JP4686719B2 - Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane - Google Patents

Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane Download PDF

Info

Publication number
JP4686719B2
JP4686719B2 JP2005261867A JP2005261867A JP4686719B2 JP 4686719 B2 JP4686719 B2 JP 4686719B2 JP 2005261867 A JP2005261867 A JP 2005261867A JP 2005261867 A JP2005261867 A JP 2005261867A JP 4686719 B2 JP4686719 B2 JP 4686719B2
Authority
JP
Japan
Prior art keywords
membrane
exchange resin
cation exchange
sulfonic acid
crosslinked cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005261867A
Other languages
Japanese (ja)
Other versions
JP2007070563A (en
Inventor
健一 岡本
芳樹 須藤
建華 房
暁霞 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2005261867A priority Critical patent/JP4686719B2/en
Publication of JP2007070563A publication Critical patent/JP2007070563A/en
Application granted granted Critical
Publication of JP4686719B2 publication Critical patent/JP4686719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、新規な架橋方法によるスルホン酸型架橋陽イオン交換膜の製造方法及び該膜よりなる燃料電池用電解質膜に関する。   The present invention relates to a method for producing a sulfonic acid type crosslinked cation exchange membrane by a novel crosslinking method and a fuel cell electrolyte membrane comprising the membrane.

分子中にスルホン酸基を有する高分子化合物は、陽イオン交換樹脂として知られている。かかる陽イオン交換樹脂を膜状に成形したもの、すなわち陽イオン交換樹脂膜は、陽イオンのみを透過する性質を有するため、電気透過や拡散透析によりイオンを分離したり、塩の複分解等、或いは酸化還元反応や燃料電池の電解質膜として用いられる。   A polymer compound having a sulfonic acid group in the molecule is known as a cation exchange resin. Such a cation exchange resin molded into a membrane, that is, a cation exchange resin membrane, has the property of permeating only cations, so that ions can be separated by electropermeation or diffusion dialysis, salt metathesis, etc. Used as an electrolyte membrane for oxidation-reduction reactions and fuel cells.

スルホン酸基を陽イオン交換基として分子中に有する直鎖状高分子化合物は、該スルホン酸基の極性が大きいため、水との親和性が高く、イオン交換容量を大きくするにつれ、水溶液中で膜の膨潤性が高くなり、膜の形状安定性が低下し、ついには溶解するに至る。   A linear polymer compound having a sulfonic acid group as a cation exchange group in a molecule has a high affinity with water because the polarity of the sulfonic acid group is large, and as the ion exchange capacity increases, The film becomes highly swellable, the film shape stability is lowered, and finally the film is dissolved.

そこで、高い陽イオン交換容量を保ち、しかも形状安定性があり、或いは機械的強度に優れた陽イオン交換樹脂膜として、高分子を架橋させることがしばしば行われている。   Therefore, it is often performed to crosslink a polymer as a cation exchange resin film that maintains a high cation exchange capacity and has shape stability or excellent mechanical strength.

例えば、ポリスチレン或いはスチレンモノマーを共重合させて、ベンゼン核にスルホン酸基を導入したタイプの陽イオン交換樹脂膜の場合、一般にジビニルベンゼンを共重合させることにより架橋陽イオン交換樹脂膜を得ることが行われている。   For example, in the case of a cation exchange resin membrane of a type in which polystyrene or a styrene monomer is copolymerized and a sulfonic acid group is introduced into a benzene nucleus, generally a crosslinked cation exchange resin membrane can be obtained by copolymerizing divinylbenzene. Has been done.

また、燃料電池などに用いられるスルホン化ポリイミドなどの重縮合型の陽イオン交換樹脂膜にあっては、テトラカルボン酸の二無水物とジアミノ芳香族化合物の重縮合体の芳香族環に直接又は置換基を介してスルホン酸基が導入されているが、前記ジアミノ芳香族化合物の一部をトリアミノ芳香族化合物に置き換えることによって、得られるポリイミド高分子化合物に架橋構造を与える。同様に、ポリエーテル、ポリエーテルケトン或いはポリスルホンなどの重縮合型の高分子化合物において、三官能性の物質を共縮合させることにより、架橋構造を有する樹脂を得ることも考えられるが、一般にこれらの重縮合体は、重縮合時に比較的高い温度を必要とし、成形工程に付す前にゲル化し成形不能となる傾向が強い。   In the case of a polycondensation type cation exchange resin membrane such as sulfonated polyimide used for fuel cells or the like, directly or directly on the aromatic ring of a polycondensate of tetracarboxylic dianhydride and diamino aromatic compound. Although a sulfonic acid group is introduced via a substituent, a crosslinked structure is given to the polyimide polymer compound obtained by replacing a part of the diamino aromatic compound with a triamino aromatic compound. Similarly, in a polycondensation type polymer compound such as polyether, polyetherketone or polysulfone, it is conceivable to obtain a resin having a crosslinked structure by co-condensing a trifunctional substance. Polycondensates require a relatively high temperature during polycondensation and tend to gel and become unmoldable before being subjected to the molding process.

更に、架橋構造を持つ高分子は、一般に熱可塑性を失うため、重縮合体を加工することが困難となる。このため、キャスト重(縮)合の如く、プレポリマーの状態で成形し、重(縮)合を行わなければならない。従って、自ずと大面積の膜状物等の製造は困難となる。このため、かかる不便さを回避する架橋構造を有する陽イオン交換樹脂膜の製造方法が望まれていた。   Furthermore, since a polymer having a crosslinked structure generally loses thermoplasticity, it becomes difficult to process a polycondensate. For this reason, it must be molded in the state of a prepolymer and cast (compressed) in the same manner as cast (compressed). Accordingly, it becomes difficult to manufacture a large area film or the like. For this reason, the manufacturing method of the cation exchange resin membrane which has a crosslinked structure which avoids this inconvenience was desired.

本発明は、スルホン酸基を有する高分子化合物をあらかじめ膜状に成形した後に架橋構造を付与することによりスルホン酸基を有する架橋陽イオン交換樹脂膜を製造する方法を提供する。   The present invention provides a method for producing a crosslinked cation exchange resin membrane having a sulfonic acid group by forming a polymer compound having a sulfonic acid group into a membrane in advance and then providing a crosslinked structure.

特に、燃料電池用隔膜として、80℃を超える高温下において寸法安定性がよく且つ機械的強度が高く、しかもアルコール等の有機溶媒の透過性の低いポリイミド、ポリフェニレン、ポリエーテル、ポリスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、或いはポリオキサゾール型などの電解質膜を提供する。   In particular, as a diaphragm for a fuel cell, polyimide, polyphenylene, polyether, polysulfide, polysulfone, polypolysiloxane having good dimensional stability and high mechanical strength at high temperatures exceeding 80 ° C. and low permeability of organic solvents such as alcohol. An electrolyte membrane of ether sulfone, polyether ketone, polyether ether ketone, or polyoxazole type is provided.

本発明の特徴は、スルホン酸基を主鎖又は側鎖に有する直鎖状の高分子化合物のスルホン酸基を用いて架橋構造を形成させる点にある。   A feature of the present invention is that a crosslinked structure is formed using a sulfonic acid group of a linear polymer compound having a sulfonic acid group in the main chain or side chain.

すなわち、本発明は次の態様からなる。   That is, the present invention comprises the following aspects.

(1)スルホン酸基を有する高分子化合物と、分子中に水素原子を結合した電子密度の高い炭素原子を有する物質とを脱水剤溶液を用いて、該スルホン酸基と該水素原子から脱水反応させることを特徴とする架橋陽イオン交換樹脂膜の製造方法。 (1) a polymer compound having a sulfonic acid group, and a substance having a high carbon atoms electron density bonded hydrogen atoms in the molecule with a dehydrating agent solution, dehydrated from the sulfonic acid group and the hydrogen atom A method for producing a crosslinked cation exchange resin membrane, characterized by reacting .

(2)分子中に水素原子を結合した電子密度の高い炭素原子を有する物質が、電子供与性基が結合している芳香族環である(1)記載の架橋陽イオン交換樹脂膜の製造方法。   (2) The method for producing a crosslinked cation exchange resin membrane according to (1), wherein the substance having a high electron density carbon atom bonded with a hydrogen atom in the molecule is an aromatic ring bonded with an electron donating group. .

(3)脱水剤として、濃リン酸、ポリリン酸及び溶媒に溶解した五酸化リンから選ばれる少なくとも1種の化合物を用いることを特徴とする(1)又は(2)に記載の架橋陽イオン交換樹脂膜の製造方法。   (3) The crosslinked cation exchange according to (1) or (2), wherein at least one compound selected from concentrated phosphoric acid, polyphosphoric acid and phosphorus pentoxide dissolved in a solvent is used as a dehydrating agent. A method for producing a resin film.

(4)溶媒に溶解した五酸化リンがメタンスルホン酸に溶解した五酸化リンである(3)に記載の架橋陽イオン交換樹脂膜の製造方法。   (4) The method for producing a crosslinked cation exchange resin membrane according to (3), wherein the phosphorus pentoxide dissolved in the solvent is phosphorus pentoxide dissolved in methanesulfonic acid.

(5)スルホン酸基を有する高分子化合物が、分子中に水素原子を結合した電子密度の高い炭素原子を有することを特徴とする(1)乃至(4)のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   (5) The crosslinking according to any one of (1) to (4), wherein the polymer compound having a sulfonic acid group has a carbon atom having a high electron density in which hydrogen atoms are bonded in the molecule. A method for producing a cation exchange resin membrane.

(6)スルホン酸基を有する高分子化合物と分子中に水素を結合した電子密度の高い炭素を2個以上有する化合物とを脱水反応により結合させる(1)乃至(4)のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   (6) A polymer compound having a sulfonic acid group and a compound having two or more carbons with high electron density in which hydrogen is bonded in the molecule are bonded by a dehydration reaction according to any one of (1) to (4) The manufacturing method of the bridge | crosslinking cation exchange resin membrane of description.

(7)スルホン酸基を有する高分子化合物がポリフェニレン、ポリエーテル、ポリスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオキサゾール及びポリイミドのうち少なくとも1種の高分子化合物である(1)乃至(5)のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   (7) The polymer compound having a sulfonic acid group is at least one polymer compound selected from polyphenylene, polyether, polysulfide, polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyoxazole and polyimide ( A method for producing a crosslinked cation exchange resin membrane according to any one of 1) to (5).

(8)電子供与性基が、−O−、−S−、アルキル、アルキレン、アリール及びアリーレンのうちから選ばれる少なくとも1種である(2)記載の架橋陽イオン交換樹脂膜の製造方法。   (8) The method for producing a crosslinked cation exchange resin membrane according to (2), wherein the electron donating group is at least one selected from —O—, —S—, alkyl, alkylene, aryl, and arylene.

(9)(1)〜(8)項のいずれかにより得られた架橋陽イオン交換樹脂膜よりなる燃料電池用電解質膜。   (9) An electrolyte membrane for a fuel cell comprising a crosslinked cation exchange resin membrane obtained by any one of items (1) to (8).

以上、本発明の各態様における架橋反応は、一方の高分子化合物に存在するスルホン酸基と同種又は異なる化合物に存在する活性な水素との脱水反応を利用して両者を結合させるものである。   As described above, the cross-linking reaction in each aspect of the present invention is to combine the two using a dehydration reaction between a sulfonic acid group present in one polymer compound and active hydrogen present in the same or different compound.

従来、次の化学式(1)に示す反応は知られている(SYNTHESIS:April 1984 323〜325)。   Conventionally, the reaction represented by the following chemical formula (1) is known (SYNTHESIS: April 1984 323-325).

Figure 0004686719
(但し、R,Rは芳香族環を表す)
本発明は、化学式(1)と類似な反応を用いるものであるが、スルホン酸基は、必ずしも芳香族環に結合するものでなくてもよく、例えばアルキレン基を介して存在していてもよい。
Figure 0004686719
(However, R 1 and R 2 represent an aromatic ring)
In the present invention, a reaction similar to the chemical formula (1) is used, but the sulfonic acid group does not necessarily have to be bonded to the aromatic ring, and may exist through an alkylene group, for example. .

更に、スルホン酸基は主鎖に存在していても、又は側鎖に存在していてもよい。このように、高分子化合物に結合したスルホン酸基を架橋手段として用いる方法は、従来全く知られていない。   Furthermore, the sulfonic acid group may be present in the main chain or may be present in the side chain. As described above, a method using a sulfonic acid group bonded to a polymer compound as a crosslinking means has not been known at all.

本発明者らが、鋭意研究の結果、見出したものである。   The present inventors have found out as a result of earnest research.

本発明は、架橋構造を有する陽イオン交換樹脂膜の製造方法として、主に、一旦膜状物を形成させた後に架橋を形成させるものであるから、極めて簡単な手段で且つ形状にとらわれることなく行うことができる。   In the present invention, as a method for producing a cation exchange resin membrane having a crosslinked structure, mainly a membrane-like material is once formed and then crosslinked, so that it is extremely simple and without being restricted by the shape. It can be carried out.

しかるに、本発明による架橋構造を有する陽イオン交換膜は敍上の各欠点を補うことができ、優れた燃料電池用電解質膜を提供することができる。   However, the cation exchange membrane having a cross-linked structure according to the present invention can compensate for the respective drawbacks on the surface and can provide an excellent fuel cell electrolyte membrane.

本発明の簡便で効果的な架橋法は、スルホン酸基の一部を電子密度の比較的高い炭素原子に結合した活性水素原子と脱水反応させて、生成したスルホニル基を介して高分子鎖を結合させ架橋することに基づくものであり、広範なスルホン化された高分子に適用できる。   In the simple and effective crosslinking method of the present invention, a part of a sulfonic acid group is subjected to a dehydration reaction with an active hydrogen atom bonded to a carbon atom having a relatively high electron density, and a polymer chain is formed via a generated sulfonyl group. It is based on bonding and crosslinking and can be applied to a wide range of sulfonated polymers.

すなわち、スルホン酸基を有する高分子化合物は、特に限定されず、スチレンと他の共重合可能なモノマー、例えばエチレン、メチル(メタ)クリレート、塩化ビニル等との共重合体のスルホン化物、ポリパーフルオロビニルエーテルスルホン酸(例えば、商品名ナフィオン)など、食塩の濃縮脱塩用、食塩の電解用などの陽イオン交換膜、ポリフェニレン、ポリエーテル、ポリスルフィド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリベンソオキサゾール及びポリイミドなどの重縮合型主鎖を有する高分子の主鎖又は側鎖にスルホン酸基を有する高分子化合物よりなる陽イオン交換樹脂膜は燃料電池として有用であり、しかも一般に架橋が困難とされている高分子化合物であるので、本発明の対象として、重要な高分子化合物である。   That is, the polymer compound having a sulfonic acid group is not particularly limited, and a sulfonated product of a copolymer of styrene and another copolymerizable monomer such as ethylene, methyl (meth) acrylate, vinyl chloride, or the like. Cation exchange membranes such as fluorovinyl ether sulfonic acid (for example, Nafion, trade name) for concentration and desalination of sodium chloride, electrolysis of sodium chloride, polyphenylene, polyether, polysulfide, polysulfone, polyethersulfone, polyetherketone, polyether A cation exchange resin membrane comprising a polymer compound having a sulfonic acid group in the main chain or side chain of a polymer having a polycondensation main chain such as ether ketone, polybenzoxazole and polyimide is useful as a fuel cell. Moreover, since it is a polymer compound that is generally difficult to crosslink, As a light of the subject, it is an important polymer compound.

図1において、スルホン酸基は芳香族環に直接結合していてもよいし、または側鎖アルキル基や側鎖芳香族環に結合していてもよい。高分子主鎖または側鎖芳香族環に電子密度の比較的高い炭素に結合した活性水素原子が存在すれば、高分子膜を液状の脱水剤中に入れ、反応条件を制御することにより、脱水反応を起こさせ、図1の模式図に示すように、スルホニル基を生成させて架橋構造を導入できる。   In FIG. 1, the sulfonic acid group may be directly bonded to the aromatic ring, or may be bonded to a side chain alkyl group or a side chain aromatic ring. If there are active hydrogen atoms bonded to carbon with a relatively high electron density in the polymer main chain or side chain aromatic ring, the polymer film is placed in a liquid dehydrating agent, and the reaction conditions are controlled. As shown in the schematic diagram of FIG. 1, the reaction can be caused to generate a sulfonyl group to introduce a crosslinked structure.

ここで、水素を結合した電子密度が高い炭素とは、カチオノイド試薬により攻撃を受けやすいということであり、例えば芳香族環に結合した水素など、特に該芳香族環に電子供与性の原子又は原子団、例えばエーテル基等の酸素原子またはチオ基等の硫黄原子など、或いはメチル基などのアルキル基やアルキレン基、フェニル基などのアリール基やアリーレン基などが芳香族環に結合している場合、そのオルソ又はパラの位置にある炭素は電子密度が高い炭素となる。   Here, carbon having a high electron density bonded with hydrogen means that it is susceptible to attack by a cationoid reagent, such as hydrogen bonded to an aromatic ring, in particular, an electron donating atom or atom in the aromatic ring. When a group, for example, an oxygen atom such as an ether group or a sulfur atom such as a thio group, an alkyl group such as a methyl group, an alkylene group, an aryl group such as a phenyl group or an arylene group is bonded to an aromatic ring, The carbon in the ortho or para position is carbon having a high electron density.

すなわち、当業者であれば如何なる化学構造が、電子密度が高い炭素となるかは容易に理解することができる。   That is, those skilled in the art can easily understand what chemical structure is carbon having a high electron density.

本発明にあっては、スルホン酸基を有する高分子化合物に水素を結合した電子密度の高い炭素が存在する場合は図2に示すように架橋ネットワーク構造を形成させることができる。   In the present invention, when carbon having a high electron density in which hydrogen is bonded to a polymer compound having a sulfonic acid group is present, a crosslinked network structure can be formed as shown in FIG.

勿論、スルホン酸基を有する高分子化合物とスルホン酸基を持たない水素を結合した電子密度の高い炭素が存在する高分子化合物との間においても本発明による架橋陽イオン交換樹脂膜を形成させることもできる。   Of course, the crosslinked cation exchange resin membrane according to the present invention can be formed also between a polymer compound having a sulfonic acid group and a polymer compound having high electron density carbon bonded to hydrogen having no sulfonic acid group. You can also.

更に、スルホン酸基を有し、且つ水素を結合した電子密度の高い炭素が存在しない高分子化合物の場合、該高分子化合物に水素を結合した電子密度の高い炭素を2個以上有する低分子化合物、例えばジフェニルエーテル等を、スルホン酸基を有する高分子化合物中に溶媒等を用いて含浸させ、図3に示すように脱水反応を行わせることにより、架橋を形成することができる。   Further, in the case of a high molecular compound having a sulfonic acid group and having hydrogen bonded to high electron density carbon, the low molecular compound having two or more high electron density carbon bonded to hydrogen to the high molecular compound For example, diphenyl ether or the like is impregnated in a polymer compound having a sulfonic acid group using a solvent or the like, and a dehydration reaction is performed as shown in FIG.

また、スルホン酸基を有する高分子化合物を膜状に成形する前に、前記ジフェニルエーテル等を混合し、重合体中にジフェニルエーテル等を溶解し、これを成形した後、或いは成形と同時に脱水処理を行うことにより、架橋構造を形成させることができる。   Further, before the polymer compound having a sulfonic acid group is formed into a film shape, the diphenyl ether or the like is mixed, and the diphenyl ether or the like is dissolved in the polymer, and after this is formed, the dehydration treatment is performed. As a result, a crosslinked structure can be formed.

次いで、本発明における脱水処理は、一般に五酸化リンやポリリン酸等の脱水剤を用いる。これらは一般に、メタンスルホン酸や、トリフルオロメタンスルホン酸等のアルキルスルホン酸、クロロベンゼンスルホン酸等の芳香族スルホン酸などの溶媒に溶解した液状の脱水剤として用いるのが好ましい。一般に脱水剤の溶液としては、溶媒/脱水剤は10/0.1〜10/2(重量比)、特に10/0.5〜10/1.5の範囲で用いられる。中でも、メタンスルホン酸/五酸化リンよりなる脱水剤溶液が好ましい。   Next, the dehydration treatment in the present invention generally uses a dehydrating agent such as phosphorus pentoxide or polyphosphoric acid. In general, these are preferably used as liquid dehydrating agents dissolved in a solvent such as methanesulfonic acid, alkylsulfonic acid such as trifluoromethanesulfonic acid, and aromatic sulfonic acid such as chlorobenzenesulfonic acid. In general, as a solution of the dehydrating agent, the solvent / dehydrating agent is used in a range of 10 / 0.1 to 10/2 (weight ratio), particularly 10 / 0.5 to 10 / 1.5. Among these, a dehydrating agent solution composed of methanesulfonic acid / phosphorus pentoxide is preferable.

処理方法としては、液状の脱水剤中に被処理高分子化合物膜状物を浸漬することにより達成される。架橋反応は、脱水剤又は溶媒の種類、処理温度、処理時間並びに被処理高分子化合物及び水素を結合した電子密度の高い炭素が存在する化合物(高分子化合物及び/又は低分子化合物)の種類等によって異なるので、あらかじめ数度の試行により選択すればよいが、一般に液状の脱水剤としてメタンスルホン酸に五酸化リンを溶解した系を用いた場合、処理温度0℃〜150℃、好ましくは20℃〜100℃として、5分〜1週間、好ましくは、30℃程度で3日間、60℃〜80℃で5時間程度の浸漬処理により、プロトン伝導性の低下がほとんどなく、膜は溶媒に不溶となり、また水による膨潤を抑えることが可能となる。   The treatment method is achieved by immersing the polymer compound film to be treated in a liquid dehydrating agent. The crosslinking reaction includes the type of dehydrating agent or solvent, the processing temperature, the processing time, the polymer compound to be treated, and the type of compound (polymer compound and / or low molecular compound) containing hydrogen-bonded carbon with high electron density. However, in general, when a system in which phosphorus pentoxide is dissolved in methanesulfonic acid is used as a liquid dehydrating agent, the treatment temperature is 0 ° C. to 150 ° C., preferably 20 ° C. ˜100 ° C., 5 minutes to 1 week, preferably about 30 ° C. for 3 days, 60 ° C. to 80 ° C. for about 5 hours, there is almost no decrease in proton conductivity, and the membrane becomes insoluble in the solvent Moreover, it becomes possible to suppress swelling by water.

また、濃リン酸を用いる態様として、85%濃リン酸に膜を浸漬し、リン酸を膜に十分含浸させた後、膜を乾燥し、更に加熱し、150℃〜180℃で3〜10時間保持することによって、同様に好適な架橋反応を行わせることもできる。   Further, as an embodiment using concentrated phosphoric acid, the film is immersed in 85% concentrated phosphoric acid, and after the phosphoric acid is sufficiently impregnated into the film, the film is dried and further heated to 3 to 10 at 150 ° C. to 180 ° C. By maintaining the time, a suitable crosslinking reaction can be performed in the same manner.

特に、スルホン酸基を有するポリイミド型の陽イオン交換樹脂、例えば、1,4,5,8−ナフタレンテトラカルボン酸二無水物,4,4’−ビス(4−アミノフェノキシ)ビフェニル−3,3‘−ジスルホン酸及び1,3−ビス(4−アミノフェノキシ)ベンゼンの共重縮合体等は上記条件下に架橋させることにより、好適な燃料電池用電解質膜となるのである。   In particular, a polyimide-type cation exchange resin having a sulfonic acid group, for example, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 4,4′-bis (4-aminophenoxy) biphenyl-3,3 A copolycondensate of '-disulfonic acid and 1,3-bis (4-aminophenoxy) benzene or the like is a suitable electrolyte membrane for a fuel cell by crosslinking under the above conditions.

以下に実施例を示す。これらのうち、実施例1〜3では、膜が既に十分高い機械的強度を有するので、架橋後も機械的強度がよくなる訳ではない。破断強度はほぼ同じであり、80℃5〜8時間の処理で高分子鎖の切断はほとんど起こっていないことがわかる。膜は溶媒不溶となり、架橋していることが分かる。そして、膜の長期耐久性が改善されるのである。   Examples are shown below. Among these, in Examples 1 to 3, since the film already has a sufficiently high mechanical strength, the mechanical strength does not improve even after crosslinking. It can be seen that the breaking strength is almost the same, and the polymer chain is hardly broken by the treatment at 80 ° C. for 5 to 8 hours. It can be seen that the membrane is insoluble in the solvent and is crosslinked. And the long-term durability of the film is improved.

実施例4では、ポリマー鎖中に活性なH原子がないので、フェニルエーテルを少量ポリマー溶液中に溶解させて、キャスト製膜した。膜中に溶解しているフェニルエーテルを活性水素源として利用して、2個のスルホン基で架橋させた。この膜は、架橋前では80℃で、数時間で水に膨潤溶解したが、架橋後は、80℃の水に長時間浸漬しても溶けることはなく、耐水性の著しい改善が見られた。   In Example 4, since there were no active H atoms in the polymer chain, a small amount of phenyl ether was dissolved in the polymer solution to form a cast film. The phenyl ether dissolved in the membrane was cross-linked with two sulfone groups using the active hydrogen source. This film swelled and dissolved in water at 80 ° C. for several hours before crosslinking, but after the crosslinking, it did not dissolve even when immersed in water at 80 ° C. for a long time, and a remarkable improvement in water resistance was observed. .

実施例5では、高分子量のポリマー膜を得ることができない場合、未架橋膜は破断応力が高くないが、架橋することにより膜の引っ張り強度を改善できた。   In Example 5, when a high molecular weight polymer film could not be obtained, the uncrosslinked film did not have high breaking stress, but the tensile strength of the film could be improved by crosslinking.

実施例6、7はポリイミド以外の例としてポリエーテルスルホンの実施例を示した。また、脱水剤として濃リン酸を用いる場合の例を実施例7に示した。実施例7では、イオン交換容量が比較的大きい(ポリエーテルスルホンとしては)ので、未架橋膜は100℃水中で膜は大きく膨潤するが、架橋膜は優れた高温耐水性を示した。   Examples 6 and 7 show examples of polyethersulfone as examples other than polyimide. An example of using concentrated phosphoric acid as a dehydrating agent is shown in Example 7. In Example 7, since the ion exchange capacity was relatively large (as polyethersulfone), the uncrosslinked membrane swelled greatly in water at 100 ° C., but the crosslinked membrane exhibited excellent high-temperature water resistance.

以下に実施例を示す。   Examples are shown below.

本発明における評価方法は以下のとおりである。   The evaluation method in the present invention is as follows.

[吸水率、Water uptake]
膜サンプル約100mgを乾燥して乾燥重量Wdを測定した後、30℃及び100℃で2〜4時間水に浸漬した。膜サンプルを水から取り出し、手早く表面に付着した水をティシュペーパーでふき取り、膨潤時の膜重量Wsを測定した。吸水率(Water uptake;WU)を次式から求めた。
WU=(Ws‐Wd)/Wd×100%
[耐水性]
膜厚約40μmの膜サンプルを130℃加圧下熱水に192時間浸漬した後、膜形状・強度の観点から、次の5段階で評価した。なおII〜Vで用いたフイルム片は、浸漬処理、風乾後に幅5mm長さ2cmの形状としたものである。
I:膜形状を保持していない。膜が多くの小片に破れている。
II:フイルム片の両端をつかんで(つかみ代が5mm)、折り曲げると膜が破断。
III:折り目の角度が0°となるようにフイルム片を折り目をつけて曲げると破断。
IV:折り目を付けて曲げても破断しないが、基に曲げ戻すと破断。
V:折り目を付けて曲げても、さらに曲げ戻しても破断せず。
また、加圧水浸漬処理した膜を風乾後、60℃、100〜80%RHでプロトン伝導度を測定し、プロトン伝導度の観点から、次の3段階で評価した。
A:処理によりプロトン伝導度は20%以上低下した。
B:5〜19%低下した。
C:実験誤差(±5%)範囲内で変化しなかった。
[機械的強度]
膜厚約30μmの膜サンプル(幅5mm、長さ4cm)を(株)オリエンテック製のテンシロン万能試験機(RTC−1150A、ロードセルUR−50N−D)を用いて引っ張り試験を行った。測定は、未処理膜及び130℃加圧下熱水に48時間と192時間浸漬した後風乾した膜について行った。
[プロトン伝導度]
プロトン伝導度測定セルに膜シート(1.0cm×0.5cm)と4枚の白金黒電極板をとりつけ、温度制御した水中または温度・湿度制御したチャンバー内にセットし、日置電気(株)製のLCRメーター(HIOKI3552‐80)を用いて、100Hzから100kHzの周波数範囲で複素インピーダンス法により電気抵抗Rを測定し、プロトン伝導度σを次式から計算した。
s=d/(t R)
ここで、dは2電極間距離(0.5cm)、tとwは、室温で70%RHにおける膜シートの厚さと幅である。水中でのプロトン伝導度の計算には、水中でのtとw値を用いた。
[Water absorption rate, Water uptake]
About 100 mg of the membrane sample was dried and the dry weight Wd was measured, and then immersed in water at 30 ° C. and 100 ° C. for 2 to 4 hours. The membrane sample was taken out of the water, the water adhering to the surface quickly was wiped off with tissue paper, and the membrane weight Ws during swelling was measured. The water absorption rate (Water uptake; WU) was determined from the following equation.
WU = (Ws−Wd) / Wd × 100%
[water resistant]
A film sample having a film thickness of about 40 μm was immersed in hot water under pressure at 130 ° C. for 192 hours, and then evaluated from the following five stages from the viewpoint of film shape and strength. In addition, the film piece used by II-V is made into the shape of width 5mm and length 2cm after immersion treatment and air drying.
I: The film shape is not maintained. The membrane is broken into many pieces.
II: Grasping both ends of the film piece (grasping allowance is 5 mm) and breaking the film when bent.
III: Break when the film piece is bent and bent so that the angle of the crease is 0 °.
IV: It does not break even when bent with a crease, but breaks when bent back to the base.
V: Even if bent with a crease or bent back, it does not break.
In addition, after the membrane subjected to the pressure water immersion treatment was air-dried, proton conductivity was measured at 60 ° C. and 100 to 80% RH, and evaluated from the viewpoint of proton conductivity in the following three stages.
A: The proton conductivity decreased by 20% or more by the treatment.
B: It decreased by 5 to 19%.
C: No change within experimental error (± 5%).
[Mechanical strength]
A film sample (width 5 mm, length 4 cm) having a film thickness of about 30 μm was subjected to a tensile test using a Tensilon universal testing machine (RTC-1150A, load cell UR-50N-D) manufactured by Orientec Co., Ltd. The measurement was performed on the untreated film and the film which was air-dried after being immersed in hot water under pressure of 130 ° C. for 48 hours and 192 hours.
[Proton conductivity]
A membrane sheet (1.0 cm x 0.5 cm) and four platinum black electrode plates are attached to a proton conductivity measurement cell and set in temperature-controlled water or a temperature / humidity-controlled chamber, manufactured by Hioki Electric Co., Ltd. The electrical resistance R was measured by the complex impedance method in the frequency range of 100 Hz to 100 kHz using an LCR meter (HIOKI 3552-80), and the proton conductivity σ was calculated from the following equation.
s = d / (t s w s R)
Here, d is 2 the distance between the electrodes (0.5 cm), t s and w s is the thickness and width of the film sheet in RH 70% at room temperature. The calculation of proton conductivity in water, with t s and w s value in water.

なお、以下の実施例において用いる略語は次のとおり。
NTDA:1,4,5,8、‐ナフタレンテトラカルボン酸二無水物
BAPBDS:4,4’‐ビス(4‐アミノフェノキシ)ビフェニル−3,3’‐ジスルホン酸
mBAPBDS:4,4‘−ビス(3−アミノフェノキシ)ビフェニル−3,3’−ジスルホン酸
2,2’‐BSPB:2,2’‐ビス(3‐スルホプロポキシ)ベンジジン
2,2‘−BSPOB:2,2’−ビス(4−スルホフェノキシ)ベンジジン
DASSPB:3,5−ジアミノ−3‘−スルホ−4’−(4−スルホフェノキシ)ベンゾフェノン
BAPB:4,4‘−ビス(4−アミノフェノキシ)べンジジン
BAPBz:1,3‐ビス(4‐アミノフェノキシ)ベンゼン
SDCDPS:3,3‘−ジスルホ−4,4’−ジクロロジフェニルスルホン
DCDPS:4,4’−ジクロロジフェニルスルホン
DPE:4,4‘−ジヒドロキシジフェニルエーテル
TEA:トリエチルアミン
NMP:N‐メチルピロリドン
DMAc:N,N−ジメチルアセトアミド
DMSO:ジメチルスルホキシド
Abbreviations used in the following examples are as follows.
NTDA: 1,4,5,8-naphthalenetetracarboxylic dianhydride BAPBDS: 4,4′-bis (4-aminophenoxy) biphenyl-3,3′-disulfonic acid mBAPBDS: 4,4′-bis ( 3-Aminophenoxy) biphenyl-3,3′-disulfonic acid 2,2′-BSPB: 2,2′-bis (3-sulfopropoxy) benzidine 2,2′-BSPOB: 2,2′-bis (4- Sulfophenoxy) benzidine DASSSPB: 3,5-diamino-3′-sulfo-4 ′-(4-sulfophenoxy) benzophenone BAPB: 4,4′-bis (4-aminophenoxy) benzidine BAPBz: 1,3-bis (4-Aminophenoxy) benzene SDCDPS: 3,3′-disulfo-4,4′-dichlorodiphenylsulfone DCDPS: 4,4′-dichlorodiphe Rusuruhon DPE: 4,4'-dihydroxydiphenyl ether TEA: triethylamine NMP: N-methylpyrrolidone DMAc: N, N-dimethylacetamide DMSO: Dimethyl sulfoxide

スルホン化ポリイミドNTDA‐BAPBDS/BAPBz(2/1)‐rの架橋膜
特開2003−68326号公報に記載されている方法で、4,4’−ビス(4‐アミノフェノキシ)ビフェニル‐3,3’‐ジスルホン酸(BAPBDS)を合成した。スルホン化ジアミンとしてBAPBDSを、非スルホン酸ジアミンとして1,3−ビス(4−アミノフェノキシ)ベンゼン(BAPBz)を用い、乾燥した100mlの四口フラスコ中で2.241g(4.24ミリモル)のBAPBDSと1.43mlのトリエチルアミン(TEA)を21mlのm−クレゾールに加えて溶かし、次いで、0.620g(2.12ミリモル)のBAPBzを添加して溶かした後、1.702g(6.36ミリモル)の1,4,5,8-ナフタレンテトラカルボン酸二無水物(NTDA)及び1.08gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で20間攪拌し、重合反応液を80℃まで冷却後、45mlのm‐クレゾールを加え希釈後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度ηSP/c(溶媒:m−クレゾール;0.5wt%;35℃)は2.8dl/gであった。生成物をm−クレゾールに溶解し、6wt%の溶液をガラス板上に流延し、100℃で1時間そして120℃で10時間乾燥して、TEA塩型の共重合スルホン化ポリイミド膜を得た。これをメタノールに1日間浸漬し、次いで1M硫酸溶液に30℃で3日間浸漬しプロトン交換した後、水洗し、超純水に3日間浸漬した後風乾し、最後に真空中150℃で1時間次いで180℃で1時間キュアリングして、膜厚約45μmのプロトン型のランダム共重合スルホン化ポリイミドNTDA‐BAPBDS/BAPBz(2/1)‐r膜を得た。
Crosslinked membrane of sulfonated polyimide NTDA-BAPBDS / BAPBz (2/1) -r 4,4′-bis (4-aminophenoxy) biphenyl-3,3 by the method described in JP-A-2003-68326 '-Disulfonic acid (BAPBDS) was synthesized. 2.241 g (4.24 mmol) of BAPBDS in a dry 100 ml four-necked flask using BAPBDS as the sulfonated diamine and 1,3-bis (4-aminophenoxy) benzene (BAPBz) as the non-sulfonated diamine. And 1.43 ml of triethylamine (TEA) were added to 21 ml of m-cresol and dissolved, then 0.620 g (2.12 mmol) of BAPBz was added and dissolved, and then 1.702 g (6.36 mmol). Of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) and 1.08 g of benzoic acid, and the mixture is stirred at 80 ° C. for 4 hours and at 180 ° C. for 20 hours under a nitrogen gas atmosphere, After cooling the polymerization reaction solution to 80 ° C., 45 ml of m-cresol is added and diluted, and then poured into a large amount of acetone to precipitate. The solid was filtered off, washed with acetone and dried. The solution viscosity η SP / c (solvent: m-cresol; 0.5 wt%; 35 ° C.) of the obtained product was 2.8 dl / g. The product was dissolved in m-cresol, a 6 wt% solution was cast on a glass plate, and dried at 100 ° C. for 1 hour and at 120 ° C. for 10 hours to obtain a TEA salt type copolymer sulfonated polyimide membrane. It was. This was immersed in methanol for 1 day, then immersed in 1 M sulfuric acid solution at 30 ° C. for 3 days to exchange protons, washed with water, immersed in ultrapure water for 3 days and then air-dried, and finally at 150 ° C. in vacuum for 1 hour. Next, curing was performed at 180 ° C. for 1 hour to obtain a proton type random copolymer sulfonated polyimide NTDA-BAPBDS / BAPBz (2/1) -r film having a film thickness of about 45 μm.

500mlの丸底セパラブルフラスコに、メタンスルホン酸240gと五酸化リン24gを加え、加温して溶解させてから室温まで冷却した。この溶液に、前記のスルホン化ポリイミド膜(8cm角、2〜5枚)を浸漬し、80℃まで加熱して5時間保持した後、膜を取り出し水洗し、超純水に3日間浸漬した後、風乾し、真空下150℃で1時間キュアリングして、架橋膜を得た。   In a 500 ml round bottom separable flask, 240 g of methanesulfonic acid and 24 g of phosphorus pentoxide were added, dissolved by heating, and then cooled to room temperature. After immersing the sulfonated polyimide membrane (8 cm square, 2-5 sheets) in this solution, heating to 80 ° C. and holding for 5 hours, the membrane was taken out, washed with water, and immersed in ultrapure water for 3 days. Air-dried and cured under vacuum at 150 ° C. for 1 hour to obtain a crosslinked film.

架橋処理前の膜は、m−クレゾール中で大きく膨潤し、TEA含有m−クレゾールに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。   The film before the crosslinking treatment swelled greatly in m-cresol and was soluble in TEA-containing m-cresol, but the film after the crosslinking treatment was insoluble in the solvent and did not swell.

スルホン化ポリイミドNTDA‐2,2’‐BSPB/BAPB(2/1)‐rの架橋膜
特開2004−155998号公報に記載されている方法で、2,2’‐ビス(3‐スルホプロポキシ)ベンジジン(2,2’‐BSPB)を合成した。スルホン化ジアミンとして2,2’‐BSPBを、非スルホン化ジアミンとして4,4‘−ビス(4−アミノフェノキシ)べンジジン(BAPB)を用いる以外、実施例1と同様に重合して、ランダム共重合スルホン化ポリイミドNTDA‐2,2’‐BSPB/BAPB(2/1)‐rを得た。得られた生成物の溶液粘度は6.0dl/gであった。これを、実施例1と同様に、キャスト製膜して、スルホン化ポリイミドNTDA‐2,2’‐BSPB/BAPB(2/1)‐r膜を得た。
Crosslinked membrane of sulfonated polyimide NTDA-2,2′-BSPB / BAPB (2/1) -r 2,2′-bis (3-sulfopropoxy) by the method described in JP-A-2004-155998 Benzidine (2,2′-BSPB) was synthesized. Polymerization was conducted in the same manner as in Example 1 except that 2,2′-BSPB was used as the sulfonated diamine and 4,4′-bis (4-aminophenoxy) benzidine (BAPB) was used as the nonsulfonated diamine. Polymerized sulfonated polyimide NTDA-2,2′-BSPB / BAPB (2/1) -r was obtained. The solution viscosity of the obtained product was 6.0 dl / g. This was cast into a film in the same manner as in Example 1 to obtain a sulfonated polyimide NTDA-2,2′-BSPB / BAPB (2/1) -r film.

この膜を実施例1と同様に処理して、スルホン化ポリイミドNTDA‐2,2’‐BSPB/BAPB(2/1)‐rの架橋膜を得た。   This membrane was treated in the same manner as in Example 1 to obtain a crosslinked membrane of sulfonated polyimide NTDA-2,2'-BSPB / BAPB (2/1) -r.

架橋処理前の膜は、m−クレゾール中で大きく膨潤し、TEA含有m−クレゾールに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。   The film before the crosslinking treatment swelled greatly in m-cresol and was soluble in TEA-containing m-cresol, but the film after the crosslinking treatment was insoluble in the solvent and did not swell.

スルホン化ポリイミドNTDA−2,2‘−BSPOB/BAPB(2/1)−rの架橋膜
文献、ポリマー プレプリント ジャパン、第54巻1434頁(2005)に記載されている方法で、2,2’−ビス(4−スルホフェノキシ)ベンジジン(2,2‘−BSPOB)を合成した。スルホン化ジアミンとして2,2’‐BSPOBを、非スルホン化ジアミンとしてBAPBを用いる以外、実施例1と同様に重合して、ランダム共重合スルホン化ポリイミドNTDA‐2,2’‐BSPOB/BAPB(2/1)‐rを得た。得られた生成物の溶液粘度は4.0dl/gであった。これを、実施例1と同様に、キャスト製膜して、ランダム共重合スルホン化ポリイミドNTDA‐2,2’‐BSPOB/BAPB(2/1)‐r膜を得た。
Crosslinked membrane of sulfonated polyimide NTDA-2,2′-BSPOB / BAPB (2/1) -r 2,2 ′ by the method described in Literature, Polymer Preprint Japan, Vol. 54, page 1434 (2005) -Bis (4-sulfophenoxy) benzidine (2,2'-BSPOB) was synthesized. Polymerization was conducted in the same manner as in Example 1 except that 2,2′-BSPOB was used as the sulfonated diamine and BAPB was used as the non-sulfonated diamine, and the random copolymerized sulfonated polyimide NTDA-2,2′-BSPOB / BAPB (2 / L) -r was obtained. The solution viscosity of the obtained product was 4.0 dl / g. This was cast into a film in the same manner as in Example 1 to obtain a random copolymerized sulfonated polyimide NTDA-2,2′-BSPOB / BAPB (2/1) -r film.

この膜を実施例1と同様に処理して、スルホン化ポリイミドNTDA‐2,2’‐BSPOB/BAPB(2/1)‐rの架橋膜を得た。   This membrane was treated in the same manner as in Example 1 to obtain a crosslinked membrane of sulfonated polyimide NTDA-2,2'-BSPOB / BAPB (2/1) -r.

架橋処理前の膜は、m−クレゾール中で大きく膨潤し、TEA含有m−クレゾールに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。   The film before the crosslinking treatment swelled greatly in m-cresol and was soluble in TEA-containing m-cresol, but the film after the crosslinking treatment was insoluble in the solvent and did not swell.

スルホン化ポリイミドNTDA‐mBAPBDSの架橋膜
文献、ポリマー 第42巻359−373頁(2001)とジャーナル ポリマー サイエンス、ポリマー ケミストリー 第42巻1432−1440頁(2004)に記載されている方法により、4,4‘−ビス(3−アミノフェノキシ)ビフェニル−3,3’−ジスルホン酸(mBAPBDS)を合成した。mBAPBDSを用い非スルホン酸ジアミンを用いない以外は実施例1と同様に重合して、スルホン化ポリイミドNTDA‐mBAPBDSを得た。溶液粘度は2.0dl/gであった。生成物ポリマーとポリマー重量の2wt%のフェニルエーテルをm−クレゾールに溶解し、ガラス板上に流延し、実施例1と同様に製膜そして後処理して、少量のフェニルエーテル含有スルホン化ポリイミドNTDA‐mBAPBDS膜を得た。
Crosslinked Membrane of Sulfonated Polyimide NTDA-mBAPBDS According to the method described in Literature, Polymer Vol. 42, pages 359-373 (2001) and Journal Polymer Science, Polymer Chemistry Vol. 42, pages 1432-1440 (2004) '-Bis (3-aminophenoxy) biphenyl-3,3'-disulfonic acid (mBAPBDS) was synthesized. Polymerization was performed in the same manner as in Example 1 except that mBAPBDS was used and non-sulfonic acid diamine was not used, to obtain sulfonated polyimide NTDA-mBAPBDS. The solution viscosity was 2.0 dl / g. The product polymer and 2 wt% of the phenyl ether of the polymer weight are dissolved in m-cresol, cast on a glass plate, formed into a film and post-treated as in Example 1, and a small amount of phenyl ether-containing sulfonated polyimide. An NTDA-mBAPBDS film was obtained.

この膜を、30℃で72時間保持した以外は実施例1と同様に処理して、スルホン化ポリイミドNTDA‐mBAPBDSの架橋膜を得た。
架橋処理前の膜は、m−クレゾール中で大きく膨潤し、TEA含有m−クレゾールに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。
This membrane was treated in the same manner as in Example 1 except that the membrane was held at 30 ° C. for 72 hours to obtain a crosslinked membrane of sulfonated polyimide NTDA-mBAPBDS.
The film before the crosslinking treatment swelled greatly in m-cresol and was soluble in TEA-containing m-cresol, but the film after the crosslinking treatment was insoluble in the solvent and did not swell.

スルホン化ポリイミドNTDA−DASSPB/BAPBz(3/2)−sの架橋膜
文献、ポリマー プレプリント ジャパン、第53巻4766−4767頁(2004)に記載されている方法で、3,5−ジアミノ−3‘−スルホ−4’−(4−スルホフェノキシ)ベンゾフェノン(DASSPB)を合成した。乾燥した100mlの四口フラスコ中で1.670g(3.6ミリモル)のDASSPBと2.1mlのTEAを24mlのm−クレゾールに加えて溶かした後、1.287g(4.8ミリモル)のNTDA及び1.53gの安息香酸を加え、窒素ガス雰囲気下で混合物を80℃で4時間そして180℃で5時間攪拌した。重合反応液を室温まで冷却後、15mlのm‐クレゾール、0.701g(2.4ミリモル)のBAPBz、0.536g(2.0ミリモル)のNTDAそして0.51gの安息香酸を加え、反応液を80℃で4時間それから180℃で15時間攪拌した。反応液を室温まで冷却後、多量のアセトンに投入し、析出した固体を濾別し、アセトン洗浄後乾燥した。得られた生成物の溶液粘度は0.8dl/gであった。これを、実施例1と同様に、キャスト製膜して、シークエンス化ブロック共重合スルホン化ポリイミドNTDA−DASSPB/BAPBz(3/2)−s膜を得た。
Crosslinked membrane of sulfonated polyimide NTDA-DASSPB / BAPBz (3/2) -s 3,5-diamino-3 by the method described in Literature, Polymer Preprint Japan, Vol. 53, 4766-4767 (2004) '-Sulfo-4'-(4-sulfophenoxy) benzophenone (DASSSPB) was synthesized. In a dry 100 ml four-necked flask, 1.670 g (3.6 mmol) of DASSPB and 2.1 ml of TEA were dissolved in 24 ml of m-cresol and then 1.287 g (4.8 mmol) of NTDA. And 1.53 g of benzoic acid were added and the mixture was stirred at 80 ° C. for 4 hours and at 180 ° C. for 5 hours under a nitrogen gas atmosphere. After cooling the polymerization reaction solution to room temperature, 15 ml of m-cresol, 0.701 g (2.4 mmol) of BAPBz, 0.536 g (2.0 mmol) of NTDA and 0.51 g of benzoic acid were added, and the reaction solution was added. Was stirred at 80 ° C. for 4 hours and then at 180 ° C. for 15 hours. The reaction solution was cooled to room temperature, poured into a large amount of acetone, the precipitated solid was filtered off, washed with acetone and dried. The solution viscosity of the obtained product was 0.8 dl / g. This was cast into a film in the same manner as in Example 1 to obtain a sequenced block copolymer sulfonated polyimide NTDA-DASSPB / BAPBz (3/2) -s film.

この膜を実施例1と同様のメタンスルホン酸/五酸化リン溶液に浸漬し、30℃で3日間保持した後、膜を取り出し水洗し、超純水に3日間浸漬した後、風乾し、真空下150℃で1時間キュアリングして、スルホン化ポリイミドNTDA−DASSPB/BAPBz(3/2)−sの架橋膜を得た。   This membrane was immersed in the same methanesulfonic acid / phosphorus pentoxide solution as in Example 1 and held at 30 ° C. for 3 days. The membrane was taken out, washed with water, immersed in ultrapure water for 3 days, air-dried, and vacuum-treated. Under curing at 150 ° C. for 1 hour, a crosslinked film of sulfonated polyimide NTDA-DASSPB / BAPBz (3/2) -s was obtained.

架橋処理前の膜は、m−クレゾール中で大きく膨潤し、TEA含有m−クレゾールに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。またこの膜の弾性率、破断応力、破断伸度は、未架橋膜では、それぞれ1.3GPa、56MPa、8%であり、架橋膜では、それぞれ1.2GPa、70MPa、20%であり、架橋により膜強度が改善された。   The film before the crosslinking treatment swelled greatly in m-cresol and was soluble in TEA-containing m-cresol, but the film after the crosslinking treatment was insoluble in the solvent and did not swell. The elastic modulus, breaking stress, and breaking elongation of the film are 1.3 GPa, 56 MPa, and 8%, respectively, for the uncrosslinked film, and 1.2 GPa, 70 MPa, and 20%, respectively, for the crosslinked film. The film strength was improved.

スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(1/2)−rの架橋膜
文献、ジャーナル ポリマー サイエンス、ポリマー ケミストリー 第41巻2264−2276頁(2003)に記載されている方法により、3,3‘−ジスルホ−4,4’−ジクロロジフェニルスルホン(SDCDPS)を合成し、次いで、SDCDPS2ミリモルと4,4’−ジクロロジフェニルスルホン(DCDPS)4ミリモルを4,4‘−ジヒドロキシジフェニルエーテル(DPE)6ミリモルと縮重合して、ポリマー生成物を得た。生成ポリマーの溶液粘度(溶媒:DMAc;0.5wt%;35℃)は1.5dl/gであった。生成物をDMAcに溶解し、7wt%の溶液をガラス板上に流延し、100℃で1時間そして120℃で10時間乾燥して、Na塩型の共重合スルホン化ポリマー膜を得た。これを1M硫酸溶液に30℃で3日間浸漬しプロトン交換した後、水洗し、超純水に3日間浸漬した後風乾し、最後に真空中150℃で10時間キュアリングしてプロトン型のランダム共重合スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(1/2)−r膜を得た。
Crosslinked membrane of sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (1/2) -r 3, 3 by the method described in Journal of Polymer Science, Polymer Chemistry 41, 2264-2276 (2003) '-Disulfo-4,4'-dichlorodiphenylsulfone (SDCDPS) was synthesized, and then 2 mmol of SDCDPS and 4 mmol of 4,4'-dichlorodiphenylsulfone (DCDPS) were converted to 6 mmol of 4,4'-dihydroxydiphenyl ether (DPE). To obtain a polymer product. The solution viscosity (solvent: DMAc; 0.5 wt%; 35 ° C.) of the produced polymer was 1.5 dl / g. The product was dissolved in DMAc, and a 7 wt% solution was cast on a glass plate and dried at 100 ° C. for 1 hour and at 120 ° C. for 10 hours to obtain a Na salt type copolymer sulfonated polymer membrane. This was immersed in a 1M sulfuric acid solution at 30 ° C. for 3 days to exchange protons, washed with water, immersed in ultrapure water for 3 days and then air-dried, and finally cured in vacuum at 150 ° C. for 10 hours to obtain proton type random A copolymerized sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (1/2) -r membrane was obtained.

この膜を、実施例1と同様のメタンスルホン酸/五酸化リン溶液に浸漬し、80℃で8時間保持した後、膜を取り出し水洗し、超純水に3日間浸漬した後、風乾し、真空下150℃で1時間キュアリングして、ランダム共重合スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(1/2)−rの架橋膜を得た。   This membrane was immersed in the same methanesulfonic acid / phosphorus pentoxide solution as in Example 1 and held at 80 ° C. for 8 hours. The membrane was taken out, washed with water, immersed in ultrapure water for 3 days, air-dried, Curing was performed at 150 ° C. for 1 hour under vacuum to obtain a crosslinked film of random copolymer sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (1/2) -r.

架橋処理前の膜は、NMPに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。また、この未架橋膜はメタノールに溶解したが、架橋膜はメタノールに不溶であり、ほとんど膨潤しなかった。   The membrane before the crosslinking treatment was soluble in NMP, but the membrane after the crosslinking treatment was insoluble in the solvent and did not swell. The uncrosslinked film was dissolved in methanol, but the crosslinked film was insoluble in methanol and hardly swelled.

スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(2/3)−rの架橋膜
SDCDPS/DCDPSのモル比を2/3にした以外は、実施例6と同様にし、重合して、ポリマー生成物を得た。生成ポリマーの溶液粘度は2.2dl/gであった。生成物をDMAcに溶解し、実施例5と同様に製膜して、プロトン型のランダム共重合スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(2/3)−r膜を得た。
Crosslinked membrane of sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (2/3) -r Polymerization was carried out in the same manner as in Example 6 except that the molar ratio of SDCDPS / DCDPS was changed to 2/3. Got. The solution viscosity of the resulting polymer was 2.2 dl / g. The product was dissolved in DMAc and formed into a membrane in the same manner as in Example 5 to obtain a proton type random copolymer sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (2/3) -r membrane.

この膜を、85%濃リン酸溶液に室温で10時間浸漬した後、膜を取り出し、ティシュペーパーでふき取り、真空中で60℃で5時間、100℃で5時間そして170℃で24時間加熱した。その後、膜を超純水に3日間浸漬した後、風乾し、真空下150℃で1時間キュアリングして、ランダム共重合スルホン化ポリアリルエーテルスルホンDPE−SDCDPS/DCDPS(2/3)−rの架橋膜を得た。   The membrane was immersed in 85% concentrated phosphoric acid solution for 10 hours at room temperature, then removed, wiped with tissue paper, and heated in vacuo at 60 ° C. for 5 hours, 100 ° C. for 5 hours, and 170 ° C. for 24 hours. . Thereafter, the membrane was immersed in ultrapure water for 3 days, air-dried, and cured at 150 ° C. for 1 hour under vacuum to randomly copolymerize sulfonated polyallyl ether sulfone DPE-SDCDPS / DCDPS (2/3) -r. A crosslinked film was obtained.

架橋処理前の膜は、NMPに可溶であったが、架橋処理後の膜は溶媒に不溶であり、膨潤もしなかった。また、この未架橋膜はメタノールに溶解し、50wt%メタノール水溶液に大きく膨潤したが、架橋膜はメタノールに不溶であり、50wt%メタノール水溶液にもほとんど膨潤しなかった。
(膜の評価結果)
上記実施例で調整した架橋処理前の未架橋膜と架橋処理後の架橋膜の耐水性、吸水性、プロトン伝導性を評価した。その結果を表1に示す。また、実施例2と3の未架橋膜と架橋膜の耐水性試験前後での膜の引っ張り試験と曲げ試験の結果を表2に示す。
The membrane before the crosslinking treatment was soluble in NMP, but the membrane after the crosslinking treatment was insoluble in the solvent and did not swell. The uncrosslinked film was dissolved in methanol and swelled greatly in a 50 wt% methanol aqueous solution, but the crosslinked film was insoluble in methanol and hardly swollen in a 50 wt% methanol aqueous solution.
(Evaluation result of membrane)
The water resistance, water absorption, and proton conductivity of the uncrosslinked membrane before crosslinking treatment and the crosslinked membrane after crosslinking treatment prepared in the above examples were evaluated. The results are shown in Table 1. Table 2 shows the results of the film tensile test and the bending test before and after the water resistance test of the uncrosslinked films and the crosslinked films of Examples 2 and 3.

以上の結果より、以下のことが分かる。   From the above results, the following can be understood.

1)いずれの実施例でも、架橋処理により、膜の高温耐水性が大幅に改善された。実施例2と3では、未架橋膜はかなり高い耐水性を有するが、架橋により耐水性がさらに改善されることが、表2の引っ張り試験結果から分かる。   1) In any of the examples, the high temperature water resistance of the film was greatly improved by the crosslinking treatment. In Examples 2 and 3, the uncrosslinked film has a considerably high water resistance, but it can be seen from the tensile test results in Table 2 that the water resistance is further improved by crosslinking.

2)100℃での吸水率は、実施例2を除いて、架橋により低下しており、未架橋膜の高温での吸水率の高い実施例4と7で、その低下が大きい。   2) The water absorption at 100 ° C. is reduced by crosslinking except in Example 2, and the decrease is large in Examples 4 and 7 where the water absorption at high temperature of the uncrosslinked film is high.

3)プロトン伝導度は、架橋により若干減少したが、架橋後も十分に高いプロトン伝導度を示した。   3) Although the proton conductivity was slightly reduced by crosslinking, the proton conductivity was sufficiently high even after crosslinking.

4)実施例2では、架橋により吸水率が増加するため、プロトン伝導度も若干増加した。   4) In Example 2, since the water absorption increased due to crosslinking, the proton conductivity slightly increased.

5)実施例6と7の例のように、メタノールに可溶または大きく膨潤する膜でも、架橋により、膜がメタノールに不溶になり、膜膨潤も大きく抑制されるので、このような架橋膜は、メタノール直接形燃料電池用の電解質膜としの応用が可能になる。   5) Even in membranes that are soluble or greatly swell in methanol as in Examples 6 and 7, the membrane becomes insoluble in methanol due to crosslinking, and membrane swelling is greatly suppressed. Application as an electrolyte membrane for a methanol direct fuel cell becomes possible.

Figure 0004686719
Figure 0004686719

Figure 0004686719
Figure 0004686719

本発明は新規なスルホン酸型陽イオン交換樹脂膜の製造方法であり、得られるスルホン酸型陽イオン交換膜は、食塩などの塩類水溶液の濃縮、脱塩、果汁の脱酸、食塩等の塩の分解、燃料電池の隔膜などの用途に用いられる可能性を有している。   The present invention is a novel method for producing a sulfonic acid type cation exchange resin membrane, and the resulting sulfonic acid type cation exchange membrane is prepared by concentrating an aqueous salt solution such as salt, desalting, deoxidizing fruit juice, salt such as sodium chloride, etc. It can be used for applications such as decomposition of fuel cells and diaphragms of fuel cells.

本発明においてスルホン酸基を有する高分子物質とスルホン酸基は有しないが、水素を結合した電子密度の高い炭素が存在する高分子物質とを架橋させる場合の模式図である。In this invention, it is a schematic diagram in the case of bridge | crosslinking the polymeric material which does not have a sulfonic acid group and the polymeric material which does not have a sulfonic acid group but has a high electron density which couple | bonded hydrogen. 本発明において、一分子中にスルホン酸基と水素を結合した電子密度の高い炭素とを併せ持ち高分子化合物を架橋させる場合の模式図である。In this invention, it is a schematic diagram in the case of having both a sulfonic acid group and carbon with high electron density in which hydrogen is bonded in one molecule to crosslink a polymer compound. 本発明において、スルホン酸基を有するが水素を結合した電子密度の高い炭素が存在しない高分子化合物を、水素を結合した電子密度の高い炭素を2個以上有する低分子化合物を介して架橋させる場合の模式図である。In the present invention, a polymer compound having a sulfonic acid group but having no hydrogen-bonded high electron density is cross-linked via a low-molecular compound having two or more hydrogen-bonded high electron density carbons. FIG. 実施例1によって得られた架橋陽イオン交換樹脂の構造を示す模式図である。1 is a schematic diagram showing the structure of a crosslinked cation exchange resin obtained in Example 1. FIG. 実施例2によって得られた架橋陽イオン交換樹脂の構造を示す模式図である。3 is a schematic diagram showing the structure of a crosslinked cation exchange resin obtained in Example 2. FIG. 実施例3によって得られた架橋陽イオン交換樹脂の構造を示す模式図である。4 is a schematic diagram showing the structure of a crosslinked cation exchange resin obtained in Example 3. FIG. 実施例4によって得られた架橋陽イオン交換樹脂の構造を示す模式図である。6 is a schematic diagram showing the structure of a crosslinked cation exchange resin obtained in Example 4. FIG. 実施例6によって得られた架橋陽イオン交換樹脂の構造を示す模式図である。6 is a schematic diagram showing the structure of a crosslinked cation exchange resin obtained in Example 6. FIG.

Claims (9)

スルホン酸基を有する高分子化合物と、分子中に水素原子を結合した電子密度の高い炭素原子を有する物質とを脱水剤溶液を用いて、該スルホン酸基と該水素原子から脱水反応させることを特徴とする架橋陽イオン交換樹脂膜の製造方法。
A polymer compound having a sulfonic acid group and a substance having an electron-dense carbon atoms bonded hydrogen atoms in the molecule with a dehydrating agent solution, thereby dehydration reaction from the sulfonic acid group and the hydrogen atom A method for producing a crosslinked cation exchange resin membrane characterized by the following.
分子中に水素原子を結合した電子密度の高い炭素原子を有する物質が、電子供与性基が結合している芳香族環である、請求項1記載の架橋陽イオン交換樹脂膜の製造方法。   The method for producing a crosslinked cation exchange resin membrane according to claim 1, wherein the substance having a carbon atom having a high electron density in which hydrogen atoms are bonded in a molecule is an aromatic ring to which an electron donating group is bonded. 脱水剤として、濃リン酸、ポリリン酸及び溶媒に溶解した五酸化リンから選ばれる少なくとも1種の化合物を用いることを特徴とする請求項1又は2記載の架橋陽イオン交換樹脂膜の製造方法。   3. The method for producing a crosslinked cation exchange resin membrane according to claim 1, wherein at least one compound selected from concentrated phosphoric acid, polyphosphoric acid and phosphorus pentoxide dissolved in a solvent is used as the dehydrating agent. 溶媒に溶解した五酸化リンが、メタンスルホン酸に溶解した五酸化リンである請求項3記載の架橋陽イオン交換樹脂膜の製造方法。   The method for producing a crosslinked cation exchange resin membrane according to claim 3, wherein the phosphorus pentoxide dissolved in the solvent is phosphorus pentoxide dissolved in methanesulfonic acid. スルホン酸基を有する高分子化合物が、分子中に水素原子を結合した電子密度の高い炭素原子を有することを特徴とする請求項1乃至3のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   The crosslinked cation exchange resin membrane according to any one of claims 1 to 3, wherein the polymer compound having a sulfonic acid group has a carbon atom having a high electron density in which hydrogen atoms are bonded in the molecule. Manufacturing method. スルホン酸基を有する高分子化合物と分子中に水素を結合した電子密度の高い炭素を2個以上有する化合物とを脱水反応により結合させる請求項1乃至3のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   The crosslinked cation according to any one of claims 1 to 3, wherein a polymer compound having a sulfonic acid group and a compound having two or more carbons having high electron density in which hydrogen is bonded in the molecule are bonded by a dehydration reaction. A method for producing an exchange resin membrane. スルホン酸基を有する高分子化合物がポリフェニレン、ポリエーテル、ポリスルフィド、ポリエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリベンゾオキサゾール、及びポリイミドのうち少なくとも1種の高分子化合物である請求項1乃至4のいずれかの項に記載の架橋陽イオン交換樹脂膜の製造方法。   The polymer compound having a sulfonic acid group is at least one polymer compound selected from the group consisting of polyphenylene, polyether, polysulfide, polyetherketone, polysulfone, polyethersulfone, polyetheretherketone, polybenzoxazole, and polyimide. 5. A method for producing a crosslinked cation exchange resin membrane according to any one of items 1 to 4. 電子供与性基が、−O−、−S−、アルキル、アルキレン、アリール及びアリーレンのうちから選ばれる少なくとも1種である請求項2記載の架橋陽イオン交換樹脂膜の製造方法。   The method for producing a crosslinked cation exchange resin membrane according to claim 2, wherein the electron donating group is at least one selected from -O-, -S-, alkyl, alkylene, aryl and arylene. 請求項1乃至7のいずれかの項に記載の架橋陽イオン交換樹脂膜よりなる燃料電池用電解質膜。   An electrolyte membrane for a fuel cell comprising the crosslinked cation exchange resin membrane according to any one of claims 1 to 7.
JP2005261867A 2005-09-09 2005-09-09 Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane Active JP4686719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261867A JP4686719B2 (en) 2005-09-09 2005-09-09 Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261867A JP4686719B2 (en) 2005-09-09 2005-09-09 Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane

Publications (2)

Publication Number Publication Date
JP2007070563A JP2007070563A (en) 2007-03-22
JP4686719B2 true JP4686719B2 (en) 2011-05-25

Family

ID=37932303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261867A Active JP4686719B2 (en) 2005-09-09 2005-09-09 Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane

Country Status (1)

Country Link
JP (1) JP4686719B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108673A (en) * 2006-10-27 2008-05-08 Hitachi Ltd Hydrocarbon-based solid polymer electrolyte membrane, membrane/electrode assembly, manufacturing method for it, fuel cell power source, fuel cell power source system, and electronic apparatus
JP4986298B2 (en) * 2007-01-30 2012-07-25 富士フイルム株式会社 Method for producing solid electrolyte film and web-like solid electrolyte film
US8546044B2 (en) 2008-09-24 2013-10-01 Toppan Printing Co., Ltd. Polymer electrolyte, membrane electrode assembly and fuel cell
CN102585254B (en) * 2011-01-07 2013-10-09 通用电气公司 Crosslinking method and product obtained by using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243493A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion exchange membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243493A (en) * 2004-02-27 2005-09-08 Toyobo Co Ltd Ion exchange membrane

Also Published As

Publication number Publication date
JP2007070563A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
Yang et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells
US7285325B2 (en) Membranes having improved mechanical properties, for use in fuel cells
KR20010080963A (en) Polymer composition, membrane containing said composition, method for the production and use thereof
Chen et al. Crosslinked sulfonated poly (arylene ether ketone) membranes bearing quinoxaline and acid–base complex cross-linkages for fuel cell applications
Li et al. Synthesis and properties of sulfonated polyimide–polybenzimidazole copolymers as proton exchange membranes
JP2003528188A (en) Composite ion exchange material
Sheng et al. Synthesis and properties of novel sulfonated polybenzimidazoles from disodium 4, 6-bis (4-carboxyphenoxy) benzene-1, 3-disulfonate
JP4686719B2 (en) Method for producing crosslinked cation exchange resin membrane having sulfonic acid group and electrolyte membrane for fuel cell comprising said membrane
KR20120006764A (en) Poly(arylene ether) copolymer having cation-exchange group, process of manufacturing the same, and use thereof
JP2002146014A (en) Ion-conductive polyazole containing phosphonic acid group
JP2007302717A (en) Sulfonated aromatic polyimide, electrolyte membrane and solid state electrolyte for fuel cell, and fuel cell
Guo et al. Synthesis and properties of novel sulfonated polyimides from 4, 4′-(biphenyl-4, 4′-diyldi (oxo)) bis (1, 8-naphthalic anhydride)
KR20130114472A (en) Novel sulfonated conjugated tetraphenylethylene polyimides and proton exchange membrane for fuel cell using the same
JP2006152009A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
JP2007039525A (en) Ion-exchange membrane, ion-exchange resin, manufacturing method thereof, and refining method of ion-exchange resin
JP4061522B2 (en) POLYAZOLE POLYMER COMPOSITION, FILM CONTAINING THE SAME, AND METHOD FOR MOLDING POLYAZOLE POLYMER COMPOSITION
KR101389544B1 (en) Polymer electrolyte compositions and polymer electrolyte membrane for fuel cell prepared therefrom
JP2006265497A (en) Sulfonated aromatic carbonylpolyimide and electrolyte film composed of the same
JP2007126610A (en) Sulfonated aromatic polyimide and electrolyte film comprising the same
JP2002201269A (en) Novel polybenzazole having ionic group and membrane containing it as main component
Fang et al. Synthesis and properties of novel sulfonated polyimides for fuel cell application
Chen et al. Covalent‐ionically crosslinked sulfonated poly (arylene ether sulfone) s bearing quinoxaline crosslinkages as proton exchange membranes
JP4093408B2 (en) Novel membranes for use in fuel cells with improved mechanical properties
JP2006265496A (en) Sulfonated aromatic polyimide and electrolyte film composed of the same
KR20110090051A (en) Branched and sulfonated copolymer containing perfluorocyclobutane rings, preparation method thereof and electrolyte membrane using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150