JP2006152009A - Sulfonated aromatic polyimide and electrolyte film composed of the same - Google Patents

Sulfonated aromatic polyimide and electrolyte film composed of the same Download PDF

Info

Publication number
JP2006152009A
JP2006152009A JP2004334205A JP2004334205A JP2006152009A JP 2006152009 A JP2006152009 A JP 2006152009A JP 2004334205 A JP2004334205 A JP 2004334205A JP 2004334205 A JP2004334205 A JP 2004334205A JP 2006152009 A JP2006152009 A JP 2006152009A
Authority
JP
Japan
Prior art keywords
group
polyimide
sulfonated
sulfonic acid
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004334205A
Other languages
Japanese (ja)
Inventor
Kenichi Okamoto
健一 岡本
Hidetoshi Kita
英敏 喜多
Kazuhiro Tanaka
一宏 田中
Tsubame In
燕 尹
Morifumi Chin
守文 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2004334205A priority Critical patent/JP2006152009A/en
Publication of JP2006152009A publication Critical patent/JP2006152009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sulfonated aromatic polyimide having high endurance under high-temperature acidic environment, excellent in mechanical strength, having high proton conductivity under low humidity and a large barrier property to a gas and a liquid when formed as a film. <P>SOLUTION: The sulfonated polyimide has a structure in which sulfonic acid groups do not exist on the main chain and aromatic rings to which the side chains where sulfonic acid groups exist among the aromatic ring constituting the main chain join to aromatic rings forming imide rings through ether bonds, sulfide bonds or sulfonyl bonds. A cation exchanger and an electrolyte film for fuel cells are each composed of the polyimide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規なスルホン化芳香族ポリイミドに係る。また該ポリイミドよりなる陽イオン交換体、特に電解質膜に関する。   The present invention relates to a novel sulfonated aromatic polyimide. The present invention also relates to a cation exchanger made of the polyimide, particularly to an electrolyte membrane.

芳香族ジアミノ化合物は、ポリアミドやポリイミドなどの樹脂製造用の原料として用いられる。芳香族ポリイミドは、一般にオキシジアニリンのような芳香族ジアミンとピロメリット酸無水物のようなテトラカルボン酸二無水物との重縮合により得られ、ジアミン残基と酸無水物残基との間の電荷移動相互作用に基づく強い分子間相互作用のため、薄膜形成能に優れ、機械的強度、耐熱性、耐溶剤性そして化学的安定性に優れるので、スーパエンジニアリングプラスチックス、層間絶縁材料等の電子材料あるいは中空糸気体分離膜などで利用されている。これらの優れた特性は、イオン交換膜や燃料電池用の電解質膜においても必要なものであり、スルホン酸基(スルホ基ともいう)やリン酸基のようなイオン交換基を有するポリイミドは良好な燃料電池用電解質膜などとして期待される。しかし、ポリイミドは、酸性水溶液中でイミド環が加水分解し易い欠点があり、スルホン化ポリフェニレンやスルホン化ポリエーテルスルホンなどのその他のスルホン化芳香族炭化水素系高分子に比べて大きな弱点であり、その解決が重大な課題である。   The aromatic diamino compound is used as a raw material for resin production such as polyamide and polyimide. Aromatic polyimide is generally obtained by polycondensation of an aromatic diamine such as oxydianiline and a tetracarboxylic dianhydride such as pyromellitic anhydride, and between the diamine residue and the acid anhydride residue. Because of the strong intermolecular interaction based on the charge transfer interaction, it has excellent thin film forming ability, mechanical strength, heat resistance, solvent resistance, and chemical stability, so super engineering plastics, interlayer insulation materials, etc. It is used in electronic materials or hollow fiber gas separation membranes. These excellent properties are also necessary for ion exchange membranes and electrolyte membranes for fuel cells, and polyimides having ion exchange groups such as sulfonic acid groups (also called sulfo groups) and phosphoric acid groups are good. It is expected as an electrolyte membrane for fuel cells. However, polyimide has a drawback that the imide ring is easily hydrolyzed in an acidic aqueous solution, which is a major weakness compared to other sulfonated aromatic hydrocarbon polymers such as sulfonated polyphenylene and sulfonated polyethersulfone, The solution is a critical issue.

そこで1,4,5,8‐ナフタレンテトラカルボン酸二無水物(NTDA)からの六員環イミド環を有するポリイミドがフタル酸無水物からの五員環イミド環より耐加水分解性に優れているとの提案がなされ(非特許文献1)、例えば、特許文献1では、NTDAと次記化学式(19)〜(21)で示されるスルホン化ジアミンおよび非スルホン化ジアミン(たとえば、オキシジアニリン)との共重合ポリイミド膜が燃料電池用の電解質膜として優れていると開示されている。しかし、これらのスルホン化ポリイミド膜の耐水性は十分なものではなく、特許文献2では、化学式(22)で示されるスルホン化ジアミンからのスルホン化共重合ポリイミド膜がさらに優れた耐水性を有することを開示している。これは、電子吸引性のスルホ基がアミノ基の結合しているフェニル環から離れたフェニル環に結合しているのでアミンの塩基性が高く、イミド環の耐加水分解性が増すためである(例えば、非特許文献2)と考えられる。   Therefore, a polyimide having a 6-membered ring imide ring from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) is more resistant to hydrolysis than a 5-membered imide ring from phthalic anhydride. (Non-Patent Document 1), for example, in Patent Document 1, NTDA, sulfonated diamines represented by the following chemical formulas (19) to (21) and non-sulfonated diamines (for example, oxydianiline) and It is disclosed that the copolymerized polyimide membrane is excellent as an electrolyte membrane for a fuel cell. However, the water resistance of these sulfonated polyimide membranes is not sufficient, and in Patent Document 2, the sulfonated copolymerized polyimide membrane from the sulfonated diamine represented by the chemical formula (22) has further excellent water resistance. Is disclosed. This is because the electron-withdrawing sulfo group is bonded to the phenyl ring away from the phenyl ring to which the amino group is bonded, so that the basicity of the amine is high and the hydrolysis resistance of the imide ring is increased ( For example, it is considered Non-Patent Document 2).

Figure 2006152009
Figure 2006152009

Figure 2006152009
(DはO、S、CH、またはC(CF等、R〜Rは水素原子またはアルキル基、そして、Arはスルホ基を有する芳香環残基)
上記のスルホン化ポリイミドは、いずれもスルホ基が高分子主鎖に直接結合している場合である。パーフルオロスルホン酸系高分子電解質膜では、側鎖のフルオロエーテル末端にスルホ基が結合し、親水性のスルホ基部が疎水性の主鎖部からミクロ相分離し、親水性のイオンチャンネルを形成していると考えられている。同様の効果を期待してこれまでに、芳香族炭化水素系高分子の側鎖にスルホ基を導入した側鎖型のスルホン化芳香族炭化水素系高分子膜が報告されている。例えば、化学式(23)で示される4‐(4‐スルホフェノキシ)ベンゾイル基を有するポリ‐1,4‐フェニレン(非特許文献3)、化学式(24)で示される2‐スルホベンゾイル基を有するポリスルホン(非特許文献4)、化学式(25)で示されるω‐スルホアルキルスルホニル基を有するポリスルホン(非特許文献5)、化学式(26)で示されるω‐スルホアルキル基を有するポリスルホンなどの芳香族炭化水素系ポリマー(特許文献3)が挙げられる。
Figure 2006152009
(D 2 is O, S, CH 2 or C, (CF 3) 2, etc., R 4 to R 7 is a hydrogen atom or an alkyl group and,, Ar is an aromatic ring residue having a sulfo group)
All of the sulfonated polyimides described above are cases in which the sulfo group is directly bonded to the polymer main chain. In a perfluorosulfonic acid polymer electrolyte membrane, a sulfo group is bonded to the fluoroether end of the side chain, and the hydrophilic sulfo group part is microphase-separated from the hydrophobic main chain part to form a hydrophilic ion channel. It is thought that With the expectation of the same effect, a side chain type sulfonated aromatic hydrocarbon polymer film in which a sulfo group is introduced into a side chain of an aromatic hydrocarbon polymer has been reported so far. For example, poly-1,4-phenylene having a 4- (4-sulfophenoxy) benzoyl group represented by the chemical formula (23) (Non-patent Document 3), polysulfone having a 2-sulfobenzoyl group represented by the chemical formula (24) (Non-patent document 4), polysulfone having an ω-sulfoalkylsulfonyl group represented by chemical formula (25) (non-patent document 5), and polysulfone having an ω-sulfoalkyl group represented by chemical formula (26). Examples thereof include hydrogen-based polymers (Patent Document 3).

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
ポリイミドにおいても化学式(27)で示されるω‐スルホアルコキシ基を有するジアミン(非特許文献6、特許文献4)及び化学式(28)で示されるスルホフェノキシ基を有するジアミン(非特許文献7)の合成とそのポリイミドの合成と物性が報告されている。これらの側鎖型スルホン化ポリイミド膜はミクロ相分離構造を有し、比較的優れた高温耐水性を有することが明らかにされている。
Figure 2006152009
Synthesis of a diamine having a ω-sulfoalkoxy group represented by the chemical formula (27) (Non-patent Documents 6 and 4) and a diamine having a sulfophenoxy group represented by the chemical formula (28) (Non-patent Document 7). And the synthesis and physical properties of its polyimide have been reported. These side-chain sulfonated polyimide membranes have a microphase separation structure and have been shown to have relatively good high temperature water resistance.

Figure 2006152009
Figure 2006152009

Figure 2006152009
その他に、側鎖にスルホ基を有するものとして、主鎖の芳香族環にアルキレンエーテル結合を介してスルホン化芳香族基を結合したポリイミド(特許文献5)や下記一般式(29)
Figure 2006152009
In addition, a polyimide having a sulfo group in the side chain and a sulfonated aromatic group bonded to the aromatic ring of the main chain via an alkylene ether bond (Patent Document 5) or the following general formula (29)

Figure 2006152009
(Rは、アルキレン、ハロゲン化アルキレン、アリーレン及びハロゲン化アリーレン、又はエーテル結合を含むもの)
に示される側鎖にスルホン酸基を有するポリイミドが示されている(特許文献6)。これらのイオン交換体のあるものは、比較的高温下での耐久性や耐加水分解性を有しているが、更なる耐加水分解性が望まれる。また、特許文献7においては、下記一般式(30)で示される側鎖スルホ基を有する広範な種類(ポリエーテル、ポリケトン、ポリエーテルケトン、ポリスルホン等)の高分子電解質膜が示されている。
Figure 2006152009
(R includes alkylene, alkylene halide, arylene and halogenated arylene, or ether bond)
Shows a polyimide having a sulfonic acid group in the side chain shown in (Patent Document 6). Some of these ion exchangers have durability at relatively high temperatures and hydrolysis resistance, but further hydrolysis resistance is desired. Patent Document 7 discloses a wide variety of polymer electrolyte membranes (polyether, polyketone, polyetherketone, polysulfone, etc.) having a side chain sulfo group represented by the following general formula (30).

Figure 2006152009
(Xは単結合、電子吸引基または電子供与基、Rは単結合、‐(CH‐または‐(CF‐)
この中には、ポリイミドも含まれてはいるが、耐熱水性、ラジカル耐性に優れる好ましい繰り返し単位高分子としては、ポリイミドは除外されており、具体的な記載は全くなされていない。イミド環の加水分解性に問題があるからと考えられる。ポリフェニレン、ポリエーテル、ポリケトン、ポリエーテルケトン、ポリスルホンなどの(特許文献7において好ましいものとして記載されている)高分子は、ポリイミドに比べて繰り返し単位の耐加水分解性には優れるが、分子間相互作用がポリイミドほど強くなく、薄膜形成能や耐溶剤性に劣る。このようなスルホン化高分子では、水は優れた溶剤であり、プロトン伝導性を高めるためスルホ基を多く導入しイオン交換容量を高くすると、膜が水に溶解もしくは著しく膨潤しやすく、またこれを抑えるため架橋構造を導入すると膜が乾燥時にもろくなるなどの欠点があり、その改善が必要とされている。
Figure 2006152009
(X is a single bond, electron-withdrawing group or electron-donating group, R is a single bond,-(CH 2 ) q-or- (CF 2 ) q- )
Although polyimide is included in this, polyimide is excluded as a preferable repeating unit polymer excellent in hot water resistance and radical resistance, and no specific description is made at all. It is thought that there is a problem with the hydrolyzability of the imide ring. Polymers such as polyphenylene, polyether, polyketone, polyetherketone, polysulfone and the like (described as preferred in Patent Document 7) are superior in resistance to hydrolysis of repeating units compared to polyimide. The action is not as strong as that of polyimide, and the film forming ability and solvent resistance are poor. In such a sulfonated polymer, water is an excellent solvent. If a large number of sulfo groups are introduced to increase proton conductivity and the ion exchange capacity is increased, the membrane is easily dissolved in water or significantly swelled. In order to suppress this, there is a drawback that the introduction of a crosslinked structure causes the membrane to become brittle when dried, and there is a need for improvement.

ポリイミドの強い分子間相互作用に基づく優れた特性を活かし、強靱で可橈性に富むスルホン化ポリイミド薄膜で、かつイミド環の耐加水分解性を著しく向上させ、優れた高温耐水性を有する電解質膜の開発が必要とされている。これまでに開発されたスルホン化ポリイミド膜は、長期間使用すると、イミド環の加水分解が生じ、分子量が低下するため、膜は機械的特性を失うことがある。また、高温使用中、経時的にスルホ基の脱離を生じ、イオン交換容量の低下を来たし、性能が低下するという現象が見られることがある。これらの現象は、特に高温で顕著になる。これらのスルホン化ポリイミド膜の中には、80℃程度までの使用条件下では高分子電解質膜として有効に利用可能のものもあるが、更に高温、即ち100℃を超える温度下ではやはり経時的劣化を生じることが分かった。   Utilizing the excellent properties based on the strong intermolecular interaction of polyimide, it is a tough and flexible sulfonated polyimide thin film that significantly improves the hydrolysis resistance of the imide ring and has an excellent high temperature water resistance Development is needed. When sulfonated polyimide membranes developed so far are used for a long period of time, hydrolysis of the imide ring occurs and the molecular weight decreases, so the membrane may lose mechanical properties. In addition, during use at a high temperature, there may be a phenomenon that the sulfo group is eliminated over time, the ion exchange capacity is lowered, and the performance is lowered. These phenomena are particularly noticeable at high temperatures. Some of these sulfonated polyimide membranes can be effectively used as polymer electrolyte membranes under operating conditions up to about 80 ° C., but they deteriorate with time at higher temperatures, ie, temperatures exceeding 100 ° C. It was found that

そこで、100℃以上の温度下で用いても、長期耐久性と機械的強度を有し、特に幅広い温度領域で使用可能であり、しかも低湿度下でのプロトン伝導性低下の少ない燃料電池用の電解質膜として使用に耐え得る高分子電解質膜の開発が望まれている。   Therefore, even when used at a temperature of 100 ° C. or higher, it has long-term durability and mechanical strength, can be used in a wide temperature range, and has a low proton conductivity decrease under low humidity. Development of a polymer electrolyte membrane that can withstand use as an electrolyte membrane is desired.

本発明者は敍上の課題を解決するため、鋭意研究を重ねた結果、特定のジアミン化合物をモノマーとして用いた場合、極めて耐熱性の高いすなわち、100〜120℃の温度条件下でも高い機械的強度を保ち、しかも経時的劣化の少ない陽イオン交換膜、特に燃料電池用電解質膜に適するスルホン化ポリイミド膜を得ることができることを見出し、本発明を完成するに至った。   The present inventor has conducted extensive research to solve the problem of the problem. As a result, when a specific diamine compound is used as a monomer, the present inventor has extremely high heat resistance, that is, high mechanical properties even at a temperature of 100 to 120 ° C. The inventors have found that a cation exchange membrane that maintains strength and has little deterioration over time, in particular, a sulfonated polyimide membrane suitable for an electrolyte membrane for fuel cells can be obtained, and the present invention has been completed.

すなわち、本発明はスルホン酸基を側鎖に有する新規なポリイミドに関する。
特表2000‐510511 特開2003‐64181号公報 特開2002‐110174号公報 特開2004‐155998号公報 特開2004‐35891号公報 特開2004‐107484号公報 特開2004‐256797号公報 ポリマー 第42巻 5097‐5105頁(2001) ジャーナル メンブラン サイエンス 第230巻 111‐120頁(2004) ソリッド ステート イオニクス 第147巻 189‐194頁(2002) マクロモレキュラー ラピッド コミュニケーションズ 第23巻 896‐900頁(2002) ジャーナル メンブラン サイエンス 第230巻 61‐70頁(2004) ジャーナル マテリアルズ ケミストリー 第14巻1062‐1070頁(2004) トランザクション マテリアルズ リサーチ ソサイアティ ジャパン 第29巻 2541−2546頁(2004)
That is, the present invention relates to a novel polyimide having a sulfonic acid group in the side chain.
Special table 2000-551111 Japanese Patent Laid-Open No. 2003-64181 JP 2002-110174 A Japanese Patent Laid-Open No. 2004-155998 JP 2004-35891 A JP 2004-107484 A Japanese Patent Laid-Open No. 2004-256797 Polymer vol. 42, pages 5097-5105 (2001) Journal Membrane Science Vol. 230, pp. 111-120 (2004) Solid State Ionics, Vol. 147, 189-194 (2002) Macromolecular Rapid Communications, Vol. 23, 896-900 (2002) Journal Membrane Science Vol. 230, pp. 61-70 (2004) Journal Materials Chemistry Vol. 14, pp. 1062-1070 (2004) Transaction Materials Research Society Japan Vol. 29, pages 2541-2546 (2004)

本発明の目的は、上記技術背景に鑑み、高い機械的強度を有し、且つ、耐熱性、耐久性のあるポリイミド系陽イオン交換体、特に各種電気化学反応、なかでも燃料電池用等の電解質膜に用いた場合、優れた効果を期待できるポリイミド系イオン交換体を提供するにある。   In view of the above technical background, the object of the present invention is to provide a polyimide-based cation exchanger having high mechanical strength and heat resistance and durability, particularly various electrochemical reactions, in particular, electrolytes for fuel cells and the like. When it uses for a film | membrane, it exists in providing the polyimide-type ion exchanger which can anticipate the outstanding effect.

すなわち、本発明者らはその目的のため側鎖にスルホン酸基を有するポリイミド系陽イオン交換体及び該陽イオン交換体の一方の構成成分となる側鎖にスルホン酸基を有する特殊なジアミノ化合物をすでに提供した。本発明は、更に該特殊なジアミノ化合物よりなるポリイミド及び該ジアミノ化合物とスルホン酸基を有しないジアミノ化合物との共重縮合により、更に機械的強度も高く、高温下で耐久性のあるポリイミドを提供する。   That is, the inventors of the present invention have a polyimide-based cation exchanger having a sulfonic acid group in the side chain for the purpose, and a special diamino compound having a sulfonic acid group in the side chain which is one component of the cation exchanger. Already provided. The present invention further provides a polyimide comprising the special diamino compound and a polyimide having higher mechanical strength and durability at high temperatures by copolycondensation of the diamino compound and a diamino compound having no sulfonic acid group. To do.

本発明の最大の特徴はジ(アミノアリールオキシ)、ジ(アミノアリールチオ)又はジ(アミノアリールスルホニル)芳香族カルボニル化合物を一成分として得られるスルホン化ポリイミドにある。   The greatest feature of the present invention is a sulfonated polyimide obtained by using a di (aminoaryloxy), di (aminoarylthio) or di (aminoarylsulfonyl) aromatic carbonyl compound as one component.

本発明はそれぞれ次に示す構成よりなる。   The present invention has the following configurations.

〔1〕本発明は、下記式(1)に示される構造単位を分子中に有することを特徴とするスルホン化芳香族ポリイミド及び該ポリイミドよりなる電解質膜(以下単にスルホン化芳香族ポリイミドともいう)である。   [1] In the present invention, a sulfonated aromatic polyimide having a structural unit represented by the following formula (1) in the molecule and an electrolyte membrane comprising the polyimide (hereinafter also simply referred to as a sulfonated aromatic polyimide) It is.

Figure 2006152009
但し、Arは4価の芳香族基、Arは次の(a)〜(d)に示される2価の基のうちいずれかの基。
Figure 2006152009
However, Ar a tetravalent aromatic group, or a group of divalent radicals Ar 1 is shown in the following (a) ~ (d).

Figure 2006152009
(但し、Qは、‐O‐、‐S‐、‐CO‐、‐SO‐、‐CH‐、‐CF‐、‐C(CH‐、‐C(CF‐から選ばれる基)、Dは‐O‐、‐S‐又は‐SO‐から選ばれる基、Rは水素原子又は電子吸引性基、Xはスルホン酸基を有し、且つ更に置換基を有することある芳香族炭化水素基をそれぞれ表す。
Figure 2006152009
(However, Q is —O—, —S—, —CO—, —SO 2 —, —CH 2 —, —CF 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — D 1 is a group selected from —O—, —S— or —SO 2 —, R 1 is a hydrogen atom or an electron-withdrawing group, X has a sulfonic acid group, and further has a substituent. Each represents an aromatic hydrocarbon group which may have

〔2〕本発明は、また上記発明〔1〕項におけるXが下記式(2)で示される(e)又は(f)のいずれかであることを特徴とするスルホン化芳香族ポリイミドである。   [2] The present invention is also a sulfonated aromatic polyimide characterized in that X in the above item [1] is either (e) or (f) represented by the following formula (2).

Figure 2006152009
(但し、Yは水素原子、ハロゲン原子、スルホン酸基又は下記式(3)〜(16)に示す基のいずれか1つの基、pは0又は1の数〔但し、Yが水素原子又はハロゲン原子の時は1〕である。)
Figure 2006152009
(Where Y is a hydrogen atom, halogen atom, sulfonic acid group or any one of groups shown in the following formulas (3) to (16), p is a number of 0 or 1 [where Y is a hydrogen atom or halogen, 1] for atoms.

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
(但し、(3)〜(16)におけるnは1〜2の整数を表す、またTは‐O‐又は‐S‐を表す)。
Figure 2006152009
(However, n in (3) to (16) represents an integer of 1 to 2, and T represents -O- or -S-).

〔3〕更に本発明は、前記本発明〔1〕項に示されたXが下記式(17)で表される基であることを特徴とするスルホン化芳香族ポリイミドである。   [3] Further, the present invention is a sulfonated aromatic polyimide characterized in that X shown in the item [1] of the present invention is a group represented by the following formula (17).

Figure 2006152009
(但し、Zは直接芳香族環が結合したもの、‐O‐、‐S‐、‐SO‐、‐CO‐、‐CH‐、‐CF‐、又は‐C(CF‐を表す。またmは1〜10、nは1〜2の整数を表す)。
Figure 2006152009
(Where Z is a direct aromatic ring, -O-, -S-, -SO 2- , -CO-, -CH 2- , -CF 2- , or -C (CF 3 ) 2- M represents 1 to 10, and n represents an integer of 1 to 2).

〔4〕本発明は、また前記本発明〔3〕項に示されたXがスルホン酸基の置換されたポリフェニレンオキサイド鎖又はポリフェニレンスルフィド鎖よりなることを特徴とするスルホン化芳香族ポリイミドである。   [4] The present invention is a sulfonated aromatic polyimide characterized in that X shown in the item [3] of the present invention comprises a polyphenylene oxide chain or a polyphenylene sulfide chain substituted with a sulfonic acid group.

〔5〕本発明は、下記式(1)及び(18)で示される構造単位を有することを特徴とする前記本発明〔1〕項乃至〔4〕項に記載したスルホン化芳香族ポリイミドである。   [5] The present invention is the sulfonated aromatic polyimide described in the above items [1] to [4], wherein the sulfonated aromatic polyimide has structural units represented by the following formulas (1) and (18). .

Figure 2006152009
Figure 2006152009

Figure 2006152009
(但し、Ar、Ar、D、R及びXは、それぞれ発明〔1〕項乃至〔4〕項に同じ、また、Arは、スルホン酸基を有しない2価の芳香族基)
〔6〕本発明は、また前記発明〔5〕項における式(1)の構造単位対式(18)の構造単位の割合が10〜90対90〜10であることを特徴とするスルホン化芳香族ポリイミドである。
Figure 2006152009
(However, Ar, Ar 1 , D 1 , R 1 and X are the same as those in the invention [1] to [4], respectively, and Ar 2 is a divalent aromatic group having no sulfonic acid group)
[6] The sulfonated fragrance is characterized in that the ratio of the structural unit of the formula (1) to the structural unit of the formula (18) in the item [5] is 10 to 90 to 90 to 10. It is a group polyimide.

〔7〕更に本発明は、上記発明〔5〕項又は〔6〕項に記載されたArのうち、2〜30%は、スルホン酸基を有しない3価の芳香族基で置換されており、架橋構造を形成してなることを特徴とするスルホン化芳香族ポリイミドである。 [7] Further, in the present invention, 2 to 30% of Ar 2 described in the above item [5] or [6] is substituted with a trivalent aromatic group having no sulfonic acid group. It is a sulfonated aromatic polyimide characterized by forming a crosslinked structure.

〔8〕本発明は前記〔1〕項乃至〔7〕項の発明により得られるスルホン化芳香族ポリイミドよりなる陽イオン交換体である。   [8] The present invention is a cation exchanger comprising a sulfonated aromatic polyimide obtained by the inventions of the above [1] to [7].

〔9〕更に本発明は上記発明〔8〕項記載の陽イオン交換膜よりなる燃料電池用電解質膜でもある。   [9] The present invention is also an electrolyte membrane for a fuel cell comprising the cation exchange membrane according to the above item [8].

本発明のジ(アミノアリールオキシ)、ジ(アミノアリールチオ)又はジ(アミノアリールスルホニル)芳香族カルボニル化合物を一方の成分とするポリイミドは、機械的強度が優れ、且つ主鎖を構成する芳香族環に直接スルホン酸基が結合しているポリイミド、エーテル結合又はアルキレン結合を介してアルキル基又は芳香族環にスルホン酸基が結合したポリイミド、或いはスルホン酸基を有する側鎖芳香環がカルボニル又はスルホニル基などの電子吸引性基を介してアミノフェニル基に直接結合したポリイミドなどに比べて、高温下での酸性水溶液中など過酷な条件下で用いた場合の加水分解による高分子鎖の切断及びスルホン酸基の脱離等経時的劣化が少なく、しかも低湿度下でのプロトン伝導性低下が少なく、燃料電池電解質膜として使用した場合、燃料の水素ガス等とメタノール等の液体に対して高いバリヤー性を併せ持つ優れた電解質膜とすることができる。すなわち、本発明のポリイミドの場合、主鎖を構成する部分に親水性の基であるスルホン酸基は存在せず、スルホン酸基を有する側鎖芳香環はカルボニル基を介して主鎖の一部を構成するフェニル環と結合しており、該フェニル環は、更にアリールオキシ基、アリールチオ基又はアリールスルホニル基を介してアミノ芳香環に結合しているため、疎水性のポリイミド高分子鎖が比較的フレキシブルであり、且つ親水性のスルホン酸基含有側鎖芳香環がイミド環から遠く離れた構造になっているので、疎水性の主鎖部と親水性の側鎖基部がミクロ相分離構造をとり易い。そのため、ポリイミド主鎖部の疎水性ドメインへ水収着量は少なく、電解質膜としての利用時に主鎖が加水分解を受け難くなるのである。更に、電子吸引性基であるカルボニル基を有する芳香環にスルホン酸基が結合されることにより、スルホン酸基の加水分解が起こり難いという特徴もある。   The polyimide having one component of the di (aminoaryloxy), di (aminoarylthio) or di (aminoarylsulfonyl) aromatic carbonyl compound of the present invention has excellent mechanical strength and constitutes the main chain. A polyimide having a sulfonic acid group directly bonded to the ring, a polyimide having a sulfonic acid group bonded to an alkyl group or an aromatic ring via an ether bond or an alkylene bond, or a side chain aromatic ring having a sulfonic acid group is carbonyl or sulfonyl Compared to polyimides directly bonded to aminophenyl groups through electron-withdrawing groups such as groups, the polymer chains are cleaved by hydrolysis and sulfone when used under harsh conditions such as in acidic aqueous solutions at high temperatures. There is little degradation over time, such as elimination of acid groups, and there is little decrease in proton conductivity under low humidity, making it a fuel cell electrolyte membrane. When used, it can be an excellent electrolyte membrane combines high barrier properties to liquids of the hydrogen gas or the like and the methanol and the like of the fuel. That is, in the case of the polyimide of the present invention, there is no sulfonic acid group which is a hydrophilic group in the portion constituting the main chain, and the side chain aromatic ring having the sulfonic acid group is part of the main chain via the carbonyl group. The phenyl ring is further bonded to the amino aromatic ring via an aryloxy group, arylthio group or arylsulfonyl group, so that the hydrophobic polyimide polymer chain is relatively The flexible and hydrophilic sulfonic acid group-containing side chain aromatic ring has a structure far away from the imide ring, so that the hydrophobic main chain part and the hydrophilic side chain base part have a microphase separation structure. easy. Therefore, the water sorption amount is small in the hydrophobic domain of the polyimide main chain part, and the main chain becomes difficult to undergo hydrolysis when used as an electrolyte membrane. Furthermore, the sulfonic acid group is not easily hydrolyzed when the sulfonic acid group is bonded to an aromatic ring having a carbonyl group that is an electron-withdrawing group.

本発明は分子中に下記式(1)で表される構造単位を有することを必須とする。   The present invention essentially has a structural unit represented by the following formula (1) in the molecule.

Figure 2006152009
式(1)中、Arは後述する4価の芳香族基であり、Arは次の(a)〜(d)に示される2価の基のうちいずれかの基である。
Figure 2006152009
In formula (1), Ar is a tetravalent aromatic group described later, and Ar 1 is any one of the divalent groups represented by the following (a) to (d).

Figure 2006152009
(但し、Qは、‐O‐、‐S‐、‐CO‐、‐SO‐、‐CH‐、‐CF‐、‐C(CH‐、‐C(CF‐から選ばれる基)、
更に、Dは‐O‐、‐S‐又は‐SO‐から選ばれる基、Rは水素原子又はニトロ基、ニトリル基、エステル基などの電子吸引性基である。 また、Xはスルホン酸基を有し、且つ置換基を有することある芳香族炭化水素基である。ここで、「スルホン酸基を有し」とは、芳香族基に直接結合する場合のみでなく、置換基を介してスルホン酸基が結合している場合をも意味するものである。
Figure 2006152009
(However, Q is —O—, —S—, —CO—, —SO 2 —, —CH 2 —, —CF 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — A group selected from
Further, D 1 is a group selected from —O—, —S— or —SO 2 —, and R 1 is a hydrogen atom or an electron-withdrawing group such as a nitro group, a nitrile group or an ester group. X is an aromatic hydrocarbon group which has a sulfonic acid group and may have a substituent. Here, “having a sulfonic acid group” means not only a case where it is directly bonded to an aromatic group, but also a case where a sulfonic acid group is bonded via a substituent.

なお、Xは電子吸引性基であるカルボニル基を介して結合していることもポリイミドからスルホン酸基を脱離し難くするので重要である。   In addition, it is important that X is bonded via a carbonyl group which is an electron-withdrawing group because it makes it difficult to remove the sulfonic acid group from the polyimide.

この置換基Xには、次に示す如く、陽イオン交換基であるスルホン酸基を結合した芳香族環が存在していなければならない。   This substituent X must have an aromatic ring to which a sulfonic acid group that is a cation exchange group is bonded, as shown below.

置換基Xとしては、次の式(2)で表される(e)又は(f)が好適に用いられる。   As the substituent X, (e) or (f) represented by the following formula (2) is preferably used.

Figure 2006152009
(但し、Yは水素原子、ハロゲン原子、スルホン酸基又は下記式(3)〜(16)に示す基のいずれか1つの基、pは0又は1の数〔但し、Yが水素原子又はハロゲン原子の時は1〕である。)
Figure 2006152009
(Where Y is a hydrogen atom, halogen atom, sulfonic acid group or any one of groups shown in the following formulas (3) to (16), p is a number of 0 or 1 [where Y is a hydrogen atom or halogen, 1] for atoms.

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
(これら(3)乃至(16)において、nは1又は2の整数である、またTは‐O‐又は‐S‐を表す)。
Figure 2006152009
(In these (3) to (16), n is an integer of 1 or 2, and T represents —O— or —S—).

また、得られるポリイミドのイオン交換容量を大きくする意味からXは次の式(17)で示される基とすることも望ましい。   Further, X is preferably a group represented by the following formula (17) from the viewpoint of increasing the ion exchange capacity of the resulting polyimide.

Figure 2006152009
(但し、mは2〜10の整数、nは1〜2の整数、zは直接結合、‐O‐、‐S‐、‐SO‐、‐CO‐、‐CH‐、‐CF‐又は‐C(CF‐を表す。)
また、式(17)で示されるzが酸素であるポリフェニレンオキサイド等、重合鎖が存在する場合、該重合鎖があまり長くなると、ポリイミド化する場合に支障を生じ、十分な重合度が得られないので、前記式(17)におけるmは10程度まで、好ましくは2〜8である。
Figure 2006152009
(Where m is an integer of 2 to 10, n is an integer of 1 to 2, z is a direct bond, —O—, —S—, —SO 2 —, —CO—, —CH 2 —, —CF 2 — Or -C (CF 3 ) 2- .)
In addition, when a polymer chain such as polyphenylene oxide in which z is oxygen represented by formula (17) is present, if the polymer chain is too long, it may cause trouble when polyimide is formed and a sufficient degree of polymerization cannot be obtained. Therefore, m in the formula (17) is up to about 10, preferably 2 to 8.

以上説明した式(1)の構造単位は下記式(19)で示されるジ(アミノアリールオキシ)、ジ(アミノアリールチオ)又はジ(アミノアリールスルホニル)芳香族カルボニル化合物と芳香族テトラカルボン酸二無水物などの芳香族カルボン酸誘導体との縮合により形成される。   The structural unit of the formula (1) described above is composed of a di (aminoaryloxy), di (aminoarylthio) or di (aminoarylsulfonyl) aromatic carbonyl compound represented by the following formula (19) and an aromatic tetracarboxylic acid dicarboxylic acid. It is formed by condensation with an aromatic carboxylic acid derivative such as an anhydride.

Figure 2006152009
(但し、Ar、R、D及びXは式(1)に同じ)
本発明における上記モノマーの製造方法は、特に限定されるものではないが、次のスキームの例などの方法で製造することができる。
Figure 2006152009
(However, Ar 1 , R 1 , D 1 and X are the same as in formula (1))
Although the manufacturing method of the said monomer in this invention is not specifically limited, It can manufacture by methods, such as the example of the following scheme.

Figure 2006152009
すなわち、上記スキームの例におけるビフェニルにかえて、ベンゼンやナフタレン或いはその誘導体、ビフェニルエーテル、ポリフェニレンオキサイド、ビフェニルスルホン、ジフェニルメチレンなどを用いれば、それぞれ対応するジ(アミノアリールオキシ)芳香族カルボニル化合物が得られるのである。また、アミノフェノール類にかえてアミノチオフェノール類を用いれば、対応するジ(アミノアリールチオ)芳香族カルボニル化合物が得られる。また、このスルフィド基を適当な条件下で適当な酸化剤を用いて、スルホニル基に酸化すれば対応するジ(アミノアリールスルホニル)芳香族カルボニル化合物が得られる。
Figure 2006152009
That is, instead of biphenyl in the above scheme examples, benzene, naphthalene or derivatives thereof, biphenyl ether, polyphenylene oxide, biphenyl sulfone, diphenylmethylene, etc. are used to obtain the corresponding di (aminoaryloxy) aromatic carbonyl compounds. It is done. If aminothiophenols are used instead of aminophenols, the corresponding di (aminoarylthio) aromatic carbonyl compounds can be obtained. Further, when this sulfide group is oxidized to a sulfonyl group under an appropriate condition using an appropriate oxidizing agent, a corresponding di (aminoarylsulfonyl) aromatic carbonyl compound is obtained.

本発明においては、これらのジ(アミノアリールオキシ)、ジ(アミノアリールチオ)又はジ(アミノアリールスルホニル)芳香族カルボニル化合物をモノマーとして用いることにより、主鎖のイミド環からアリールオキシベンゾイル基、アリールチオベンゾイル基又はアリールスルホニルベンゾイル基を介して遠く離れた側鎖芳香環にのみスルホン酸基を有するポリイミドとなる。このため、本発明のスルホン化ポリイミドでは、主鎖を構成する芳香族環に直接スルホン酸基が結合しているポリイミド、エーテル結合又はアルキレン結合を介してアルキル基又は芳香族環にスルホン酸基が結合したポリイミド、或いはスルホン酸基を有する側鎖芳香環がカルボニル又はスルホニル基などの電子吸引性基を介してアミノフェニル基に直接結合したポリイミドなどに比べて、高温下での酸性水溶液中など過酷な条件下で用いた場合の加水分解による高分子鎖の切断及びスルホン酸基の脱離等経時的劣化が少ないのである。本発明者等は、その理由として主鎖を構成する部分に親水性の基であるスルホン酸基は存在せず、スルホン酸基を有する側鎖芳香環がカルボニル基を介して結合したフェニル環が更にアリールオキシ基、アリールチオ基又はアリールスルホニル基を介してアミノ芳香環に結合しており、疎水性のポリイミド高分子鎖が比較的フレキシブルであり、且つ親水性のスルホン酸基含有側鎖芳香環がイミド環から遠く離れた構造になっているので、疎水性の主鎖部と親水性の側鎖基部がミクロ相分離構造をとり易いため、ポリイミド主鎖部の疎水性ドメインへの水収着量は少なく、電解質膜としての利用時に主鎖の加水分解を受け難くしており、更に電子吸引性基のカルボニル基を有する芳香環にスルホン酸基が結合され、また一つの芳香環に複数のスルホン酸基が結合しており、スルホン酸基の加水分解が起こり難くしていると判断される。   In the present invention, by using these di (aminoaryloxy), di (aminoarylthio) or di (aminoarylsulfonyl) aromatic carbonyl compounds as monomers, an aryloxybenzoyl group, an aryl from the imide ring of the main chain. A polyimide having a sulfonic acid group only on a side-chain aromatic ring far away via a ruthiobenzoyl group or an arylsulfonylbenzoyl group. Therefore, in the sulfonated polyimide of the present invention, a sulfonic acid group is bonded to an alkyl group or an aromatic ring via a polyimide, an ether bond or an alkylene bond in which a sulfonic acid group is directly bonded to an aromatic ring constituting the main chain. Compared to bonded polyimides or polyimides whose side chain aromatic rings having sulfonic acid groups are directly bonded to aminophenyl groups via electron-withdrawing groups such as carbonyl or sulfonyl groups, etc. When used under mild conditions, degradation over time such as cleavage of polymer chains and elimination of sulfonic acid groups due to hydrolysis is small. The reason for this is that the sulfonic acid group, which is a hydrophilic group, does not exist in the portion constituting the main chain, and the phenyl ring in which the side chain aromatic ring having the sulfonic acid group is bonded via a carbonyl group is the reason. Furthermore, it is bonded to the amino aromatic ring via an aryloxy group, arylthio group or arylsulfonyl group, the hydrophobic polyimide polymer chain is relatively flexible, and the hydrophilic sulfonic acid group-containing side chain aromatic ring is Since the structure is far away from the imide ring, the hydrophobic main chain and the hydrophilic side chain base easily form a microphase separation structure, so the amount of water sorbed onto the hydrophobic domain of the polyimide main chain Is less susceptible to hydrolysis of the main chain when used as an electrolyte membrane, and a sulfonic acid group is bonded to an aromatic ring having a carbonyl group of an electron-withdrawing group, and a plurality of aromatic rings are bonded to one aromatic ring. Sulfonic acid group has a bond, it is determined that the hydrolysis of sulfonic acid groups is difficult to occur.

本発明においては、ポリイミドを構成するジアミノユニットが、式(19)のモノマーのみにより構成、すなわち、式(1)の構造単位のみで構成されるのも好ましい態様であるが、得られるポリイミド中の陽イオン交換容量を抑制する目的及び電解質膜などの隔膜とした場合の機械的強度の増強や吸水率を抑え、隔膜使用中の固定イオン濃度の低下を防ぐため等の目的で、下記式(18)に示される構造単位を共重縮合又はブレンドされていることも好ましい態様となる。   In the present invention, the diamino unit constituting the polyimide is constituted only by the monomer of the formula (19), that is, it is also a preferred embodiment that is constituted only by the structural unit of the formula (1). For the purpose of suppressing the cation exchange capacity and for the purpose of preventing the decrease of the fixed ion concentration during the use of the diaphragm, for example, for the purpose of suppressing the increase in mechanical strength and the water absorption when the diaphragm such as an electrolyte membrane is used, the following formula (18 It is also a preferred embodiment that the structural units shown in (2) are copolycondensed or blended.

Figure 2006152009
但し、Arは式(1)の場合と同じであり、Arは2価のスルホン酸基を有しない芳香族基、例えば、フェニレン基、ビフェニレン基、ビフェニルエーテル基、ビフェニルチオエーテル基、ビフェニルスルホニル基、ビフェニルカルボニル基、ビスフェノキシフェニルスルホン基などである。
Figure 2006152009
However, Ar is the same as in the formula (1), and Ar 2 is an aromatic group having no divalent sulfonic acid group, such as a phenylene group, a biphenylene group, a biphenyl ether group, a biphenyl thioether group, or a biphenylsulfonyl group. A biphenylcarbonyl group, a bisphenoxyphenylsulfone group, and the like.

かかる式(18)の構造単位は、前記Arの2価の部分にアミノ基が結合したジアミン化合物を用いることにより、容易に得ることが出来る。それらの化合の例は後述する。 Such a structural unit of the formula (18) can be easily obtained by using a diamine compound in which an amino group is bonded to the divalent part of Ar 2 . Examples of these combinations will be described later.

本発明において、前記式(1)で示される構造単位と式(18)で示される構造単位との割合は、特に限定されないが、式(1)の構造単位は少なくとも10モル%は必要である。更には、30モル%以上存在させることが好ましい。また、90モル%もあれば、一般に十分である。   In the present invention, the ratio between the structural unit represented by the formula (1) and the structural unit represented by the formula (18) is not particularly limited, but at least 10 mol% of the structural unit represented by the formula (1) is necessary. . Furthermore, it is preferable to make it exist 30 mol% or more. Also, 90 mol% is generally sufficient.

そこで、一般には式(1)で示される構造単位対式(18)で示される構造単位の割合は10〜90対90〜10の範囲から選ばれる。   Therefore, in general, the ratio of the structural unit represented by the formula (1) to the structural unit represented by the formula (18) is selected from the range of 10 to 90 to 90 to 10.

また、前記Arのうち、2〜30モル%、好ましくは5〜10%を3価の芳香族基で置換することによりポリイミド中に架橋構造を形成させることができる。 Moreover, a crosslinked structure can be formed in polyimide by substituting 2 to 30 mol%, preferably 5 to 10%, of Ar 2 with a trivalent aromatic group.

かかる3価の芳香族基を存在させる手段は、前記Arを形成させるモノマー、すなわちスルホン酸基を有しない芳香族ジアミンの一部を、スルホン酸基を有しない芳香族トリアミンで置換することによって得られる。 The means for causing the presence of such a trivalent aromatic group is to replace a part of the monomer for forming Ar 2, that is, an aromatic diamine having no sulfonic acid group, with an aromatic triamine having no sulfonic acid group. can get.

また、式(1)で示される構造単位と式(18)で示される構造単位とは分子中に互いにランダムに存在しても良いし、またブロック状に偏在して存在してもよい。また架橋はポリイミド分子中にランダムに形成されてもよいし、化学式(18)で示されるスルホン酸基を含まないポリイミド鎖の部位だけに存在させることもできる。   In addition, the structural unit represented by the formula (1) and the structural unit represented by the formula (18) may be present at random in the molecule or may be unevenly distributed in a block shape. Moreover, a bridge | crosslinking may be formed at random in a polyimide molecule, and can also exist only in the site | part of the polyimide chain which does not contain the sulfonic acid group shown by Chemical formula (18).

架橋構造を有するポリイミドは、吸水率を抑え、使用時の膜の膨潤、変形を抑えることができ、高いプロトン伝導度を保持し機械的強度等を増進するという利点がある。   A polyimide having a crosslinked structure has an advantage of suppressing water absorption, suppressing swelling and deformation of a membrane during use, maintaining high proton conductivity, and improving mechanical strength.

これらのスルホン酸基を有しない少なくとも一個の芳香環を有するジアミノ又はトリアミノ化合物のうち、ジアミノ化合物の例としては、4,4‘‐ジアミノジフェニルエーテル、4,4’‐ジアミノジフェニルスルホン、4,4‘‐ジアミノジフェニルスルフィド、ベンチジン、メタフェニレンジアミン、パラフェニレンジアミン、1,5‐ナフタレンジアミン、2,6‐ナフタレンジアミン、ビス[4‐(4‐アミノフェノキシ)フェニル]スルホン、ビス‐(4‐アミノフェノキシフェニル)スルフィド、ビス‐(4‐アミノフェノキシフェニル)ビフェニル、1,4‐ビス‐(4‐アミノフェノキシ)ベンゼン、1,3‐ビス‐(4‐アミノフェノキシ)ベンゼン、3,4’‐ジアミノジフェニルエーテル、4,4‘‐ビス(4‐アミノフェノキシ)ビフェニル、ビス{4‐{3‐アミノフェノキシ)フェニル}スルホン、9,9‐ビス(4‐アミノフェニル)フルオレン、2,2‐ビス[4−(4‐アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2‐ビス[4‐(4‐アモノフェノキシ)フェニル)プロパン、2,2’‐ビス(トリフルオロメチル)‐ベンジジンなどが挙げられるが、これらに限定されるものではない。   Among these diamino or triamino compounds having at least one aromatic ring not having a sulfonic acid group, examples of the diamino compound include 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenylsulfone, 4,4 ′ -Diaminodiphenyl sulfide, benzidine, metaphenylenediamine, paraphenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis [4- (4-aminophenoxy) phenyl] sulfone, bis- (4-aminophenoxy) Phenyl) sulfide, bis- (4-aminophenoxyphenyl) biphenyl, 1,4-bis- (4-aminophenoxy) benzene, 1,3-bis- (4-aminophenoxy) benzene, 3,4'-diaminodiphenyl ether 4,4′-bis (4-amino Nophenoxy) biphenyl, bis {4- {3-aminophenoxy) phenyl} sulfone, 9,9-bis (4-aminophenyl) fluorene, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoro Examples include, but are not limited to, propane, 2,2-bis [4- (4-amonophenoxy) phenyl) propane, 2,2′-bis (trifluoromethyl) -benzidine and the like.

また、トリアミン化合物としては、架橋反応を容易に行わせるために、同じ芳香環に2個のアミノ基が隣接して結合してないもの、特に同じ芳香環に2個以上の第1アミノ基を結合していないものが好ましく、例えば1,3,5‐トリ(4‐アミノフェノキシ)ベンゼン、トリ(4−アミノフェニル)アミン、1,3,5‐トリアミノベンゼンなどが好適に使用される。   Further, as a triamine compound, in order to facilitate a crosslinking reaction, two amino groups are not bonded to the same aromatic ring adjacent to each other, particularly two or more first amino groups are bonded to the same aromatic ring. Those which are not bonded are preferable, and for example, 1,3,5-tri (4-aminophenoxy) benzene, tri (4-aminophenyl) amine, 1,3,5-triaminobenzene and the like are preferably used.

これらトリアミン化合物は、式(19)に示すジアミノ化合物並びにスルホン酸基を有しないジアミンと混合して共重縮合に供することもできるし、また、テトラカルボン酸二無水物と式(19)の化合物及びスルホン酸基を有しないジアミンとの(共)縮重合において、カルボン酸無水物をジアミンに対して過剰に加えて、カルボン酸無水物末端のスルホン化ポリイミドオリゴーマーを合成し、その後にトリアミンを等当量加えて反応させることにより、スルホン化ポリイミドオリゴーマーがネットワーク状に連なった分岐架橋ポリイミド膜の作製に供することもできる。   These triamine compounds can be mixed with a diamino compound represented by the formula (19) and a diamine having no sulfonic acid group for copolycondensation, and tetracarboxylic dianhydride and a compound of the formula (19). And (co) condensation polymerization with a diamine having no sulfonic acid group, a carboxylic acid anhydride-terminated sulfonated polyimide oligomer is synthesized by adding an excess of carboxylic acid anhydride to the diamine, followed by triamine. Can be used for producing a branched cross-linked polyimide film in which sulfonated polyimide oligomers are connected in a network.

本発明において、ポリイミドを構成するためジアミン化合物と反応させるテトラカルボン酸化合物として、1,4,5,8‐ナフタレンテトラカルボン酸二無水物について説明したが、勿論、本発明においては、テトラカルボン酸成分としてジアミン化合物と反応して、イミドを形成するものであれば特に限定されない。   In the present invention, 1,4,5,8-naphthalenetetracarboxylic dianhydride has been described as a tetracarboxylic acid compound to be reacted with a diamine compound in order to constitute a polyimide. Of course, in the present invention, a tetracarboxylic acid is used. If it reacts with a diamine compound as a component and forms imide, it will not specifically limit.

すなわち、本発明のポリイミドにおいて、テトラカルボン酸成分としては、一般のポリイミド製造用モノマーとして使用されるものが何等制限されることなく使用できる。例えば、3,3‘,4,4’‐ビフェニルテトラカルボン酸、2,3‘,3,4’‐ビフェニルテトラカルボン酸、3,3‘,4,4’‐ペンゾフェノンテトラカルボン酸、3,3‘,4,4’‐ジフェニルエーテルテトラカルボン酸、ビス(3,4‐ジカルボキシフェニル)メタン、2,2‐ビス(3,4‐ジカルボキシフェニル)プロパン、ピロメリット酸、1,4,5,8‐ナフタレンテトラカルボン酸、3,4,9,10‐ペリレンテトラカルボン酸、4,4‘‐(ヘキサフルオロイソプロピリデン)ジフタル酸、m‐(ターフェニル)3,4,3“,4”‐テトラカルボン酸、1,6,7,12‐ペリレンテトラカルボン酸またはそれらの酸二無水物やエステル化物を挙げることができる。これらの中で、1,4,5,8‐ナフタレンテトラカルボン酸、又はその酸二無水物やエステル化物を用いると良好な耐水性を持った架橋スルホン化ポリイミドを得やすいので特に好ましい。   That is, in the polyimide of this invention, what is used as a monomer for general polyimide manufacture can be used as a tetracarboxylic acid component without being restrict | limited at all. For example, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3 ′, 3,4′-biphenyltetracarboxylic acid, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, 3 , 3 ′, 4,4′-diphenyl ether tetracarboxylic acid, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, pyromellitic acid, 1,4 5,8-naphthalenetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 4,4 '-(hexafluoroisopropylidene) diphthalic acid, m- (terphenyl) 3,4,3 ", 4 “-Tetracarboxylic acid, 1,6,7,12-perylenetetracarboxylic acid or acid dianhydrides or esterified products thereof. Among these, 1,4,5,8-naphthalenetetracarboxylic acid, or its acid dianhydride or esterified product is particularly preferable because a crosslinked sulfonated polyimide having good water resistance can be easily obtained.

以上の如き、ジアミノ化合物モノマー(場合によっては一部トリアミノ化合物を含む)とカルボン酸無水物との重縮合反応は、従来ポリイミドを合成する場合に用いられる手段が何等制限されることなく用いることができるが、次に、一般的スキームをホモ重縮合、ランダム共重縮合、ブロック共重縮合及び分岐架橋共重縮合の場合について示す。   As described above, the polycondensation reaction between a diamino compound monomer (some of which includes a triamino compound) and a carboxylic acid anhydride can be used without any limitation on the means conventionally used for synthesizing polyimide. Although it is possible, a general scheme is now shown for the cases of homopolycondensation, random copolycondensation, block copolycondensation and branched bridge copolycondensation.

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
Figure 2006152009

Figure 2006152009
(これらの反応式において、TEAはトリエチルアミン、PhCOOHは安息香酸、NTDAは1,4,5,8‐ナフタレンテトラカルボン酸二無水物、Arは芳香環を有する2価の基をそれぞれ表す。)
以下に実施例を示す。
Figure 2006152009
(In these reaction formulas, TEA represents triethylamine, PhCOOH represents benzoic acid, NTDA represents 1,4,5,8-naphthalenetetracarboxylic dianhydride, and Ar represents a divalent group having an aromatic ring.)
Examples are shown below.

以下の実施例に示したHNMRのデータは、溶媒として重水素化ジメチルスルホキシド(DMSO‐d)を用いて、日本電子JEOL EX‐270により測定した。また、本発明における評価方法は以下のとおりである。 The 1 HNMR data shown in the following Examples was measured by JEOL JEOL EX-270 using deuterated dimethyl sulfoxide (DMSO-d 6 ) as a solvent. Moreover, the evaluation method in this invention is as follows.

[熱重量分析]
熱重量分析は、セイコー電子(株)製TG‐MS分析計(TG‐MSシステム220)により、He気流下5℃/minの昇温速度で行い、200〜300℃でのスルホン酸基またはスルホプロポキシ基の分解の開始温度Tdを求めた。
[Thermogravimetric analysis]
Thermogravimetric analysis is performed with a TG-MS analyzer (TG-MS system 220) manufactured by Seiko Electronics Co., Ltd. at a heating rate of 5 ° C./min in a He stream, and sulfonic acid groups or sulfo groups at 200 to 300 ° C. The initiation temperature Td for the decomposition of the propoxy group was determined.

[吸水率、Water uptake]
膜サンプル約80mgを乾燥して乾燥重量Wdを測定した後、30℃で2〜4時間水に浸漬した。膜サンプルを水から取り出し、手早く表面に付着した水をティシュペーパーでふき取り、膨潤時の膜重量Wsを測定した。吸水率(Water uptake; WU)を次式から求めた。
WU=(Ws‐Wd)/Wd×100%
[耐水性]
膜厚30〜40μmの膜サンプルを130℃加圧下熱水に48時間浸漬した後、膜形状・強度の観点から、次の3段階で評価した。〈1〉:膜形状を保持していない。〈2〉:ピンセットで膜を取り出し、そのまま120度に折り曲げると膜は破断した。〈3〉:120度に折り曲げても膜は破断しなかった。また、加圧水浸漬処理した膜を風乾後、50℃水中でプロトン伝導度を測定し、プロトン伝導度の観点から、次の3段階で評価した。(1):処理によりプロトン伝導度は20%以上低下した。(2):5〜20%低下した。(3):実験誤差(±5%)範囲内で変化しなかった。[プロトン伝導度]
プロトン伝導度測定セルに膜シート(1.0cm×0.5cm)と4枚の白金黒電極板をとりつけ、温度制御した水中また温度・湿度制御したチャンバー内にセットし、日置電気(株)製のLCRメーター(HIOKI3552‐80)を用いて、100Hzから100kHzの周波数範囲で複素インピーダンス法により電気抵抗Rを測定し、プロトン伝導度σを次式から計算した。
s=d/(t R)
ここで、dは2電極間距離(0.5cm)、tとwは、室温で70%RHにおける膜シートの厚さと幅である。水中でのプロトン伝導度の計算には、水中でのtとw値を用いた。
[メタノール透過係数]
液々透過測定セルの供給側セル(容量350ml)と透過側セル(容量100ml)の間にフッ素ゴムのシール板を介して膜シートをはさみつける。膜の供給側に30wt%メタノール水溶液を入れ、透過側に蒸留水を入れ、ガスクロマトグラフを用いて、任意の時間間隔での供給側と透過側の液組成を測定し、メタノール透過係数Pを求めた。なおPの計算には膨潤膜厚を用いた。
[Water absorption rate, Water uptake]
About 80 mg of the membrane sample was dried and the dry weight Wd was measured, and then immersed in water at 30 ° C. for 2 to 4 hours. The membrane sample was taken out of the water, the water adhering to the surface quickly was wiped off with tissue paper, and the membrane weight Ws during swelling was measured. The water absorption rate (Water uptake; WU) was determined from the following equation.
WU = (Ws−Wd) / Wd × 100%
[water resistant]
A film sample having a film thickness of 30 to 40 μm was immersed in hot water under pressure at 130 ° C. for 48 hours, and then evaluated in the following three stages from the viewpoint of film shape and strength. <1>: The film shape is not maintained. <2>: When the film was taken out with tweezers and bent as it was at 120 degrees, the film was broken. <3>: The film did not break even when bent at 120 degrees. In addition, after the membrane subjected to the pressure water immersion treatment was air-dried, proton conductivity was measured in water at 50 ° C. and evaluated from the viewpoint of proton conductivity in the following three stages. (1): The proton conductivity decreased by 20% or more by the treatment. (2): Decreased by 5 to 20%. (3): No change within experimental error (± 5%) range. [Proton conductivity]
A membrane sheet (1.0 cm x 0.5 cm) and four platinum black electrode plates are attached to the proton conductivity measurement cell and set in temperature-controlled water or a temperature / humidity-controlled chamber, manufactured by Hioki Electric Co., Ltd. The electrical resistance R was measured by the complex impedance method in the frequency range of 100 Hz to 100 kHz using an LCR meter (HIOKI 3552-80), and the proton conductivity σ was calculated from the following equation.
s = d / (t s w s R)
Here, d is 2 the distance between the electrodes (0.5 cm), t s and w s is the thickness and width of the film sheet in RH 70% at room temperature. The calculation of proton conductivity in water, with t s and w s value in water.
[Methanol permeability coefficient]
A membrane sheet is sandwiched between a supply side cell (capacity 350 ml) and a permeation side cell (capacity 100 ml) of the liquid permeation measurement cell via a fluoro rubber seal plate. Put 30 wt% aqueous methanol solution to the feed side of the membrane, distilled water was placed on the transmission side, using a gas chromatograph, a liquid composition of the feed side and the permeate side at any time interval is measured, the methanol permeation coefficient P M Asked. Note with swollen film thickness in the calculation of P M.

なお、以下の実施例において用いる略語は次のとおり。
NTDA:1,4,5,8、−ナフタレンテトラカルボン酸
TEA:トリエチルアミン
BAPSB:2,4‐ビス(4‐アミノフェノキシ)‐3’‐スルホベンゾフェノン
DMSO:ジメチルスルホキシド
NMP:N−メチルピロリドン
BAPSSPB:2,5−ビス(4−アミノフェノキシ)3’−スルホ−4’−(4−スルホフェニル)ベンゾフェノン
3,3’−BSPB:3,3’‐ビス(3‐スルホプロポキシ)ベンジジン
BAPPS:4,4’−ビス(3−アミノフェノキシ)フェニルスルホン
BAPB:4,4’‐ビス(4‐アミノフェノキシ)ビフェニル
TAPB:1,3,5−トリス(4−アミノフェノキシ)ベンゼン
BAPBDS:4,4’‐ビス(4‐アミノフェノキシ)ビフェニル3,3’−ジスルホン酸
Abbreviations used in the following examples are as follows.
NTDA: 1,4,5,8, -naphthalene tetracarboxylic acid TEA: triethylamine BAPSB: 2,4-bis (4-aminophenoxy) -3′-sulfobenzophenone DMSO: dimethyl sulfoxide NMP: N-methylpyrrolidone BAPSSPB: 2 , 5-bis (4-aminophenoxy) 3'-sulfo-4 '-(4-sulfophenyl) benzophenone 3,3'-BSPB: 3,3'-bis (3-sulfopropoxy) benzidine BAPPS: 4,4 '-Bis (3-aminophenoxy) phenyl sulfone BAPB: 4,4'-bis (4-aminophenoxy) biphenyl TAPB: 1,3,5-tris (4-aminophenoxy) benzene BAPBDS: 4,4'-bis (4-Aminophenoxy) biphenyl 3,3′-disulfonic acid

スルホン化ポリイミドNTDA‐BAPSB
(1)2,4−ビス(4−アミノフェノキシ)−3‘−スルホベンゾフェノン(BAPSB)の合成。
(ア)2,4−ジクロロ−3‘−スルホベンゾフェノン(Na塩)の合成
十分乾燥した100mlの三つ口フラスコにAlCl7.5gとベンゼン15mlを窒素気流下で加え、この混合物を0℃に冷却した後、その温度に保ち、2,4−ジクロロベンゾイルクロリド5.24g(0.025モル)を5mlのベンゼンに溶かした溶液を滴下して加えた。その間攪拌しながら0℃に保った。滴下後、該混合物を室温下で10時間攪拌した。反応溶液を約100gの氷水(数滴の塩酸を加えたもの)に注ぎ入れた。2相が現れ、水相から有機相を分離し、有機相を蒸発乾固して2,4−ジクロロベンゾフェノン6.1gを得た。収率97%。
Sulfonated polyimide NTDA-BAPSB
(1) Synthesis of 2,4-bis (4-aminophenoxy) -3′-sulfobenzophenone (BAPSB).
(A) Synthesis of 2,4-dichloro-3′-sulfobenzophenone (Na salt) To a well-dried 100 ml three-necked flask, 7.5 g of AlCl 3 and 15 ml of benzene were added under a nitrogen stream, and this mixture was added at 0 ° C. The solution was kept at that temperature, and a solution prepared by dissolving 5.24 g (0.025 mol) of 2,4-dichlorobenzoyl chloride in 5 ml of benzene was added dropwise. Meanwhile, the temperature was kept at 0 ° C. with stirring. After the addition, the mixture was stirred at room temperature for 10 hours. The reaction solution was poured into about 100 g of ice water (with a few drops of hydrochloric acid added). Two phases appeared, the organic phase was separated from the aqueous phase, and the organic phase was evaporated to dryness to obtain 6.1 g of 2,4-dichlorobenzophenone. Yield 97%.

マグネチックスターラーを装備した100mlの三つ口フラスコに2,4−ジクロロベンゾフェノン6.0g(0.024モル)を入れ、アイスバスで冷却した後、6.0mlの濃硫酸を攪拌しながらゆっくりと添加した。2,4−ジクロロベンゾフェノンが完全に溶解した後、6.0mlの発煙硫酸(60%)を滴下して加えた。発煙硫酸を添加した後、該混合物を70℃に加熱し8時間攪拌を続けた。室温まで冷却後、80gの氷水にゆっくり注ぎ入れ、水酸化ナトリウム溶液で中性にし、固体を濾別した。濾液を蒸発乾固し、80mlのジメチルスルホキシド(DMSO)を加え、固体中の有機成分を抽出した。固体を濾別後、DMSO相を蒸発乾固し、7.2gの固体生成物を得た。収率85%。
(イ)BAPSBの合成
マグネチックスターラーを装備した100mlの四つ口フラスコに2,4−ジクロロ−3‘−スルホベンゾフェノン(Na塩)3.53g(0.010モル)、4−アミノフェノール3.27g(0.030モル)そして30mlのNMPを窒素雰囲気下で加えた。溶解後、2.6gのKCOと15mlのトルエンを加え、窒素気流下130℃で4時間攪拌加熱した。生成した水はトルエンとの共沸混合物として反応系外に除去した。さらに、反応混合液を160℃で20時間攪拌した。この反応混合液を、室温まで冷却後、300mlの冷水中に加え、次いで濃塩酸を、液のpHが約1になるまでゆっくり加えた。得られた固体沈殿物を濾別し乾燥して、3.10gの固体生成物を得た。収率65%。このものはHNMR(270MHz,トリエチルアミン含有DMSO‐d)によりδ:5.0(‐NH),6.25(1H),6.5‐6.7(8H),6.8(1H),7.4‐7.8(5H)のピークを示した。またFT‐IRによりBAPSB(化55)であることが確認された。
Into a 100 ml three-necked flask equipped with a magnetic stirrer was charged 6.0 g (0.024 mol) of 2,4-dichlorobenzophenone, cooled in an ice bath, and slowly stirred with 6.0 ml of concentrated sulfuric acid. Added. After 2,4-dichlorobenzophenone was completely dissolved, 6.0 ml of fuming sulfuric acid (60%) was added dropwise. After the fuming sulfuric acid was added, the mixture was heated to 70 ° C. and stirred for 8 hours. After cooling to room temperature, it was slowly poured into 80 g of ice water, neutralized with sodium hydroxide solution, and the solid was filtered off. The filtrate was evaporated to dryness and 80 ml of dimethyl sulfoxide (DMSO) was added to extract the organic components in the solid. After filtering off the solid, the DMSO phase was evaporated to dryness to give 7.2 g of solid product. Yield 85%.
(I) Synthesis of BAPSB In a 100 ml four-necked flask equipped with a magnetic stirrer, 3.54 g (0.010 mol) of 2,4-dichloro-3′-sulfobenzophenone (Na salt), 4-aminophenol; 27 g (0.030 mol) and 30 ml of NMP were added under a nitrogen atmosphere. After dissolution, 2.6 g of K 2 CO 3 and 15 ml of toluene were added, and the mixture was stirred and heated at 130 ° C. for 4 hours under a nitrogen stream. The produced water was removed out of the reaction system as an azeotrope with toluene. Further, the reaction mixture was stirred at 160 ° C. for 20 hours. The reaction mixture was cooled to room temperature and then added to 300 ml of cold water, and then concentrated hydrochloric acid was slowly added until the pH of the solution was about 1. The resulting solid precipitate was filtered off and dried to give 3.10 g of solid product. Yield 65%. This was analyzed by 1 HNMR (270 MHz, triethylamine-containing DMSO-d 6 ) at δ: 5.0 (—NH 2 ), 6.25 (1H), 6.5-6.7 (8H), 6.8 (1H ), 7.4-7.8 (5H). Further, it was confirmed by BFTB (Chemical Formula 55) by FT-IR.

Figure 2006152009
(2)スルホン化ポリイミドNTDA‐BAPSBの合成
乾燥した100mlの四口フラスコ中で1.904g(4.0ミリモル)のBAPSBと2.1mlのトリエチルアミン(TEA)を16mlのm−クレゾールに加えて溶かし、次いで、1.072g(4.0ミリモル)の1,4,5,8‐ナフタレンテトラカルボン酸二無水物(NTDA)および0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのNMPを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は1.5dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のスルホン化ポリイミドNTDA‐BAPSB(化56)膜を得た。この膜の特性評価結果を表1に示す。
Figure 2006152009
(2) Synthesis of sulfonated polyimide NTDA-BAPSB In a dry 100 ml four-necked flask, 1.904 g (4.0 mmol) of BAPSB and 2.1 ml of triethylamine (TEA) were dissolved in 16 ml of m-cresol. 1.072 g (4.0 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and 0.68 g of benzoic acid are then added and the mixture is heated to 80 ° C. under a nitrogen gas atmosphere. For 4 hours and at 180 ° C. for 10 hours, 10 ml of NMP was added and the mixture was further stirred at 180 ° C. for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of the obtained product was 1.5 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to form a proton-type sulfonated polyimide NTDA-BAPSB (Chemical Formula 56) membrane. Got. Table 1 shows the characteristic evaluation results of this film.

Figure 2006152009
Figure 2006152009

スルホン化ポリイミドNTDA‐BAPSSPB
(1)2,5−ビス(4−アミノフェノキシ)3‘−スルホ−4’−(4−スルホフェニル)ベンゾフェノン (BAPSSPB)の合成
(ア)2,5−ジクロロ−3‘−スルホ−4’−(4−スルホフェニル)ベンゾフェノン(Na塩)の合成
十分乾燥した100mlの三つ口フラスコにAlCl5.28gとビフェニル5.55g(0.036モル)そして20mlの1,2‐ジクロロエタンを窒素気流下で加え溶かし、この混合物を0℃に冷却した後、その温度に保ち、2,5−ジクロロベンゾイルクロライド7.54g(0.036モル)を20mlの1,2−ジクロロエタンに溶かした溶液を滴下して加えた。その間攪拌しながら0℃に保った。滴下後、該混合物を室温下で10時間攪拌した。反応溶液を約100gの氷水(数滴の塩酸を加えたもの)に注ぎ入れ、次いで200mlのベンゼンを加え、水相から有機相を分離し、有機相を蒸発乾固して2,5−ジクロロ−4‘−フェニルベンゾフェノン10.60gを得た。収率90%。
Sulfonated polyimide NTDA-BAPSSPB
(1) Synthesis of 2,5-bis (4-aminophenoxy) 3′-sulfo-4 ′-(4-sulfophenyl) benzophenone (BAPSSPB) (a) 2,5-dichloro-3′-sulfo-4 ′ Synthesis of-(4-sulfophenyl) benzophenone (Na salt) A well-dried 100 ml three-necked flask was charged with 5.28 g AlCl 3, 5.55 g (0.036 mol) biphenyl and 20 ml 1,2-dichloroethane with nitrogen. The mixture was dissolved under a stream of air, the mixture was cooled to 0 ° C., kept at that temperature, and a solution of 7.54 g (0.036 mol) of 2,5-dichlorobenzoyl chloride dissolved in 20 ml of 1,2-dichloroethane was added. Added dropwise. Meanwhile, the temperature was kept at 0 ° C. with stirring. After the addition, the mixture was stirred at room temperature for 10 hours. The reaction solution is poured into about 100 g of ice water (with a few drops of hydrochloric acid added), then 200 ml of benzene are added, the organic phase is separated from the aqueous phase, the organic phase is evaporated to dryness and 2,5-dichloromethane is added. 10.60 g of -4′-phenylbenzophenone was obtained. Yield 90%.

マグネチックスターラーを装備した100ml三つ口フラスコに2,5−ジクロロ−4‘−フェニルベンゾフェノン8.18g(0.025モル)を入れ、アイスバスで冷却した後、8.0mlの濃硫酸を攪拌しながらゆっくりと添加した。2,5−ジクロロ−4‘−フェニルベンゾフェノンを完全に溶解させ後、8.0mlの発煙硫酸(60%)を滴下して加えた。発煙硫酸を添加した後、該混合物を90℃にゆっくり加熱し10時間攪拌を続けた。室温まで冷却後、100gの氷水にゆっくり注ぎ入れ、水酸化ナトリウム溶液で中性にし、固体を濾別した。濾液を乾固し、80mlのジメチルスルホキシド(DMSO)を加え、固体中の有機成分を抽出した。固体を濾別後、DMSO相を濃縮乾固し11.29gの固体生成物を得た。収率85%。
(イ)BAPSSPBの合成
マグネチックスターラーを装備した100mlの四つ口フラスコに2,5−ジクロロ−3‘−スルホ−4’−(4−スルホフェニル)ベンゾフェノン(Na塩)4.25g(0.008モル)と30mlのNMPを窒素雰囲気下で加えた。溶解後、4−アミノフェノール2.62g(0.024モル)とKCO2.07g(0.015モル)と15mlのトルエンを加え、窒素気流下130℃で4時間攪拌加熱した。生成した水はトルエンとの共沸混合物として反応系外に除去した。そらに、反応混合液を160℃で20時間攪拌した。この反応混合液を、室温まで冷却後、300mlの冷水中に加え、次いで濃塩酸を、液のpHが約1になるまでゆっくり加えた。得られた固体沈殿物を濾別し乾燥して、2.53gの固体生成物を得た。収率50%。このものはHNMR(270MHz,トリエチルアミン含有DMSO‐d)によりδ:5.0(‐NH),6.4‐6.6(8H),6.7‐6.8(2H),7.6‐8.4(8H)のピークを示した。またFT‐IRによりBAPSSPB(化57)であることが確認された。
Into a 100 ml three-necked flask equipped with a magnetic stirrer was added 8.18 g (0.025 mol) of 2,5-dichloro-4′-phenylbenzophenone, cooled in an ice bath, and then stirred with 8.0 ml of concentrated sulfuric acid. Slowly added. After 2,5-dichloro-4'-phenylbenzophenone was completely dissolved, 8.0 ml of fuming sulfuric acid (60%) was added dropwise. After the fuming sulfuric acid was added, the mixture was slowly heated to 90 ° C. and stirring was continued for 10 hours. After cooling to room temperature, it was slowly poured into 100 g of ice water, neutralized with sodium hydroxide solution, and the solid was filtered off. The filtrate was dried and 80 ml of dimethyl sulfoxide (DMSO) was added to extract the organic components in the solid. After the solid was filtered off, the DMSO phase was concentrated to dryness to obtain 11.29 g of a solid product. Yield 85%.
(I) Synthesis of BAPSSPB In a 100 ml four-necked flask equipped with a magnetic stirrer, 4.25 g (0.2 mg of 2,5-dichloro-3′-sulfo-4 ′-(4-sulfophenyl) benzophenone (Na salt) was added. 008 mol) and 30 ml of NMP were added under a nitrogen atmosphere. After dissolution, 2.62 g (0.024 mol) of 4-aminophenol, 2.07 g (0.015 mol) of K 2 CO 3 and 15 ml of toluene were added, and the mixture was stirred and heated at 130 ° C. for 4 hours under a nitrogen stream. The produced water was removed out of the reaction system as an azeotrope with toluene. The reaction mixture was stirred at 160 ° C. for 20 hours. The reaction mixture was cooled to room temperature and then added to 300 ml of cold water, and then concentrated hydrochloric acid was slowly added until the pH of the solution was about 1. The resulting solid precipitate was filtered off and dried to give 2.53 g of solid product. Yield 50%. This was analyzed by 1 HNMR (270 MHz, DMSO-d 6 containing triethylamine) at δ: 5.0 (—NH 2 ), 6.4-6.6 (8H), 6.7-6.8 (2H), 7 It showed a peak of .6-8.4 (8H). Moreover, it was confirmed by BAFTSPB (Chemical Formula 57) by FT-IR.

Figure 2006152009
(2)NTDA‐BAPSSPBの合成
乾燥した100mlの四口フラスコ中で2.528g(4.0ミリモル)のBAPSSPBと1.4mlのTEAを16mlのm−クレゾールに加えて溶かし、次いで、1.072g(4.0ミリモル)のNTDAおよび0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で10時間攪拌し、10mlのNMPを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのNMPを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.5dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のスルホン化ポリイミドNTDA‐BAPSSB膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の温度依存性を図1に示す。
Figure 2006152009
(2) Synthesis of NTDA-BAPSSPB In a dry 100 ml four-necked flask, 2.528 g (4.0 mmol) of BAPSSPB and 1.4 ml of TEA were dissolved in 16 ml of m-cresol, and then 1.072 g (4.0 mmol) NTDA and 0.68 g benzoic acid are added and the mixture is stirred at 80 ° C. for 4 hours and at 180 ° C. for 10 hours under a nitrogen gas atmosphere, 10 ml of NMP is added and an additional 180 ° C. is added. Stir for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of NMP, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: DMSO containing LiCl of 1 wt%; 0.5 wt%; 35 ° C.) of the obtained product was 2.5 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to obtain a proton-type sulfonated polyimide NTDA-BAPSSB membrane. Table 1 shows the characteristic evaluation results of this film. The temperature dependence of proton conductivity is shown in FIG.

ランダム共重合スルホン化ポリイミドNTDA‐BAPSSPB/BAPPS(3/1)‐r
スルホン化ジアミンとして実施例2で合成したBAPSSPBを用い、非スルホン酸ジアミンとして4,4‘‐ビス(3‐アミノフェノキシ)フェニルスルホン(BAPPS)を用いた。乾燥した100mlの四口フラスコ中で1.898g(3.0ミリモル)のBAPSSPBと1.1mlのTEAを20mlのm−クレゾールに加えて溶かし、次いで、0.433g(1.0ミリモル)のBAPPSを添加して溶かした後、1.072g(4.0ミリモル)のNTDA及び0.68gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌し、10mlのm‐クレゾールを添加してさらに180℃で10時間攪拌した。重合反応液を80℃まで冷却後、10mlのm‐クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.0dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA‐BAPSSPB/BAPPS(3/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の温度依存性を図1に示す。
Random copolymerized sulfonated polyimide NTDA-BAPSSPB / BAPPS (3/1) -r
BAPSSPB synthesized in Example 2 was used as the sulfonated diamine, and 4,4′-bis (3-aminophenoxy) phenylsulfone (BAPPS) was used as the non-sulfonate diamine. In a dry 100 ml four-necked flask, 1.898 g (3.0 mmol) BAPSSPB and 1.1 ml TEA were dissolved in 20 ml m-cresol and then 0.433 g (1.0 mmol) BAPPS. After adding 1.072 g (4.0 mmol) of NTDA and 0.68 g of benzoic acid, the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours, 10 ml of m-cresol was added and further stirred at 180 ° C. for 10 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: 1 wt% LiCl-containing DMSO; 0.5 wt%; 35 ° C.) of the obtained product was 2.0 dl / g. The product was dissolved in DMSO, cast on a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-BAPSSPB / BAPPS. A (3/1) -r film was obtained. Table 1 shows the characteristic evaluation results of this film. The temperature dependence of proton conductivity is shown in FIG.

シークエンス化共重合スルホン化ポリイミドNTDA‐BAPSSPB/BAPPS(2/1)‐s
スルホン化ジアミンとして実施例2で合成したBAPSSPBを用い、非スルホン酸ジアミンとしてBAPPSを用いた。乾燥した100mlの四口フラスコ中で1.898g(3.0ミリモル)のBAPSSPBと1.2mlのTEAを10mlのm−クレゾールに加えて溶かし、次いで0.965g(3.6ミリモル)のNTDAおよび0.62gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で5時間攪拌した。溶液を室温まで冷却し、0.650g(1.5ミリモル)のBAPPS、0.241g(0.9ミリモル)のNTDA、0.153gの安息香酸そして10mlのm‐クレゾールを順次加え、80℃で4時間、180℃で20時間攪拌した。重合反応液を80℃まで冷却後、10mlのm‐クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:1wt%のLiCl含有DMSO;0.5wt%;35℃)は2.2dl/gであった。生成物をDMSOに溶解し、ガラス板上に流延し、80℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のシークエンス化共重合スルホン化ポリイミドNTDA‐BAPSSPB/BAPPS(2/1)‐s膜を得た。この膜の特性評価結果を表1に示す。
Sequenced copolymerized sulfonated polyimide NTDA-BAPSSPB / BAPPS (2/1) -s
BAPSSPB synthesized in Example 2 was used as the sulfonated diamine, and BAPPS was used as the non-sulfonate diamine. In a dry 100 ml four-necked flask, 1.898 g (3.0 mmol) BAPSSPB and 1.2 ml TEA were dissolved in 10 ml m-cresol and then 0.965 g (3.6 mmol) NTDA and 0.62 g of benzoic acid was added and the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 5 hours under a nitrogen gas atmosphere. The solution was cooled to room temperature and 0.650 g (1.5 mmol) of BAPPS, 0.241 g (0.9 mmol) of NTDA, 0.153 g of benzoic acid and 10 ml of m-cresol were sequentially added at 80 ° C. The mixture was stirred for 4 hours at 180 ° C. for 20 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 10 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: DMSO containing LiCl of 1 wt%; 0.5 wt%; 35 ° C.) of the obtained product was 2.2 dl / g. The product was dissolved in DMSO, cast onto a glass plate, and dried at 80 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum-dried at 150 ° C. for 10 hours to obtain proton type sequence copolymerized sulfonated polyimide NTDA-BAPSSPB / A BAPPS (2/1) -s film was obtained. Table 1 shows the characteristic evaluation results of this film.

分岐架橋スルホン化ポリイミドNTDA‐BAPSSPB/TAPB(5/4)
(1)1,3,5‐トリス(4‐アミノフェノキシ)ベンゼン(TAPB)の合成
49.6g(0.35mol)の4‐フルオロニトロベンゼン、12.6g(0.1mol)の1,3,5‐トリヒドロキシベンゼンおよび20.7g(0.15mol)の炭酸カリウムをDMSO200mlとトルエン50mlの混合溶液に加え、窒素気流下で加熱した。140℃で4時間トルエンを還流させながら、生成した水を除去した。トルエンを除去しながら175℃まで昇温し、16時間加熱した。反応液を冷却後、多量のメタノールに投入して、析出した固体生成物を水洗後乾燥した。
Branched and crosslinked sulfonated polyimide NTDA-BAPSSPB / TAPB (5/4)
(1) Synthesis of 1,3,5-tris (4-aminophenoxy) benzene (TAPB) 49.6 g (0.35 mol) of 4-fluoronitrobenzene, 12.6 g (0.1 mol) of 1,3,5 -Trihydroxybenzene and 20.7 g (0.15 mol) of potassium carbonate were added to a mixed solution of 200 ml of DMSO and 50 ml of toluene and heated under a nitrogen stream. The produced water was removed while refluxing toluene at 140 ° C. for 4 hours. While removing toluene, the temperature was raised to 175 ° C. and heated for 16 hours. The reaction solution was cooled, poured into a large amount of methanol, and the precipitated solid product was washed with water and dried.

得られた固体30g、塩化鉄(III)60mgおよび白金担持炭素2gを2‐メトキシエタノール110mlに加え、混合液を90℃に昇温し、ヒドラジン一水和物18.9gを2時間かけて滴下した。反応液を110℃で2時間加熱後、室温まで冷却し、ろ過した。濾液に濃塩酸20mlを添加し、固体を析出させた。固体を濾別し、乾燥してTAPBの黄色固体を得た。
(2)分岐架橋スルホン化ポリイミドNTDA‐BAPSSPB/TAPB(5/4)の合成
スルホン化ジアミンとして実施例2で合成したBAPSSPBを用いた。乾燥した100mlの四口フラスコ中で2.528g(4.0ミリモル)のBAPSSPBと1.4mlのTEAを20mlのm−クレゾールに加えて溶かし、次いで1.34g(5.0ミリモル)のNTDAおよび0.85gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌した。溶液を室温まで冷却し、0.340g(0.67ミリモル)のTAPBと20mlのNMPを加え、60℃で4時間攪拌した。得られた溶液をガラス板上に流延し、80℃、95℃、110℃でそれぞれ1時間、130℃で8時間、さらに200℃で10時間加熱乾燥して、TEA塩型の分岐架橋スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型の分岐架橋スルホン化ポリイミドNTDA‐BAPSSPB/TAPB(5/4)膜を得た。この膜の特性評価結果を表1に示す。
30 g of the obtained solid, 60 mg of iron (III) chloride and 2 g of carbon on platinum were added to 110 ml of 2-methoxyethanol, the mixture was heated to 90 ° C., and 18.9 g of hydrazine monohydrate was added dropwise over 2 hours. did. The reaction solution was heated at 110 ° C. for 2 hours, cooled to room temperature, and filtered. 20 ml of concentrated hydrochloric acid was added to the filtrate to precipitate a solid. The solid was filtered off and dried to give a yellow solid of TAPB.
(2) Synthesis of Branched Crosslinked Sulfonated Polyimide NTDA-BAPSSPB / TAPB (5/4) BAPSSPB synthesized in Example 2 was used as a sulfonated diamine. In a dry 100 ml four-necked flask, 2.528 g (4.0 mmol) BAPSSPB and 1.4 ml TEA were dissolved in 20 ml m-cresol and then 1.34 g (5.0 mmol) NTDA and 0.85 g of benzoic acid was added and the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours under a nitrogen gas atmosphere. The solution was cooled to room temperature, 0.340 g (0.67 mmol) of TAPB and 20 ml of NMP were added, and the mixture was stirred at 60 ° C. for 4 hours. The obtained solution was cast on a glass plate and dried by heating at 80 ° C., 95 ° C., and 110 ° C. for 1 hour, 130 ° C. for 8 hours, and 200 ° C. for 10 hours, respectively. A polyimide film was obtained. This was immersed in methanol for 2 days, then immersed in a 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to form proton-type branched cross-linked sulfonated polyimide NTDA-BAPSSPB / TAPB ( 5/4) A membrane was obtained. Table 1 shows the characteristic evaluation results of this film.

比較例1Comparative Example 1

ランダム共重合スルホン化ポリイミドNTDA‐BAPBDS/BAPB(2/1)‐r
特開2003‐68326に記載されている方法で、4,4’−ビス(4‐アミノフェノキシ)ビフェニル‐3,3’‐ジスルホン酸(BAPBDS)を合成した。スルホン化ジアミンとしてBAPBDSを用い、非スルホン酸ジアミンとして4,4’‐ビス(3‐アミノフェノキシ)フェニルスルホン(BAPPS)を用いた。乾燥した100mlの四口フラスコ中で1.056g(2.0ミリモル)のBAPBDSと0.68mlのTEAを12mlのm−クレゾールに加えて溶かし、次いで、0.368g(1.0ミリモル)のBAPBを添加して溶かした後、0.804g(3.0ミリモル)のNTDAおよび0.51gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌した。重合反応液を80℃まで冷却後、20mlのm-クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:m‐クレゾール;0.5wt%;35℃)は2.8dl/gであった。生成物をm‐クレゾールに溶解し、ガラス板上に流延し、120℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに2日間浸漬し、次いで0.5M硫酸溶液に2日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA‐BAPBDS/BAPB(2/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の温度依存性を図1に示す。
Random copolymerized sulfonated polyimide NTDA-BAPBDS / BAPB (2/1) -r
4,4′-bis (4-aminophenoxy) biphenyl-3,3′-disulfonic acid (BAPBDS) was synthesized by the method described in JP-A-2003-68326. BAPBDS was used as the sulfonated diamine, and 4,4′-bis (3-aminophenoxy) phenylsulfone (BAPPS) was used as the non-sulfonate diamine. In a dry 100 ml four-necked flask, 1.056 g (2.0 mmol) BAPBDS and 0.68 ml TEA were dissolved in 12 ml m-cresol and then 0.368 g (1.0 mmol) BAPB. After adding 0.84 g (3.0 mmol) of NTDA and 0.51 g of benzoic acid, the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 20 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: m-cresol; 0.5 wt%; 35 ° C.) of the obtained product was 2.8 dl / g. The product was dissolved in m-cresol, cast on a glass plate, and dried at 120 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 2 days, then immersed in 0.5 M sulfuric acid solution for 2 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-BAPBDS / BAPB. A (2/1) -r film was obtained. Table 1 shows the characteristic evaluation results of this film. The temperature dependence of proton conductivity is shown in FIG.

比較例2Comparative Example 2

ランダム共重合スルホン化ポリイミドNTDA‐3,3’‐BSPB/BAPPS(2/1)‐r
特開2004‐155998に記載されている方法で、3,3’‐ビス(3‐スルホプロポキシ)ベンジジン(3,3’‐BSPB)を合成した。スルホン化ジアミンとして3,3’‐BSPBを0.96g(2.0ミリモル)用い、非スルホン酸ジアミンとしてBAPPSを0.433g(1.0ミリモル)用いる以外、比較例1と同様にして、ランダム共重合スルホン化ポリイミドNTDA‐3,3’‐BSPB/BAPPS(2/1)‐r膜を得た。この膜の特性評価結果を表1に示す。プロトン伝導度の温度依存性を図1に示す。
Random copolymerized sulfonated polyimide NTDA-3,3'-BSPB / BAPPS (2/1) -r
3,3′-bis (3-sulfopropoxy) benzidine (3,3′-BSPB) was synthesized by the method described in JP-A-2004-155998. Random in the same manner as in Comparative Example 1 except that 0.96 g (2.0 mmol) of 3,3′-BSPB was used as the sulfonated diamine and 0.433 g (1.0 mmol) of BAPPS was used as the non-sulfonate diamine. Copolymerized sulfonated polyimide NTDA-3,3′-BSPB / BAPPS (2/1) -r membrane was obtained. Table 1 shows the characteristic evaluation results of this film. The temperature dependence of proton conductivity is shown in FIG.

比較例3Comparative Example 3

パーフルオロスルホン酸系の電解質膜
パーフルオロスルホン酸系の電解質膜(D社製、厚み50μm)を用いた。この膜の特性評価結果を表1に示す。
評価結果まとめ
(1)実施例2のホモスルホン化ポリイミド膜は、比較的高いIECをもち、比較的高いWUを有するが、膜強度の観点での優れた高温耐水性をもつ。また、実施例3の共重合スルホン化ポリイミド膜は、比較例1の主鎖型共重合スルホン化ポリイミド膜とほぼ同じIECをもつが、膜強度の観点での高温耐水性は、比較例1より優れている。本特許でのスルホン化ポリイミド膜は、ミクロ相分離構造をとっており、比較的高いIECでも、膜強度の観点での優れた高温耐水性をもつ。この点で、比較例1の主鎖型スルホン化ポリイミド膜より優れている。
Perfluorosulfonic acid-based electrolyte membrane A perfluorosulfonic acid-based electrolyte membrane (manufactured by Company D, thickness 50 μm) was used. Table 1 shows the characteristic evaluation results of this film.
Summary of Evaluation Results (1) The homosulfonated polyimide membrane of Example 2 has a relatively high IEC and a relatively high WU, but has excellent high-temperature water resistance in terms of membrane strength. The copolymerized sulfonated polyimide membrane of Example 3 has almost the same IEC as the main chain copolymerized sulfonated polyimide membrane of Comparative Example 1, but the high-temperature water resistance in terms of membrane strength is higher than that of Comparative Example 1. Are better. The sulfonated polyimide membrane in this patent has a microphase-separated structure and has excellent high-temperature water resistance from the viewpoint of membrane strength even with a relatively high IEC. This is superior to the main-chain sulfonated polyimide membrane of Comparative Example 1.

(2)実施例1〜5のように、スルホン酸基の分解温度が290〜295℃と比較例2のスルホアルコキシ基をもつ側鎖型スルホン化ポリイミド膜に比べて30〜40℃高く、また、プロトン伝導度の観点からの高温耐水性にも優れる。これは、本特許でのスルホン化ポリイミド膜では、高温水中でのスルホン酸基の脱離が起こりにくいことを示しており、比較例2の側鎖型スルホン化ポリイミド膜よりこの点で優れている。   (2) As in Examples 1 to 5, the decomposition temperature of the sulfonic acid group is 290 to 295 ° C., which is 30 to 40 ° C. higher than the side chain sulfonated polyimide membrane having the sulfoalkoxy group of Comparative Example 2, Moreover, it is excellent in high-temperature water resistance from the viewpoint of proton conductivity. This indicates that the sulfonated polyimide membrane in this patent is less susceptible to sulfonic acid group elimination in high-temperature water, and is superior in this respect to the side chain sulfonated polyimide membrane of Comparative Example 2. .

(3)比較例1と2にくらべて、本特許でのスルホン化ポリイミド膜は、高いプロトン伝導度を有し、特に、低い湿度でのプロトン伝導度の低下が、比較例のスルホン化ポリイミドに比べて小さい。(表1と図1)
(4)本特許でのスルホン化ポリイミド膜は100℃以上の高温でもプロトン伝導度は低下せず、高いプロトン伝導度を有する。(図2)
(5)以上の結果より、本特許でのスルホン化ポリイミド膜は、高温PEFC用の高分子電解質膜として好適である。
(3) Compared with Comparative Examples 1 and 2, the sulfonated polyimide membrane in this patent has high proton conductivity, and in particular, the decrease in proton conductivity at low humidity is compared with the sulfonated polyimide of Comparative Example. Smaller than that. (Table 1 and Figure 1)
(4) The sulfonated polyimide membrane in this patent has a high proton conductivity without a decrease in proton conductivity even at a high temperature of 100 ° C. or higher. (Figure 2)
(5) From the above results, the sulfonated polyimide membrane in this patent is suitable as a polymer electrolyte membrane for high-temperature PEFC.

(6)本特許でのスルホン化ポリイミド膜は、比較例3のパーフルオロスルホン酸系膜に比べて、メタノール透過係数が非常に低く、メタノール透過係数に対するプロトン伝導度の比φ(φ=σ/P)が4倍以上大きく、直接メタノール型燃料電池用の高分子電解質膜として好適である。 (6) The sulfonated polyimide membrane in this patent has a very low methanol permeability coefficient compared to the perfluorosulfonic acid membrane of Comparative Example 3, and the ratio of proton conductivity to methanol permeability coefficient φ (φ = σ / P M ) is four times or more larger and is suitable as a polymer electrolyte membrane for direct methanol fuel cells.

Figure 2006152009
Figure 2006152009

本発明は、プロトン伝導性が高く、耐熱性が高く、機械的強度が大きい固体電解質であるポリイミドで、陽イオン交換体として、また各種電解用隔膜等とした場合、ガス及び液体に対するバリヤー性が大きく、特に燃料電池用電解質膜として優れた性質を有する。   The present invention is a polyimide that is a solid electrolyte with high proton conductivity, high heat resistance, and high mechanical strength. When used as a cation exchanger or as a diaphragm for various electrolysis, it has barrier properties against gases and liquids. It is large and particularly has excellent properties as an electrolyte membrane for fuel cells.

は、プロトン伝導度の温度依存性を示す。Indicates the temperature dependence of proton conductivity.

Claims (9)

下記式(1)に示される構造単位を分子中に有することを特徴とするスルホン化芳香族ポリイミド。
Figure 2006152009
但し、Arは4価の芳香族基、Arは次の(a)〜(d)に示される2価の基のうちいずれかの基。
Figure 2006152009
(但し、Qは、‐O‐、‐S‐、‐CO‐、‐SO‐、‐CH‐、‐CF‐、‐C(CH‐、‐C(CF‐から選ばれる基)、Dは‐O‐、‐S‐又は‐SO‐から選ばれる基、Rは、水素原子又は電子吸引性基、Xはスルホン酸基を有し、且つ更に置換基を有することある芳香族炭化水素基。
A sulfonated aromatic polyimide having a structural unit represented by the following formula (1) in a molecule.
Figure 2006152009
However, Ar is a tetravalent aromatic group, or a group of divalent radicals Ar 1 is shown in the following (a) ~ (d).
Figure 2006152009
(However, Q is —O—, —S—, —CO—, —SO 2 —, —CH 2 —, —CF 2 —, —C (CH 3 ) 2 —, —C (CF 3 ) 2 — D 1 is a group selected from —O—, —S— or —SO 2 —, R 1 is a hydrogen atom or an electron withdrawing group, X has a sulfonic acid group, and is further substituted. An aromatic hydrocarbon group that may have a group.
Xが下記式(2)で示される(e)又は(f)のいずれかである請求項1記載のスルホン化芳香族ポリイミド。
Figure 2006152009
(但し、Yは水素原子、ハロゲン原子、スルホン酸基又は下記式(3)〜(16)に示す基のいずれか1つの基、pは0又は1の数〔但し、Yが水素原子又はハロゲン原子の時は1〕である。)
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
(但し(3)〜(16)におけるnは1〜2の整数を表す、またTは‐O‐又は‐S‐を表す。)
The sulfonated aromatic polyimide according to claim 1, wherein X is either (e) or (f) represented by the following formula (2).
Figure 2006152009
(Where Y is a hydrogen atom, halogen atom, sulfonic acid group or any one of groups shown in the following formulas (3) to (16), p is a number of 0 or 1 [where Y is a hydrogen atom or halogen, 1] for atoms.
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
Figure 2006152009
(However, n in (3) to (16) represents an integer of 1 to 2, and T represents -O- or -S-.)
Xが下記式(17)で示される基である請求項1に記載のスルホン化芳香族ポリイミド。
Figure 2006152009
(但しZは直接芳香族環が結合したもの、‐O‐、‐S‐、‐SO‐、‐CO‐、‐CH‐、‐CF‐、又は‐C(CF‐、を表す。またmは1〜10、nは1〜2の整数を表す。)
The sulfonated aromatic polyimide according to claim 1, wherein X is a group represented by the following formula (17).
Figure 2006152009
(Where Z is a direct aromatic ring, -O-, -S-, -SO 2- , -CO-, -CH 2- , -CF 2- , or -C (CF 3 ) 2- , M represents an integer of 1 to 10, and n represents an integer of 1 to 2.)
Xがスルホン酸基の置換されたポリフェニレンオキサイド鎖又はポリフェニレンスルフィド鎖よりなる請求項1に記載のスルホン化芳香族ポリイミド。   The sulfonated aromatic polyimide according to claim 1, wherein X comprises a polyphenylene oxide chain or a polyphenylene sulfide chain substituted with a sulfonic acid group. 下記式(1)及び(18)で示される構造単位を有することを特徴とする請求項1乃至4のいずれかに記載のスルホン化芳香族ポリイミド。
Figure 2006152009
Figure 2006152009
但し、Ar、Ar、D、R及びXは請求項1に同じ、Arはスルホン酸基を有しない2価の芳香族基、
The sulfonated aromatic polyimide according to any one of claims 1 to 4, which has a structural unit represented by the following formulas (1) and (18).
Figure 2006152009
Figure 2006152009
However, Ar, Ar 1 , D 1 , R 1 and X are the same as in claim 1, Ar 2 is a divalent aromatic group having no sulfonic acid group,
式(1)の構造単位対式(18)の構造単位の割合が10〜90対90〜10である請求項5記載のスルホン化芳香族ポリイミド。   The sulfonated aromatic polyimide according to claim 5, wherein the ratio of the structural unit of formula (1) to the structural unit of formula (18) is 10 to 90 to 90 to 10. Arのうち、2〜30%はスルホン酸基を有しない3価の芳香族基で置換され、架橋構造を形成してなることを特徴とする請求項5又は6記載のスルホン化芳香族ポリイミド。 The sulfonated aromatic polyimide according to claim 5 or 6, wherein 2 to 30% of Ar 2 is substituted with a trivalent aromatic group having no sulfonic acid group to form a crosslinked structure. . 請求項1乃至7のうちいずれかの請求項に記載のスルホン化芳香族ポリイミドよりなる陽イオン交換体。   A cation exchanger comprising the sulfonated aromatic polyimide according to any one of claims 1 to 7. 請求項8記載の陽イオン交換体よりなる燃料電池用電解質膜。   An electrolyte membrane for a fuel cell comprising the cation exchanger according to claim 8.
JP2004334205A 2004-11-08 2004-11-18 Sulfonated aromatic polyimide and electrolyte film composed of the same Pending JP2006152009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004334205A JP2006152009A (en) 2004-11-08 2004-11-18 Sulfonated aromatic polyimide and electrolyte film composed of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004323609 2004-11-08
JP2004334205A JP2006152009A (en) 2004-11-08 2004-11-18 Sulfonated aromatic polyimide and electrolyte film composed of the same

Publications (1)

Publication Number Publication Date
JP2006152009A true JP2006152009A (en) 2006-06-15

Family

ID=36630694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004334205A Pending JP2006152009A (en) 2004-11-08 2004-11-18 Sulfonated aromatic polyimide and electrolyte film composed of the same

Country Status (1)

Country Link
JP (1) JP2006152009A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265497A (en) * 2005-03-25 2006-10-05 Yamaguchi Univ Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
JP2006299245A (en) * 2005-03-22 2006-11-02 Jsr Corp Solid polymer electrolyte, proton conductive membrane, electrode electrolyte, electrode paste and membrane-electrode assembly
JP2010209157A (en) * 2009-03-06 2010-09-24 Tokyo Metropolitan Univ Grafted polyimide electrolyte
KR101105533B1 (en) * 2007-06-12 2012-01-13 주식회사 엘지화학 Sulfonated monomer and use of the same
WO2014006821A1 (en) 2012-07-02 2014-01-09 信越ポリマー株式会社 Conductive polymer composition, coated article which is provided with antistatic film obtained from conductive polymer composition, and pattern forming method using conductive polymer composition
CN104592069A (en) * 2015-01-25 2015-05-06 吉林大学 1,3,5-tris(4-aminophenylmercapto)benzene as well as preparation method and application thereof
CN107001257A (en) * 2015-01-30 2017-08-01 株式会社Lg化学 Compound comprising aromatic ring and the polymer dielectric film using the compound
JP2018502821A (en) * 2014-12-19 2018-02-01 エルジー・ケム・リミテッド New compound and polymer electrolyte membrane using the same
WO2022210489A1 (en) * 2021-03-31 2022-10-06 東レ株式会社 Secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299245A (en) * 2005-03-22 2006-11-02 Jsr Corp Solid polymer electrolyte, proton conductive membrane, electrode electrolyte, electrode paste and membrane-electrode assembly
JP2006265497A (en) * 2005-03-25 2006-10-05 Yamaguchi Univ Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
KR101105533B1 (en) * 2007-06-12 2012-01-13 주식회사 엘지화학 Sulfonated monomer and use of the same
JP2010209157A (en) * 2009-03-06 2010-09-24 Tokyo Metropolitan Univ Grafted polyimide electrolyte
WO2014006821A1 (en) 2012-07-02 2014-01-09 信越ポリマー株式会社 Conductive polymer composition, coated article which is provided with antistatic film obtained from conductive polymer composition, and pattern forming method using conductive polymer composition
US9558862B2 (en) 2012-07-02 2017-01-31 Shin-Etsu Polymer Co., Ltd. Conductive polymer composition, coated article having antistatic film formed from the composition, and patterning process using the composition
JP2018502821A (en) * 2014-12-19 2018-02-01 エルジー・ケム・リミテッド New compound and polymer electrolyte membrane using the same
US10727516B2 (en) 2014-12-19 2020-07-28 Lg Chem, Ltd. Compound and polymer electrolyte membrane using same
CN104592069A (en) * 2015-01-25 2015-05-06 吉林大学 1,3,5-tris(4-aminophenylmercapto)benzene as well as preparation method and application thereof
CN107001257A (en) * 2015-01-30 2017-08-01 株式会社Lg化学 Compound comprising aromatic ring and the polymer dielectric film using the compound
JP2018502053A (en) * 2015-01-30 2018-01-25 エルジー・ケム・リミテッド Compound containing aromatic ring and polymer electrolyte membrane using the same
WO2022210489A1 (en) * 2021-03-31 2022-10-06 東レ株式会社 Secondary battery

Similar Documents

Publication Publication Date Title
Zhai et al. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application
Wang et al. Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes
Guo et al. Synthesis and properties of novel sulfonated polyimides from 2, 2′‐bis (4‐aminophenoxy) biphenyl‐5, 5′‐disulfonic acid
JP5642453B2 (en) Phosphate-doped electrolyte membrane, method for producing the same, and fuel cell including the same
Hu et al. Synthesis and properties of novel sulfonated (co) polyimides bearing sulfonated aromatic pendant groups for PEFC applications
Chen et al. Synthesis and properties of novel side-chain-sulfonated polyimides from bis [4-(4-aminophenoxy)-2-(3-sulfobenzoyl)] phenyl sulfone
JP5499276B2 (en) Polyimide resin and electrolyte membrane
Liu et al. Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes
Chen et al. Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis (aminophenoxyphenyl) sulfone
Fang Polyimide proton exchange membranes
Zhang et al. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides
JP4554179B2 (en) Production method and use of crosslinked sulfonated polyimide
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JP2007302741A (en) Polyimide film and polymer electrolyte membrane
JP2002358978A (en) Polymer electrolyte membrane and its manufacturing method
Akbarian‐Feizi et al. Synthesis of new sulfonated copolyimides in organic and ionic liquid media for fuel cell application
JP2002367627A (en) Sulfonated polyimide polymer electrolyte film and manufacturing method of the same
JP3910026B2 (en) New polymer electrolyte membrane for fuel cells
JP2007302717A (en) Sulfonated aromatic polyimide, electrolyte membrane and solid state electrolyte for fuel cell, and fuel cell
JP2004155998A (en) Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same
JP2006265497A (en) Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
JP4545708B2 (en) Sulfonated aromatic polyimide
JP5421564B2 (en) Method for producing copolymer, copolymer, and electrolyte using the copolymer
JP4608363B2 (en) Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane
JP2006265496A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same