) condensation polymerization with a diamine having no sulfonic acid group, a carboxylic acid anhydride-terminated sulfonated polyimide oligomer is synthesized by adding an excess of carboxylic acid anhydride to the diamine, and then triamine is synthesized. By adding an equal equivalent amount and reacting, it is possible to provide a branched crosslinked polyimide film in which sulfonated polyimide oligomers are connected in a network.

本発明において、ポリイミドを構成するためジアミン化合物と反応させるテトラカルボン酸化合物として、1,4,5,8‐ナフタレンテトラカルボン酸二無水物について説明したが、勿論、本発明においては、テトラカルボン酸成分としてジアミン化合物と反応して、イミドを形成するものであれば特に限定されない。   In the present invention, 1,4,5,8-naphthalenetetracarboxylic dianhydride has been described as a tetracarboxylic acid compound to be reacted with a diamine compound in order to constitute a polyimide. Of course, in the present invention, a tetracarboxylic acid is used. If it reacts with a diamine compound as a component and forms imide, it will not specifically limit.

すなわち、本発明のポリイミドにおいて、テトラカルボン酸成分としては、一般のポリイミド製造用モノマーとして使用されるものが何等制限されることなく使用できる。例えば、3,3‘,4,4’‐ビフェニルテトラカルボン酸、2,3‘,3,4’‐ビフェニルテトラカルボン酸、3,3‘,4,4’‐ペンゾフェノンテトラカルボン酸、3,3‘,4,4’‐ジフェニルエーテルテトラカルボン酸、ビス(3,4‐ジカルボキシフェニル)メタン、2,2‐ビス(3,4‐ジカルボキシフェニル)プロパン、ピロメリット酸、1,4,5,8‐ナフタレンテトラカルボン酸、3,4,9,10‐ペリレンテトラカルボン酸、4,4‘‐(ヘキサフルオロイソプロピリデン)ジフタル酸、m‐(ターフェニル)3,4,3“,4”‐テトラカルボン酸、またはそれらの酸二無水物やエステル化物を挙げることができる。これらの中で、1,4,5,8‐ナフタレンテトラカルボン酸、又はその酸二無水物やエステル化物を用いると良好な耐水性を持った架橋スルホン化ポリイミドを得やすいので特に好ましい。   That is, in the polyimide of this invention, what is used as a monomer for general polyimide manufacture can be used as a tetracarboxylic acid component without being restrict | limited at all. For example, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3 , 3 ′, 4,4′-diphenyl ether tetracarboxylic acid, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, pyromellitic acid, 1,4 5,8-naphthalenetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 4,4 '-(hexafluoroisopropylidene) diphthalic acid, m- (terphenyl) 3,4,3 ", 4 "-Tetracarboxylic acids, or their acid dianhydrides and esterified products. Among these, 1,4,5,8-naphthalenetetracarboxylic acid, or its acid dianhydride or esterified product is particularly preferable because a crosslinked sulfonated polyimide having good water resistance can be easily obtained.

以上の如き、ジアミノ化合物モノマー(場合によっては一部トリアミノ化合物を含む)とカルボン酸無水物との重縮合反応は、従来ポリイミドを合成する場合に用いられる手段が何等制限されることなく用いることができるが、次に、一般的スキームをホモ重縮合、ランダム共重縮合、ブロック共重縮合及び分岐架橋共重縮合の場合について示す。   As described above, the polycondensation reaction between a diamino compound monomer (some of which includes a triamino compound) and a carboxylic acid anhydride can be used without any limitation on the means conventionally used for synthesizing polyimide. Although it is possible, a general scheme is now shown for the cases of homopolycondensation, random copolycondensation, block copolycondensation and branched bridge copolycondensation.

Figure 2006070116
Figure 2006070116

Figure 2006070116
Figure 2006070116

(これらの反応式において、TEAはトリエチルアミン、PhCOOHは安息香酸、NTDAはナフタレンテトラカルボン酸二無水物、Arは芳香環を有する2価の基をそれぞれ表す。)
以下に実施例を示す。
(In these reaction formulas, TEA represents triethylamine, PhCOOH represents benzoic acid, NTDA represents naphthalenetetracarboxylic dianhydride, and Ar represents a divalent group having an aromatic ring.)
Examples are shown below.

(実施例) (Example)

以下の実施例に示した1HNMRのデータは、溶媒として重水素化ジメチルスルホキシド(DMSO-d6)を用いて、日本電子JEOL EX‐270により測定した。また、本発明における評価方法は以下のとおりである。
[熱重量分析]
The 1HNMR data shown in the following examples were measured by JEOL EX-270 using deuterated dimethyl sulfoxide (DMSO-d6) as a solvent. Moreover, the evaluation method in this invention is as follows.
[Thermogravimetric analysis]

熱重量分析は、セイコー電子(株)製TG-MS分析計(TG-MSシステム220)により、He気流下5℃/minの昇温速度で行い、200〜300℃でのスルホン酸基またはスルホプロポキシ基の分解の開始温度Tdを求めた。
[吸水率、Water uptake]
膜サンプル約80mgを乾燥して、乾燥重量Wdを測定した後、30℃で2〜4時間水に浸漬した。膜サンプルを水から取り出し、手早く表面に付着した水をティッシュペーパーでふき取り、膨潤時の膜重量W3を測定した。吸収率(Water uptake; WU)を次式から求めた。
WU=(Ws-Wd)/Wd×100%
[耐水性]
Thermogravimetric analysis is performed with a TG-MS analyzer (TG-MS system 220) manufactured by Seiko Electronics Co., Ltd. at a heating rate of 5 ° C./min in a He stream, and sulfonic acid groups or sulfo groups at 200 to 300 ° C. The initiation temperature Td for the decomposition of the propoxy group was determined.
[Water uptake]
About 80 mg of the membrane sample was dried, the dry weight Wd was measured, and then immersed in water at 30 ° C. for 2 to 4 hours. The membrane sample was taken out of the water, the water adhering to the surface quickly was wiped off with tissue paper, and the membrane weight W3 at the time of swelling was measured. The absorption rate (Water uptake; WU) was calculated from the following equation.
WU = (Ws-Wd) / Wd × 100%
[water resistant]

膜厚30〜40μmの膜サンプルを130℃加圧下熱水に48時間浸漬した後、膜形状・強度の観点から、次の3段階で評価した。I:膜形状を保持していない。II:ピンセットで膜を取り出し、そのまま120度に折り曲げると膜は破断した。III:120度に折り曲げても膜は破断しなかった。また、加圧水浸漬処理した膜を風乾後、50℃水中でプロトン伝導度を測定し、プロトン伝導度の観点から、次の3段階で評価した。(1):処理によりプロトン伝導度は20%以上低下した。(2):5〜20%低下した。(3):実験誤差(±5%)範囲内で変化しなかった。
[プロトン伝導度]
A film sample having a thickness of 30 to 40 μm was immersed in hot water under pressure at 130 ° C. for 48 hours, and then evaluated from the viewpoint of film shape and strength in the following three stages. I: The film shape is not maintained. II: When the film was taken out with tweezers and bent as it was at 120 degrees, the film was broken. III: The film did not break even when bent at 120 degrees. In addition, after drying the membrane soaked in pressurized water, proton conductivity was measured in water at 50 ° C. and evaluated from the viewpoint of proton conductivity in the following three stages. (1): The proton conductivity decreased by 20% or more by the treatment. (2): Decreased by 5 to 20%. (3): No change within experimental error (± 5%) range.
[Proton conductivity]

プロトン伝導度測定セルに膜シート(1.0cm×0.5cm)と4枚の白金黒電極板をとりつけ、温度制御した水中また温度・湿度制御したチャンバー内にセットし、日置電気(株)製のLCRメーター(HIOKI3552‐80)を用いて、100Hzから100kHzの周波数範囲で複素インピーダンス法により電気抵抗Rを測定し、プロトン伝導度σを次式から計算した。
s=d/(ts
ws R)
ここで、dは2電極間距離(0.5cm)、tsとwsは、室温で70%RHにおける膜シートの厚さと幅である。水中でのプロトン伝導度の計算には、水中でのtsとws値を用いた。
[メタノール透過係数]
Attach a membrane sheet (1.0cm x 0.5cm) and four platinum black electrode plates to the proton conductivity measurement cell and place it in temperature-controlled water or temperature / humidity-controlled chamber. Using a meter (HIOKI3552-80), the electrical resistance R was measured by the complex impedance method in the frequency range of 100 Hz to 100 kHz, and the proton conductivity σ was calculated from the following equation.
s = d / (ts
ws R)
Here, d is the distance between two electrodes (0.5 cm), and ts and ws are the thickness and width of the film sheet at 70% RH at room temperature. To calculate proton conductivity in water, ts and ws values in water were used.
[Methanol permeability coefficient]

液々透過測定セルの供給側セル(容量350ml)と透過側セル(容量100ml)の間にフッ素ゴムのシール板を介して膜シートをはさみつける。膜の供給側に30wt%メタノール水溶液を入れ、透過側に蒸留水を入れ、ガスクロマトグラフを用いて、任意の時間間隔での供給側と透過側の液組成を測定し、メタノール透過係数PMを求めた。なお、PMの計算には膨潤膜厚を用いた。   A membrane sheet is sandwiched between a supply side cell (capacity 350 ml) and a permeation side cell (capacity 100 ml) of the liquid permeation measurement cell via a fluoro rubber seal plate. Put a 30wt% aqueous methanol solution on the membrane supply side, add distilled water on the permeate side, measure the liquid composition on the supply side and the permeate side at arbitrary time intervals using a gas chromatograph, and obtain the methanol permeability coefficient PM. It was. In addition, the swelling film thickness was used for calculation of PM.

スルホン化ポリイミドNTDA-DBSPBDS
(1)4‐[4‐(3,5‐ジアミノベンゾイル)‐2‐スルホフェノキシ]‐ベンゼン‐1,3‐ジスルホン酸(DBSPBDS)の合成
(ア)4‐(3,5‐ジニトロベンゾイル)フェニルエーテル(a)の合成
十分乾燥した100mlの四つ口フラスコにAlCl3(7g,0.0525モル)、及びジクロロメタン25mlを加え、この混合物を−10℃に冷却した後、その温度に冷却状態を保ち3,5‐ジニトロベンゾイルクロライド(11.528g,0.05モル)を加えた。ジクロロメタン(5ml)に(8.50g,0.05モル)のジフェニルエーテルを溶解し滴下漏斗を用いて前記混合物中に1時間以上かけてゆっくりと滴下した。その間攪拌しながら0℃以下に保った。滴下後、該混合物は室温下に攪拌しながら一夜放置した。反応溶液を大量の氷(約100gに数滴の塩酸を加えたもの)に注ぎ入れた。混合物を濾過し、固体分液を中性になるまで大量の水で洗浄し、10時間60℃で真空乾燥して、粗製品が12.5g得られた。400mlのエタノール中に加え、還流温度で2時間加熱して不純物を溶解させた後、加温下で固体を濾別し、60℃で6時間真空乾燥して、11.9g(収率65.4%)の純粋な淡白色の固体生成物を得た。このものは、1HNMR(270MHz,DMSO‐d6)で確認したところ、δ:7.10‐7.13(2H),7.14‐7.21(2H),7.24‐7.30(1H),7.31‐7.53(2H),7.88‐7.92(2H),8.77(2H),9.02‐9.04(1H)にピークを有し、
更に、FT‐IR及びDSC(m=159.8℃)で確認した結果、4‐(3, 5‐ジニトロベンゾイル)フェニルエーテルであることが確認された。この化合物を(a)という。
Sulfonated polyimide NTDA-DBSPBDS
(1) Synthesis of 4- [4- (3,5-diaminobenzoyl) -2-sulfophenoxy] -benzene-1,3-disulfonic acid (DBSPBDS) (a) 4- (3,5-dinitrobenzoyl) phenyl Synthesis of ether (a) To a well-dried 100 ml four-necked flask was added AlCl3 (7 g, 0.0525 mol) and 25 ml dichloromethane, and the mixture was cooled to -10 ° C and kept at that temperature for 3,3 5-Dinitrobenzoyl chloride (11.528 g, 0.05 mol) was added. Diphenyl ether (8.50 g, 0.05 mol) was dissolved in dichloromethane (5 ml) and slowly dropped into the mixture over 1 hour using a dropping funnel. Meanwhile, the temperature was kept at 0 ° C. or lower with stirring. After the addition, the mixture was left overnight with stirring at room temperature. The reaction solution was poured into a large amount of ice (about 100 g with a few drops of hydrochloric acid added). The mixture was filtered, and the solid separation was washed with a large amount of water until neutral, and dried in vacuo at 60 ° C. for 10 hours to obtain 12.5 g of a crude product. Add to 400 ml of ethanol and heat at reflux temperature for 2 hours to dissolve impurities, then filter off the solid under heating and vacuum dry at 60 ° C. for 6 hours to obtain 11.9 g (yield 65.4%) Of pure light white solid product. This was confirmed by 1H NMR (270 MHz, DMSO-d6), and δ: 7.10-7.13 (2H), 7.14-7.21 (2H), 7.24-7.30 (1H), 7.31-7.53 (2H), 7.88-7.92 (2H), 8.77 (2H), 9.02-9.04 (1H) has a peak,
Furthermore, as a result of confirmation by FT-IR and DSC (m = 159.8 ° C.), it was confirmed to be 4- (3,5-dinitrobenzoyl) phenyl ether. This compound is referred to as (a).

(イ)[4‐(4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ)ベンゼン‐1,3‐ジスルホン酸の合成
マグネチックスターラーを装備した100ml三つ口フラスコに4‐(3,5‐ジニトロベンゾイル)フェニルエーテル(a)(3.64g,10ミリモル)を入れ、アイスバスで冷却した後、4mlの濃硫酸を攪拌しながらゆっくりと添加した。硫酸を完全に添加した後、混合物を攪拌し30℃で30分間室温までゆっくりと加温し、(a)を完全に溶解させた。該混合物を再びアイスバスで冷却し、4mlの発煙硫酸(60%,55.2ミリモル)をゆっくりと添加した。発煙硫酸を完全に添加した後、該混合物を攪拌しつつ0℃で1時間保持した。次いでゆっくりと60℃まで加温し、60℃で8時間保った。その後室温まで冷却した後、混合物を破砕した100gの氷中に注いだ。次いで混合物をpHが中性を示すまで10%NaOHで中和し、濾過した。濾液を濃縮して固体を得た。50mlのジメチルスルホキシド(DMSO)を加え、不溶性の固体を濾別した。次いで濾液を濃縮し得られた個体を濾別し、10時間80℃で真空乾燥して6.3g(収率94%)の淡黄色の固体生成物を得た。このものは、1HNMR(270MHz,DMSO‐d6)により、δ:6.77‐6.80(1H),6.87‐6.90(1H),7.64‐7.81(1H),8.14‐8.15(1H),8.29‐8.30(1H),8.78‐8.80(2H),9.03‐9.05(1H)のピークを示し、またFT‐IRにより、4‐[4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ]ベンゼン‐1,3‐ジスルホン酸であることが確認された。この化合物を(b)という。
(B) Synthesis of [4- (4- (3,5-dinitrobenzoyl) -2-sulfophenoxy) benzene-1,3-disulfonic acid 4- (3,4) in a 100 ml three-necked flask equipped with a magnetic stirrer 5-Dinitrobenzoyl) phenyl ether (a) (3.64 g, 10 mmol) was added, and after cooling with an ice bath, 4 ml of concentrated sulfuric acid was slowly added with stirring. After complete addition of sulfuric acid, the mixture was stirred and slowly warmed to room temperature at 30 ° C. for 30 minutes to completely dissolve (a). The mixture was cooled again in an ice bath and 4 ml of fuming sulfuric acid (60%, 55.2 mmol) was added slowly. After complete addition of fuming sulfuric acid, the mixture was kept at 0 ° C. with stirring for 1 hour. Then it was slowly warmed to 60 ° C. and kept at 60 ° C. for 8 hours. After cooling to room temperature, the mixture was poured into 100 g of crushed ice. The mixture was then neutralized with 10% NaOH until the pH was neutral and filtered. The filtrate was concentrated to give a solid. 50 ml of dimethyl sulfoxide (DMSO) was added and the insoluble solid was filtered off. Subsequently, the solid obtained by concentrating the filtrate was separated by filtration and vacuum-dried at 80 ° C. for 10 hours to obtain 6.3 g (yield 94%) of a pale yellow solid product. According to 1H NMR (270 MHz, DMSO-d6), δ: 6.77-6.80 (1H), 6.87-6.90 (1H), 7.64-7.81 (1H), 8.14-8.15 (1H), 8.29-8.30 (1H) , 8.78-8.80 (2H), 9.03-9.05 (1H), and FT-IR showed 4- [4- (3,5-dinitrobenzoyl) -2-sulfophenoxy] benzene-1,3- It was confirmed to be disulfonic acid. This compound is referred to as (b).

(ウ)DBSPBDSの合成
マグネチックスターラーを装備した100mlの四つ口フラスコに4‐[4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ]ベンゼン‐1,3‐ジスルホン酸(b)(3.35g,5ミリモル)、塩化第一スズ2水塩(11.63g,50ミリモル)、50mlのエタノール及び10mlの水をいれ、窒素雰囲気下で濃塩酸(8.75ml,50ミリモル)を加えた。この反応混合物を4時間室温で攪拌した後、濾過し、濾過物をエタノール/水(v/v=3/2)で再結晶し、60℃で10時間真空乾燥して、2.1g(収率77.3%)のグレーの固体生成物を得た。このものは1HNMR(270MHz,DMSO‐d6)によりδ:6.06‐6.08(1H),6.12‐6.79(2H),6.79‐6.85(2H),7.58‐7.67(2H),8.14‐8.16(2H)のピークを示した。またFT‐IRによりDBSPBDSであることが確認された。
(C) Synthesis of DBSPBDS 4- [4- (3,5-dinitrobenzoyl) -2-sulfophenoxy] benzene-1,3-disulfonic acid (b) in a 100 ml four-necked flask equipped with a magnetic stirrer (b) ( 3.35 g, 5 mmol), stannous chloride dihydrate (11.63 g, 50 mmol), 50 ml ethanol and 10 ml water were added, and concentrated hydrochloric acid (8.75 ml, 50 mmol) was added under a nitrogen atmosphere. The reaction mixture was stirred for 4 hours at room temperature and then filtered. The filtrate was recrystallized from ethanol / water (v / v = 3/2) and dried in vacuo at 60 ° C. for 10 hours to obtain 2.1 g (yield). 77.3%) of a gray solid product was obtained. This is the peak of δ: 6.06-6.08 (1H), 6.12-6.79 (2H), 6.79-6.85 (2H), 7.58-7.67 (2H), 8.14-8.16 (2H) by 1HNMR (270MHz, DMSO-d6). showed that. It was also confirmed by DBFTBDS by FT-IR.

(2)スルホン化ポリイミドNTDA-DBSPBDSの合成
乾燥した100mlの四口フラスコ中で2.176g(4.0ミリモル)のDBSPBDSと2.1mlのトリエチルアミン(TEA)を16mlのm−クレゾールに加えて溶かし、次いで、1.072g(4.0ミリモル)の1,4,5,8‐ナフタレンテトラカルボン酸二無水物(NTDA)および0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのN‐メチルピロリドン(NMP)を添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.5dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のスルホン化ポリイミドNTDA-DBSPBDS膜を得た。この膜は、高いイオン交換容量(IEC)を有したが、50℃の水に溶解した。
(2) Synthesis of sulfonated polyimide NTDA-DBSPBDS 2.176 g (4.0 mmol) DBSPBDS and 2.1 ml triethylamine (TEA) were dissolved in 16 ml m-cresol in a dry 100 ml four-necked flask and then 1.072 g (4.0 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and 0.68 g of benzoic acid are added and the mixture is stirred at 80 ° C. for 4 hours and at 180 ° C. for 10 hours. The mixture was stirred for 10 hours, 10 ml of N-methylpyrrolidone (NMP) was added, and the mixture was further stirred at 180 ° C. for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The resulting product had a solution viscosity ηSP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of 2.5 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain a proton-type sulfonated polyimide NTDA-DBSPBDS membrane. This membrane had a high ion exchange capacity (IEC) but was dissolved in water at 50 ° C.

ランダム共重合スルホン化ポリイミドNTDA‐DBSPBDS/BAPPS(1/1)‐r
スルホン化ジアミンとして実施例1で合成したDBSPBDSを用い、非スルホン酸ジアミンとして4,4‘‐ビス(3‐アミノフェノキシ)フェニルスルホン(BAPPS)を用いた。乾燥した100mlの四口フラスコ中で1.088g(2.0ミリモル)のDBSPBDSと1.1mlのTEAを16mlのm−クレゾールに加えて溶かし、次いで、0.865g(2.0ミリモル)のBAPPSを添加して溶かした後、1.072g(4.0ミリモル)のNTDAおよび0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのNMPを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.0dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA-DBSPBDS/BAPPS(1/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の相対湿度依存性を図1に、温度依存性を図2に示す。
Random copolymerized sulfonated polyimide NTDA-DBSPBDS / BAPPS (1/1) -r
DBSPBDS synthesized in Example 1 was used as the sulfonated diamine, and 4,4′-bis (3-aminophenoxy) phenylsulfone (BAPPS) was used as the non-sulfonate diamine. After dissolving 1.088 g (2.0 mmol) DBSPBDS and 1.1 ml TEA in 16 ml m-cresol in a dry 100 ml four-necked flask, then adding 0.865 g (2.0 mmol) BAPPS to dissolve. 1.072 g (4.0 mmol) of NTDA and 0.68 g of benzoic acid are added and the mixture is stirred for 4 hours at 80 ° C. and 10 hours at 180 ° C. under a nitrogen gas atmosphere, and 10 ml of NMP is added at 180 ° C. Stir for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The resulting product had a solution viscosity ηSP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of 2.0 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-DBSPBDS / BAPPS ( A 1/1) -r film was obtained. Table 1 shows the characteristic evaluation results of this film. Fig. 1 shows the relative humidity dependence of proton conductivity and Fig. 2 shows the temperature dependence.

シークエンス化共重合スルホン化ポリイミドNTDA‐DBSPBDS/BAHF(1/1)‐s
スルホン化ジアミンとして実施例1で合成したDBSPBDSを用い、非スルホン酸ジアミンとして2,2’‐ビス(4‐アミノフェノキシ)ヘキサフルオロプロパン(BAHF)を用いた。乾燥した100mlの四口フラスコ中で1.088g(2.0ミリモル)のDBSPBDSと1.1mlのTEAを10mlのm−クレゾールに加えて溶かし、次いで0.643g(2.4ミリモル)のNTDAおよび0.42gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で5時間攪拌した。溶液を室温まで冷却し、0.668g(2.0ミリモル)のBAHF、0.429g(1.6ミリモル)のNTDA、0.42gの安息香酸そして10mlのNMPを順次加え、80℃で4時間、180℃で20時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.5dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のシークエンス化共重合スルホン化ポリイミドNTDA-DBSPBDS/BAHF(1/1)‐s膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の相対湿度依存性を図1に、温度依存性を図2に示す。
Sequenced copolymerized sulfonated polyimide NTDA-DBSPBDS / BAHF (1/1) -s
DBSPBDS synthesized in Example 1 was used as the sulfonated diamine, and 2,2′-bis (4-aminophenoxy) hexafluoropropane (BAHF) was used as the non-sulfonate diamine. Dissolve 1.088 g (2.0 mmol) DBSPBDS and 1.1 ml TEA in 10 ml m-cresol in a dry 100 ml four-necked flask, then add 0.643 g (2.4 mmol) NTDA and 0.42 g benzoic acid. The mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 5 hours under a nitrogen gas atmosphere. Cool the solution to room temperature, add 0.668 g (2.0 mmol) BAHF, 0.429 g (1.6 mmol) NTDA, 0.42 g benzoic acid and 10 ml NMP sequentially and stir at 80 ° C. for 4 hours and at 180 ° C. for 20 hours. did. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity ηSP / c of the obtained product (solvent: DMSO containing 1 wt% LiCl; 0.5 wt%; 35 ° C.) was 2.5 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain proton type sequence copolymerized sulfonated polyimide NTDA-DBSPBDS / BAHF. A (1/1) -s film was obtained. Table 1 shows the characteristic evaluation results of this film. FIG. 1 shows the relative humidity dependence of proton conductivity, and FIG. 2 shows the temperature dependence.

スルホン化ポリイミドNTDA‐DBSPBS
(1)4‐[4‐(3,5‐ジアミノベンゾイル)‐2‐スルホフェノキシ]‐ベンゼンスルホン酸(DBSPBS)の合成
(ア)4‐[4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ]ベンゼンスルホン酸の合成
まず前記化合物(a)を用い、スルホン化を行う。すなわち、マグネティクスターラーを装備した100mlの三つ口フラスコに4‐(3,5‐ジニトロベンゾイル)フェニルエーテル(a)(3.64g,10ミリモル)をいれ、アイスバスで冷却して濃硫酸4mlを攪拌しながらゆっくりと加えた。該混合物を30分間0℃で攪拌しながら保持した。その後、(a)が完全に溶解するよう室温まで少し過熱した。混合物を再びアイスバスで冷却し、2mlの発煙硫酸(60%、27.6ミリモル)をゆっくりと加え、発煙硫酸を完全に加え終わった後、更に0.5時間0℃で攪拌し続けた、次いで40℃にゆっくりと昇温して4.5時間その温度を保った後、室温まで冷却し、混合物を50gの破砕した氷中に注ぎ、pHが中性になるまで10%NaOHで中和した後、濾過した。得られた溶液を濃縮した後、50mlのDMSOを加えた。不溶性の固体を濾別し、濾液を濃縮し、得られた個体を濾別し、10時間80℃で真空乾燥し、薄黄色の固体生成物5.0g(88%)を得た。これを1HNMR(270MHz,DMSO‐d6)で確認したところ、δ:6.87‐6.90(1H),6.97‐7.07(2H),7.68‐7.70(2H),7.76‐7.84(1H),8.31‐8.32(1H),8.76‐8.80(2H),9.02‐9.04(1H)にピークがあり、4‐[4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ]ベンゼンスルホン酸であることが確認された。
Sulfonated polyimide NTDA-DBSPBS
(1) Synthesis of 4- [4- (3,5-diaminobenzoyl) -2-sulfophenoxy] -benzenesulfonic acid (DBSPBS) (a) 4- [4- (3,5-dinitrobenzoyl) -2- Synthesis of sulfophenoxy] benzenesulfonic acid First, the compound (a) is used for sulfonation. That is, 4- (3,5-dinitrobenzoyl) phenyl ether (a) (3.64 g, 10 mmol) was placed in a 100 ml three-necked flask equipped with a magnetic stirrer, cooled in an ice bath, and 4 ml of concentrated sulfuric acid was added. Slowly added with stirring. The mixture was held with stirring at 0 ° C. for 30 minutes. Thereafter, the mixture was slightly heated to room temperature so that (a) was completely dissolved. The mixture was cooled again in an ice bath, 2 ml of fuming sulfuric acid (60%, 27.6 mmol) was added slowly and after complete addition of the fuming sulfuric acid, stirring was continued at 0 ° C. for another 0.5 hour, then to 40 ° C. The temperature was raised slowly and maintained at that temperature for 4.5 hours, then cooled to room temperature, the mixture was poured into 50 g of crushed ice, neutralized with 10% NaOH until pH neutral, and then filtered. After concentrating the resulting solution, 50 ml of DMSO was added. Insoluble solids were filtered off, the filtrate was concentrated, and the resulting solid was filtered off and dried in vacuo at 80 ° C. for 10 hours to give 5.0 g (88%) of a pale yellow solid product. This was confirmed by 1H NMR (270 MHz, DMSO-d6). Δ: 6.87-6.90 (1H), 6.97-7.07 (2H), 7.68-7.70 (2H), 7.76-7.84 (1H), 8.31-8.32 (1H ), 8.76-8.80 (2H), 9.02-9.04 (1H), and it was confirmed to be 4- [4- (3,5-dinitrobenzoyl) -2-sulfophenoxy] benzenesulfonic acid.

(イ)4‐[4‐(3,5‐ジアミノベンゾイル)‐2‐スルホフェノキシ]ベンゼンスルホン酸の合成
前記(ア)で得られた4‐[4‐(3,5‐ジニトロベンゾイル)‐2‐スルホフェノキシ]ベンゼンスルホン酸を用い、実施例1の(1)項(ウ)と同様にし、ニトロ基の還元を行う。収率80%であり、1HNMR(270MHz,DMSO‐d6)によりδ:6.07‐6.07(1H),6.13(2H)6.83‐6.86(1H),6.95‐6.98(2H)7.62‐7.69(3H),8.15‐8.18(1H)のピークよりDBSPBSであることが確認された。
(B) Synthesis of 4- [4- (3,5-diaminobenzoyl) -2-sulfophenoxy] benzenesulfonic acid 4- [4- (3,5-dinitrobenzoyl) -2 obtained in (a) above -Sulfophenoxy] benzenesulfonic acid is used to reduce the nitro group in the same manner as in item (1) (c) of Example 1. Yield 80%, δ: 6.07-6.07 (1H), 6.13 (2H) 6.83-6.86 (1H), 6.95-6.98 (2H) 7.62-7.69 (3H), 8.15 by 1H NMR (270 MHz, DMSO-d6) The peak of -8.18 (1H) was confirmed to be DBSPBS.

(2)スルホン化ポリイミドNTDA-DBSPBSの合成
乾燥した100mlの四口フラスコ中で1.856g(4.0ミリモル)のDBSPBSと1.4mlのTEAを16mlのm−クレゾールに加えて溶かし、次いで、1.072g(4.0ミリモル)のNTDAおよび0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのNMPを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は3.0dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のスルホン化ポリイミドNTDA‐DBSPBS膜を得た。この膜の特性評価結果を表1に示す。
(2) Synthesis of sulfonated polyimide NTDA-DBSPBS In a dry 100 ml four-necked flask, 1.856 g (4.0 mmol) of DBSPBS and 1.4 ml of TEA were added to 16 ml of m-cresol and dissolved, and then 1.072 g (4.0 Millimoles) of NTDA and 0.68 g of benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and 180 ° C. for 10 hours under nitrogen gas atmosphere, 10 ml of NMP was added and further stirred at 180 ° C. for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The resulting product had a solution viscosity ηSP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of 3.0 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain a proton-type sulfonated polyimide NTDA-DBSPBS membrane. Table 1 shows the characteristic evaluation results of this film.

シークエンス化共重合スルホン化ポリイミドNTDA‐DBSPBS/BAHF(2/1)‐s
スルホン化ジアミンとして実施例4で合成したDBSPBSを用い、非スルホン酸ジアミンとしてBAHFを用いた。乾燥した100mlの四口フラスコ中で0.928g(2.0ミリモル)のDBSPBDSと0.7mlのTEAを10mlのm−クレゾールに加えて溶かし、次いで0.643g(2.4ミリモル)のNTDAおよび0.41gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で5時間攪拌した。溶液を室温まで冷却し、0.334g(1.0ミリモル)のBAHF、0.161g(0.6ミリモル)のNTDA、0.11gの安息香酸そして10mlのNMPを順次加え、80℃で4時間、180℃で20時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.6dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のシークエンス化共重合スルホン化ポリイミドNTDA‐DBSPBS/BAHF(2/1)‐s膜を得た。この膜の特性評価結果を表1に示す。
Sequenced copolymerized sulfonated polyimide NTDA-DBSPBS / BAHF (2/1) -s
DBSPBS synthesized in Example 4 was used as the sulfonated diamine, and BAHF was used as the non-sulfonate diamine. Dissolve 0.928 g (2.0 mmol) DBSPBDS and 0.7 ml TEA in 10 ml m-cresol in a dry 100 ml four-necked flask, then add 0.643 g (2.4 mmol) NTDA and 0.41 g benzoic acid. The mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 5 hours under a nitrogen gas atmosphere. The solution was cooled to room temperature and 0.334 g (1.0 mmol) BAHF, 0.161 g (0.6 mmol) NTDA, 0.11 g benzoic acid and 10 ml NMP were added sequentially and stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours. did. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The resulting product had a solution viscosity ηSP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of 2.6 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to obtain proton type sequence copolymerized sulfonated polyimide NTDA-DBSPBS / BAHF. A (2/1) -s film was obtained. Table 1 shows the characteristic evaluation results of this film.

分岐架橋スルホン化ポリイミドNTDA‐DBSPBS/TAPB(5/4)
(1)1,3,5‐トリス(4‐アミノフェノキシ)ベンゼン(TAPB)の合成
49.6g(0.35mol)の4‐フルオロニトロベンゼン、12.6g(0.1mol)の1,3,5‐トリヒドロキシベンゼンおよび20.7g(0.15mol)の炭酸カリウムをDMSO200mlとトルエン50mlの混合溶液に加え、窒素気流下で加熱した。140℃で4時間トルエンを還流させながら、生成した水を除去した。トルエンを除去しながら175℃まで昇温し、16時間加熱した。反応液を冷却後、多量のメタノールに投入して、析出した固体生成物を水洗後乾燥した。
Branched and crosslinked sulfonated polyimide NTDA-DBSPBS / TAPB (5/4)
(1) Synthesis of 1,3,5-tris (4-aminophenoxy) benzene (TAPB)
49.6 g (0.35 mol) of 4-fluoronitrobenzene, 12.6 g (0.1 mol) of 1,3,5-trihydroxybenzene and 20.7 g (0.15 mol) of potassium carbonate are added to a mixed solution of DMSO 200 ml and toluene 50 ml, Heated under a nitrogen stream. The produced water was removed while refluxing toluene at 140 ° C. for 4 hours. While removing toluene, the temperature was raised to 175 ° C. and heated for 16 hours. The reaction solution was cooled, poured into a large amount of methanol, and the precipitated solid product was washed with water and dried.

得られた固体30g、塩化鉄(III)60mgおよび白金担持炭素2gを2‐メトキシエタノール110mlに加え、混合液を90℃に昇温し、ヒドラジン一水和物18.9gを2時間かけて滴下した。反応液を110℃で2時間加熱後、室温まで冷却し、ろ過した。濾液に濃塩酸20mlを添加し、固体を析出させた。固体を濾別し、乾燥してTAPBの黄色固体を得た。   30 g of the obtained solid, 60 mg of iron (III) chloride and 2 g of carbon on platinum were added to 110 ml of 2-methoxyethanol, the mixture was heated to 90 ° C., and 18.9 g of hydrazine monohydrate was added dropwise over 2 hours. . The reaction solution was heated at 110 ° C. for 2 hours, cooled to room temperature, and filtered. 20 ml of concentrated hydrochloric acid was added to the filtrate to precipitate a solid. The solid was filtered off and dried to give a TABP yellow solid.

(2)分岐架橋スルホン化ポリイミドNTDA‐DBSPBS/TAPB(5/4)の合成
スルホン化ジアミンとして実施例4で合成したDBSPBSを用いた。乾燥した100mlの四口フラスコ中で1.856g(4.0ミリモル)のDBSPBSと1.4mlのTEAを20mlのm−クレゾールに加えて溶かし、次いで1.34g(5.0ミリモル)のNTDAおよび0.85gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌した。溶液を室温まで冷却し、0.340g(0.67ミリモル)のTAPBと20mlのNMPを加え、60℃で4時間攪拌した。得られた溶液をガラス板上に流延し、80℃、95℃、110℃でそれぞれ1時間、130℃で8時間、さらに200℃で10時間加熱乾燥して、TEA塩型の分岐架橋スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型の分岐架橋スルホン化ポリイミドNTDA‐DBSPBS/TAPB(5/4)膜を得た。この膜の特性評価結果を表1に示す。
(2) Synthesis of Branched Crosslinked Sulfonated Polyimide NTDA-DBSPBS / TAPB (5/4) DBSPBS synthesized in Example 4 was used as the sulfonated diamine. In a dry 100 ml four-necked flask, 1.856 g (4.0 mmol) DBSPBS and 1.4 ml TEA are dissolved in 20 ml m-cresol and then 1.34 g (5.0 mmol) NTDA and 0.85 g benzoic acid are added. The mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours under a nitrogen gas atmosphere. The solution was cooled to room temperature, 0.340 g (0.67 mmol) TABP and 20 ml NMP were added and stirred at 60 ° C. for 4 hours. The obtained solution was cast on a glass plate and dried by heating at 80 ° C, 95 ° C and 110 ° C for 1 hour, 130 ° C for 8 hours, and 200 ° C for 10 hours, respectively. A polyimide film was obtained. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to form proton-type branched cross-linked sulfonated polyimide NTDA-DBSPBS / TAPB (5 / 4) A film was obtained. Table 1 shows the characteristic evaluation results of this film.

スルホン化ポリイミドNTDA‐DBPBS
(1)4‐[4‐(3,5‐ジアミノベンゾイル)‐フェノキシ]‐ベンゼンスルホン酸(DBPBS)の合成
まず、前記化合物(a)を用い、スルホン化を行う。化合物(b)を得るのと同様に行うが、(a)の10ミリモルに対して、60%発煙硫酸を28ミリモル用い、スルホン化の反応条件を0℃、1時間とする。
Sulfonated polyimide NTDA-DBPBS
(1) Synthesis of 4- [4- (3,5-diaminobenzoyl) -phenoxy] -benzenesulfonic acid (DBPBS) First, sulfonation is performed using the compound (a). The procedure is the same as that for obtaining the compound (b), except that 28 mmol of 60% fuming sulfuric acid is used with respect to 10 mmol of (a), and the sulfonation reaction condition is 0 ° C. for 1 hour.

かくして得られた4‐[4‐(3,5‐ジニトロベンゾイル)フェノキシ]ベンゼンスルホン酸を用い、実施例1の(1)項(ウ)と同様にしてニトロ基を還元し、黄色の固体状生成物を2.0g(95%)得た。このものは1HNMR(270MHz,DMSO‐d6)により、δ:6.07‐6.14(1H),6.15(2H),7.05‐7.10(4H),7.67‐7.76(4H)のピークを示し、DBPBSであることが確認された。   Using the 4- [4- (3,5-dinitrobenzoyl) phenoxy] benzenesulfonic acid thus obtained, the nitro group was reduced in the same manner as in (1) (c) of Example 1 to obtain a yellow solid. 2.0 g (95%) of product was obtained. This shows a peak of δ: 6.07-6.14 (1H), 6.15 (2H), 7.05-7.10 (4H), 7.67-7.76 (4H) by 1H NMR (270 MHz, DMSO-d6), and is DBPBS. confirmed.

(2)スルホン化ポリイミドNTDA‐DBPBSの合成
乾燥した100mlの四口フラスコ中で1.682g(4.0ミリモル)のDBPBSと1.4mlのTEAを15mlのm−クレゾールに加えて溶かし、次いで、1.072g(4.0ミリモル)のNTDAおよび0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのNMPを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は1.8dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のスルホン化ポリイミドNTDA‐DBPBS膜を得た。この膜の特性評価結果、を表1に示す。
(比較例1)
(2) Synthesis of sulfonated polyimide NTDA-DBPBS In a dry 100 ml four-necked flask, 1.682 g (4.0 mmol) of DBPBS and 1.4 ml of TEA were dissolved in 15 ml of m-cresol, and then 1.072 g (4.0 Millimoles) of NTDA and 0.68 g of benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and 180 ° C. for 10 hours under nitrogen gas atmosphere, 10 ml of NMP was added and further stirred at 180 ° C. for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity ηSP / c of the obtained product (solvent: DMSO containing 1 wt% LiCl; 0.5 wt%; 35 ° C.) was 1.8 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain a proton-type sulfonated polyimide NTDA-DBPBS membrane. Table 1 shows the evaluation results of the characteristics of this film.
(Comparative Example 1)

ランダム共重合スルホン化ポリイミドNTDA‐BAPBDS/BAPB(2/1)‐r
特開2003‐68326に記載されている方法で、4,4’‐ビス(4‐アミノフェノキシ)ビフェニル‐3,3’‐ジスルホン酸(BAPBDS)を合成した。スルホン化ジアミンとしてBAPBDSを用い、非スルホン酸ジアミンとして4,4’‐ビス(3‐アミノフェノキシ)フェニルスルホン(BAPPS)を用いた。乾燥した100mlの四口フラスコ中で1.056g(2.0ミリモル)のBAPBDSと0.68mlのTEAを12mlのm−クレゾールに加えて溶かし、次いで、0.368g(1.0ミリモル)のBAPBを添加して溶かした後、0.804g(3.0ミリモル)のNTDAおよび0.51gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌した。重合反応液を80℃まで冷却後、20mlのm-クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:m‐クレゾール;0.5wt%;35℃)は2.8dl/gであった。生成物をm‐クレゾールに溶解し、ガラス板上に流延し、120℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA‐BAPBDS/BAPB(2/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の相対湿度依存性を図1に示す。
(比較例2)
Random copolymerized sulfonated polyimide NTDA-BAPBDS / BAPB (2/1) -r
4,4′-bis (4-aminophenoxy) biphenyl-3,3′-disulfonic acid (BAPBDS) was synthesized by the method described in JP2003-68326A. BAPBDS was used as the sulfonated diamine, and 4,4′-bis (3-aminophenoxy) phenylsulfone (BAPPS) was used as the non-sulfonate diamine. In a dry 100 ml four-necked flask, 1.056 g (2.0 mmol) BAPBDS and 0.68 ml TEA are dissolved in 12 ml m-cresol and then 0.368 g (1.0 mmol) BAPB is added and dissolved. Then 0.804 g (3.0 mmol) NTDA and 0.51 g benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and 180 ° C. for 20 hours under nitrogen gas atmosphere. The polymerization reaction solution was cooled to 80 ° C., diluted with 20 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity ηSP / c (solvent: m-cresol; 0.5 wt%; 35 ° C.) of the obtained product was 2.8 dl / g. The product was dissolved in m-cresol, cast on a glass plate, and dried at 120 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-BAPBDS / BAPB ( 2/1) -r film was obtained. Table 1 shows the characteristic evaluation results of this film. Fig. 1 shows the relative humidity dependence of proton conductivity.
(Comparative Example 2)

ランダム共重合スルホン化ポリイミドNTDA‐3,3’‐BSPB/BAPPS(2/1)‐r
特開2004‐155998に記載されている方法で、3,3’‐ビス(3‐スルホプロポキシ)ベンジジン(3,3’‐BSPB)を合成した。スルホン化ジアミンとして3,3’‐BSPBを0.96g(2.0ミリモル)用い、非スルホン酸ジアミンとしてBAPPSを0.433g(1.0ミリモル)用いる以外、比較例1と同様にして、ランダム共重合スルホン化ポリイミドNTDA‐3,3’‐BSPB/BAPPS(2/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の相対湿度依存性を図1に、温度依存性を図2に示す。
(比較例3)
Random copolymerized sulfonated polyimide NTDA-3,3'-BSPB / BAPPS (2/1) -r
3,3′-bis (3-sulfopropoxy) benzidine (3,3′-BSPB) was synthesized by the method described in JP-A-2004-155998. Random copolymerized sulfonated polyimide NTDA as in Comparative Example 1 except that 0.96 g (2.0 mmol) of 3,3′-BSPB was used as the sulfonated diamine and 0.433 g (1.0 mmol) of BAPPS was used as the non-sulfonate diamine. -3,3'-BSPB / BAPPS (2/1) -r membrane was obtained. Table 1 shows the characteristic evaluation results of this film. Fig. 1 shows the relative humidity dependence of proton conductivity and Fig. 2 shows the temperature dependence.
(Comparative Example 3)

パーフルオロスルホン酸系の電解質膜
パーフルオロスルホン酸系の電解質膜(D社製、厚み50μm)を用いた。この膜の特性評価結果を表1に示す。
Perfluorosulfonic acid-based electrolyte membrane A perfluorosulfonic acid-based electrolyte membrane (manufactured by Company D, thickness 50 μm) was used. Table 1 shows the characteristic evaluation results of this film.

燃料電池の製作
実施例2と同様にして作製したランダム共重合スルホン化ポリイミドNTDA‐DBSPBDS/BAPPS(1/1)‐r膜(膜厚35μm)を、あらかじめ触媒活性層に5%ナフィオン溶液(米国Dupont社製)を塗布乾燥したPt触媒担持ガス拡散電極(米国E‐TEK社製、Pt担持量(0.75mg/cm2)ではさみ135℃で10分間60kg/cm2の圧力でプレスすることにより膜電極接合体(MEA)を作製した。有効電極面積は5cm2である。このMEAをE‐TEK社製単セルに組み込み、nF社製の燃料電池評価装置(nF、model As‐510)にセットして、セル温度90℃、アノード(H2)/カソード(O2)の加湿温度88℃/85℃、供給ガス流量150/100ml/min、背圧0.3MPaの条件でPEFC発電性能を測定した。発電特性を図3に示す。
Fabrication of fuel cell Random copolymer sulfonated polyimide NTDA-DBSPBDS / BAPPS (1/1) -r membrane (thickness 35μm) produced in the same manner as in Example 2 was previously applied to the catalyst active layer with 5% Nafion solution (USA) Dupont coated and dried Pt catalyst supported gas diffusion electrode (made by E-TEK, USA, Pt supported amount (0.75mg / cm2) with scissors at 135 ° C for 10 minutes at 60kg / cm2 pressure and membrane electrode An assembly (MEA) was fabricated with an effective electrode area of 5 cm2.The MEA was incorporated into a single cell made by E-TEK and set in a fuel cell evaluation device (nF, model As-510) made by nF. PEFC power generation performance was measured under the conditions of cell temperature 90 ° C, anode (H2) / cathode (O2) humidification temperature 88 ° C / 85 ° C, supply gas flow rate 150 / 100ml / min, back pressure 0.3MPa. It is shown in FIG.

評価結果まとめ
1)実施例1と4のように、スルホン酸基を3乃至2もち、高いIECをもつジアミン(DBSPBDS, DBSPBS)からのホモスルホン化ポリイミド膜は、膜が水に可溶であるかまたは大きなWUを有し、膜強度の観点での高温耐水性はよくない。
2)実施例2,3,そして5のように非スルホン酸ジアミンとの共重合により、IECを適度の大きさ(2前後)に調整した共重合スルホン化ポリイミド膜は、適度のWUを有し、また、膜がミクロ相分離構造をとっており、比較的高いIECにもかかわらず、膜強度の観点での優れた高温耐水性をもつ。この点で、比較例1の主鎖型共重合スルホン化ポリイミド膜より優れている。
3)実施例2,3,5,6,7のように、スルホン酸基の分解温度が290〜290℃と比較例2のスルホアルコキシ基をもつ側鎖型スルホン化ポリイミド膜に比べて30〜40℃高く、また、プロトン伝導度の観点からの高温耐水性にも優れる。これは、本特許でのスルホン化ポリイミド膜では、高温水中でのスルホン酸基の脱離が起こりにくいことを示しており、比較例2の側鎖型スルホン化ポリイミド膜よりこの点で優れている。
4)比較例1と2にくらべて、本特許でのスルホン化ポリイミド膜は、高いプロトン伝導度を有し、特に、低い湿度でのプロトン伝導度の低下が、比較例のポリマーに比べて小さい。(表1と図1)
5)本特許でのスルホン化ポリイミド膜は100℃以上の高温でもプロトン伝導度は低下せず、高いプロトン伝導度を有する。(図2)
6)本特許でのスルホン化ポリイミド膜は、比較例3のパーフルオロスルホン酸系膜に比べて、メタノール透過係数が非常に低く、メタノール透過係数に対するプロトン伝導度の比φ(φ=σ/PM)が3倍以上大きく、直接メタノール型燃料電池用の高分子電解質膜として好適である。
7)実施例8のように、本特許でのスルホン化ポリイミド膜を用いた固体高分子電解質形燃料電池(PEFC)は非常に優れた発電特性を有するので、PEFC用の高分子電解質膜として好適である。
Summary of Evaluation Results 1) As in Examples 1 and 4, homosulfonated polyimide membranes from diamines (DBSPBDS, DBSPBS) having 3 or 2 sulfonic acid groups and high IEC are soluble in water? Or it has a large WU, and the high-temperature water resistance in terms of film strength is not good.
2) The copolymerized sulfonated polyimide membrane having an IEC adjusted to an appropriate size (around 2) by copolymerization with a non-sulfonic acid diamine as in Examples 2, 3, and 5 has an appropriate WU. In addition, the membrane has a microphase separation structure, and has excellent high-temperature water resistance in terms of membrane strength despite the relatively high IEC. In this respect, it is superior to the main chain copolymer sulfonated polyimide membrane of Comparative Example 1.
3) As in Examples 2, 3, 5, 6 and 7, the decomposition temperature of the sulfonic acid group is 290 to 290 ° C., which is 30 to It is 40 ° C higher and has excellent high-temperature water resistance from the viewpoint of proton conductivity. This indicates that the sulfonated polyimide membrane in this patent is less susceptible to sulfonic acid group elimination in high-temperature water, and is superior in this respect to the side chain sulfonated polyimide membrane of Comparative Example 2. .
4) Compared to Comparative Examples 1 and 2, the sulfonated polyimide membrane in this patent has a high proton conductivity, and in particular, the decrease in proton conductivity at low humidity is small compared to the polymer of the comparative example. . (Table 1 and Figure 1)
5) The sulfonated polyimide membrane in this patent has high proton conductivity without decreasing proton conductivity even at a high temperature of 100 ° C. or higher. (Figure 2)
6) The sulfonated polyimide membrane in this patent has a very low methanol permeability coefficient compared to the perfluorosulfonic acid membrane of Comparative Example 3, and the ratio of proton conductivity to methanol permeability coefficient φ (φ = σ / PM) ) Is 3 times or more larger and is suitable as a polymer electrolyte membrane for direct methanol fuel cells.
7) As in Example 8, the solid polymer electrolyte fuel cell (PEFC) using the sulfonated polyimide membrane in this patent has excellent power generation characteristics and is therefore suitable as a polymer electrolyte membrane for PEFC. It is.

Figure 2006070116
Figure 2006070116

本発明は、プロトン伝導性が高く、耐熱性が高く、機械的強度が大きい固体電解質である、ポリイミドで、陽イオン交換体として、また各種電解用隔膜等とした場合、ガス及び液体に対するバリヤー性が大きく、特に燃料電池用電解質膜として優れた性質を有する。   The present invention is a solid electrolyte with high proton conductivity, high heat resistance, and high mechanical strength. Polyimide, as a cation exchanger, and as a diaphragm for various electrolysis, barrier properties against gases and liquids. In particular, it has excellent properties as an electrolyte membrane for fuel cells.

は、ポリイミド膜について50℃における湿度と伝導度の関係を表す図である。These are figures showing the relationship between humidity and conductivity at 50 ° C. for polyimide films. は、ポリイミド膜について湿度50%、80%と100%における温度と伝導度の関係を示す図である。These are figures which show the relationship between the temperature and conductivity in 50% of humidity, 80%, and 100% about a polyimide film. は、実施例8で製作したポリイミド膜を用いた燃料電池の発電特性を示す図である。These are figures which show the electric power generation characteristic of the fuel cell using the polyimide membrane manufactured in Example 8. FIG.

Claims (9)

下記一般式(1)で示される構造単位の繰り返しを有するスルホン化芳香族ポリイミド。
Figure 2006070116
但し、Ar1は少なくとも1つ以上の芳香環を有する4価の基であり、Ar2は3価のベンゼン環及び3価のナフタレン環であり、Xは下記一般式で示される少なくとも一方の基であり、
Figure 2006070116
Yは、水素原子、ハロゲン原子、スルホン酸基、又は下記式(3)〜(16)に示されるいずれか1つの基であり、pは0又は1(但し、Yが水素原子又はハロゲン原子のときは1)の整数である。
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
但し、(3)〜(16)におけるnは1〜2の整数
A sulfonated aromatic polyimide having repeating structural units represented by the following general formula (1).
Figure 2006070116
However, Ar1 is a tetravalent group having at least one aromatic ring, Ar2 is a trivalent benzene ring and a trivalent naphthalene ring, and X is at least one group represented by the following general formula. ,
Figure 2006070116
Y is a hydrogen atom, a halogen atom, a sulfonic acid group, or any one group represented by the following formulas (3) to (16), and p is 0 or 1 (provided that Y is a hydrogen atom or a halogen atom) Sometimes it is an integer of 1).
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
Figure 2006070116
However, n in (3)-(16) is an integer of 1-2.
Xが次の式(17)で示される基である請求項1記載のスルホン化芳香族ポリイミド。
Figure 2006070116
(但し、Zは芳香族環が直接結合、‐O‐、‐S‐、‐SO2‐、‐CF2‐、‐C(CF3)2‐を表す。またmは1〜30、nは1〜2の整数を表す。)
The sulfonated aromatic polyimide according to claim 1, wherein X is a group represented by the following formula (17).
Figure 2006070116
(However, Z represents an aromatic ring directly bonded, —O—, —S—, —SO 2 —, —CF 2 —, —C (CF 3) 2 —, m is 1 to 30, and n is 1 to 2. Represents an integer.)
=Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない2価又は3価の基で、置換されている請求項1又は請求項2記載のスルホン化芳香族ポリイミド。   90% by mole or less of the groups constituting = Ar2-C (O) -X is substituted with a divalent or trivalent group having an aromatic ring and not bound to a sulfonic acid group The sulfonated aromatic polyimide according to claim 1 or 2. =Ar2‐C(O)‐Xを構成する基のうち、2〜90モル%が、芳香環を有し、且つスルホン酸基を結合していない2価の基で、置換されている請求項3記載のスルホン化芳香族ポリイミド。   2 to 90 mol% of the groups constituting = Ar2-C (O) -X are substituted with a divalent group having an aromatic ring and not bound to a sulfonic acid group. 3. The sulfonated aromatic polyimide according to 3. =Ar2‐C(O)‐Xを構成する基のうち、2〜30モル%が、芳香環を有し、且つスルホン酸基を結合していない3価の基で、置換されている請求項3記載のスルホン化芳香族ポリイミド。   2 to 30 mol% of the groups constituting = Ar2-C (O) -X are substituted with a trivalent group having an aromatic ring and not bound to a sulfonic acid group 3. The sulfonated aromatic polyimide according to 3. =Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない2価及び/又は3価の基で、置換されているポリイミドにおいて、前記=Ar2‐C(O)‐Xを構成する基が、ポリイミド鎖中に統計的に分散して存在する請求項3記載のスルホン化芳香族ポリイミド。   90% by mole or less of the groups constituting = Ar2-C (O) -X is substituted with a divalent and / or trivalent group having an aromatic ring and not bound to a sulfonic acid group. 4. The sulfonated aromatic polyimide according to claim 3, wherein the groups constituting the = Ar2-C (O) -X are statistically dispersed in the polyimide chain. =Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない2価及び/又は3価の基で、置換されているポリイミドにおいて、前記=Ar2‐C(O)‐Xを構成する基が、ポリイミド鎖中にブロック状に偏在して存在する請求項3記載のスルホン化芳香族ポリイミド。   90% by mole or less of the groups constituting = Ar2-C (O) -X is substituted with a divalent and / or trivalent group having an aromatic ring and not bound to a sulfonic acid group. The sulfonated aromatic polyimide according to claim 3, wherein the group constituting the = Ar2-C (O) -X is present in a block-like manner in a polyimide chain. =Ar2‐C(O)‐Xを構成する基のうち、90モル%以下が、芳香環を有し、且つスルホン酸基を結合していない3価の基で、置換されている架橋構造を有する請求項3,5及び6のうち、いずれか1項に記載のポリイミド。   = Ar2-C (O) -X is a cross-linked structure in which 90 mol% or less is substituted with a trivalent group having an aromatic ring and not bound to a sulfonic acid group. The polyimide according to any one of claims 3, 5, and 6. 請求項1乃至8記載のスルホン化芳香族ポリイミドのうち、いずれか1に記載のスルホン化芳香族ポリイミドよりなる電解質膜。   The electrolyte membrane which consists of a sulfonated aromatic polyimide of any one among the sulfonated aromatic polyimides of Claim 1 thru | or 8.
JP2004253606A 2004-08-31 2004-08-31 Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide Pending JP2006070116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004253606A JP2006070116A (en) 2004-08-31 2004-08-31 Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004253606A JP2006070116A (en) 2004-08-31 2004-08-31 Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide

Publications (1)

Publication Number Publication Date
JP2006070116A true JP2006070116A (en) 2006-03-16

Family

ID=36151081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004253606A Pending JP2006070116A (en) 2004-08-31 2004-08-31 Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide

Country Status (1)

Country Link
JP (1) JP2006070116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209157A (en) * 2009-03-06 2010-09-24 Tokyo Metropolitan Univ Grafted polyimide electrolyte
JP2011213763A (en) * 2010-03-31 2011-10-27 Tokyo Metropolitan Univ Grafted polyimide electrolyte
CN105085913A (en) * 2015-08-17 2015-11-25 西南科技大学 Preparation method of sulfonated polyimide (SPI) proton conducting membrane containing branched structure
US9985309B2 (en) 2011-04-14 2018-05-29 Kaneka Corporation High-molecular-weight electrolyte and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209157A (en) * 2009-03-06 2010-09-24 Tokyo Metropolitan Univ Grafted polyimide electrolyte
JP2011213763A (en) * 2010-03-31 2011-10-27 Tokyo Metropolitan Univ Grafted polyimide electrolyte
US9985309B2 (en) 2011-04-14 2018-05-29 Kaneka Corporation High-molecular-weight electrolyte and use thereof
CN105085913A (en) * 2015-08-17 2015-11-25 西南科技大学 Preparation method of sulfonated polyimide (SPI) proton conducting membrane containing branched structure

Similar Documents

Publication Publication Date Title
Zhai et al. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application
Hu et al. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application
JP5499276B2 (en) Polyimide resin and electrolyte membrane
Wang et al. Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes
Chen et al. Synthesis and properties of novel side-chain-sulfonated polyimides from bis [4-(4-aminophenoxy)-2-(3-sulfobenzoyl)] phenyl sulfone
Hu et al. Synthesis and properties of novel sulfonated (co) polyimides bearing sulfonated aromatic pendant groups for PEFC applications
Liu et al. Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes
Chen et al. Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis (aminophenoxyphenyl) sulfone
Fang Polyimide proton exchange membranes
JP4554179B2 (en) Production method and use of crosslinked sulfonated polyimide
Fang et al. Sulfonated polyimides: synthesis, proton conductivity and water stability
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JP4029931B2 (en) Electrolyte membrane containing alkoxysulfonated aromatic polyimide
JP2007302741A (en) Polyimide film and polymer electrolyte membrane
JP4686719B2 (en) Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane
JP2007302717A (en) Sulfonated aromatic polyimide, electrolyte membrane and solid state electrolyte for fuel cell, and fuel cell
JP2006070116A (en) Sulfonated aromatic polyimide and electrolyte membrane made from the polyimide
JP2003068326A (en) Novel polymer electrolytic film for fuel cell
Rusanov et al. Sulfonated polynaphthylimides as proton-conducting membranes for fuel cells
JP5421564B2 (en) Method for producing copolymer, copolymer, and electrolyte using the copolymer
JP4608363B2 (en) Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane
JP4545708B2 (en) Sulfonated aromatic polyimide
JP2006265497A (en) Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
Zhu et al. Synthesis and properties of novel sulfonated polyimides containing phthalazinone moieties for PEMFC