JP4608363B2 - Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane - Google Patents

Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane Download PDF

Info

Publication number
JP4608363B2
JP4608363B2 JP2005136326A JP2005136326A JP4608363B2 JP 4608363 B2 JP4608363 B2 JP 4608363B2 JP 2005136326 A JP2005136326 A JP 2005136326A JP 2005136326 A JP2005136326 A JP 2005136326A JP 4608363 B2 JP4608363 B2 JP 4608363B2
Authority
JP
Japan
Prior art keywords
aromatic
polyimide
phenoxysulfonated
electrolyte membrane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005136326A
Other languages
Japanese (ja)
Other versions
JP2006312693A (en
Inventor
健一 岡本
英敏 喜多
一宏 田中
芳樹 須藤
宏遠 王
浩信 川里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, Nippon Steel and Sumikin Chemical Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2005136326A priority Critical patent/JP4608363B2/en
Publication of JP2006312693A publication Critical patent/JP2006312693A/en
Application granted granted Critical
Publication of JP4608363B2 publication Critical patent/JP4608363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Conductive Materials (AREA)

Description

本発明は、新規なスルホン化芳香族ポリイミドに関し、詳しくは、高分子電解質膜に使用されるフェノキシスルホン化芳香族ポリイミド及びそれを製膜して得られる高分子電解質膜に関する。   The present invention relates to a novel sulfonated aromatic polyimide, and more particularly to a phenoxysulfonated aromatic polyimide used for a polymer electrolyte membrane and a polymer electrolyte membrane obtained by forming the same.

燃料電池は、水の電気分解の逆動作に基づく動作原理により電気エネルギーを得る装置である。燃料電池では、一般に、天然ガス、メタノール、石炭などの燃料を改質して得られる水素と、空気中の酸素とを送り込むことによって、水が生成するとともに、直流電力が得られる。このように、発電効率が高く、クリーンなエネルギーを供給できることから燃料電池発電が注目されている。   A fuel cell is a device that obtains electrical energy according to an operating principle based on the reverse operation of water electrolysis. In a fuel cell, in general, water is generated and direct current power is obtained by feeding hydrogen obtained by reforming a fuel such as natural gas, methanol, and coal, and oxygen in the air. Thus, fuel cell power generation is attracting attention because it has high power generation efficiency and can supply clean energy.

そして、燃料電池の中でも、固体高分子型燃料電池 (Polymer Electrolyte Fuel Cell/PEFC)は、電解質として固体高分子電解質膜(プロトン交換膜)を使用しているため、電解質の散逸や保持の問題がないこと、100℃以下の低温でも動作可能であること、起動時間が極めて短いこと、高エネルギー密度化や小型軽量化が可能であることなどの長所を有していることから、自動車用電源、家庭用やビル用の分散型電源、宇宙船用電源、可搬型電源などとして開発が進められている。特に、地球温暖化などの環境問題や自動車排ガス対策の観点から、固体高分子型燃料電池は自動車搭載用の燃料電池として期待を集めている。   Among the fuel cells, the polymer electrolyte fuel cell (PEFC) uses a solid polymer electrolyte membrane (proton exchange membrane) as the electrolyte, which causes problems with dissipation and retention of the electrolyte. Power supply for automobiles, because it has the advantages of being able to operate at a low temperature of 100 ° C. or less, having a very short start-up time, being capable of high energy density and being small and light. Development is progressing as a distributed power source for homes and buildings, a power source for spacecraft, a portable power source. In particular, from the viewpoint of environmental problems such as global warming and vehicle exhaust gas countermeasures, polymer electrolyte fuel cells have been expected as fuel cells for automobiles.

固体高分子電解質は、特定のイオンと強固に結合したり、陽イオン又は陰イオンを選択的に透過する性質を有しているものであり、高分子鎖中にスルホン酸基等の電解質基を有する固体高分子材料が知られている。具体的には、高いプロトン伝導性を有し、高い耐酸化性を有するパーフルオロスルホン酸膜が用いられている。このパーフルオロスルホン酸基含有ポリマー膜は化学的安定性が非常に高いことから注目されているものの製造が困難であるためコストが高く、フッ素系材料であるため合成や廃棄時の環境問題に対する配慮も必要である。   Solid polymer electrolytes have the property of binding tightly to specific ions or selectively permeating cations or anions, and electrolyte groups such as sulfonic acid groups in polymer chains. A solid polymer material is known. Specifically, a perfluorosulfonic acid membrane having high proton conductivity and high oxidation resistance is used. Although this perfluorosulfonic acid group-containing polymer membrane is attracting attention due to its extremely high chemical stability, it is difficult to manufacture and is expensive, and because it is a fluorine-based material, consideration for environmental issues during synthesis and disposal Is also necessary.

また、固体高分子型燃料電池を小型軽量化するためには、100℃以下の低温での動作では出力が十分ではなく、100〜120℃の範囲での動作による高出力化が要求されている。しかし、従来のパーフルオロスルホン酸基含有ポリマー膜は100℃近辺に軟化点があるため、100℃を超える温度条件下では膜が変形して機能を十分に発揮できなくなる可能性が高い。これに対し、炭化水素系電解質膜は、製造が容易で低コストである上に、分子設計上の自由度が高く、イオン交換容量の調節が容易であるという利点がある。   Further, in order to reduce the size and weight of the polymer electrolyte fuel cell, the output is not sufficient in the operation at a low temperature of 100 ° C. or less, and the high output by the operation in the range of 100 to 120 ° C. is required. . However, since the conventional perfluorosulfonic acid group-containing polymer film has a softening point in the vicinity of 100 ° C., there is a high possibility that the film will be deformed under the temperature condition exceeding 100 ° C. and the function cannot be fully exhibited. On the other hand, the hydrocarbon-based electrolyte membrane has advantages that it is easy to manufacture and low in cost, has a high degree of freedom in molecular design, and can easily adjust the ion exchange capacity.

芳香族ポリイミドは、一般にオキシジアニリンのような芳香族ジアミンとピロメリット酸無水物のような芳香族テトラカルボン酸類との重縮合により得られ、ジアミン残基と酸無水物残基との間の電荷移動相互作用に基づく強い分子間相互作用のため、薄膜形成能に優れ、機械的強度、耐熱性、耐溶剤性、そして化学的安定性に優れるので、スーパーエンジニアリングプラスチックス、層間絶縁材料等の電子材料あるいは中空糸気体分離膜などで利用されている。これらの優れた特性はイオン交換膜や燃料電池用の電解質膜においても必要なものであり、特にスルホン酸基(スルホ基ともいう)やリン酸基のようなイオン交換基を有するポリイミドは良好な燃料電池用電解質膜などとして期待される。   Aromatic polyimide is generally obtained by polycondensation of an aromatic diamine such as oxydianiline and an aromatic tetracarboxylic acid such as pyromellitic anhydride, and between the diamine residue and the acid anhydride residue. Due to strong intermolecular interaction based on charge transfer interaction, it has excellent thin film forming ability, mechanical strength, heat resistance, solvent resistance, and chemical stability, so super engineering plastics, interlayer insulation materials, etc. It is used in electronic materials or hollow fiber gas separation membranes. These excellent characteristics are also necessary for ion exchange membranes and electrolyte membranes for fuel cells. Particularly, polyimides having ion exchange groups such as sulfonic acid groups (also referred to as sulfo groups) and phosphoric acid groups are good. It is expected as an electrolyte membrane for fuel cells.

しかし、ポリイミドは酸性水溶液中でイミド環が加水分解し易い欠点があり、スルホン化ポリフェニレンやスルホン化ポリエーテルスルホンなどの他のスルホン化芳香族炭化水素系高分子に比べて劣る点を有していた。   However, polyimide has the disadvantage that the imide ring is easily hydrolyzed in an acidic aqueous solution, and is inferior to other sulfonated aromatic hydrocarbon polymers such as sulfonated polyphenylene and sulfonated polyethersulfone. It was.

特表2000‐510511号公報Special Table 2000-510511 特開2003‐64181号公報Japanese Patent Laid-Open No. 2003-64181 特開2002‐110174号公報JP 2002-110174 A 特開2004‐155998号公報Japanese Patent Laid-Open No. 2004-155998 特開2004‐35891号公報JP 2004-35891 A 特開2004‐107484号公報JP 2004-107484 A ポリマー vol.42, p5097‐5105(2001)Polymer vol.42, p5097-5105 (2001) ジャーナル メンブラン サイエンス vol.230, p111‐120(2004)Journal Membrane Science vol.230, p111-120 (2004) ソリッド ステート イオニクス vol.147, p189-194(2002)Solid State Ionics vol.147, p189-194 (2002) マクロモレキュラー ラピッド コミュニケーションズ vol.23, p896-900(2002)Macromolecular Rapid Communications vol.23, p896-900 (2002) ジャーナル メンブラン サイエンス vol.230, p61-70(2004)Journal Membrane Science vol.230, p61-70 (2004) ジャーナル マテリアルズ ケミストリー vol.14, p1062-1070(2004)Journal Materials Chemistry vol.14, p1062-1070 (2004) トランザクション マテリアルズ リサーチ ソサイアティ ジャパン vol.29, p2541-2546(2004)Transaction Materials Research Society Japan vol.29, p2541-2546 (2004)

そこで、1,4,5,8‐ナフタレンテトラカルボン酸二無水物(NTDA)からの六員環イミド環を有するポリイミドがフタル酸無水物からの五員環イミド環より耐加水分解性に優れているとの提案がなされている(非特許文献1)。例えば、特許文献1では、NTDAと下記式(11)〜(13)で示されるスルホン化ジアミンと、非スルホン化ジアミン(例えば、オキシジアニリン)との共重合ポリイミド膜が燃料電池用の電解質膜として優れているとしている。

Figure 0004608363
Therefore, a polyimide having a six-membered ring imide ring from 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) is more resistant to hydrolysis than a five-membered imide ring from phthalic anhydride. (Non-Patent Document 1). For example, in Patent Document 1, a copolymerized polyimide membrane of NTDA, a sulfonated diamine represented by the following formulas (11) to (13), and a non-sulfonated diamine (for example, oxydianiline) is an electrolyte membrane for a fuel cell. As good as it is.
Figure 0004608363

しかし、これらのスルホン化ポリイミド膜の耐水性は十分なものではなく、特許文献2では、下記式(14)で示されるスルホン化ジアミンからのスルホン化共重合ポリイミド膜がさらに優れた耐水性を有することを開示している。これは、電子吸引性のスルホ基がアミノ基の結合しているフェニル環から離れたフェニル環に結合しているのでアミンの塩基性が高く、イミド環の耐加水分解性が増すためである(例えば、非特許文献2)と考えられる。

Figure 0004608363
(D2はO、S、CH2又はC(CF32等、R4〜R7は水素原子又はアルキル基、Arはスルホ基を有する芳香環残基) However, the water resistance of these sulfonated polyimide membranes is not sufficient, and in Patent Document 2, a sulfonated copolymer polyimide membrane from a sulfonated diamine represented by the following formula (14) has a further excellent water resistance. It is disclosed. This is because the electron-withdrawing sulfo group is bonded to the phenyl ring away from the phenyl ring to which the amino group is bonded, so that the basicity of the amine is high and the hydrolysis resistance of the imide ring is increased ( For example, it is considered Non-Patent Document 2).
Figure 0004608363
(D 2 is O, S, CH 2 or C (CF 3 ) 2 etc., R 4 to R 7 are hydrogen atoms or alkyl groups, Ar is an aromatic ring residue having a sulfo group)

上記のスルホン化ポリイミドは、いずれもスルホ基が高分子主鎖に直接結合している場合である。パーフルオロスルホン酸系高分子電解質膜では、側鎖のフルオロエーテル末端にスルホ基が結合し、親水性のスルホ基部が疎水性の主鎖部からミクロ相分離し、親水性のイオンチャンネルを形成していると考えられている。   All of the sulfonated polyimides described above are cases in which the sulfo group is directly bonded to the polymer main chain. In a perfluorosulfonic acid polymer electrolyte membrane, a sulfo group is bonded to the fluoroether end of the side chain, and the hydrophilic sulfo group part is microphase-separated from the hydrophobic main chain part to form a hydrophilic ion channel. It is thought that

同様の効果を期待してこれまでに、芳香族炭化水素系高分子の側鎖にスルホ基を導入した側鎖型のスルホン化芳香族炭化水素系高分子膜が報告されている。例えば、下記式(15)で示される4-(4-スルホフェノキシ)ベンゾイル基を有するポリ-1,4-フェニレン(非特許文献3)、式(16)で示される2‐スルホベンゾイル基を有するポリスルホン(非特許文献4)、式(17)で示されるω‐スルホアルキルスルホニル基を有するポリスルホン(非特許文献5)、式(18)で示されるω‐スルホアルキル基を有するポリスルホンなどの芳香族炭化水素系ポリマー(特許文献3)が挙げられる。   With the expectation of the same effect, a side chain type sulfonated aromatic hydrocarbon polymer film in which a sulfo group is introduced into a side chain of an aromatic hydrocarbon polymer has been reported so far. For example, poly-1,4-phenylene having a 4- (4-sulfophenoxy) benzoyl group represented by the following formula (15) (Non-patent Document 3), having a 2-sulfobenzoyl group represented by the formula (16) Aromatics such as polysulfone (Non-Patent Document 4), polysulfone having an ω-sulfoalkylsulfonyl group represented by Formula (17) (Non-Patent Document 5), polysulfone having an ω-sulfoalkyl group represented by Formula (18) A hydrocarbon polymer (patent document 3) is mentioned.

Figure 0004608363
Figure 0004608363
Figure 0004608363
Figure 0004608363

ポリイミドにおいても式(19)で示されるω‐スルホアルコキシ基を有するジアミン(非特許文献6、特許文献4)や式(20)で示されるスルホフェノキシ基を有するジアミン(非特許文献7)の合成とそのポリイミドの合成と物性が報告されている。これらの側鎖型スルホン化ポリイミド膜はミクロ相分離構造を有し、比較的優れた高温耐水性を有することが明らかにされている。   Synthesis of a diamine having a ω-sulfoalkoxy group represented by formula (19) (Non-patent Documents 6 and 4) and a diamine having a sulfophenoxy group represented by Formula (20) (Non-patent Document 7) in polyimide And the synthesis and physical properties of its polyimide have been reported. These side-chain sulfonated polyimide membranes have a microphase separation structure and have been shown to have relatively good high temperature water resistance.

Figure 0004608363
Figure 0004608363

その他に、側鎖にスルホ基を有するものとして、主鎖の芳香族環にアルキレンエーテル結合を介してスルホン化芳香族基を結合したポリイミド(特許文献5)や下記式(21)
‐R‐SO3H (21)
(Rは、アルキレン、ハロゲン化アルキレン、アリーレン、ハロゲン化アリーレン又はエーテル結合を含むもの)に示される側鎖にスルホン酸基を有するポリイミドが開示されている(特許文献6)。これらのイオン交換体のあるものは、比較的高温下での耐久性や耐加水分解性を有しているが、更なる耐加水分解性が望まれる。
In addition, a polyimide having a sulfo group in the side chain and a sulfonated aromatic group bonded to the aromatic ring of the main chain via an alkylene ether bond (Patent Document 5) or the following formula (21)
-R-SO 3 H (21)
A polyimide having a sulfonic acid group in the side chain shown in (R represents alkylene, halogenated alkylene, arylene, halogenated arylene, or ether bond) is disclosed (Patent Document 6). Some of these ion exchangers have durability at relatively high temperatures and hydrolysis resistance, but further hydrolysis resistance is desired.

ポリイミドの強い分子間相互作用に基づく優れた特性を活かし、強靱で可撓性に富むスルホン化ポリイミド薄膜で、かつイミド環の耐加水分解性が改良された優れた高温耐水性を有する電解質膜の開発が求められている。これまでに開発されたスルホン化ポリイミド膜は、長期間使用するとイミド環の加水分解が生じ、分子量が低下するために膜は機械的特性を失うことがある。また、高温使用中、経時的にスルホ基の脱離を生じ、イオン交換容量の低下を来たし、性能が低下するという現象が見られることがある。これらの現象は、特に100℃を超える高温で顕著になることから、100℃以上の温度下で用いても長期耐久性と機械的強度を有し、幅広い温度領域で使用可能であり、しかも低湿度下でのプロトン伝導性低下の少ない燃料電池用の電解質膜として使用に耐え得る高分子電解質膜の開発が望まれている。また、本発明の他の目的は高分子電解質膜として適するスルホン化ポリイミドを提供することである。   Utilizing the excellent properties based on the strong intermolecular interaction of polyimide, it is a tough and flexible sulfonated polyimide thin film, and the electrolyte membrane with excellent high temperature water resistance with improved imide ring hydrolysis resistance Development is required. When sulfonated polyimide membranes developed so far are used for a long period of time, hydrolysis of the imide ring occurs and the molecular weight decreases, so the membrane may lose mechanical properties. In addition, during use at a high temperature, there may be a phenomenon that the sulfo group is eliminated over time, the ion exchange capacity is lowered, and the performance is lowered. Since these phenomena become particularly noticeable at high temperatures exceeding 100 ° C, they have long-term durability and mechanical strength even when used at temperatures above 100 ° C, and can be used in a wide range of temperatures. Development of a polymer electrolyte membrane that can withstand use as an electrolyte membrane for a fuel cell with little decrease in proton conductivity under humidity is desired. Another object of the present invention is to provide a sulfonated polyimide suitable as a polymer electrolyte membrane.

本発明者等は上記課題を解決するため、鋭意研究を重ねた結果、特定のジアミン化合物をモノマーとして用いたスルホン化ポリイミドは、耐熱性の高い、100〜120℃の温度条件下でも高い機械的強度を保ち、しかも経時的劣化の少ない陽イオン交換膜、特に燃料電池用高分子電解質膜に適するスルホン化ポリイミド膜を与えることを見出し、本発明を完成するに至った。   In order to solve the above problems, the present inventors have conducted extensive research. As a result, a sulfonated polyimide using a specific diamine compound as a monomer has high heat resistance and high mechanical properties even at a temperature of 100 to 120 ° C. The inventors have found that a cation exchange membrane that maintains strength and has little deterioration with time, particularly a sulfonated polyimide membrane suitable for a polymer electrolyte membrane for fuel cells, has been completed, and the present invention has been completed.

すなわち、本発明は、下記式(1)で表される構造単位を有することを特徴とするフェノキシスルホン化芳香族ポリイミドである。

Figure 0004608363
(但し、Ar1は少なくとも1つの芳香環を有する4価の基であり、Ar2は下記式(2)で示される2価の基である。)
Figure 0004608363
(但し、Xは水素原子、アルカリ金属、アンモニウム又は4級アミンである。)
また、本発明は、上記式(1)で表される構造単位を5〜100モル%、下記式(3)で表される構造単位を0〜95モル%有するフェノキシスルホン化芳香族ポリイミドである。
Figure 0004608363
(但し、Ar3は少なくとも1つの芳香環を有する4価の基であり、Ar4はAr2とは異なる少なくとも1つの芳香環を有し、-SO3Xを有しない2価の基である。)
上記式(1)及び(3)において、Ar1及びAr3が下記式(4)又は(5)で示される4価の基であるとより良好な物性を示すフェノキシスルホン化芳香族ポリイミドとなる。
Figure 0004608363
(但し、Z及びYは直結合、CO、O、CH2又はSOである。) That is, the present invention is a phenoxysulfonated aromatic polyimide characterized by having a structural unit represented by the following formula (1).
Figure 0004608363
(However, Ar 1 is a tetravalent group having at least one aromatic ring, and Ar 2 is a divalent group represented by the following formula (2).)
Figure 0004608363
(However, X is a hydrogen atom, an alkali metal, ammonium, or a quaternary amine.)
Moreover, this invention is a phenoxy sulfonated aromatic polyimide which has 5-100 mol% of structural units represented by the said Formula (1), and 0-95 mol% of structural units represented by following formula (3). .
Figure 0004608363
(However, Ar 3 is a tetravalent group having at least one aromatic ring, Ar 4 is a divalent group having at least one aromatic ring different from Ar 2 and having no —SO 3 X. .)
In the above formulas (1) and (3), when Ar 1 and Ar 3 are a tetravalent group represented by the following formula (4) or (5), a phenoxysulfonated aromatic polyimide having better physical properties is obtained. .
Figure 0004608363
(However, Z and Y are a direct bond, CO, O, CH 2 or SO.)

更に、本発明は、上記のフェノキシスルホン化芳香族ポリイミドを製膜して得られる高分子電解質膜である。
この高分子電解質膜は、次の要件の1以上を満たすことが望ましい。
1)30μm厚の高分子電解質膜を温度130℃の加圧熱水中に190時間浸漬後、180°折り曲げても破断せず、破断応力が50MPa以上であること。
2)温度60℃で相対湿度100%においてプロトン伝導度が0.10S/cm以上、相対湿度50%においてプロトン伝導度が0.004S/cm以上、温度120℃で相対湿度50%においてプロトン伝導度が0.03S/cm以上、更に130℃の加圧熱水中に190時間浸漬し、その前後において、プロトン伝導度の低下が見られないこと。
Furthermore, the present invention is a polymer electrolyte membrane obtained by forming the above phenoxysulfonated aromatic polyimide.
The polymer electrolyte membrane preferably satisfies one or more of the following requirements.
1) A 30 μm-thick polymer electrolyte membrane is immersed in pressurized hot water at a temperature of 130 ° C. for 190 hours, and is not broken even if it is bent by 180 °, and the breaking stress is 50 MPa or more.
2) Proton conductivity is 0.10 S / cm or higher at 60 ° C. and 100% relative humidity, proton conductivity is 0.004 S / cm or higher at 50% relative humidity, and proton conductivity at 120 ° C. and 50% relative humidity. Is immersed in pressurized hot water at 0.03 S / cm or more and 130 ° C. for 190 hours, and no decrease in proton conductivity is observed before and after that.

また、本発明のフェノキシスルホン化芳香族ポリイミドの製造方法は、芳香族ジアミンと芳香族テトラカルボン酸類とから合成するに当たり、芳香族ジアミンとして下記式(6)で表されるフェノキシ基含有芳香族ジアミン5〜100モル%と、他の芳香族ジアミン0〜95モル%とを使用することを特徴とする。

Figure 0004608363
(但し、Xは水素原子、アルカリ金属、アンモニウム又は4級アミンである。) In addition, in the method for producing a phenoxysulfonated aromatic polyimide of the present invention, a phenoxy group-containing aromatic diamine represented by the following formula (6) is used as an aromatic diamine when synthesizing from an aromatic diamine and an aromatic tetracarboxylic acid. It is characterized by using 5 to 100 mol% and 0 to 95 mol% of another aromatic diamine.
Figure 0004608363
(However, X is a hydrogen atom, an alkali metal, ammonium, or a quaternary amine.)

以下、本発明を更に説明する。   The present invention will be further described below.

本発明のフェノキシスルホン化芳香族ポリイミドは、前記式(1)又は式(1)と式(3)で表される構造単位を有する。このポリイミドは、芳香族ジアミンと芳香族テトラカルボン酸類(好ましくは、芳香族テトラカルボン酸二無水物)とを反応させることにより合成することができる。式(1)又は式(3)において、芳香族ジアミンはAr2又はAr4を与え、芳香族テトラカルボン酸類はAr1又はAr3を与えるので、好ましいAr1〜Ar4は以下に示すジアミン成分及び芳香族テトラカルボン酸類から理解される。 The phenoxysulfonated aromatic polyimide of the present invention has a structural unit represented by the formula (1) or the formula (1) and the formula (3). This polyimide can be synthesized by reacting an aromatic diamine and an aromatic tetracarboxylic acid (preferably an aromatic tetracarboxylic dianhydride). In formula (1) or formula (3), since aromatic diamine gives Ar 2 or Ar 4 and aromatic tetracarboxylic acids give Ar 1 or Ar 3 , preferred Ar 1 to Ar 4 are diamine components shown below. And aromatic tetracarboxylic acids.

式(1)で表される構造単位を形成するジアミン成分としては、上記式(6)で表されるフェノキシ基含有芳香族ジアミンが用いられ、これと芳香族テトラカルボン酸類とを反応させて得ることができる。式(6)中、Xは水素原子、アルカリ金属、アンモニウム又は4級アミンであり、好ましくは水素原子である。また、C6H4はフェニレン基であり、o-、m-又はp-フェニレンであることができるが、好ましくはp-フェニレンである。 As the diamine component forming the structural unit represented by the formula (1), a phenoxy group-containing aromatic diamine represented by the above formula (6) is used, and obtained by reacting this with an aromatic tetracarboxylic acid. be able to. In formula (6), X is a hydrogen atom, an alkali metal, ammonium or a quaternary amine, preferably a hydrogen atom. C 6 H 4 is a phenylene group and can be o-, m- or p-phenylene, preferably p-phenylene.

本発明のフェノキシスルホン化芳香族ポリイミドの合成に用いられる芳香族テトラカルボン酸類としては、特に限定されるものではないが、例えば、3,3',4,4'−ビフェニルテトラカルボン酸、2,3',3,4'−ビフェニルテトラカルボン酸、3,3',4,4'−ベンゾフェノンテトラカルボン酸、3,3',4,4'−ジフェニルエーテルテトラカルボン酸、ビス(3,4−ジカルボキシフェニル)メタン、2,2−ビス(3,4−ジカルボキシフェニル)プロパン、ピロメリット酸、1,4,5,8−ナフタレンテトラカルボン酸、3,4,9,10−ペリレンテトラカルボン酸、4,4'−(ヘキサフルオロイソプロピリデン)ジフタル酸、m−(ターフェニル)3,4,3",4"−テトラカルボン酸又はそれらの酸二無水物やエステル化物を挙げることができる。特に、次式(7)又は(8)で示されるナフタレン環を有し、六員環のイミドを形成し得る酸二無水物がスルホン化ポリイミドの耐水性から好適である。なお、式(8)において、Z及びYは直結合、CO、O、CH2及びSOから選ばれ、同一であっても異なっていてもよい。好ましくは直結合である。

Figure 0004608363
The aromatic tetracarboxylic acids used in the synthesis of the phenoxysulfonated aromatic polyimide of the present invention are not particularly limited, and examples thereof include 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3 ', 3,4'-biphenyltetracarboxylic acid, 3,3', 4,4'-benzophenone tetracarboxylic acid, 3,3 ', 4,4'-diphenyl ether tetracarboxylic acid, bis (3,4-di Carboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, pyromellitic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid 4,4 '-(hexafluoroisopropylidene) diphthalic acid, m- (terphenyl) 3,4,3 ", 4" -tetracarboxylic acid, or their acid dianhydrides and esterified products. In particular, an acid dianhydride having a naphthalene ring represented by the following formula (7) or (8) and capable of forming a six-membered imide is preferred from the water resistance of the sulfonated polyimide. In the formula (8), Z and Y are selected from a direct bond, CO, O, CH 2 and SO, and may be the same or different. A direct bond is preferable.
Figure 0004608363

よって、本発明の好ましいスルホン化ポリイミドは、次式(9)又は(10)で示される構造単位を有する。ここで、Z及びYは上記と同義である。

Figure 0004608363
Therefore, the preferable sulfonated polyimide of the present invention has a structural unit represented by the following formula (9) or (10). Here, Z and Y are as defined above.
Figure 0004608363

本発明のフェノキシスルホン化芳香族ポリイミドは、ジアミン成分として前記式(6)で表されるフェノキシ基含有芳香族ジアミン成分と共に、置換基としてスルホ基(SO3X)を有しないジアミン成分を併用してもよい。すなわち、本発明のフェノキシスルホン化芳香族ポリイミドは、前記式(1)で示される構造単位と共に、式(3)で示される構造単位を含んで構成されたものであってもよい。 The phenoxysulfonated aromatic polyimide of the present invention uses a diamine component not having a sulfo group (SO 3 X) as a substituent together with a phenoxy group-containing aromatic diamine component represented by the formula (6) as a diamine component. May be. That is, the phenoxysulfonated aromatic polyimide of the present invention may include a structural unit represented by the formula (3) and a structural unit represented by the formula (1).

式(3)において、Ar3は少なくとも1つ以上の芳香環を有する4価の基であり、Ar4は少なくとも1つ以上の芳香環を有する2価の基であって置換基としてスルホ基を有しないものである。なお、Ar1とAr3とは、同一であっても異なっていてもよい。 In Formula (3), Ar 3 is a tetravalent group having at least one or more aromatic rings, Ar 4 is a divalent group having at least one or more aromatic rings, and a sulfo group is substituted as a substituent. It does not have. Ar 1 and Ar 3 may be the same or different.

式(3)においてAr3を形成する芳香族テトラカルボン酸類としては、前述と同様の芳香族テトラカルボン酸を好適に用いることができる。好ましくは、式(3)のAr3において、式(4)又は(5)の残基を与えるものである。
また、式(3)においてAr4を形成する芳香族ジアミンは、置換基としてスルホ基を有しない芳香族ジアミンであって、例えば、パラフェニレンジアミン、メタフェニレンジアミン、4,4'−オキシジアニリン、3,4'−オキシジアニリン、9,9−ビス(4−アミノフェニル)フルオレン、3,3'−ビス(3−アミノフェニル)スルホン、4,4'−ビス(3-アミノフェノキシ)ジフェニルスルホン、2,2'−トリフルオロメチルベンジジン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、4,4'−ビス(4−アミノフェノキシ)ビフェニルなどを好適に挙げることができる。
As the aromatic tetracarboxylic acids forming Ar 3 in the formula (3), the same aromatic tetracarboxylic acids as described above can be suitably used. Preferably, Ar 3 in formula (3) gives a residue of formula (4) or (5).
The aromatic diamine forming Ar 4 in the formula (3) is an aromatic diamine having no sulfo group as a substituent, and examples thereof include paraphenylene diamine, metaphenylene diamine, and 4,4′-oxydianiline. , 3,4'-oxydianiline, 9,9-bis (4-aminophenyl) fluorene, 3,3'-bis (3-aminophenyl) sulfone, 4,4'-bis (3-aminophenoxy) diphenyl Sulfone, 2,2'-trifluoromethylbenzidine, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene 4,4′-bis (4-aminophenoxy) biphenyl and the like can be preferably mentioned.

本発明のフェノキシスルホン化芳香族ポリイミドは、芳香族テトラカルボン酸類と芳香族ジアミンとを用いて、公知の方法によって容易に行うことができる。芳香族テトラカルボン酸類と芳香族ジアミンは、それぞれ1種であってもよく、2種以上を使用してもよいが、少なくとも式(6)で表されるフェノキシ基含有芳香ジアミンを使用する。   The phenoxysulfonated aromatic polyimide of the present invention can be easily performed by a known method using an aromatic tetracarboxylic acid and an aromatic diamine. Aromatic tetracarboxylic acids and aromatic diamines may each be one kind or two or more kinds, but at least a phenoxy group-containing aromatic diamine represented by the formula (6) is used.

例えば、極性溶媒中で、芳香族ジアミンと芳香族テトラカルボン酸二無水物、3級アミノ化合物、共沸溶媒としてトルエン又はキシレンなどを添加し、140〜220℃に加熱し生成した水を共沸溶媒と共に除去しながら0.5〜100時間縮重合反応させることによって容易に達成できる。ここで、3級アミノ化合物としては、例えばトリメチルアミン、トリエチルアミンなどを挙げることができ、また必要ならば、安息香酸、イソキノリンなどを触媒として添加しても良い。芳香族ジアミンのアミノ基と芳香族テトラカルボン酸二無水物の酸二無水物基に対するモル比は、0.95〜1.05の範囲が好ましく、この範囲から外れると、ポリイミドの分子量が低くなって得られる膜の強度が低下することから好ましくない。上記の縮重合法により使用するフェノキシ基含有芳香ジアミンの種類によっては、アミン塩型のスルホン化ポリイミドが得られるが、これを塩酸水溶液などに浸漬しイオン交換することによりプロトン型のスルホン化ポリイミドが容易に得られる。また、アミン塩型又はプロトン型のスルホン化ポリイミドをアルカリ金属塩、アンモニウム塩水溶液などに浸漬しイオン交換することによりアルカリ金属塩、アンモニウム塩型のスルホン化ポリイミドが容易に得られる。   For example, in a polar solvent, an aromatic diamine, an aromatic tetracarboxylic dianhydride, a tertiary amino compound, toluene or xylene as an azeotropic solvent is added, and the resulting water is azeotropically heated by heating at 140 to 220 ° C. This can be easily achieved by performing a polycondensation reaction for 0.5 to 100 hours while removing together with the solvent. Here, examples of the tertiary amino compound include trimethylamine and triethylamine. If necessary, benzoic acid, isoquinoline and the like may be added as a catalyst. The molar ratio of the amino group of the aromatic diamine to the acid dianhydride group of the aromatic tetracarboxylic dianhydride is preferably in the range of 0.95 to 1.05, and if it is out of this range, the molecular weight of the polyimide becomes low. This is not preferable because the strength of the resulting film is reduced. Depending on the type of phenoxy group-containing aromatic diamine used by the above condensation polymerization method, an amine salt type sulfonated polyimide can be obtained. By immersing this in a hydrochloric acid aqueous solution and performing ion exchange, the proton type sulfonated polyimide can be obtained. Easy to obtain. Further, by immersing an amine salt type or proton type sulfonated polyimide in an alkali metal salt or ammonium salt aqueous solution and performing ion exchange, an alkali metal salt or ammonium salt type sulfonated polyimide can be easily obtained.

本発明のフェノキシスルホン化芳香族ポリイミドは、式(1)で表される構造単位の他に式(3)で表される構造単位を有することができる他、本発明の効果を阻害しない範囲で少量の他の構造単位を有することができる。式(1)で表される構造単位は5〜100モル%、好ましくは50〜100モル%の範囲で含まれることがよい。なお、ポリイミド末端は含有量の計算から除外される。   The phenoxy sulfonated aromatic polyimide of the present invention can have the structural unit represented by the formula (3) in addition to the structural unit represented by the formula (1), and also does not impair the effects of the present invention. It can have small amounts of other structural units. The structural unit represented by the formula (1) may be contained in a range of 5 to 100 mol%, preferably 50 to 100 mol%. In addition, the polyimide terminal is excluded from the calculation of the content.

式(3)で表される構造単位を含む場合は、式(1)/式(3)のモル比は、5/95〜95/5の範囲であり、好ましくは10/90〜95/5、より好ましくは50/50〜95/5、特に好ましくは70/30〜95/5である。共重合フェノキシスルホン化芳香族ポリイミドにおいて、式(1)で示される単位が全重量に対して5モル%未満になると、イオン交換容量やプロトン伝導性などの特徴を発現し難くなるので好ましくない。また、共重合フェノキシスルホン化芳香族ポリイミドの構造は、ランダム共重合及びブロック共重合体のいずれであってもよい。   When the structural unit represented by Formula (3) is included, the molar ratio of Formula (1) / Formula (3) is in the range of 5/95 to 95/5, preferably 10/90 to 95/5. More preferably, it is 50/50 to 95/5, and particularly preferably 70/30 to 95/5. In the copolymerized phenoxysulfonated aromatic polyimide, it is not preferable that the unit represented by the formula (1) is less than 5 mol% with respect to the total weight, since it becomes difficult to develop characteristics such as ion exchange capacity and proton conductivity. The structure of the copolymerized phenoxysulfonated aromatic polyimide may be either a random copolymer or a block copolymer.

本発明のフェノキシスルホン化芳香族ポリイミドは、その溶液粘度(35℃、0.5wt%溶液)が0.7〜20dl/g、好ましくは2.0〜10dl/gの範囲にあることが製膜性や膜の性状の点で好ましい。このフェノキシスルホン化芳香族ポリイミドの用途には制限はないが、その電解質性、イオン交換性、導電性から、膜、粒子、繊維状に成形し、電気透析、拡散透析、電池隔膜等の用途に適する。膜を形成する場合は、フェノキシスルホン化芳香族ポリイミド又はその前駆体(ポリアミック酸)の溶液を基材上に所定厚みに塗布し、乾燥又は硬化させることにより得られる。   The phenoxysulfonated aromatic polyimide of the present invention has a film forming property that its solution viscosity (35 ° C., 0.5 wt% solution) is in the range of 0.7 to 20 dl / g, preferably 2.0 to 10 dl / g. And preferred in terms of film properties. Although there are no restrictions on the use of this phenoxysulfonated aromatic polyimide, it can be formed into membranes, particles and fibers due to its electrolyte, ion exchange and conductivity, and used for electrodialysis, diffusion dialysis, battery membranes, etc. Suitable. When forming a film, it is obtained by applying a solution of phenoxysulfonated aromatic polyimide or a precursor thereof (polyamic acid) to a predetermined thickness on a substrate, and drying or curing.

本発明のフェノキシスルホン化芳香族ポリイミドからなるフィルムは、耐水性が極めて良好である。具体的には、30μm厚のフィルムを温度130℃の加圧熱水中に190時間浸漬後、180°折り曲げても破断せず、破断応力が50MPa以上であるものとすることができ、これは電池隔膜等の用途に優れる。一方、従来の特許文献などに記載されている2,2'−ベンジジンジスルホン酸等のスルホ基が主鎖の芳香環に直接結合したスルホン化芳香族ジアミンから合成したスルホン化芳香族ポリイミドのフィルムは、スルホ基の結合した芳香環のイミド環が容易に加水分解を起こすので、非スルホン化ジアミンとの共重合組成にも依存するが、同様の条件では1分〜数時間程度で溶解ないし破断する。なお、180°折り曲げは、折り目の角度が0°となるように折り曲げることをいう。   The film made of the phenoxysulfonated aromatic polyimide of the present invention has very good water resistance. Specifically, a film having a thickness of 30 μm is immersed in pressurized hot water at a temperature of 130 ° C. for 190 hours, and is not broken even when bent by 180 °, and the breaking stress can be 50 MPa or more. Excellent for applications such as battery diaphragms. On the other hand, a sulfonated aromatic polyimide film synthesized from a sulfonated aromatic diamine in which a sulfo group such as 2,2′-benzidinedisulfonic acid or the like described in conventional patent documents is directly bonded to an aromatic ring of the main chain is Since the imide ring of the aromatic ring to which the sulfo group is bonded easily undergoes hydrolysis, depending on the copolymer composition with the non-sulfonated diamine, it dissolves or breaks in about 1 minute to several hours under the same conditions. . Note that 180 ° bending means that the fold angle is 0 °.

また、本発明のフェノキシスルホン化芳香族ポリイミドからなる高分子電解質膜は、温度60℃で、プロトン伝導度が相対湿度100%において0.10S/cm以上であることが好ましく、0.15〜0.5S/cmの範囲にあることが特に好ましい。また、相対湿度50%においては、0.004S/cm以上であることが好ましく、0.006〜0.05S/cmの範囲にあることが特に好ましい。更に好ましくは、温度120℃で相対湿度50%において、0.03S/cm以上の極めて高いプロトン伝導度を示す。また、130℃の加圧熱水中に190hr浸漬の前後において、プロトン伝導度の低下が実質的に観測されないこと(±5%の範囲内)がよい。   In addition, the polymer electrolyte membrane made of the phenoxysulfonated aromatic polyimide of the present invention preferably has a proton conductivity of 0.10 S / cm or more at a temperature of 60 ° C. and a relative humidity of 100%. It is particularly preferable to be in the range of 5 S / cm. Moreover, in relative humidity 50%, it is preferable that it is 0.004 S / cm or more, and it is especially preferable that it exists in the range of 0.006-0.05 S / cm. More preferably, it exhibits an extremely high proton conductivity of 0.03 S / cm or more at a temperature of 120 ° C. and a relative humidity of 50%. Further, it is preferable that substantially no decrease in proton conductivity is observed (within a range of ± 5%) before and after immersion in pressurized hot water at 130 ° C. for 190 hours.

本発明のポリイミドは、機械的強度が優れ、且つ主鎖を構成する芳香族環に直接スルホン酸基が結合しているポリイミド、エーテル結合を介してアルキル基にスルホン酸基が結合したポリイミドや3,3'-(4-スルホフェノキシ)ベンジジンを一方の成分とするポリイミドなどに比べて、高温下での酸性水溶液中など過酷な条件下で用いた場合の加水分解による高分子鎖の切断及びスルホン酸基の脱離等経時的劣化が少なく、しかも低湿度下でのプロトン伝導性低下が少なく、燃料電池電解質膜として使用した場合、燃料の水素ガス等とメタノール等の液体に対して高いバリヤー性を併せ持つ、優れた電解質膜とすることができる。すなわち、本発明のポリイミドの場合、主鎖を構成する部分に親水性の基であるスルホン酸基は存在せず、スルホン酸基を有する側鎖芳香環はエーテル基を介して主鎖を構成するフェニル環と結合しており、親水性のスルホン酸基含有側鎖芳香環がイミド環から離れた構造になっているので、疎水性の主鎖部と親水性の側鎖基部がミクロ相分離構造をとり易い。そのため、ポリイミド主鎖部の疎水性ドメインへ水収着量は少なく、電解質膜としての利用時に主鎖が加水分解を受け難くなるのである。更に、3,3'-(4-スルホフェノキシ)ベンジジンを一方の成分とするポリイミドに比べて、特に低湿度下での水蒸気収着量が大きく、プロトン伝導度が大きい、優れた特性を持つのである。
本発明のフェノキシスルホン化芳香族ポリイミドは、電解質膜として実用的に極めて好適なものであって、イオン交換用、燃料電池用高分子電解質膜用、ガスセンサー用などに好適に用いることができる。また、プロトン伝導性が高く、耐熱性が高く、機械的強度が大きい固体電解質であるポリイミドで、陽イオン交換体や各種電解用隔膜等とした場合、ガス及び液体に対するバリヤー性が大きく、特に燃料電池用電解質膜として優れた性質を有する。
The polyimide of the present invention has excellent mechanical strength and is a polyimide in which a sulfonic acid group is directly bonded to an aromatic ring constituting the main chain, a polyimide in which a sulfonic acid group is bonded to an alkyl group through an ether bond, or 3 Compared to polyimides with, 3 '-(4-sulfophenoxy) benzidine as one component, polymer chain scission and sulfone by hydrolysis when used under harsh conditions such as in acidic aqueous solution at high temperature Little degradation over time, such as elimination of acid groups, and little decrease in proton conductivity under low humidity. When used as a fuel cell electrolyte membrane, it has high barrier properties against liquids such as fuel hydrogen gas and methanol. Thus, an excellent electrolyte membrane can be obtained. That is, in the case of the polyimide of the present invention, there is no sulfonic acid group which is a hydrophilic group in the portion constituting the main chain, and the side chain aromatic ring having a sulfonic acid group constitutes the main chain via an ether group. Since it is bonded to the phenyl ring and the hydrophilic sulfonic acid group-containing side chain aromatic ring is separated from the imide ring, the hydrophobic main chain part and the hydrophilic side chain base part have a microphase separation structure. It is easy to take. Therefore, the water sorption amount is small in the hydrophobic domain of the polyimide main chain part, and the main chain becomes difficult to undergo hydrolysis when used as an electrolyte membrane. In addition, compared to polyimides with 3,3 '-(4-sulfophenoxy) benzidine as one component, it has excellent water vapor sorption, especially under low humidity, and high proton conductivity. is there.
The phenoxysulfonated aromatic polyimide of the present invention is practically very suitable as an electrolyte membrane, and can be suitably used for ion exchange, for polymer electrolyte membrane for fuel cell, for gas sensor and the like. Polyimide is a solid electrolyte with high proton conductivity, high heat resistance, and high mechanical strength. When used as a cation exchanger or various diaphragms for electrolysis, it has a high barrier property against gases and liquids. It has excellent properties as an electrolyte membrane for batteries.

以下、実施例により本発明を具体的に説明する。
なお、H−NMRのデータは、溶媒として重水素化ジメチルスルホキシド(DMSO-d6)を用いて、日本電子JEOL EX−270により測定した。
また、評価方法及び評価基準は以下のとおりである。
Hereinafter, the present invention will be described specifically by way of examples.
H-NMR data were measured by JEOL EX-270 using deuterated dimethyl sulfoxide (DMSO-d 6 ) as a solvent.
The evaluation methods and evaluation criteria are as follows.

〔吸水性〕
スルホン化ポリイミドからなる膜のサンプル約80mgを120℃で2時間真空乾燥し、乾燥重量Wdを測定した後、30℃及び100℃で2〜4時間に水に浸漬した。サンプルを水から取り出し、手早く表面に付着した水を拭き取り、膨潤時の膜重量Wsを測定し、次式から吸水率(WU)を求めた。
WU=〔(Ws−Wd)/Wd〕×100
[Water absorption]
About 80 mg of a sample of a membrane made of sulfonated polyimide was vacuum-dried at 120 ° C. for 2 hours, measured for dry weight W d , and then immersed in water at 30 ° C. and 100 ° C. for 2 to 4 hours. The sample was taken out of the water, the water adhering to the surface quickly was wiped off, the membrane weight Ws during swelling was measured, and the water absorption rate (WU) was determined from the following equation.
WU = [(Ws−W d ) / W d ] × 100

〔耐水性〕
膜厚約30μmの膜サンプルを130℃加圧下熱水に192時間浸漬した後、膜形状と強度の観点から、次の5段階で評価した。なお、II〜Vで用いたフィルム片は、浸漬処理、風乾後に幅5mm長さ2cmの形状としたものである。
I:膜形状を保持していない。
II:フィルム片の両端をつかんで(つかみしろが5mm)折り曲げると膜が破断。
III:折り目の角度が0度となるように、フィルム片を折り目を付けて曲げると破断。
IV:折り目を付けて曲げても破断しないが、元に曲げ戻すと破断。
V:折り目を付けて曲げても、さらに曲げ戻しても破断せず。
また、加圧水浸漬処理した膜を風乾後、60℃、100〜80%RHでプロトン伝導度を測定し、プロトン伝導度の観点から、次の3段階で評価した。
A:処理によりプロトン伝導度が20%以上低下。
B:5〜19%低下。
C:±5%の範囲内。
〔water resistant〕
A film sample having a film thickness of about 30 μm was immersed in hot water at 130 ° C. under pressure for 192 hours, and then evaluated from the viewpoint of the film shape and strength in the following five stages. In addition, the film piece used by II-V is made into the shape of width 5mm and length 2cm after immersion treatment and air drying.
I: The film shape is not maintained.
II: The film breaks when both ends of the film piece are gripped (the gripping margin is 5 mm) and bent.
III: Breaks when the film piece is bent and bent so that the angle of the crease is 0 degrees.
IV: Does not break even when bent with a crease, but breaks when bent back.
V: Even if it is bent with a crease or bent back, it does not break.
In addition, after the membrane subjected to the pressure water immersion treatment was air-dried, the proton conductivity was measured at 60 ° C. and 100 to 80% RH, and evaluated from the viewpoint of proton conductivity in the following three stages.
A: Proton conductivity decreases by 20% or more due to treatment.
B: 5-19% decrease.
C: Within ± 5%.

〔機械的強度〕
膜厚約30μmの膜サンプル(幅5mm、長さ4cm)を(株)オリエンテック製のテンシロン万能試験機(RTC-1150A、ロードセルUR-50N-D)を用いて引っ張り試験を行った。測定は、未処理膜及び130℃加圧下熱水に48時間と192時間浸漬した後風乾した膜について行った。
[Mechanical strength]
A film sample (width 5 mm, length 4 cm) having a film thickness of about 30 μm was subjected to a tensile test using a Tensilon universal testing machine (RTC-1150A, load cell UR-50N-D) manufactured by Orientec Co., Ltd. The measurement was performed on the untreated film and the film which was air-dried after being immersed in hot water under pressure of 130 ° C. for 48 hours and 192 hours.

〔プロトン伝導性〕
プロトン伝導度測定セルに膜シート(1.0cm×0.5cm)と4枚の白金黒電極板をとりつけ、温度制御した水中又は温度・湿度制御したチャンバー内にセットし、日置電気(株)製のLCRメーター(HIOKI3552‐80)を用いて、100Hzから100kHzの周波数範囲で複素インピーダンス法により電気抵抗Rを測定し、60℃でのプロトン伝導度σを次式から計算した。
σ=d/(tss R)
ここで、dは2電極間距離(0.5cm)、tsとwsは、室温で70%RHにおける膜シートの厚さと幅である。水中でのプロトン伝導度の計算には、水中でのtsとws値を用いた。
[Proton conductivity]
A membrane sheet (1.0 cm x 0.5 cm) and four platinum black electrode plates are attached to a proton conductivity measurement cell and set in temperature-controlled water or a temperature / humidity-controlled chamber, manufactured by Hioki Electric Co., Ltd. The electrical resistance R was measured by the complex impedance method in the frequency range of 100 Hz to 100 kHz using an LCR meter (HIOKI 3552-80), and the proton conductivity σ at 60 ° C. was calculated from the following equation.
σ = d / (t s w s R)
Here, d is the distance between two electrodes (0.5 cm), and t s and w s are the thickness and width of the film sheet at 70% RH at room temperature. For calculation of proton conductivity in water, t s and w s values in water were used.

〔メタノール透過係数〕
液々透過測定セルの供給側セル(容量350ml)と透過側セル(容量100ml)の間にフッ素ゴムのシール板を介して膜シートをはさみつける。膜の供給側に30wt%メタノール水溶液を入れ、透過側に蒸留水を入れ、ガスクロマトグラフを用いて、任意の時間間隔での供給側と透過側の液組成を測定し、50℃でのメタノール透過係数PMを求めた。なおPMの計算には膨潤膜厚を用いた。
〔溶液粘度ηSP/c〕
溶媒:m−クレゾール;0.5wt%;35℃で測定。
[Methanol permeability coefficient]
A membrane sheet is sandwiched between a supply side cell (capacity 350 ml) and a permeation side cell (capacity 100 ml) of the liquid permeation measurement cell via a fluororubber seal plate. Put 30 wt% methanol aqueous solution on the membrane supply side, add distilled water on the permeate side, measure the liquid composition on the supply side and the permeate side at arbitrary time intervals using a gas chromatograph, and permeate methanol at 50 ° C. The coefficient P M was determined. Note with swollen film thickness in the calculation of P M.
[Solution viscosity η SP / c]
Solvent: m-cresol; 0.5 wt%; measured at 35 ° C.

以下の実施例及び比較例で用いた化合物の略号は次のとおりである。
NTDA:1,4,5,8−ナフタレンテトラカルボン酸二無水物
2,2'−BSPB:2,2'−ビス(3−スルホプロポキシ)ベンジジン
2,2'−BSPOB:2,2'−ビス(3−スルホフェノキシ)ベンジジン
3,3'−BSPOB:3,3'−ビス(3−スルホフェノキシ)ベンジジン
BAPB:4,4'-ビス(4−アミノフェノキシ)ビフェニル
BAPBDS:3,3'−(4,4'−ジアミノフェノキシ)ビフェニルスルホン酸
DMF:N,N−ジメチルホルムアミド
DMSO:ジメチルスルホキシド
The abbreviations of the compounds used in the following Examples and Comparative Examples are as follows.
NTDA: 1,4,5,8-naphthalenetetracarboxylic dianhydride 2,2′-BSPB: 2,2′-bis (3-sulfopropoxy) benzidine 2,2′-BSPOB: 2,2′-bis (3-sulfophenoxy) benzidine 3,3′-BSPOB: 3,3′-bis (3-sulfophenoxy) benzidine BAPB: 4,4′-bis (4-aminophenoxy) biphenyl BAPBDS: 3,3 ′-( 4,4'-Diaminophenoxy) biphenylsulfonic acid DMF: N, N-dimethylformamide DMSO: dimethyl sulfoxide

合成例1
100ml三つ口フラスコに6.001g(16.3mmol)の2,2'−ジフェノキシ−4,4'−ジアミノビフェニル(m−PHOB)を入れ、アイスバスで冷却した後、9mlの濃硫酸を攪拌しながらゆっくりと添加した。m-PHOBを完全に溶解させた後、3mlの発煙硫酸(SO360%)をゆっくりと添加した。発煙硫酸を完全に添加した後、該混合物を攪拌しつつ0℃で0.5時間保持した。次いで、ゆっくりと40℃まで加温し、40℃で2時間保った。その後、室温まで冷却した後、混合物を破砕した100gの氷中に注ぎ、白色固体を析出させた。固体を濾別後、60℃で15時間減圧乾燥して6.04gの白色固体生成物質を得た(収率70%)。この生成物の融点は300℃以上であった。この化合物は、1HNMR(270MHz,DMSO‐d6)により、δ:6.04‐6.05ppm (2H, S), 6.28‐6.32 (2H, D), 6.75‐6.79 (4H, D), 6.92.‐6.95 (2H, D),7.51‐7.54 (4H,D)のピークを示し、その帰属と積分強度比から、生成物が下記式で表される2,2’−BSPOBであることが確認された。KBr錠剤法により測定したIRスペクトルを図1に示す。

Figure 0004608363
Synthesis example 1
6.001 g (16.3 mmol) of 2,2′-diphenoxy-4,4′-diaminobiphenyl (m-PHOB) was placed in a 100 ml three-necked flask, cooled in an ice bath, and then 9 ml of concentrated sulfuric acid was stirred. Slowly added. After complete dissolution of m-PHOB, 3 ml of fuming sulfuric acid (SO 3 60%) was slowly added. After complete addition of fuming sulfuric acid, the mixture was held at 0 ° C. with stirring for 0.5 hours. Then it was slowly warmed to 40 ° C. and kept at 40 ° C. for 2 hours. Then, after cooling to room temperature, the mixture was poured into 100 g of crushed ice to precipitate a white solid. The solid was filtered off and dried under reduced pressure at 60 ° C. for 15 hours to obtain 6.04 g of a white solid product (yield 70%). The melting point of this product was 300 ° C. or higher. This compound was obtained by 1 HNMR (270 MHz, DMSO-d 6 ), δ: 6.04-6.05 ppm (2H, S), 6.28-6.32 (2H, D), 6.75-6.79 (4H, D), 6.92.-6.95. The peak of (2H, D), 7.51-7.54 (4H, D) was shown, and from the assignment and integral intensity ratio, it was confirmed that the product was 2,2′-BSPOB represented by the following formula. The IR spectrum measured by the KBr tablet method is shown in FIG.
Figure 0004608363

実施例1
乾燥した100mlの四口フラスコ中で1.053g(1.99mmol)の2,2’−BSPOBと0.67mlのトリエチルアミン(TEA)を9mlのm−クレゾールに加えて溶かし、次いで、0.532g(1.99mmol)のNTDA及び0.337gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で15時間攪拌した。重合反応液を80℃まで冷却後、25mlのm−クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/cは4.1dl/gであった。生成物をm−クレゾールに溶解し、ガラス板上に流延し、100℃で1時間そして120℃で10時間乾燥して、TEA塩型のスルホン化ポリイミド膜を得た。これをメタノールに1日間浸漬し、次いで0.5M硫酸溶液に3日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥して下記式で示される構造単位からなるプロトン型のスルホン化ポリイミドNTDA-2,2'-BSPOB膜を得た。IRの測定結果を図2に示す。

Figure 0004608363
Example 1
In a dry 100 ml four-necked flask 1.053 g (1.99 mmol) 2,2'-BSPOB and 0.67 ml triethylamine (TEA) were dissolved in 9 ml m-cresol and then 0.532 g ( 1.99 mmol) NTDA and 0.337 g benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and 180 ° C. for 15 hours under nitrogen gas atmosphere. The polymerization reaction solution was cooled to 80 ° C., diluted with 25 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c of the obtained product was 4.1 dl / g. The product was dissolved in m-cresol, cast onto a glass plate, and dried at 100 ° C. for 1 hour and 120 ° C. for 10 hours to obtain a TEA salt type sulfonated polyimide membrane. This was immersed in methanol for 1 day, then immersed in a 0.5 M sulfuric acid solution for 3 days to exchange protons, washed with water and vacuum dried at 150 ° C. for 10 hours to form a proton-type sulfonation composed of structural units represented by the following formula: A polyimide NTDA-2,2'-BSPOB film was obtained. The IR measurement results are shown in FIG.
Figure 0004608363

実施例2
乾燥した100mlの四つ口フラスコ中で2.534g(4.78mmol)の2,2’−BSPOBと1.61mlのTEAを24.5mlのm−クレゾールに加えて溶かし、次いで、0.877g(2.38mmol)のBAPBを添加して溶かした後、1.918g(7.15mmol)のNTDA及び1.212gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で15時間攪拌し、重合反応液を80℃まで冷却後、65mlのm‐クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/cは3.9dl/gであった。生成物をm−クレゾールに溶解し、ガラス板上に流延し、100℃で1時間そして120℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに1日間浸漬し、次いで0.5M硫酸溶液に3日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA-2,2'-BSPOB/BAPB(2/1)-r膜を得た。IR測定結果を図3に示す。
Example 2
In a dry 100 ml four-necked flask, 2.534 g (4.78 mmol) 2,2'-BSPOB and 1.61 ml TEA were dissolved in 24.5 ml m-cresol and then 0.877 g ( 2.38 mmol) of BAPB was added and dissolved, then 1.918 g (7.15 mmol) of NTDA and 1.212 g of benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours at 180 ° C. under a nitrogen gas atmosphere. After stirring for 15 hours, the polymerization reaction solution was cooled to 80 ° C., diluted with 65 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c of the obtained product was 3.9 dl / g. The product was dissolved in m-cresol, cast on a glass plate, and dried at 100 ° C. for 1 hour and 120 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 1 day, then immersed in a 0.5 M sulfuric acid solution for 3 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-2,2 A '-BSPOB / BAPB (2/1) -r film was obtained. The IR measurement results are shown in FIG.

比較例1
乾燥した100mlの四口フラスコ中で2.248g(4.24mmol)の3,3’−BSPOBと1.57mlのTEAを22mlのm−クレゾールに加えて溶かし、次いで、0.781g(2.12mmol)のBAPBを添加して溶かした後、1.702g(6.35mmol)のNTDA及び1.081gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20時間攪拌し、重合反応液を80℃まで冷却後、45mlのm‐クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/cは2.1dl/gであった。生成物をm−クレゾールに溶解し、ガラス板上に流延し、100℃で1時間そして120℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに1日間浸漬し、次いで0.5M硫酸溶液に3日間浸漬しプロトン交換した後、水洗し150℃で10時間真空乾燥してプロトン型のランダム共重合スルホン化ポリイミドNTDA-3,3'-BSPOB/BAPB(2/1)-r膜を得た。
Comparative Example 1
In a dry 100 ml four-necked flask, 2.248 g (4.24 mmol) of 3,3′-BSPOB and 1.57 ml of TEA were dissolved in 22 ml of m-cresol and then 0.781 g (2.12 mmol). ) BAPB was added and dissolved, 1.702 g (6.35 mmol) of NTDA and 1.081 g of benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours. The polymerization reaction solution was cooled to 80 ° C., diluted with 45 ml of m-cresol, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c of the obtained product was 2.1 dl / g. The product was dissolved in m-cresol, cast on a glass plate, and dried at 100 ° C. for 1 hour and 120 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. This was immersed in methanol for 1 day, then immersed in a 0.5 M sulfuric acid solution for 3 days to exchange protons, washed with water, and vacuum dried at 150 ° C. for 10 hours to obtain proton type random copolymer sulfonated polyimide NTDA-3,3 A '-BSPOB / BAPB (2/1) -r film was obtained.

比較例2
3,3’−BSPOBの代わりにBAPBDSを用いた以外は、比較例1と同様に行った。溶液粘度ηSP/cが2.0dl/gの樹脂を得てから、同様な手順でプロトン型のランダム共重合スルホン化ポリイミドNTDA-BAPBDS/BAPB(2/1)-r膜を得た。
Comparative Example 2
The same procedure as in Comparative Example 1 was performed except that BAPBDS was used instead of 3,3′-BSPOB. After obtaining a resin having a solution viscosity η SP / c of 2.0 dl / g, a proton type random copolymer sulfonated polyimide NTDA-BAPBDS / BAPB (2/1) -r membrane was obtained by the same procedure.

比較例3
3,3’−BSPOBの代わりに2,2’−BSPBを用いた以外は、比較例1と同様に行った。溶液粘度ηSP/cが5.7dl/gの樹脂を得てから、同様な手順でプロトン型のランダム共重合スルホン化ポリイミドNTDA-2,2'-BSPB/BAPB(2/1)-r 膜を得た。
Comparative Example 3
The same procedure as in Comparative Example 1 was performed except that 2,2′-BSPB was used instead of 3,3′-BSPOB. After obtaining a resin having a solution viscosity η SP / c of 5.7 dl / g, a proton type random copolymer sulfonated polyimide NTDA-2,2'-BSPB / BAPB (2/1) -r membrane is obtained by the same procedure. Got.

〔ポリイミド膜の評価〕
上記実施例及び比較例で調製したポリイミド膜の耐水性、吸水性、プロトン伝導性及びメタノール透過性を評価した。結果を表1に示す。また、実施例2と比較例1の膜の加圧水浸漬前後での膜の引っ張り試験結果を表2に示す。また、実施例2と比較例1の膜のプロトン伝導度の温度依存性を図4に、実施例1〜2と比較例1〜3の60℃でのプロトン伝導度の湿度依存性を図5に示す。なお、表1において、φはプロトン伝導度/メタノール透過係数を表す(50℃、30wt%メタノール濃度、単位は104 Ss/cm3)。
[Evaluation of polyimide film]
The polyimide membranes prepared in the above examples and comparative examples were evaluated for water resistance, water absorption, proton conductivity and methanol permeability. The results are shown in Table 1. In addition, Table 2 shows the tensile test results of the membrane before and after immersion in the water of Example 2 and Comparative Example 1. FIG. 4 shows the temperature dependence of proton conductivity of the membranes of Example 2 and Comparative Example 1, and FIG. 5 shows the humidity dependence of proton conductivity at 60 ° C. of Examples 1-2 and Comparative Examples 1-3. Shown in In Table 1, φ represents proton conductivity / methanol permeability coefficient (50 ° C., 30 wt% methanol concentration, unit is 10 4 Ss / cm 3 ).

Figure 0004608363
Figure 0004608363

Figure 0004608363
Figure 0004608363

以上の結果より、以下のことが分かる。
1)実施例1〜2の膜は比較例2〜3の膜に比べて、機械的強度の観点からの膜の高温耐水性に優れている。、2)実施例2の膜は、比較例1の膜に比べて、加圧水浸漬後、引っ張り試験で破断応力が1.5〜2倍大きく、膜の高温耐水性に優れている。3)実施例2の膜は、比較例1の膜と比べて、同じイオン交換容量を持つにもかかわらず、高いプロトン伝導度を有する。特に、低湿度でその差が大きくなり、60℃で50%RHでは、4倍大きい。4)実施例2の膜は、120℃、50%RHにおいて、0.05S/cmの高いプロトン伝導度を有する。5)実施例2の膜は、メタノール透過係数が非常に低く、メタノール透過係数に対するプロトン伝導度の比φが50℃、30wt%メタノール溶液に対して、比較的大きな値を有する。
From the above results, the following can be understood.
1) The film | membrane of Examples 1-2 is excellent in the high temperature water resistance of the film | membrane from a viewpoint of mechanical strength compared with the film | membrane of Comparative Examples 2-3. 2) Compared with the film of Comparative Example 1, the film of Example 2 has a breaking stress 1.5 to 2 times greater in the tensile test after immersion in pressurized water, and is excellent in the high temperature water resistance of the film. 3) Compared to the membrane of Comparative Example 1, the membrane of Example 2 has high proton conductivity despite having the same ion exchange capacity. In particular, the difference becomes large at low humidity, and is 4 times larger at 60 ° C. and 50% RH. 4) The membrane of Example 2 has a high proton conductivity of 0.05 S / cm at 120 ° C. and 50% RH. 5) The membrane of Example 2 has a very low methanol permeability coefficient, and the ratio of proton conductivity to methanol permeability coefficient φ has a relatively large value for a 30 wt% methanol solution at 50 ° C.

本発明のポリイミドは、比較例のポリイミドと同様に非常に低いメタノール透過係数を示す一方、2,2'-BSPOBは、4-スルホフェノキシ基がアミノ基に対しメタ位に結合しており、オルト位に結合している3,3'-BSPOBとは大きく異なる性質を持つポリイミドを与え、高温耐水性及び全湿度でのプロトン伝導性に優れることが分かった。また、これからの特性は、2,2'-BSPBからのポリイミドに比べても、大きく上回っていることが分かった。そこで、本特許でのスルホン化ポリイミド膜は、高温並びに加湿での固体高分子形燃料電池用の高分子電解質膜として、また、直截メタノール形燃料電池用の高分子電解質膜として好適である。   The polyimide of the present invention shows a very low methanol permeability coefficient like the polyimide of the comparative example, while 2,2′-BSPOB has a 4-sulfophenoxy group bonded to the meta position relative to the amino group. Polyimide with a property that is significantly different from 3,3'-BSPOB bonded to the position was given, and it was found that it was excellent in high-temperature water resistance and proton conductivity at all humidity. In addition, it was found that the characteristics in the future are much better than the polyimide from 2,2'-BSPB. Therefore, the sulfonated polyimide membrane in this patent is suitable as a polymer electrolyte membrane for a solid polymer fuel cell at high temperature and humidification, and as a polymer electrolyte membrane for a direct methanol fuel cell.

合成例1で得られた化合物のIRスペクトルIR spectrum of the compound obtained in Synthesis Example 1 実施例1で得られたポリイミドのIRスペクトルIR spectrum of the polyimide obtained in Example 1 実施例2で得られたポリイミドのIRスペクトルIR spectrum of the polyimide obtained in Example 2 ポリイミド膜のプロトン伝導度の温度依存性Temperature dependence of proton conductivity of polyimide membranes. ポリイミド膜のプロトン伝導度の60℃での湿度依存性Humidity dependence of proton conductivity of polyimide membrane at 60 ℃

Claims (7)

下記式(1)で表される構造単位を有することを特徴とするフェノキシスルホン化芳香族ポリイミド。
Figure 0004608363
(但し、Ar1は少なくとも1つの芳香環を有する4価の基であり、Ar2は下記式(2)で示される2価の基である。)
Figure 0004608363
(但し、Xは水素原子、アルカリ金属、アンモニウム又は4級アミンである。)
A phenoxysulfonated aromatic polyimide having a structural unit represented by the following formula (1):
Figure 0004608363
(However, Ar 1 is a tetravalent group having at least one aromatic ring, and Ar 2 is a divalent group represented by the following formula (2).)
Figure 0004608363
(However, X is a hydrogen atom, an alkali metal, ammonium, or a quaternary amine.)
式(1)で表される構造単位を5〜100モル%、下記式(3)で表される構造単位を0〜95モル%有する請求項1記載のフェノキシスルホン化芳香族ポリイミド。
Figure 0004608363
(但し、Ar3は少なくとも1つの芳香環を有する4価の基であり、Ar4は少なくとも1つの芳香環を有し、-SO3Xを有しない2価の基である。)
2. The phenoxysulfonated aromatic polyimide according to claim 1, comprising 5 to 100 mol% of a structural unit represented by the formula (1) and 0 to 95 mol% of a structural unit represented by the following formula (3).
Figure 0004608363
(However, Ar 3 is a tetravalent group having at least one aromatic ring, and Ar 4 is a divalent group having at least one aromatic ring and not —SO 3 X.)
Ar1及びAr3が下記式(4)又は(5)で示される請求項1又は2に記載のフェノキシスルホン化芳香族ポリイミド。
Figure 0004608363
(但し、Z及びYは直結合、CO、O、CH2又はSOである。)
The phenoxysulfonated aromatic polyimide according to claim 1 or 2, wherein Ar 1 and Ar 3 are represented by the following formula (4) or (5).
Figure 0004608363
(However, Z and Y are a direct bond, CO, O, CH 2 or SO.)
請求項1〜3のいずれか記載のフェノキシスルホン化芳香族ポリイミドを製膜して得られる高分子電解質膜。   A polymer electrolyte membrane obtained by forming the phenoxysulfonated aromatic polyimide according to claim 1. 30μm厚の高分子電解質膜を温度130℃の加圧熱水中に190時間浸漬後、180°折り曲げても破断せず、破断応力が50MPa以上である請求項4記載の高分子電解質膜。   5. The polymer electrolyte membrane according to claim 4, wherein the polymer electrolyte membrane having a thickness of 30 μm is immersed in pressurized hot water at a temperature of 130 ° C. for 190 hours, and is not broken even when bent by 180 °, and the breaking stress is 50 MPa or more. 温度60℃で相対湿度100%において、プロトン伝導度が0.10S/cm以上、相対湿度50%において、プロトン伝導度が0.004S/cm以上、温度120℃で相対湿度50%において、プロトン伝導度が0.03S/cm以上、更に130℃の加圧熱水中に190時間浸漬し、その前後において、実質的にプロトン伝導度の低下が見られない請求項4又は5いずれか記載の高分子電解質膜。   At a temperature of 60 ° C. and a relative humidity of 100%, the proton conductivity is 0.10 S / cm or higher, and at a relative humidity of 50%, the proton conductivity is 0.004 S / cm or higher, and the temperature is 120 ° C. and the relative humidity is 50%. The high conductivity according to claim 4 or 5, wherein the proton conductivity is substantially not decreased before and after being immersed in pressurized hot water at a temperature of 0.03 S / cm or more and further at 130 ° C for 190 hours. Molecular electrolyte membrane. 芳香族ジアミンと芳香族テトラカルボン酸類とから請求項1記載のフェノキシスルホン化芳香族ポリイミドを製造するに当たり、芳香族ジアミンとして下記式(6)で表されるフェノキシ基含有芳香族ジアミン5〜100モル%と、他の芳香族ジアミン0〜95モル%とを使用することを特徴とするフェノキシスルホン化芳香族ポリイミドの製造方法。
Figure 0004608363
(但し、Xは水素原子、アルカリ金属、アンモニウム又は4級アミンである。)
In producing the phenoxysulfonated aromatic polyimide according to claim 1 from an aromatic diamine and an aromatic tetracarboxylic acid, 5 to 100 mol of a phenoxy group-containing aromatic diamine represented by the following formula (6) as an aromatic diamine. % And other aromatic diamines 0 to 95 mol%, a method for producing a phenoxysulfonated aromatic polyimide.
Figure 0004608363
(However, X is a hydrogen atom, an alkali metal, ammonium, or a quaternary amine.)
JP2005136326A 2005-05-09 2005-05-09 Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane Active JP4608363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136326A JP4608363B2 (en) 2005-05-09 2005-05-09 Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136326A JP4608363B2 (en) 2005-05-09 2005-05-09 Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane

Publications (2)

Publication Number Publication Date
JP2006312693A JP2006312693A (en) 2006-11-16
JP4608363B2 true JP4608363B2 (en) 2011-01-12

Family

ID=37534312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136326A Active JP4608363B2 (en) 2005-05-09 2005-05-09 Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane

Country Status (1)

Country Link
JP (1) JP4608363B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4986298B2 (en) * 2007-01-30 2012-07-25 富士フイルム株式会社 Method for producing solid electrolyte film and web-like solid electrolyte film
US7810652B2 (en) * 2009-09-25 2010-10-12 Uop Llc Method to improve the selectivity of polybenzoxazole membranes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035891A (en) * 2002-07-06 2004-02-05 Samsung Sdi Co Ltd Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
JP2004155998A (en) * 2002-11-08 2004-06-03 Yamaguchi Technology Licensing Organization Ltd Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same
JP2005126721A (en) * 2003-10-27 2005-05-19 Samsung Sdi Co Ltd End sulfonic group-containing polymer, and polyelectrolyte and fuel cell using the same
JP2006265496A (en) * 2005-03-25 2006-10-05 Yamaguchi Univ Sulfonated aromatic polyimide and electrolyte film composed of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035891A (en) * 2002-07-06 2004-02-05 Samsung Sdi Co Ltd Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
JP2004155998A (en) * 2002-11-08 2004-06-03 Yamaguchi Technology Licensing Organization Ltd Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same
JP2005126721A (en) * 2003-10-27 2005-05-19 Samsung Sdi Co Ltd End sulfonic group-containing polymer, and polyelectrolyte and fuel cell using the same
JP2006265496A (en) * 2005-03-25 2006-10-05 Yamaguchi Univ Sulfonated aromatic polyimide and electrolyte film composed of the same

Also Published As

Publication number Publication date
JP2006312693A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP5642453B2 (en) Phosphate-doped electrolyte membrane, method for producing the same, and fuel cell including the same
Hu et al. Synthesis and properties of novel sulfonated polyimides bearing sulfophenyl pendant groups for polymer electrolyte fuel cell application
Hu et al. Synthesis and properties of novel sulfonated (co) polyimides bearing sulfonated aromatic pendant groups for PEFC applications
Chen et al. Synthesis and properties of sulfonated polyimides from homologous sulfonated diamines bearing bis (aminophenoxyphenyl) sulfone
JPWO2003033566A1 (en) Protonic acid group-containing crosslinkable aromatic resin, and ion conductive polymer membrane, binder and fuel cell using the same
Liu et al. Sulfonated naphthalenic polyimides containing ether and ketone linkages as polymer electrolyte membranes
Fang Polyimide proton exchange membranes
Sutou et al. Synthesis and properties of sulfonated polyimides derived from bis (sulfophenoxy) benzidines
Liaqat et al. Synthesis and characterization of novel sulfonated polyimide with varying chemical structure for fuel cell applications
Zhang et al. Ionomers based on multisulfonated perylene dianhydride: Synthesis and properties of water resistant sulfonated polyimides
JP3703016B2 (en) POLYMER ELECTROLYTE MEMBRANE AND METHOD FOR PRODUCING THE SAME
JP4554179B2 (en) Production method and use of crosslinked sulfonated polyimide
Li et al. Synthesis and characterization of novel sulfonated polyimides from 1, 4-bis (4-aminophenoxy)-naphthyl-2, 7-disulfonic acid
Li et al. Synthesis and properties of novel sulfonated polyimides containing binaphthyl groups as proton‐exchange membranes for fuel cells
JP2007302741A (en) Polyimide film and polymer electrolyte membrane
Sheng et al. Poly (arylene ether ether nitrile) s containing flexible alkylsulfonated side chains for polymer electrolyte membranes
JP2004269658A (en) Branched sulfonated polyimide resin, method for producing the same, sulfonated polyimide electrolytic film, its solution and fuel cell
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
Akbarian‐Feizi et al. Synthesis of new sulfonated copolyimides in organic and ionic liquid media for fuel cell application
JP4608363B2 (en) Phenoxysulfonated aromatic polyimide and polymer electrolyte membrane
Chen et al. Synthesis and properties of novel side-chain-type sulfonated polyimides
JP2002367627A (en) Sulfonated polyimide polymer electrolyte film and manufacturing method of the same
Chen et al. Synthesis and properties of novel sulfonated polyimides derived from naphthalenic dianhydride for fuel cell application
JP2004107484A (en) Sulfo-containing polyimide resin composition and sulfo-containing polyimide membrane made therefrom
JP2004155998A (en) Alkoxy-sulfonated aromatic polyimide and electrolyte membrane containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350